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Abstract
Rationale Aberrant prefrontal-hippocampal (PFC-HC) con-
nectivity is disrupted in several psychiatric and at-risk condi-
tions. Advances in rodent functional imaging have opened the
possibility that this phenotype could serve as a translational
imaging marker for psychiatric research. Recent evidence
from functional magnetic resonance imaging (fMRI) studies
has indicated an increase in PFC-HC coupling during
working-memory tasks in both schizophrenic patients and
at-risk populations, in contrast to a decrease in resting-state
PFC-HC connectivity. Acute ketamine challenge is widely
used in both humans and rats as a pharmacological model to
study the mechanisms of N-methyl-D-aspartate (NMDA) re-
ceptor hypofunction in the context of psychiatric disorders.
Objectives We aimed to establish whether acute ketamine
challenge has consistent effects in rats and humans by

investigating resting-state fMRI PFC-HC connectivity and
thus to corroborate its potential utility as a translational probe.
Methods Twenty-four healthy human subjects (12 females,
mean age 25 years) received intravenous doses of either saline
(placebo) or ketamine (0.5 mg/kg body weight). Eighteen
Sprague-Dawley male rats received either saline or ketamine
(25 mg/kg). Resting-state fMRI measurements took place af-
ter injections, and the data were analyzed for PFC-HC func-
tional connectivity.
Results In both species, ketamine induced a robust increase in
PFC-HC coupling, in contrast to findings in chronic
schizophrenia.
Conclusions This translational comparison demonstrates a
cross-species consistency in pharmacological effect and elu-
cidates ketamine-induced alterations in PFC-HC coupling, a
phenotype often disrupted in pathological conditions, which
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may give clue to understanding of psychiatric disorders and
their onset, and help in the development of new treatments.

Keywords Ketamine . fMRI . Cross-species .

Prefrontal-hippocampal . Schizophrenia

Introduction

The dorsolateral prefrontal cortex (DLPFC) is one of the ma-
jor anatomical hubs implicated in the pathophysiology of
schizophrenia (Callicott et al. 2003; Seidman et al. 2006).
Recent studies point to a dysregulation of functional coupling
between the right DLPFC and left hippocampus in patients
suffering from schizophrenia and high-risk individuals
(Esslinger et al. 2009; Meyer-Lindenberg et al. 2001; Rasetti
et al. 2011). Complementing these task-dependent measures,
functional connectivity in the absence of any task, as mea-
sured by low-frequency blood oxygenation level-dependent
(BOLD) oscillations, has been found to be reduced in schizo-
phrenic patients (Rotarska-Jagiela et al. 2010; Zhou et al.
2008).

We have recently established a homology of prefrontal-
hippocampal (PFC-HC) connectivity features in humans and
rats (Schwarz et al. 2013); however, the extent to which this
circuit can be modulated in a consistent way by the same
pharmacological manipulation in both species remains to be
established. Here, we focused on resting-state functional mag-
netic resonance imaging (rs-fMRI) since the construction of a
valid translational biomarker in rats is more tractable this way
given that n-back tasks are heterogeneous in humans and are
hard to translate to anesthetized or restrained rats in the MRI
scanner.

Ketamine, a dissociative anesthetic at high doses, acts as an
N-methyl-D-aspartate (NMDA) receptor antagonist. At lower,
subanesthetic doses, ketamine is widely used in both species
to investigate mechanisms underlying psychosis and, more
recently, as a potential rapid onset antidepressant (Diamond
et al. 2014; Niciu et al. 2014; Salvadore et al. 2010;
Scheidegger et al. 2012; Vollenweider et al. 1997; Zarate
et al. 2013).

Ketamine has been applied in humans (D’Souza et al.
2012; Krystal et al. 2005; Morgan et al. 2004) and animals
(Garcia et al. 2008; Pitsikas et al. 2008; Skoblenick and
Everling. 2012) to model translationally relevant behavioral
effects. However, in most cases, these studies did not involve
explicitly aligned experiments in both humans and animals.
Despite the well-validated use of ketamine application as a
translational model, there is a lack of data on how acute keta-
mine treatment affects the functional coupling between pre-
frontal and subcortical regions. Here, we specifically concen-
trated on the hippocampus because of its formerly described
changes in connectivity pattern in the context of psychosis risk

(Meyer-Lindenberg et al. 2001). Besides PFC-HC circuit has
been postulated to be important in psychiatric disorders
(Godsil et al. 2013).

In our earlier study, we hypothesized that, rather than
modeling such a complex and heterogeneous disease as
schizophrenia, ketamine challenge may be used to induce a
hyperglutamatergic state similar to that of the early
(prodromal) stage of the disease (Gass et al. 2014).
Ketamine promotes an increased glutamate release in the
PFC both in rats (Lorrain et al. 2003; Moghaddam et al.
1997) and in humans (Rowland et al. 2005; Stone et al.
2012) and increases global brain connectivity in healthy
humans (Driesen et al. 2013). Another recent study which
has investigated ketamine effects on thalamo-cortical connec-
tivity supports this hypothesis (Dawson et al. 2013). In our
previous study in rats (Gass et al. 2014), ketamine induced an
increase in PFC-HC connectivity and we hypothesized that
this increase would translate to humans.

The present study aimed to investigate whether an acute
ketamine challenge has analogous effects in rats and humans
on PFC-HC connectivity measures derived from rs-fMRI da-
ta. This would underscore the value of this phenotype as a
translational target for pharmacological studies.

Methods

Subjects

A total of 24 participants completed the study (12 females,
mean age 25 years, mean body weight 70 kg). Human fMRI
data were acquired in healthy individuals in a subject- and
observer-blind, placebo-controlled, randomized, three-period
cross-over study. The subjects received counterbalanced sin-
gle intravenous doses of either saline (placebo condition), ke-
tamine (0.5 mg/kg body weight), or scopolamine (4 μg/kg
body weight). In the placebo condition, saline alone was in-
fused for 40 min. For the present study, we only analyzed the
ketamine versus placebo conditions.

All participants provided written informed consent for a
study approved by the local ethics committee (Medical
Faculty Mannheim, University of Heidelberg, Germany).
Subjects underwent three consecutive fMRI sessions at the
same center over the course of 3 weeks.

Animals

Eighteen Sprague-Dawley male rats (373–447 g; Janvier
Laboratories, Le Genest-St-Isle, France) were used for fMRI
experiments. Animals were housed under controlled condi-
tions (19–23 °C, 40–60 % humidity) with a 12:12-h light-
dark cycle (lights on at 7 a.m.).
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All procedures were performed according to the regula-
tions covering animal experimentation within the European
Union (European Communities Council Directive 86/609/
EEC) and within the German Animal Welfare Act and were
approved by the German animal welfare authorities
(Regierungspräsidium Karlsruhe).

Ketamine application—humans

On each day of the experiment, subjects received an infusion
via a certified intravenous pump (Braun Medical, Melsungen,
Germany). To avoid order effects, the sequence of substance
applications was randomly permutated across all 24 partici-
pants. A ketamine dose of 0.5 mg/kg was used following
previously published protocols (Furey et al. 2010; Salvadore
et al. 2010). MRI scanning took place after drug administra-
tion, with the resting-state measurement starting approximate-
ly 20 min after the end of the infusion. The participants were
supervised by a certified psychiatrist.

Ketamine application—animals

The experimental design comprised two groups of N=9 rats
each. In one group, S-ketamine (Ketanest®, Pfizer Pharma
GmbH, Berlin, Germany) was injected subcutaneously at a
dose of 25 mg/kg dissolved in saline (total volume 1 ml/kg).
The second group received the same volume of vehicle (sa-
line). The order of ketamine and saline injections was random-
ized across animals and time of day. The rs-fMRI measure-
ment started at 30 min after the ketamine/vehicle injection.

These animals are two groups from the study previously
reported (Gass et al. 2014). Both groups were reanalyzed
using methods as closely aligned as possible to those used
for the human data (see below).

Data acquisition—human fMRI

Functional imaging was performed with a 3-T MR scanner
(Siemens Trio, Erlangen, Germany), a 32-channel head-coil,
and an echo-planar imaging (EPI) sequence with the follow-
ing parameters: TR=1790 ms, TE=28 ms, 34 oblique slices
(aligned to the AC-PC plane), 3-mm slice thickness, FA=76°,
FOV=192 mm, 64×64 matrix, 332 volumes.

Data acquisition—animal fMRI

Experiments were conducted at a 9.4-T MRI scanner (94/20
Bruker BioSpec, Ettlingen, Germany) with Avance III hard-
ware, BGA12S gradient systemwith the maximum strength of
705 mT/m and Paravision 5.1 software. Transmission and
reception were achieved using a linear whole-body volume
transmitter coil combined with an anatomically shaped four-
channel receive-only coil array for the rat brain.

Rats were anesthetized under 4 % isoflurane (Baxter
Deutschland GmbH, Unterschleissheim, Germany) in a mix-
ture of N2 (70 %)/O2 (30 %). After positioning in the scanner
(head first, prone), 2.5 % isoflurane was provided for adjust-
ments. Then, a bolus of 0.5-ml medetomidine solution
(Domitor®, Janssen-Cilag, Neuss; 0.07 mg/kg s.c.) was ad-
ministered; isoflurane was slowly discontinued within the
next 10 min, after which a continuous infusion of
medetomidine solution started at 0.14 mg/kg/h rate.

Breathing and cardiac signals were received using a respi-
ration pad placed beneath the chest (Small Animal
Instruments Inc., NY, USA) and a pulse oximeter attached to
the hindpaw, respectively. A signal breakout module (Small
Animal Instruments Inc., NY, USA) and a four-channel re-
corder (Velleman® N.V., Gavere, Belgium) were used to re-
cord signals (10-ms resolution).

The MRI acquisition protocol for each animal comprised a
FieldMap and a rs-fMRI measurement. To acquire the rs-
fMRI time series, an echo-planar imaging (EPI) sequence
was used with the following parameters: repetition time/echo
time (TR/TE) 1700/17.5 ms, flip angle 60°, 1 segment, 29
coronal slices (ascending slice order), 96×96 imaging matrix,
field of view 35×35 mm2, slice thickness 0.5 mm with
0.2 mm inter-slice gap, in-plane voxel dimension 0.365 mm,
300 acquisitions over 8.5 min. The slice stack covered the
brain from the cerebellum to the posterior olfactory bulb.

Data processing and analysis—human fMRI

Data were processed using statistical parametric mapping
(SPM8) (http://www.fil.ion.ucl.ac.uk/spm/) and the
complementary CONN toolbox v13 (Whitfield-Gabrieli and
Nieto-Castanon. 2012). Images were realigned, slice-time-
corrected, spatially normalized to standard stereotaxic space
(Montreal Neurological Institute (MNI) template), resampled
to 3-mm isotropic voxels, and smoothed with an 8-mm full-
width at half maximum (FWHM) Gaussian kernel. A band-
pass filter reduced frequency bands to 0.01–0.1 Hz. Further
noise correction included regression of the six motion param-
eters from the realignment step, their first-order derivatives,
and regression of cerebrospinal fluid and white matter signals
using an aCompCor-strategy (five dimensions). This method
(Behzadi et al. 2007) includes the principal components of
white matter/cerebrospinal fluid regions as nuisance regres-
sors and avoids the artificial inflation of anticorrelations relat-
ed to global signal regression (Chai et al. 2014).

For our seed voxel approach, we extracted the first
eigenvariate from masks of the right and left DLPFC (BA9/
BA46), respectively. The consecutive correlation map was
Fisher-Z-transformed and used for second-level interference.
Group statistics (second level) were calculated in SPM8 using
flexible factorial models. Drug and order of drug application
were modeled as fixed effects. As we were only interested in
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the ketamine versus placebo comparison, we modeled this
contrast alone and treated the other factor levels as nuisance
variables. For multiple comparisons correction, we used a
region-of-interest mask of the left and right hippocampus as
target regions, based on the Harvard-Oxford atlas (http://
www.cma.mgh.harvard.edu/) with a probability threshold of
50 % (significance threshold PFWE<0.05, ROI-corrected).
Changes in both cross-hemisphere (left DLPFC to right hip-
pocampus, and right DLPFC to left hippocampus) and unilat-
eral (left DLPFC to left hippocampus, and right DLPFC to
right hippocampus) coupling were tested.

Data processing and analysis—animal fMRI

Data were processed using SPM8. The EPI time series were
corrected for magnetic field (B0) inhomogeneities using
FieldMap sequences. To minimize movement effects on the
signal intensities, the estimated movement parameter vectors
were regressed out from each voxel (FSL, version 4.1. http://
www.fmrib.ox.ac.uk/fsl). Then, respiratory and cardiac
signals were filtered out from each voxel using Aztec
software (van Buuren et al. 2009). Afterward, a slice-timing
correction was applied to the images (SPM8). The time
courses were band-pass filtered (0.01–0.1 Hz) (Analysis of
Functional Neuroimages (AFNI) version 2) and finally
spatially normalized (SPM8) to a rat brain template with
co-registered anatomical atlas positioned in the Paxinos ste-
reotactic coordinate system (Schwarz et al. 2006). In the end,
the data were filtered to exclude the signal from the cerebro-
spinal fluid.

For our seed region approach, we extracted the time course
from a mask of the right and left prelimbic cortex (PrL). A
mean time course of the seed was extracted from each normal-
ized, unsmoothed time series; then, the data were smoothed by
0.8 mm. Correlation coefficients were calculated for these
time courses voxel-wise and transformed to Fisher Z-scores.
The Zmaps were fed into the second-level analyses (SPM8): a
two-sample T-test for the dose of 25mg/kg versus saline using
right and left hippocampi as explicit masks (PFWE<0.05,
cluster-level and peak-level correction). Connectivity of the
right PrL was tested for both right and left hippocampi, the
same was applied to the left PrL.

Pharmacokinetics—humans

Blood samples for measurement of ketamine and its me-
tabolite norketamine were 10 and 80 min after the end of
the infusion, respectively. Samples were centrifuged (4000
RPM, 4 °C) and frozen at −80 °C. Analysis was per-
formed by a certified medical laboratory (Labor
Limbach, Heidelberg, Germany) using liquid chromatogra-
phy mass spectrometry. A within-subject average was cal-
culated and used for partial correlation between ketamine

and norketamine levels and DLPFC-HC connectivity (peak
voxel, adjusted for order effects).

Pharmacokinetics—animals

At the end of each experiment (within 50–80 min after
ketamine/vehicle injection) a 4.5–6 ml blood sample was
acquired from each rat by cardiac puncture to determine
exposure to ketamine and levels of its major metabolite
norketamine. Sample analysis was carried out using a
mass spectrometry assay by Advion Bioanalytical Labs
(Quintiles Company, Indianapolis, IN, USA).

Results

Human pharmacological rs-fMRI

Relative to the placebo condition, ketamine significantly
increased the correlation between both the left and right
DLPFC and the left hippocampus (T=3.69, PFWE=0.027,
corrected for left hippocampal ROI, local maximum: x=
−30, y=−30, z=−14; T=3.97, PFWE=0.013, corrected for
left hippocampal ROI, local maximum: x=−26, y=−10, z=
−22; Table 1, Figs. 1 and 2). In contrast, there was no
significant effect of ketamine on the coupling of the left
DLPFC and either the left or right hippocampus (PFWE>
0.05, ROI-corrected).

The concentration of ketamine was 543.78 ng/ml (SD=
391.59 ng/ml) and of norketamine 44.61 ng/ml (SD=
20.35 ng/ml) in the first blood sample. The second blood
sample contained 170.66 ng/ml of ketamine (SD=
133.17 ng/ml) and 41.46 ng/ml of norketamine (SD=
14.58 ng/ml). For correlations between plasma levels, we used
the within-subject average (ketamine 364.88 ng/ml, SD=
228.48 ng/ml; norketamine 43.24 ng/ml, SD=16.1 ng/ml).
No statistically significant correlations were observed be-
tween plasma levels of either ketamine or norketamine and
connectivity between DLPFC and hippocampus at the peak
voxels (P>0.19).

Table 1 Effect of ketamine on unilateral and cross-hemisphere PFC-
HC connectivity in humans

Hippocampus (L) Hippocampus (R)

DLPFC (L) T=3.97, PFWE=0.013; peak
at [−26, −10, −22] mm

n.s.

DLPFC (R) T=3.69, PFWE=0.027; peak
at [−30, −30, −14] mm

n.s.

Coordinates of maximal effect are reported as [x, y, z] in mm with respect
to the anterior commissure in MNI space coordinates
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Animal pharmacological rs-fMRI

Ketamine significantly elevated the correlation between the
left PrL and both the right and left hippocampus, as well as
between the right PrL and left hippocampus (Table 2, Figs. 3
and 4). However, there was no significant effect between the
right PrL and right hippocampus.

Measured plasma levels of ketamine and norketamine in
the ketamine group were 1693.87 ng/ml (SD=475.92 ng/ml)
and 1333.01 ng/ml (SD=585.78 ng/ml), respectively. Plasma

levels of the major metabolite, norketamine, were highly cor-
related with ketamine levels (r=0.712). No statistically signif-
icant correlations were observed between plasma levels of
either ketamine or norketamine and connectivity between left
PrL and right hippocampus (where we observed the strongest
ketamine effect) at the cluster surviving family-wise error
(FWE) correction (P=0.215 for ketamine; P=0.241 for
norketamine), as well as connectivity between right PrL and
left hippocampus at the cluster surviving FWE correction (P=
0.106 for ketamine; P=0.476 for norketamine).

Discussion

In our rs-fMRI analysis, both humans and rats showed
hyperconnectivity between the PFC and the hippocampus af-
ter the acute ketamine challenge. In rats, this was found for
both left and right hippocampi, whereas in humans, only for
the left hippocampus. Our findings indicate that despite the
differences in brain anatomy and some details in the protocol,
there is a robust cross-species effect of enhanced PFC-HC
coupling in response to ketamine. These data add evidence
to the utility of functional imaging as a translational biomark-
er, and builds on other recent findings in which similar cross-
species BOLD pharmaco-fMRI amplitude changes were ob-
served (Becerra et al. 2013).

The observed increase in PFC-HC coupling might reflect
the neuromodulatory effect of ketamine on this network.
NMDA antagonists increase the levels of excitatory neuro-
transmitters, such as glutamate, acetylcholine, and histamine
and disinhibit GABAergic interneurons (Olney and Farber
1995). In a recent study, mice treated with a high dose of
ketamine (30 mg/kg) showed a global increase in graph-
theory-based connectivity measures (degree and mean cluster-
ing coefficient), as well as an increase in thalamo-cortical and
cortical-subcortical (PFC to dorsal raphe nuclei and locus
coeruleus) connectivity (Dawson et al. 2014). In this study,
the authors did not provide specific data on PFC-HC coupling.
Nevertheless, the general direction of the ketamine effect on
these networks fits well with our data.

Ketamine induces an increase in glucose utilization in the
hippocampus (Crosby et al. 1982; Nelson et al. 1980) and
cingulate regions (Crosby et al. 1982), as well as regional
cerebral blood flow in the hippocampus and cerebral cortex
(Burdett et al. 1995). This might provide a neuronal underpin-
ning for our findings. Also, there is a strong correlation be-
tween gamma band oscillations and BOLD connectivity in
humans (Tagliazucchi et al. 2012). Ketamine consistently in-
creases gamma oscillations both in humans (Hong et al. 2010)
and in rats (Kittelberger et al. 2012; Phillips et al. 2012;
Pinault 2008), which most likely results from the blockade
of NMDA receptors at GABAergic interneurons.

Fig. 1 Connectivity between left (upper row) and right (lower row) seed
eigenvariate time course extracted from left/right DLPFC. Coronal (left)
and transversal (right) slices showing maximum increase in the
connectivity between the left (top) and right (bottom) dorsolateral
prefrontal cortex (DLPFC) and the left hippocampus. Maximum
increase for the left DLPFC connectivity was T=3.97 (MNI coordinate
[−26, −10, −22] mm) and for the right DLPFC T=3.69 (MNI coordinate
[−30, −30, −14] mm). The results were calculated using a hippocampal
mask. The color bar depicts T-values

Fig. 2 Barplot of correlation coefficients between left/right DLPFC and
left hippocampus after placebo and ketamine application. The y-axis
presents Pearson’s correlation coefficient from the hippocampal peak
voxel. Left side, connectivity between left DLPFC and right
hippocampus; right side, connectivity between right DLPFC and left
hippocampus

Psychopharmacology (2015) 232:4231–4241 4235



Hippocampal and prefrontal pathophysiology

Both in rats and humans, the increase in connectivity after
ketamine was more pronounced in the dorsal portion of the
hippocampus. This is in accordance with the higher expres-
sion of NMDA receptors in the dorsal hippocampus along a
ventral-dorsal axis in both species (Strange et al. 2014). In
rats, ketamine has been recently shown (Moran et al. 2015)
to suppress the drive from the medial prefrontal cortex
(mPFC) to dorsal CA1 (dCA1) through NMDA receptors,
while enhancing dCA1-to-mPFC drive through AMPA recep-
tors, which for our study could imply that the direction for the
observed increase in coupling came from the dorsal hippo-
campus, via subiculum outputs. In this respect, we have also
accumulated substantial evidence that PFC-HC drive is medi-
ated via AMPA receptors mediating long-term potentiation
(LTP). Stress inhibits LTP in this circuit via AMPA receptor
phosphorylation (Qi et al. 2009; Rocher et al. 2004; Spedding

et al. 2003; Svenningsson et al. 2007). This occurs due to
increased AMPA receptor mobility by corticosterone, reduc-
ing AMPA synaptic dwell time, which correlates with reduced
LTP. These effects can be reversed by the antidepressant
tianeptine (Zhang et al. 2013). Ketamine also blocks LTP in
this circuit. Indeed, as the dorsal hippocampus mediates cog-
nitive and spatial processing functions, this could partially
explain the cognitive impairment observed after acute admin-
istration of ketamine.

Both postmortem and neuroimaging studies reveal
disrupted hippocampal function in schizophrenic patients
(Heckers and Konradi 2014; Konradi et al. 2011; Schobel
et al. 2013). This might underlie abnormal recruitment
of hippocampal circuits during cognitive tasks (Meyer-
Lindenberg et al. 2001; Suazo et al. 2013). As schizophre-
nia is most often discussed in the context of dopamine
dysregulation, it has to be noted that the rat equivalent
of the primate anterior hippocampus regulates the activity
of striatal dopaminergic neurons (Floresco et al. 2001).
Our ketamine challenge in humans was not designed to
induce psychotic effects per se. Our participants experi-
enced mild perceptual changes, nausea, and dissociation
(Table S1). These side effects were almost exactly the
same as previously described for the same infusion proto-
col (Zarate et al. 2012).

Therefore, the subanesthetic ketamine administration used
in humans in the present study probably has more relevance to
the cognitive deficits associated with disorders such as schizo-
phrenia, rather than plain psychosis.

In a previous paper, we considered the PFC-HC system and
its functional connectivity in the rat and discussed at length the
homology (and the limitations of the homology) with humans

Table 2 Effect of ketamine on unilateral and cross-hemisphere PFC-
HC connectivity in rats

Hippocampus (L) Hippocampus (R)

PrL (L) T=4.81, PFWE,cluster=0.028;
peak at [−3.0, −3.1, −6.1]
mm

T=5.99, PFWE,cluster=0.004;
peak at [2.4, −2.8, −5.4]
mm

PrL (R) T=4.61, PFWE,cluster=0.022;
peak at [−0.5, −3.1, −4.7]
mm

n.s.

Coordinates of maximal effect are reported as [mediolateral, dorsoventral,
anteroposterior] in mm with respect to bregma

L left, R right

Fig. 3 Coronal (left) and
transversal (right) slices showing
maximum increase in the
connectivity between the left
prelimbic cortex (PrL) and the
right hippocampus (upper row),
and the right prelimbic cortex and
the left hippocampus (lower row).
The results were calculated using
a hippocampal mask. The color
bar depicts T-values
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(Schwarz et al. 2013). For example, we found that in the rat, the
posterior (subiculum) region of the hippocampal formation cor-
relates more strongly with the mPFC than the anterior dorsal
hippocampus, and that a homologous relationship exists in hu-
man. This dominant posterior hippocampal-prefrontal connec-
tivity is consistent with the anatomical connectivity. Since the
human PFC is much larger and more differentiated than that in
the rat, in the present study we selected the DLPFC as a region
of the human cortex that has been previously demonstrated as
exhibiting aberrant functional connectivity with the hippocam-
pus in disease and at-risk states (Esslinger et al. 2009; Meyer-
Lindenberg et al. 2005). Since granular prefrontal cortex (in-
cluding DLPFC) appeared during primate evolution, the rat
brain lacks a granular cortex, thus making it difficult to confi-
dently establish an area homologous the primate DLPFC
(Preuss 1995; Uylings et al. 2003). The closest homolog of
human DLPFC in rats is the PrL in terms of anatomical con-
nections and electrophysiological and computational properties
(Seamans et al. 2008). Functional aspects like spatial delay
reaction and working memory typically recruit the human
DLPFC and seem to be connected to the rat mPFC (Jung
et al. 1998; Yang et al. 2014). The PrL plays a similar role in
spatial working memory as the human DLPFC (Chudasama
2011; Kesner and Churchwell 2011). Taken together, from an-
atomical and functional perspective, the rat mPFC fuses ele-
ments of both the dorsal anterior cingulate cortex (Brodmann
area 32) and the DLPFC (Seamans et al. 2008; Wise. 2008),
making our seed regions comparable.

Hemispheric lateralization of the effects

We have found a lateralization of the response to ketamine in the
left hippocampus in humans. Laterality was observed only in the
hippocampus and not in the DLPFC. Reasons for the

asymmetrical hippocampal response to ketamine could include
asymmetries in NMDA/AMPA receptor density, subunit compo-
sition profile defining the functional properties of receptors, and
expression of glutamate transporters. Also, the left and right hip-
pocampi might not have equivalent connections to DLPFC. For
example, a difference in the participation of the left and right
hippocampi in episodic memory encoding is well-established
(Igloi et al. 2010), with the right hippocampus providing place-
learning navigation using environmental cues and the left hippo-
campus mediating self-navigation based on body movements.

Additionally, it is interesting to note that the left hippocam-
pus seems to be more affected in schizophrenic patients, com-
pared to the right: basal metabolic activity in the left hippo-
campus is increased in schizophrenia and predicts psychosis
and positive symptom severity (Schobel et al. 2013). Also,
hippocampal laterality in NMDA receptor distribution and
function has been reported in schizophrenia with a left-sided
loss of glutamate receptors (Harrison et al. 2003; Kerwin et al.
1988). Most importantly, both disease phenotype (Meyer-
Lindenberg et al. 2005) and at-risk effects (Esslinger et al.
2009) have been observed to be left-lateralized with regard
to the connectivity pattern.

In rats, both left and right hippocampi showed an increased
coupling with the PrL. It is noteworthy that brain lateralization
per se is not a characteristic unique only for humans. It has
been found in several animal species including rats at morpho-
logical, functional, and biochemical levels (Glick and Ross
1981; Rogers 1989). For example, rats have left-right asym-
metry in nigrostriatal regions as well as in the frontal cortex as
indicated by difference in cortical thickness, effects of lesions
and frontal cortical metabolism. The fact that, unlike in
humans, both left and right hippocampi responded to keta-
mine could be due to a reduced laterality in terms of connec-
tions, NMDA/AMPA receptor profile and/or glutamate trans-
porters. This proposal requires further investigation.

Apart from species effects on lateralization, asymmetries in
ketamine response patterns have been described before. A
study looking at ketamine effects in depressive patients found
a decreased post-ketamine metabolism (as measured by
glucose-PET) in the right DLPFC and increased in the left
parahippocampal region. Ketamine gives rise to a
hyperconnectivity between the hippocampus and cingulate
cortex, as well as several other regions, similar to our results
(Khal i l i -Mahani e t a l . 2015) . The hippocampal
hyperconnectivity might be linked to a hypoperfusion of the
hippocampus as has been shown by using arterial spin label-
ing (Khalili-Mahani et al. 2015).

Differences between human and rat experiments

An important difference between the human and rat experi-
ments was a requirement for anesthesia during rat fMRI.
However, under medetomidine, a sedative alpha-2 adrenergic

Fig. 4 Barplot of correlation coefficients between left/right prelimbic
cortex (PrL) and right/left hippocampus, respectively, after vehicle and
ketamine. The y-axis presents Pearson’s correlation coefficient calculated
for the mean time courses from hippocampal clusters surviving FWE
correction. Left side, connectivity between left PrL and right hippocam-
pus; right side, connectivity between right PrL and left hippocampus
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agonist, we obtained robust functional connectivity patterns in
the PFC-HC circuit in the rat that closely reflect known ana-
tomical connectivity and are comparable to those in humans
(Schwarz et al. 2013); this may reflect the fact that
medetomidine does not strongly interfere with neural activity
(Williams et al. 2010). Also, an anesthetized rat brain still pre-
serves global network properties of the awake brain (in terms of
graph theory: global clustering coefficient, mean shortest path
length, small-worldness, and modularity) (Liang et al. 2012).
Also, for medetomidine, there is no evidence for specific
mPFC-HC connectivity effects (Grandjean et al. 2014).

In this study, the human subjects had lower plasma levels of
ketamine than the rats, reflecting the lower dose administered.
Lower ketamine doses in rats (5 and 10 mg/kg) were addition-
ally tested using identical analytical procedures as applied to
the 25 mg/kg group, but they did not produce any significant
effects on PrL-hippocampal connectivity (data not shown).
Thus, it seems that a higher exposure of ketamine is required
in the rat to reach an effect comparable to that observed in
humans. However, it should be noted that in rats, ketamine
was administered as one-time subcutaneous injection, while
this procedure is not possible in humans, and conversely, it
was not practicable to administer ketamine to the rats in a long
intravenous application via an infusion pump. The human par-
ticipants received a lower dose but in a continuous way, a
standard procedure established in clinical trials of ketamine in
depression. While we cannot quantitatively align the human
and rat exposure-response relationships, the ketamine-induced
hyperconnectivity in both species was comparable at different,
species-specific, dose and exposure levels.

Whereas humans received racemic ketamine (mixture of
S(+) and R(−) enantiomers) according to a well-established
protocol (Salvadore et al. 2010), rats received S-ketamine,
the S(+)-enantiomer of ketamine which is discussed as the
main compound responsible for the NMDA-antagonistic ef-
fect. As both R- and S-ketamine exhibit a voltage- and use-
dependent blockade of NMDA receptor currents in cell cul-
ture (Zeilhofer et al. 1992), there is no evidence of a strong
difference between the effect of racemic or S-ketamine.
Nevertheless, a direct analogy between pharmacokinetics
and pharmacodynamics in both species was not possible.
Therefore, we are not able to make assumptions about quan-
titative cross-species differences. The lack of a significant
exposure-response relationship in both species is likely due
to the fact that only a single dose was administered. We have
previously shown significant exposure-response relationships
for functional connectivity measures in the rat when modeling
over a wide range of doses and exposures (Gass et al. 2014).

Comparison with schizophrenia

The directionality of the effect we observed (increased func-
tional coupling) stands in contrast to the observations of

reduced PFC-HC coupling during resting-state in chronic
schizophrenia (Rotarska-Jagiela et al. 2010; Zhou et al.
2008).We have recently suggested that ketamine effects rather
resemble a hyperglutamatergic state and cognitive disruption
as observed in prodromal stage of schizophrenia (Gass et al.
2014). Other papers have debated on the grounds of neurobi-
ological findings whether hypofrontality or decreased
thalamo-cortical connectivity as markers for schizophrenia
are mirrored in the acute ketamine effect. For example, acute
ketamine induces increased intra-PFC connectivity (reduced
in schizophrenia), increased thalamo-cortical connectivity (re-
duced in schizophrenia), a general increase in number of con-
nections (versus fewer connections in schizophrenia) and in-
creased clustering coefficient (versus decreased mean cluster-
ing in schizophrenia) (Dawson et al. 2013, 2014; Gass et al.
2014; Liu et al. 2008; Lynall et al. 2010; Micheloyannis et al.
2006).

While it is attractive to discuss the PFC-HC connectivity as
a marker for schizophrenia, we are aware of problems of an
analogy to ketamine-induced psychosis. From a psychopatho-
logical perspective, ketamine captures psychosis only broadly,
but when looking at the exact changes in mind states
(Vollenweider and Kometer 2010), it certainly does not mirror
symptoms seen in schizophrenia. Recent clinical observations
corroborated that ketamine anesthesia does not induce acute
exacerbation of schizophrenia, thus ketamine’s profile is
unique (Corlett et al. 2011; Mion and Villevieille 2013), which
makes it even more interesting than seeing it solely as a
Bpsychosis model,^ e.g., it would be interesting to study the
amount of dissociation in dependence of cortical-subcortical
coupling, something our own sample was too small to conduct.

Future questions

Several questions remain open for future studies. For example,
what is the reason for the asymmetry of ketamine response?
The spatiotemporally heterogeneous connectivity pattern in
both humans and rats would be greatly informed bymeasuring
local NMDA receptor density. Such a technique might be
available with combined PET-fMRI and a specific NMDA
receptor ligand. Also, what are the crossing steps in the tran-
sition from prodromal to chronic schizophrenia?While we did
not assess these questions empirically, we encourage others to
consider these issues in future research.

We would expect that due to abundant expression of
NMDA receptors all over the brain, ketamine effects might
also be observed in other regions and networks. Indeed,
graph-theoretic-based approaches mapping the global connec-
tivity of brain regions in humans (Driesen et al. 2013; Joules
et al. 2015) suggest that increases in connectivity may not be
limited to the PFC-HC network. However, these studies do
not elucidate the links or circuits in which the connectivity is
most strongly increased, and in future, it would be interesting
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to compare the strength of the ketamine effects between af-
fected networks.

Conclusion

Overall, our data suggest that the systems-level alterations
induced by ketamine treatment are comparable across species.
In conjunction with previous pharmaco-fMRI studies in rats
and humans, our results provide further evidence of the utility
of fMRI across species as a translational tool in neuroscience.
Characterizing homologous mechanisms in humans and rats
in this way may help in the development of novel treatment
interventions by presenting both a translational biomarker and
drug model. More specifically, our data elucidate ketamine-
induced alterations in PFC-HC coupling, a phenotype often
disrupted in pathological conditions, which may give clue to
understanding of psychiatric disorders and their onset, and
help in the development of new treatments.
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