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Abstract
Rationale Several studies have demonstrated a correlation be-
tween extracellular glutamate concentration in the mesolimbic
reward pathway and alcohol craving. Extracellular glutamate
concentration is regulated by several glutamate transporters.
Glial glutamate transporter 1 (GLT1) is one of them that reg-
ulates the majority of extracellular glutamate concentration. In
addition, cystine/glutamate antiporter (xCT) is another trans-
porter that regulates extracellular glutamate.
Objectives We focus in this study to determine the effects of
ceftriaxone, β-lactam antibiotic, on glial proteins such as
GLT1 isoforms, xCT, glutamate aspartate transporter
(GLAST), and several associated signaling pathways as well
as ethanol intake in P rats. Additionally, to examine the onset
of signaling pathways associated with GLT1 upregulation fol-
lowing ceftriaxone treatment, we tested 2- versus 5-day daily
dosing of ceftriaxone.
Results Ceftriaxone treatment (100 mg/kg), 2 and 5 days, re-
sulted in about five fold reduction in ethanol intake by P rats.
The reduction in ethanol intake was associated with signifi-
cantly enhanced expression of GLT1, GLT1a, GLT1b, and
xCT in the nucleus accumbens (NAc) and prefrontal cortex
(PFC) of 5-day ceftriaxone-treated P rats. Two-day-treated P
rats showed marked changes in expression of these glutamate
transporters in the PFC but not in the NAc. Importantly,
ceftriaxone-treated P rats (2 and 5 days) demonstrated en-
hanced phosphorylation of Akt and nuclear translocation of
nuclear factor kappaB (NFκB) in the NAc and PFC compared
to control animals.

Conclusions These findings demonstrate that ceftriaxone
treatment induced upregulation of GLT1, GLT1 isoforms,
and xCT in association with activation of the Akt-NFκB sig-
naling pathway.
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Introduction

Ceftriaxone, a β-lactam antibiotic, is a known modulator of
the major glutamate transporters, glutamate transporter 1
(GLT1) and cystine/glutamate antiporter, xCT (system xc

−)
(Knackstedt et al. 2010; Lewerenz et al. 2009; Rao and Sari
2014a; Rothstein et al. 2005). Ceftriaxone treatment has prov-
en to be effective in several drug abuse animal models
(Abulseoud et al. 2012; Alajaji et al. 2013; Rasmussen et al.
2011; Sari et al. 2011, 2013a; Sondheimer and Knackstedt
2011). Furthermore, ceftriaxone treatment has shown promis-
ing results in drug reinstatement studies as well (Knackstedt
et al. 2010; Qrunfleh et al. 2013).

The association between increased extracellular glutamate
concentrations in the mesolimbic reward pathway and alcohol
craving has been studied extensively (Bauer et al. 2013;
Griffin et al. 2013; Kapasova and Szumlinski 2008). This
increase in extracellular glutamate concentration was sug-
gested to be a result of decreased glutamate clearance
(Melendez et al. 2005). Furthermore, chronic alcohol intake
in P rats resulted in downregulation of GLT1 expression in the
nucleus accumbens (NAc), both the core and the shell, as
compared to ethanol-naive animals (Alhaddad et al. 2014b;
Sari and Sreemantula 2012; Sari et al. 2013b). We have re-
cently demonstrated that ceftriaxone-induced upregulation of
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GLT1 expression in the prefrontal cortex (PFC) and NAc has
been effective in reducing ethanol consumption in P rats (Sari
et al. 2013a, b; Sari and Sreemantula 2012). Additionally, we
have revealed that chronic ethanol intake induced the down-
regulation of xCT, a subunit of system xc, mesocorticolimbic
reward pathways in P rats (Alhaddad et al. 2014a).

The major glutamate transporter in the brain, GLT1, is
known to be encoded in at least three isoforms: GLT1a,
GLT1b, and GLT1c (Chen et al. 2002; Pines et al. 1992;
Rauen et al. 2004; Reye et al. 2002; Schmitt et al. 2002).
These isoforms are known to assemble as homooligomers and
heterooligomers (Gendreau et al. 2004; Gonzalez-Gonzalez
et al. 2009). GLT1a isoform is mainly expressed in glial cells
but is also found on presynaptic neurons (Chen et al. 2004;
Melone et al. 2009). Similarly, GLT1b isoform was found pre-
dominantly in astrocytes (Berger et al. 2005; Holmseth et al.
2009; Maragakis et al. 2004; Schmitt et al. 2002). Thus, we
have investigated changes in the expressions of these major
GLT1 isoforms, GLT1a andGLT1b, with ceftriaxone treatment.

While GLT1 is predominantly involved in the uptake of glu-
tamate and control of extracellular glutamate concentrations,
xCT is responsible for the extrasynaptic release of glutamate
(for review, see Bridges et al. 2012). Importantly, xCT can regu-
late the synaptic glutamate concentration via activation of
extrasynaptic mGluR2/3 metabotropic receptors, which nega-
tively modulate synaptic glutamate release. Considering the sig-
nificant impact of xCT on glutamate homeostasis, studies have
shown significant changes in the expression and activity of this
protein in drug dependence and reinstatement drug-seeking
models (Baker et al. 2003a, b; Knackstedt et al. 2009;
Madayag et al. 2007). Therefore, the effect of ceftriaxone treat-
ment on the expression of xCTwas also determined in this study.

Furthermore, we have also determined changes in several
signaling pathways associated with GLT1 upregulation in P rats
following ceftriaxone administration. Since in vitro studies have
confirmed that GLT1 upregulation may be mediated, in part, by
Akt phosphorylation and nuclear translocation of the transcrip-
tion factor nuclear factor kappaB (NFκB) (Lee et al. 2008), we
investigated the occurrence of these changes in ceftriaxone-
treated P rats. Expression of phospho-Akt/total-Akt, nuclear
translocation of NFκB, and cytoplasmic levels of nuclear factor
of kappa light polypeptide gene enhancer in B-cells inhibitor,
alpha (IκBa) following ceftriaxone treatment were determined.
Furthermore, xCT and glutamate aspartate transporter (GLAST)
protein levels were determined in the PFC and NAc of saline-
and ceftriaxone-treated P rats. Studies have shown that 5-day
treatment with ceftriaxone upregulated GLT1 expression in the
mesocorticolimbic pathway (Miller et al. 2008; Rothstein et al.
2005; Sari et al. 2009, 2011), and hence, this treatment period
was chosen for this study. Importantly, to observe the onset of
effects of ceftriaxone treatment on GLT1 expression and to es-
tablish the timeline for associated pathway changes, 2- as well as
5-day treatment regimens were included in this study.

Materials and methods

Animals

Male P rats were obtained from the Indiana School of Medicine
(Indianapolis, IN) breeding colonies. Animals were single-
housed in wood chip-bedded plastic cages in a temperature-
(21 °C) and humidity-controlled (50 %) environment on a 12/
12-h light/dark cycle. Animal protocol employed for this study
was approved by the Institutional Animal Care and Use
Committee of The University of Toledo, Health Science
Campus, Toledo, OH. Protocols were based on the guidelines
set forth by the Institutional Animal Care and Use Committee
of the National Institutes of Health and the Guide for the Care
and Use of Laboratory Animals. Animals had ad lib access to
food and water throughout the duration of the study. At the age
of 3 months, P rats were divided into four groups: (1) 2-day
saline vehicle-treated group (n=7), (2) 2-day ceftriaxone
(100 mg/kg, i.p.)-treated group (n=7), (3) 5-day saline
vehicle-treated group (n=8), and (4) 5-day ceftriaxone
(100 mg/kg, i.p.)-treated group (n=8). Ceftriaxone was ad-
ministered as a solution made in physiological saline.

Ethanol consumption

For the duration of the study, P rats had free access to two
concentrations of ethanol, 15 and 30 %, in distilled water.
Animals were provided free choice to ethanol for five consec-
utive weeks before the start of treatment. This model of ethanol
drinking consisting of multiple choices of ethanol concentra-
tions (15 and 30%) is known to increase ethanol intake in P rats
(Rodd-Henricks et al. 2001; Sari et al. 2006). During the last
2 weeks before treatment (week 4 and week 5), ethanol intake,
water consumption, and body weight of all animals were mea-
sured three times per week (Monday, Wednesday, and Friday).
Data measurements during these 2 weeks served as baseline
values. As reported in other studies from our lab, ethanol mea-
surements were taken to the nearest tenth of a gram by subtrac-
tion of the weight of the bottle from its previous weight.
Importantly, animals with a baseline ethanol intake of less than
4 g/day were not included in this study, and they were subse-
quently euthanized. After 5 weeks of exposure to ethanol, P rats
were treated i.p., once daily, with ceftriaxone (100 mg/kg) or
saline for either 2 or 5 days, depending on their assigned
groups. Following the start of treatment, P rats were monitored
once daily for consumption of ethanol and water. The time of
daily measurement was kept constant during the treatment pe-
riod to closely assess the drinking behavior over a 24-h period.

Brain tissue extraction

At the end of the 2- or 5-day treatment, P rats were euthanized
by exposure to CO2 inhalation and then decapitated. Brains
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were immediately removed and stored at −70 °C. Brain re-
gions (NAc and PFC) were dissected using a cryostat appara-
tus maintained at −20 °C. The dissections of the PFC and NAc
were performed by following the stereotaxic coordinates in
accordance with the Paxinos and Watson atlas of the rat brain
(Paxinos and Watson 2007). Surgical blades were used to
extract these brain regions. The extracted brain regions were
then kept frozen at −70 °C until Western blot analysis.

Western blot analysis

Western blot analysis was performed on the brain tissue sam-
ples to determine the level of protein expression, employing a
previously described procedure (Sari et al. 2009, 2010, 2011).
To separate the nuclear and cytoplasmic fractions, brain sam-
ples were homogenized in buffer A (10 mM HEPES-KOH,
pH 7.9; 1.5 mM MgCl2; 10 mM KCl; 1 mM dithiothreitol
(DDT); 1 mM phenylmethylsulfonyl fluoride (PMSF); 10 μl
of protease inhibitor cocktail/ml of buffer) and incubated on
ice for 10 min before adding Nonidet P-40 (0.1 %). Following
the addition of Nonidet P-40, samples were incubated on ice
for 2 min and centrifuged at 13,200 rpm at 4 °C for 15 min.
The supernatant, representing the cytosolic fraction, was col-
lected and supplemented with NaF (50 mM), Na vanadate
(10 mM), and Na pyrophosphate (0.1 mM). The pellet was
resuspended in buffer B (20 mMHEPES-KOH, pH 7.9; 25 %
glycerol; 420 mMNACl; 1.5 mMMgCl2; 1 mMDDT; 1 mM
PMSF; 0.2 mM EDTA; 50 mM NaF; 10 mM Na vanadate;
0.1 mM Na pyrophosphate; 10 μl of protease inhibitor
cocktail/ml of buffer), incubated on ice for 30 min, and cen-
trifuged at 13,200 rpm for 15 min at 4 °C to obtain the nuclear
fraction.

Extracted proteins were loaded on 10–20% tris-glycine gel
(Invitrogen) and then transferred electrophoretically from the
gel onto a PVDF membrane. The following antibodies were
used in this study: guinea pig anti-GLT1 (Millipore; 1:5000),
rabbit anti-GLT1a (gift from Dr. Jeffery Rothstein, Johns
Hopkins University; 1:5000), rabbit anti-GLT1b (gift from
Dr. Paul Rosenberg, Harvard Medical School; 1:5000), rabbit
anti-GLAST (Abcam; 1:1000), rabbit anti-xCT antibody
(Novus; 1:1000), rabbit anti-p-Akt (Santa Cruz; 1:1000),
mouse anti-t-Akt (Santa Cruz; 1:1000), rabbit anti-NFκB

(Santa Cruz; 1:1000), rabbit anti-IκBa (Santa Cruz; 1:500),
and mouse anti-GAPDH (Millipore; 1:3000). Kodak
BioMax MR film was used to capture the chemiluminescent
signal from the HRP, and films were further developed using
an SRX-101A machine. Immunoblots were digitized using
the MCID system, and the data were reported as the ratio of
protein of interest/GAPDH (loading control protein). For the
nuclear fraction, however, lamin was used as a loading marker
to normalize NFκB expression. An equal number of samples
from saline- and ceftriaxone-treated groups was compared for
the protein of interest, and Western blot results were analyzed
as percentage of saline response (saline group was treated as
100%). For comparing treatment-induced changes across var-
ious brain regions, the saline-normalized data for the protein
of interest from all brain regions were assembled as a bar
graph, along with a representative Western blot image.

Statistical analyses

General linear model (GLM) repeated measures were used for
statistical analysis of data related to ethanol consumption, wa-
ter intake, and P rat body weight. One-way ANOVAwas used
to determine the day by effect of treatment. Changes in protein
expression were analyzed statistically using independent t test
by comparing results between saline vehicle- and ceftriaxone-
treated groups. Spearman rank correlational analysis between
changes in ethanol consumption on day 2/day 5 and corre-
sponding GLT1 expression in ceftriaxone-treated P rats was
performed. All statistical tests were based on p<0.05 level of
significance. The analytical SPSS software and GraphPad
Prism were used for this study.

Results

Ceftriaxone treatment: effects on ethanol consumption, water
intake, and body weight

The effect of ceftriaxone treatment on ethanol consumption
was monitored for both the 2-day (Table 1) and 5-day para-
digms (Table 2). The baseline value represents the average
volume of ethanol consumed by the P rats over the 2-week

Table 1 Effect of 2-day ceftriaxone treatment on ethanol drinking, water consumption, and body weight of P rats. Data are expressed as mean±SEM

Ethanol drinking (g/kg/day) Water drinking (g/kg/day) Body weight (g)

Saline CEF Saline CEF Saline CEF

Baseline 4.9±0.2 5.2±0.2 26.7±1.8 27.8±2.8 456.9±9.6 434.8±19.1

Day 1 4.3±0.6 2.8±0.2* 28.4±4.2 36.9±6.9 468.5±9.9 449.9±20.5

Day 2 6.5±1.0 1.3±0.3* 26.3±2.9 40.2±7.3 470.7±10.3 446.2±20.6

*p<0.05, significant difference between treatment groups
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period preceding the first injection. GLM repeated measures
analysis comparing ethanol consumption between
ceftriaxone- and saline-treated animals revealed a significant
main effect of day [F(1, 2)=7.846, p<0.05)] and a significant
day×treatment interaction effect [F(1, 2)=28.206, p<0.05)]
for the 2-day paradigm as well as a significant main effect of
day [F(1, 5)=21.576, p<0.05)] and a significant day×treat-
ment interaction effect [F(1, 5)=18.782, p<0.05)] for the 5-
day paradigm. One-way ANOVA revealed that the ceftriaxone
treatment-induced reduction of ethanol intake was statistically
significant (p<0.05) on all days of ceftriaxone treatment for
both paradigms.

GLM repeated measures analysis comparing water intake
between ceftriaxone- and saline-treated animals revealed no
significant effect of treatment for the 2-day paradigm
(Table 1). However, GLM repeated measures analysis com-
paring water intake between 5-day ceftriaxone- and saline-
treated animals revealed a significant main effect of day
[F(1, 5)=7.77, p<0.05)] and a significant day×treatment
interaction effect [F(1, 5)=6.82, p<0.05)]. One-way
ANOVA revealed that the ceftriaxone treatment-induced in-
crease of water consumption was statistically significant
(p<0.05) from day 2 through day 5 (Table 2). GLM repeat-
ed measures analysis comparing body weights of animals in
the ceftriaxone- and saline-treated groups revealed no signif-
icant change following 2- and 5-day treatment regimens
(Tables 1 and 2).

Effect of ceftriaxone treatment on expression of GLT1,
GLT1a, and GLT1b in NAc and PFC

Ceftriaxone-mediated changes in the levels of GLT1 (Fig. 1)
and its isoforms (Fig. 2), GLT1a and GLT1b, were deter-
mined. In the NAc, ceftriaxone treatment for 5 days (5-day
paradigm) significantly increased the levels of GLT1 (p<0.01;
n=8), GLT1a (p<0.05; n=8), and GLT1b (p<0.0001; n=8) as
compared to saline-treated groups. Importantly, in the PFC,
ceftriaxone treatment induced a significant upregulation of the
levels of GLT1 (p<0.05; n=8), GLT1a (p<0.05; n=8), and

GLT1b (p<0.05; n=7) as compared to the saline-treated
group, for the 5-day treatment paradigm and significantly up-
regulated the levels of GLT1 (p<0.05; n=7), GLT1a
(p<0.0001; n=7), and GLT1b (p<0.05; n=7) for the 2-day
treatment paradigm. Moreover, as summarized in Table 3, the
ceftriaxone-induced enhanced expression of GLT1 in NAc
and PFC demonstrated a significant correlation with reduced
ethanol intake on the last day of ceftriaxone treatment in P
rats.

Table 2 Effect of 5-day ceftriaxone treatment on ethanol drinking, water consumption, and body weight of P rats. Data are expressed as mean±SEM

Ethanol drinking (g/kg/day) Water drinking (g/kg/day) Body weight (g)

Saline CEF Saline CEF Saline CEF

Baseline 5.3±0.2 5.5±0.3 21.1±2.5 23.6±1.1 461.5±7.7 460.7±13.8

Day 1 4.5±0.5 2.9±0.2* 20.9±2.8 30.2±4.5 479.7±7.9 477.3±14.6

Day 2 6.0±0.5 1.2±0.1* 20.7±3.3 48.9±4.2* 479.6±8.2 474.3±13.8

Day 3 4.3±0.5 1.6±0.2* 22.0±3.9 51.7±2.9* 484.0±8.0 481.8±13.4

Day 4 4.6±0.4 1.3±0.2* 15.6±2.3 36.1±4.2* 486.0±8.7 485.3±13.4

Day 5 5.3±0.5 2.4±0.4* 16.5±1.7 38.5±4.0* 486.8±8.5 481.8±12.5

*p<0.05, significant difference between treatment groups

Fig. 1 Effect of ceftriaxone treatment on the expression of GLT1 in the
nucleus accumbens (NAc) and prefrontal cortex (PFC) compared to the
respective saline-treated control groups. Representative immunoblot for
GLT1 and GAPDH (loading control) expression along with quantitative
analysis comparing ratios of GLT1/GAPDH expression between saline-
(served as 100 %) and ceftriaxone-treated P rats for the corresponding
brain regions. Data are expressed as mean±SEM (*p<0.05; **p<0.01)
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Effect of ceftriaxone treatment on expression of xCT
and GLAST in NAc and PFC

Expression of xCT, a subunit of system xc
−, was analyzed

following 2- and 5-day treatment paradigms in P rats
(Fig. 3). Ceftriaxone treatment for 5 days induced a signif-
icant upregulation in the level of xCT (p<0.05; n=8) in the
NAc. Furthermore, ceftriaxone induced a significant upreg-
ulation of the levels of xCT in the PFC after 2-day (p<0.05;
n=7) and 5-day (p<0.01; n=8) treatments. Ceftriaxone treat-
ment paradigms, both 2- and 5-day, did not change GLAST
levels in the NAc or PFC compared to the saline-treated
groups.

Effect of ceftriaxone treatment on the levels of nuclear NFκB
and cytoplasmic IκBa in NAc and PFC

In this study, we also determined the levels of NFκB (nuclear)
and IκBa (cytoplasmic) in the NAc and PFC from 2- and 5-
day treatment groups (Fig. 4). Ceftriaxone treatment resulted
in an increased nuclear translocation of NFκB in the NAc,
compared to the saline-treated group, for both the 2-day treat-
ment (p<0.01; n=7) and 5-day treatment (p<0.05; n=8)
groups. Similarly, ceftriaxone treatment increased the level
of nuclear NFκB in the PFC for 2-day (p<0.05; n=7) and 5-
day (p<0.05; n=7) treatment paradigms. Accordingly, ceftri-
axone treatment resulted in a statistically significant reduction

Table 3 Spearman rank
correlation analysis between
changes in ethanol consumption
and GLT1 expression in 2- and 5-
day ceftriaxone-treated P rats

Drinking GLT1_NAc GLT1_PFC

2-day treatment Correlation coefficient 1.0 −0.018 −0.537
Significance 0.952 0.047

N 14 14 14

5-day treatment Correlation coefficient 1.0 −0.685 −0.575
Significance 0.003 0.02

N 16 16 16

Fig. 2 a Effect of ceftriaxone treatment on the expression of GLT1a in
the nucleus accumbens (NAc) and prefrontal cortex (PFC) compared to
the respective saline-treated control groups presented in one figure. Rep-
resentative immunoblot for GLT1a and GAPDH (loading control) expres-
sion along with quantitative analysis comparing ratios of GLT1a/GAPDH
expression between saline- (served as 100 %) and ceftriaxone-treated P
rats for the corresponding brain regions. Data are expressed as mean±
SEM (*p<0.05; ****p<0.0001). b Effect of ceftriaxone treatment on the

expression of GLT1b in the nucleus accumbens (NAc) and prefrontal
cortex (PFC) compared to the respective saline-treated control groups.
Representative immunoblot for GLT1b and GAPDH (loading control)
expression along with quantitative analysis comparing ratios of GLT1b/
GAPDH expression between saline- (served as 100 %) and ceftriaxone-
treated P rats for the corresponding brain regions. Data are expressed as
mean±SEM (*p<0.05; ****p<0.0001)
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in the level of cytoplasmic IκBa in the NAc for both 2-day
(p<0.05; n=7) and 5-day (p<0.05; n=7) treatment paradigms
as compared to respective saline-treated groups. Similarly,
ceftriaxone treatment significantly decreased the levels of cy-
toplasmic IκBa in the PFC for the 2-day (p<0.05; n=7) and 5-
day (p<0.05; n=7) treatment paradigms.

Effect of ceftriaxone treatment on expression of p-Akt/Akt
in NAc and PFC

Phosphorylation of signaling molecule Akt in association with
ceftriaxone treatment was also determined. We found that cef-
triaxone treatment induced a significant increase in the phos-
phorylation of protein Akt in the NAc following the 2-day
(p<0.05; n=7) and 5-day (p<0.05; n=8) treatment paradigms
and in the PFC for the 2-day (p<0.05; n=6) and 5-day
(p<0.05; n=8) treatment paradigms, as compared to saline-
treated groups (Fig. 5).

Discussion

The findings of this study reveal that ceftriaxone treatment for
2 days significantly upregulated the levels of GLT1, including
its major isoforms, and xCT only in the PFC and not in the
NAc. However, ceftriaxone treatment for 5 days upregulated

Fig. 4 a Effect of ceftriaxone treatment on the expression of NFκB in the
nuclear fraction of nucleus accumbens (NAc) and prefrontal cortex (PFC)
compared to the respective saline-treated control groups. Representative
immunoblot for NFκB and lamin (nuclear protein loading control) ex-
pression along with quantitative analysis comparing ratios of NFκB/
lamin expression between saline- (served as 100 %) and ceftriaxone-
treated P rats for the corresponding brain regions. Data are expressed as
mean±SEM (*p<0.05; **p<0.01). b Effect of ceftriaxone treatment on

the expression of IκBa in the nucleus accumbens (NAc) and prefrontal
cortex (PFC) compared to the respective saline-treated control groups.
Representative immunoblot for IκBa and GAPDH (loading control) ex-
pression along with quantitative analysis comparing ratios of IκBa/
GAPDH expression between saline- (served as 100 %) and ceftriaxone-
treated P rats for the corresponding brain regions. Data are expressed as
mean±SEM (*p<0.05)

Fig. 3 Effect of ceftriaxone treatment on the expression of xCT in the
nucleus accumbens (NAc) and prefrontal cortex (PFC) compared to the
respective saline-treated control groups. Representative immunoblot for
xCT and GAPDH (loading control) expression along with quantitative
analysis comparing ratios of xCT/GAPDH expression between saline-
(served as 100 %) and ceftriaxone-treated P rats for the corresponding
brain regions. Data are expressed as mean±SEM (*p<0.05; **p<0.01)
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these glutamate transporters in both PFC and NAc.
Importantly, for the first time, significant changes in signaling
pathways previously implicated in ceftriaxone-mediated up-
regulation of GLT1 have been observed in the present study.
Ceftriaxone treatment was associated with significantly in-
creased levels of phosphorylated Akt, increased nuclear trans-
location of NFκB, and reduced cytoplasmic levels of IκBa in
both the NAc and the PFC for 2- and 5-day treatment para-
digms as compared to the saline-treated group. Although there
was no change in the expression of GLT1, GLT1a and GLT1b
isoforms, and xCT in the NAc following 2-day ceftriaxone
treatment, the signaling pathways previously reported for
ceftriaxone-mediated upregulation of GLT1, including Akt
and NFκB, were found to be activated. These data suggest a
possible delay in ceftriaxone-induced upregulation of the
identified glutamate transporters in the NAc as compared to
the PFC. Alternatively, we demonstrated that ceftriaxone up-
regulated the identified proteins and reduced ethanol intake,
but there is less known about whether this drug interacts with
ethanol itself. Studies are warranted to determine any drug
interaction mechanism between ceftriaxone and ethanol.

We have recently demonstrated the effectiveness of ceftri-
axone treatment in reducing ethanol drinking and

reinstatement-like ethanol drinking in P rats (Rao and Sari
2014b; Sari et al. 2011, 2013a, b). These effects were associ-
ated with the upregulation of GLT1 expression in the PFC and
NAc after 5 days of ceftriaxone treatment. Importantly, a sig-
nificant correlation between attenuation of ethanol consump-
tion on the last day of treatment (day 2 or day 5) and increased
GLT1 expression has been observed (Table 3) (p<0.05).
However, we did not see any correlation between ethanol
consumption and GLT1 expression in NAc from the 2-day
ceftriaxone-treated group. In addition, we revealed for the first
time that ceftriaxone induced the upregulation of GLT1 and its
isoforms, along with xCT expressions, in the PFC after only
two daily doses. These results might be due to the fact that the
PFC receives and sends glutamatergic projections to and from
other brain reward regions involved in addictive behavior;
however, the NAc only receives the glutamatergic projections
from several brain regions, including key reward regions. As
we have postulated previously, neuroadaptations may occur as
a consequence of differences in the neuroanatomical distribu-
tion of GLT1, its isoforms, and xCT as well as the levels of
expression of these transporters in the PFC and NAc, and
possibly in other brain reward regions (for review, see
Danbolt 2001).

The xCT is the major source of nonsynaptic glutamate and
is a crucial element in regulating the extracellular glutamate
levels in the NAc and PFC (Baker et al. 2002; McBean 2002;
Moran et al. 2003). Changes in the expression of xCT have
been implicated in drug-seeking behavior, reinstatement to
drug abuse, and the development of drug dependence (Baker
et al. 2003a; Kau et al. 2008; Knackstedt et al. 2009).
Importantly, we have recently reported that chronic ethanol
consumption was associated with significant downregulation
of xCT levels in the NAc and PFC in P rats (Alhaddad et al.
2014a). Ceftriaxone is known to upregulate xCT expressions
and was found effective in abolishing drug-seeking behavior
(Knackstedt et al. 2010; Lewerenz et al. 2009; Rao and Sari
2014a; Trantham-Davidson et al. 2012). Given the possible
role of xCT in the development of addiction, we have revealed
in this study the ability of ceftriaxone to upregulate xCT ex-
pressions in the NAc and PFC of ethanol-dependent P rats
compared to saline-treated animals.

In regard to the target signaling pathways involved in the
upregulation of the identified glutamate transporters, protein
kinase Akt is known to modulate the nuclear translocation of
transcription factor NFκB (Dan et al. 2008; Madrid et al.
2001; Ozes et al. 1999). Based on previous in vitro studies,
Akt has been identified as a key regulator of GLT1 expression
(Ji et al. 2011; Li et al. 2006). In addition, it has been demon-
strated that NFκB is responsible for the transcription of GLT1
(Ghosh et al. 2011; Yang et al. 2009). The present work has
revealed for the first time that the activation of previously
established cellular pathways, Akt phosphorylation and nucle-
ar translocation of NFκB, occurs in association with

Fig. 5 Effect of ceftriaxone treatment on the expression of p-Akt/Akt in
the nucleus accumbens (NAc) and prefrontal cortex (PFC) compared to
the respective saline-treated control groups. Representative immunoblot
for phospho-Akt, total-Akt, and GAPDH (loading control) expression
along with quantitative analysis comparing ratios of p-Akt/Akt (normal-
ized to GAPDH) expression between saline- (served as 100 %) and
ceftriaxone-treated P rats for the corresponding brain regions. Data are
expressed as mean±SEM (*p<0.05)
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ceftriaxone-induced upregulation of GLT1 expressions in
ethanol-dependent P rats. Interestingly, the levels of
phospho-Akt/total-Akt and nuclear NFκB were significantly
higher than in the corresponding saline-treated group, while
the levels of GLT1 were not upregulated in the NAc at the 2-
day ceftriaxone treatment paradigm.We hypothesized that this
results from an increase in the activity of the cellular machin-
ery responsible for the upregulation of GLT1. Since the 5-day
treatment paradigm is followed by a distinct upregulation in
GLT1 expression in the NAc, we rationalized the changes in
GLT1 expression occurring between the 2- and 5-day para-
digms. Furthermore, the increase in nuclear translocation of
the transcription factor was associated with a significant re-
duction in the level of IκBa in the cytoplasm, indicating the
possible proteasomal degradation of IκBa following nuclear
translocation of p65. The reduction in cytoplasmic IκBa level
was observed in both the NAc and PFC following 2- and 5-
day treatments with ceftriaxone.

The dysfunction of the PFC as a key reward brain region
has been well-studied in the development of drug addiction
(for review, see Goldstein and Volkow 2011). The inputs re-
ceived by the ventral tegmental area (VTA) from the PFC play
a critical role in the development of addiction, and disruption
of these inputs arising from the PFC interferes with the devel-
opment of addiction (Chen et al. 2011; Dong et al. 2005;
Kalivas 1993; Li et al. 1999; Tong et al. 1995). Moreover,
results from several studies highlight the critical role played
by the PFC in the development of ethanol dependence (Barker
et al. 2012; Costin et al. 2013; Echeverry-Alzate et al. 2012;
Kerns et al. 2005; Seo et al. 2013; Vetreno et al. 2013).
Interestingly, results of the present work indicate that ceftriax-
one treatment-induced changes in the expression of GLT1 and
xCT are evident in the PFC as early as 24 h after two daily
doses, compared to the saline-treated group, in contrast to its
effects in the NAc. These findings reveal the possibility of the
PFC playing a major role in reducing ethanol intake following
ceftriaxone administration during the initial stages via modu-
lation of the glutamatergic inputs to the NAc and other brain
regions. Following 5 days of ceftriaxone treatment, GLT1 and
xCT expressions are significantly higher in both the NAc and
PFC, indicating an overall establishment of glutamate homeo-
stasis in the mesocorticolimbic reward pathway.

In conclusion, we report for the first time that ceftriaxone-
induced attenuation of ethanol consumption begins as early as
24 h after two daily doses in ethanol-dependent P rats. This
reduction in ethanol intake for the 2-day ceftriaxone-treated
group was associated with upregulation of expressions of xCT
and GLT1 and its isoforms in the PFC. Following five daily
doses of ceftriaxone, the expressions of these glutamate trans-
porters were found significantly higher in both the NAc and
PFC compared to saline-treated P rats. Importantly, both 2-
and 5-day ceftriaxone treatment paradigms were associated
with increased Akt phosphorylation and nuclear translocation

of transcription factor NFκB in P rats. These findings suggest
the possible involvement of previously established signaling
pathways in the ceftriaxone-induced upregulation of GLT1
expression in the mesocorticolimbic reward pathway.
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