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Abstract
Rationale Despite decades of research, tardive dyskinesia
(TD) remains a poorly understood iatrogenic movement dis-
order with few effective treatments and no known cure. Ac-
cordingly, the development of an innocuous strategy to pre-
vent or mitigate antipsychotic (AP)-associated TD would
represent an important clinical advance. Supporting evidence
for antioxidant (AX)-based treatment regimens can be found
in the preclinical literature, where AP-induced vacuous
chewing movements (VCMs) in rats are attenuated by the
concurrent administration of direct and indirect AXs.
Objectives Our aim was to review the preclinical literature
examining the role of AX-promoting treatments in the pre-
vention of AP-induced VCMs in rats.
Methods A literature search using Google Scholar and
PubMed was performed. Relevant results were qualita-
tively reviewed.
Results Studies featuring a variety of naturally occurring and
synthetic AX treatments were identified and included in the

review. The majority of studies used haloperidol (HAL), a
typical AP, to induce VCMs. Studies revealed reduced VCMs
in co-treated rats, with favorable changes seen in markers of
oxidative stress (OS) and AX status, but were limited by their
short durations.
Conclusions Some preclinical evidence suggests that the in-
clusion of a naturally occurring and benign AX compound as
an adjunct to AP treatment may help guard patients against
TD, but additional long-duration studies are needed. This AX-
based strategy is further substantiated by accumulating evi-
dence of preexisting OS abnormalities in schizophrenia (SZ).

Keywords Tardive dyskinesia . Vacuous chewing
movements . Antipsychotics . Oxidative stress

Introduction

Tardive dyskinesia (TD) is an enduring, potentially irrevers-
ible disorder associated with chronic antipsychotic (AP) ex-
posure and characterized by involuntary, stereotyped, and
repetitive movements in different body parts (American
Psychiatric Association 2013). While it has been suggested
that the newer “atypical” APs carry a diminished risk of TD,
the magnitude of improvement has been called into question
and it remains the case that all APs carry a risk of TD
(Remington 2007; Correll and Schenk 2008). Moreover,
APs are being used increasingly in other diagnostic categories,
such as depression and disruptive behavior disorders (Olfson
et al. 2012). Accordingly, developing strategies to reduce AP-
related TD remains a priority.

While theories of TD etiology and pathophysiology have
been posited, none are considered definitive. Striatal dopa-
mine receptor supersensitivity, γ-aminobutyric acid (GABA)
insufficiency, and structural brain abnormalities have long
been implicated in TD (Fibiger and Lloyd 1984; Casey
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2000; Sarró et al. 2013). Likewise, the potential contributions
of AP-induced glutamatergic excitotoxicity, disruption of mi-
tochondrial function, free radical generation, oxidative stress
(OS), and neurodegeneration have all been recognized (Cadet
and Lohr 1989; Elkashef and Wyatt 1999; Andreassen and
Jørgensen 2000). Interestingly, the OS hypothesis can simulta-
neously accommodate these previously reported dopaminergic,
GABAergic, and structural abnormalities in TD (Sachdev
2000). As well, several risk factors for TD (e.g., advanced
age, diabetes, drug abuse) are associated with elevated OS
(Sohal and Weindruch 1996; West 2000; Yamamoto and
Raudensky 2008).

The role(s) of free radicals and OS in TD have been
reviewed in detail elsewhere (Elkashef and Wyatt 1999;
Sachdev 2000; Lohr et al. 2003). Briefly, APs are thought to
increase OS and thereby contribute to neurodegeneration and
ultimately the development of TD by the following mecha-
nisms: (1) AP blockade of dopamine receptors leads to a
compensatory increase in dopamine synthesis, release, and
breakdown; (2) superoxide anions, dopamine quinones, and
hydrogen peroxide, all of which are known to promote OS, are
produced when excess dopamine undergoes auto-oxidation
(forming superoxide anions and quinones) or catabolism by
monoamine oxidase B (forming hydrogen peroxide); (3) these
events occur in the dopamine-rich striatum, a metabolically
active brain region involved in motor function, in the presence
of abundant polyunsaturated membrane lipids, oxygen, and
transition metal ions such as iron (which can interact with
hydrogen peroxide to form the reactive hydroxyl radical); (4)
the endogenous antioxidant (AX) system, a collection of
enzymes and molecules including superoxide dismutase
(SOD), catalase (CAT), glutathione peroxidase/reductase, re-
duced glutathione (GSH), and vitamins C and E, may become
saturated and overpowered by free radicals, leading to neural
membrane lipid peroxidation and protein carbonylation; and
(5) uncurbed lipid peroxidation cascades may ensue, which
could result in neural membrane destabilization, impaired
cellular signal transduction, and ultimately cell death. This
situation is compounded by the direct neurotoxic effects of
some APs and their tendency to further promote transition
metal accumulation in the basal ganglia with chronic use
(Elkashef and Wyatt 1999; Lohr et al. 2003). Additionally,
accumulating evidence of preexisting OS and endogenous AX
abnormalities in schizophrenia (SZ) that precede and are
independent of AP effects may contribute to the heightened
susceptibility of these patients to AP-related OS and TD
(Flatow et al. 2013; Merrill et al. 2013).

There is evidence suggesting that AXs such as vitamin E
(Cadet and Lohr 1989; Soares-Weiser et al. 2011), melatonin
(Nelson et al. 2003), and ginkgo biloba (Bhidayasiri et al.
2013) may be beneficial in the treatment of TD, but their
efficacy as preventative agents has not yet been evaluated in
clinical trials. Additional support for the early application of

AXs in combination with APs in the treatment of SZ can be
derived from evidence implicating robust and interrelated OS
(Flatow et al. 2013) and inflammatory (Kirkpatrick and Miller
2013) abnormalities in SZ that may be central to the disorder
itself. Accordingly, the provision of adjunctive AX support in
SZ for the purpose of preventing TD may yield additional
positive effects on other symptom domains. For the purposes
of this review, the termAXwill encompass agents that directly
or indirectly reduce oxidative stress (e.g., by scavenging free
radicals or strengthening the endogenous AX system).

Various animal models of TD have been developed
and used to test hypotheses concerning its underlying
mechanisms (Casey 2000; Blanchet et al. 2012). One
such model involves administering APs to rodents con-
tinuously for a period of weeks and documenting the
emergence of purposeless mouth openings referred to as
vacuous chewing movements (VCMs; Turrone et al.
2002). These VCMs are considered to be analogous to
the involuntary orofacial movements of TD (Casey
2000), setting the stage for this line of investigation to
be used in examining the role of various factors in the
development of AP-related TD. Similarly, it can be used
to examine possible TD prevention strategies.

Recent experiments in rats reveal that AP-induced VCMs
and OS can be attenuated by the coadministration of AX
compounds such as curcumin, a substance derived from tur-
meric (Bishnoi et al. 2008b, 2011; Sookram et al. 2011).
However, questions remain as to whether similar effects are
seen across studies testing different AX-promoting treatments
in this preclinical model. Thus, the present review was under-
taken to establish whether consensus exists in the preclinical
literature on the protective effect of such treatments against
AP-induced VCMs and OS. As TD can be irreversible, de-
veloping a better understanding of the role of OS in its
pathogenesis has important clinical implications, as does es-
tablishing whether AX-promoting treatments could potential-
ly delay or prevent the onset of TD.

Methods

A literature search using Google Scholar and PubMed
was performed in September 2013 with the search terms
“vacuous chewing” and “antioxidant.” Publication date
limits were not imposed on search results, and addition-
al reports were identified in the reference lists of rele-
vant articles.

Studies were included if they met the following criteria: (a)
written in English, (b) published in a peer-reviewed journal
(verified using Ulrichsweb), (c) examined AP-induced VCMs
in rats, and (d) evaluated the effect of an AX-promoting
treatment on VCM behavior, while providing an in vivo mea-
sure of OS and/or AX levels. Studies evaluating VCMs or
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dyskinetic behaviors induced by other drugs (e.g., reserpine,
tacrine, 3-nitropropionic acid) or in other species (e.g., mice,
non-human primates) were excluded.

Studies meeting the above criteria were examined for the
following information: AP(s) and dose(s) used for VCM
induction, route of AP administration and dosing schedule,
AX treatment(s) and dose(s) evaluated, route of AX delivery
and treatment schedule, study and treatment duration, in vivo
measure(s) of OS and/or AX levels used, and relevant results
from the study.

Results

A total of 38 publications reporting results from 44 experi-
ments were identified and included. Haloperidol (HAL;
n=36), fluphenazine (FLU; n=3), chlorpromazine (CPZ;
n=3), and clozapine (CLZ; n=2) were used in these experi-
ments. Figure 1 provides a detailed overview of the article
search and inclusion process.

Many agents and treatments with known direct or indirect
AX potential have been evaluated for preventative effects
against AP-induced VCMs. The specific measures of OS
and AX levels used and reported by investigators vary across
studies, but most commonly include levels of brain

thiobarbituric acid reactive substances (TBARS; end-
stage products of lipid peroxidation), GSH, SOD, and/
or CAT. Tables 1 and 2 provide summaries of these
reports and their main findings.

Taken together, the findings can be summarized as follows:
(1) daily dosing with HAL (0.2–5.0 mg/kg/day), FLU (1.0–
1.7mg/kg/day), and CPZ (5mg/kg/day) for as little as 2 weeks
induces VCMs in rats; (2) AP-induced VCMs are reliably
accompanied by elevations in brain TBARS and/or reductions
in endogenous AX enzymes and molecules including GSH,
SOD, and CAT, all of which is indicative of elevated OS in
AP-treated rats; (3) an array of naturally occurring and syn-
thetic compounds coadministered enterally and parenterally
appear to effectively attenuate the manifestation of these AP-
induced behavioral and biochemical alterations, thereby
implicating OS in the development of AP-induced
VCMs; and (4) the known pharmacological actions of
these various compounds are diverse, and thus, the OS-
reducing mechanisms implicated in the preventative ef-
fects of one agent may be different from those operating
in another. Notably, with the exception of three studies
(Naidu et al. 2003d; Thaakur and Jyothi 2007; Thaakur
and Himabindhu 2009), the initiation of the AX-
promoting treatment always preceded or coincided with
the beginning of AP administration.

Google Scholar Search n=310) PubMed Search (n=48) Additional Search (n=7)Google Scholar Search (n=310)

Duplicates Removed (n=46)

No. Abstracts Reviewed: n=319

Excluded: n=256
Not focused on antioxidants in 
APD-induced rat VCM model

No. of Full-text Articles Reviewed: n=63

Excluded: n=25
Not written in English (n=1)
Non-refereed reports (n=6; 
source: Ulrichsweb)
No in vivo OS or AX 
measure (n=18)

No. of Articles Reviewed:
Haloperidol (n=36)
Fluphenazine (n=3)
Chlorpromazine (n=3)
Clozapine (n=2)
Total (n=38)*

*1 study examined three drugs
*4 studies examine two drugs

Fig. 1 A flow-chart depiction of the article search and inclusion process
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Discussion

The rat VCM model

The rat VCM model has been used extensively in preclinical
efforts to elucidate the pathophysiology of TD (Casey 2000;
Turrone et al. 2002; Blanchet et al. 2012). This model is an
analog of the human disorder, as it captures several important
aspects of TD but falls short of the more faithful representations
obtained in long-term studies conducted with non-human pri-
mates (Casey 2000; Blanchet et al. 2012). In addition to
orofacial movements, affected patients and certain non-human
primates exposed to APs may also present with involuntary
movements of the neck, trunk, and upper limbs (Blanchet et al.
2012). The VCM model fails to capture these features, as
movements reportedly only occur in the orofacial region in
AP-treated rats (Turrone et al. 2002; Blanchet et al. 2012).

Nonetheless, many other features of human TD translate to
the rat VCM model. The use of typical APs, higher dosages,
longer-treatment durations, and older rats have all been shown
to result in more reliable or pronounced VCMs; similarly,
withdrawal from long-term AP treatment and stress further
aggravates VCMs in rodents that have developed the behavior
(Turrone et al. 2002). Interestingly, structural and neurochemical
changes have been observed in the striata and substantia nigra of
AP-exposed rats exhibiting VCMs (Blanchet et al. 2012)—both
of which are known to be involved in motor function.

However, caution must be applied when interpreting results
obtained from short-durationVCMstudies. Egan and colleagues
(1996) demonstrated important pharmacological and neuro-
chemical differences between HAL-induced VCMs occurring
in groups of rats treated 1–3 weeks with daily intraperitoneal
(IP) injections versus those emerging in rats treated with HAL
decanoate for 30 weeks, where challenge doses of HAL did not
reduce VCMs in the former groups but suppressed them in the
latter. Critically, VCMs were late-emergent (beginning in week
12) in the HAL decanoate-treated group and persisted for an
additional 24 weeks after the cessation of HAL treatment at
week 30. The authors concluded that AP-induced VCMs occur-
ring in short-term studies (1–21 days) may better reflect acute
extrapyramidal or Parkinsonian side effects whereas longer-term
studies (>12 weeks) are required to effectively model TD.

Long-term studies

Although the majority of the studies summarized in this review
offer encouraging results, only five applied long-acting inject-
able AP treatment protocols that continued for 12 weeks or
longer (see Table 1). This is critical, given the rapid metabolism
of APs in rodents (Chiu and Franklin 1996; Kapur et al. 2003).
For example, the half-life of HAL in rodents approximates
1.5 h, while it is in the range of 12–36 h in humans (Cheng
and Paalzow 1992; Bezchlibnyk-Butler and Jeffries 2005).T
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Thus, routes of administration such as IP or subcutaneous (SC)
injection do not mirror the pattern of exposure observed in
humans being administered APs on an ongoing basis, where
steady state plasma levels are achievedwithin approximately 4–
7 days (Dahl 1986). Administration of depot formulations in
animals circumvents this problem, as does the use of osmotic
minipumps where APs can be continuously infused over an
extended interval as long as 1 month (Turrone et al. 2003).

An examination of the evidence presented here appears to
reflect this. Findings from the five long-term studies involving
depot antipsychotic administration are mixed; notably, the
only negative findings encountered among all of the studies
surveyed are found in three of these five publications
(Andreassen et al. 1999; Sachdev et al. 1999; Fachinetto
et al. 2007a). Andreassen et al. (1999) found no protective
effect of coenzyme Q10 (CoQ10)-enhanced food against
VCMs induced by 16 weeks of HAL decanoate treatment,
speculating that the lack of effect might have been attributable
to species differences in the pharmacokinetics and AX roles of
CoQ10 and CoQ9 or to a predominance of oxidized versus
reduced CoQ10 in the treated group. The failure to detect
increased brain CoQ10 levels despite the reported rise in
serum levels may also explain the negative findings, but
because these biochemical measures were obtained from a
separate group of rats that received only 10 days of CoQ10
treatment, their relevance to the interpretation of the behav-
ioral data is unclear. However, other work has also shown
minimal brain uptake of CoQ10 in rats (Bentinger et al. 2003).

Likewise, Sachdev and colleagues (1999) provided groups
of rats with vitamin E-enhanced, vitamin E-depleted, and
standard food beginning 2 weeks prior to a 12-week FLU
decanoate treatment period and also failed to demonstrate
differences in VCM behavior between these groups. Though
changes in serum vitamin E levels were detected, the authors
suggest that methodological shortcomings (small groups, vi-
tamin E content of injectable oils) or the short-term resistance
of the brain to vitamin E depletion may have partly accounted
for these negative findings. Recent work has shown that
feeding rats a vitamin E-enhanced diet (750 mg/kg/day) for
2 weeks yields a substantial increase in brain vitamin E levels
(Betti et al. 2011), suggesting that a similar increase may have
been seen if brain samples had been analyzed. Sachdev et al.
(1999) simultaneously reported on a protective effect of
selegiline, a MAO-B inhibitor with putative AX effects, but
failed to accompany these behavioral data with any biochem-
ical measure of OS or AX levels.

Fachinetto et al. (2005) evaluated the effects of low- versus
high-fat diets (16 vs 63 % energy from fat) in a prolonged
study, where diets remained altered from 6 months prior to the
beginning of a 7-month HAL decanoate treatment period, and
thereby provide some evidence for VCM prevention accom-
panied by brain TBARS reduction in months 3–5 in the low-
fat diet group while implicating high-fat diets as an additional

source of OS. These investigators subsequently failed to show
a protective effect of Valeriana officinalis root extract against
HAL decanoate-induced VCMs and associated changes in
several markers of brain OS in a 14-week study, with AP
treatment commencing in the third week, suggesting that this
plant extract may offer little in vivo AX support (Fachinetto
et al. 2007a). Although the pharmacokinetic profile of
valerenic acid—a single bioactive constituent of
V. officinalis—has been established in rats, whether this com-
pound or any other derived from the plant can access the brain
in vivo has yet to be determined (Sampath et al. 2012).

Finally, in a 24-week study examining the effect of diphenyl
diselenide against FLU enanthate, Fachinetto and colleagues
(2007b) observed a reduced prevalence of VCM behavior
associated with increased striatal SOD levels in the group
receiving FLU and diphenyl diselenide. These findings suggest
that this compound protected some rats from developing
VCMs, but it failed to attenuate VCM severity among treated
rats that did develop the behavior. Others have reported that
diphenyl diselenide can reach the brain following oral admin-
istration in rats (Prigol et al. 2010), but certain methodological
discrepancies between these studies—e.g., the use of rat pups
versus adults and much higher doses—must be emphasized.

It should also be noted that Rogoza and colleagues (2004)
alluded to results from a 6-month study examining the protective
effect of the free radical trapper α-phenyl-N-tert-butylnitrone as
being similar to those from their 4-week study summarized in
Table 2. However, these data were absent from their report and
the VCMs were not induced by depot AP treatment.

Short-term studies

Nearly all of the short-term studies in Table 2 administered
APs via daily IP or SC injections, with two notable excep-
tions. Barcelos and colleagues (2010) demonstrated the pro-
tective effect of ω-3 fatty acids against depot HAL- and FLU-
induced VCMs and associated TBARS elevations in the hip-
pocampus, substantia nigra, and periphery. Here, ω-3 fatty
acids were introduced to rats’ drinking water beginning
4 weeks prior to a 4-week AP treatment period. Polyunsatu-
rated membrane lipids are particularly susceptible to peroxi-
dation by free radicals in the brain (Elkashef and Wyatt 1999;
Flatow et al. 2013), and the authors proposed that the benefi-
cial effect of supplemental ω-3 fatty acids may have been due
to their direct AX or membrane lipid-sparing properties. Sub-
sequently, this group reported intriguing results from a study
where rats were subjected to 16 weeks of swimming exercise
with HAL decanoate treatment occurring during the final
4 weeks (Teixeira et al. 2011). Swimming exercise sessions
occurred 5 times a week and entailed three 15-min supervised
swim intervals separated by 5-min rest periods where rats
remained on a semi-submerged platform. Protective effects
on both behavioral and biochemical parameters were seen in
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the exercised group. Notably, VCM behavior was correlated
with cortical and subcortical TBARS levels and inversely
correlated with subcortical CAT, thereby further implicating
increased OS and compromised AX defenses in AP-induced
VCM behavior.

Daily IP or SC injections of APs were used to induce VCMs
in the remaining 31 studies (see Table 2). These varied in
duration and include a 7-week study, three 4-week studies,
twenty-five 3-week studies, and a 2-week study. The protective
properties of a variety of compounds and formulations were
evaluated, and results were largely unanimous. Short-term (2–
7 weeks) daily AP treatment induced VCMs and produced
elevations in markers of OS, such as TBARS, and reductions
in endogenous AXs, such as GSH, SOD, and CAT. These
behavioral and biochemical changes were consistently attenu-
ated by the coadministration of numerous naturally occurring
compounds: plant-derived substances such as quercetin (Naidu
et al. 2003b, 2003d), rutin (Bishnoi et al. 2007c), and curcumin
(Bishnoi et al. 2008b, 2011; Sookram et al. 2011); extracts
derived from Withania somnifera root (Naidu et al. 2003c),
Spirulina maxima (Thaakur and Jyothi 2007),Morus alba leaf
(Nade et al. 2010), Mucuna pruriens (Pathan et al. 2011), and
Murraya koenigii leaf (Patil et al. 2012); vitamins B1, B6, B12
(Macêdo et al. 2011), and E (Pathan et al. 2011; Patil et al.
2012); and other agents such as melatonin (Naidu et al. 2003a),
xanthines (Bishnoi et al. 2006, 2007d), neurosteroids (Bishnoi
et al. 2008a, 2008c), L-arginine (Bishnoi et al. 2009), alpha
lipoic acid (Thaakur and Himabindhu 2009), and HAL-loaded
polysorbate-coated nanocapsules containing fish oil-based
cores (Benvegnú et al. 2012).

A collection of drugs were also reported to be effective in
these short-duration studies, including the following: the sym-
pa tho ly t ic ca rved i lo l (Na idu e t a l . 2002) ; the
immunosupressant tacrolimus (Singh et al. 2003); the
selenium-containing compound ebselen (Burger et al. 2005);
N-acetylcysteine amide (Sadan et al. 2005); the synthetic
steroid U-74500A; the hypnotic zolpidem; the adenosine-
modulating dipyridamole and nimodipine; the calcium
channel-blocking verapamil, diltiazem, and nifedipine; the
NO donor molsidomine (Bishnoi et al. 2007a, 2007b, 2007e,
2008d, 2009); the free radical-trapping α-phenyl-N-tert-
butylnitrone (Daya et al. 2011); and the peroxisome
proliferator-activated receptor agonists pioglitazone and
fenofibrate (Grover et al. 2013).

As mentioned previously, the applicability of findings ob-
tained from such short-duration VCM studies to human TD
may be limited because early-onset VCMs more closely re-
semble acute extrapyramidal symptom (EPS)-like responses
to APs (Egan et al. 1996). This differentiation of early- versus
late-onset VCMs is supported by the discrepancy in findings
from the aforementioned vitamin E studies, where a protective
effect was seen against 3 weeks of daily IP HAL (Pathan et al.
2011; Patil et al. 2012) but not 12 weeks of depot FLU

treatment (Sachdev et al. 1999), although other methodolog-
ical differences aside from study duration may also have
affected these outcomes. Because early EPS is a known har-
binger of TD in susceptible patients treated with AP (Saltz
et al. 1991), the findings from these studies are worthy of
some consideration. At the very least, not only do they impli-
cate elevated OS in acute EPS-like responses to AP but they
also suggest that these responses may be amenable to disrup-
tion via numerous pharmacological mechanisms. That such a
variety of agents can apparently attenuate VCMs induced by
short-term daily AP treatments further demonstrates that
early-onset VCMs lack the robust qualities of late-onset
VCMs (Egan et al. 1996), and the discrepancy between the
vitamin E studies mentioned above also supports this conclu-
sion (Sachdev et al. 1999; Pathan et al. 2011; Patil et al. 2012).
Additional studies of sufficient duration applying depot APs
to induce VCMs will clarify these matters. Nonetheless, these
reports indicate that a variety of agents possess in vivo OS-
attenuating or AX-potentiating properties in rats, yet whether
these are attributable to direct (e.g., free radical-scavenging) or
indirect (e.g., AX-replenishing) effects remains open to ques-
tion, as does their relevance to TD prevention in humans.

Summary and future directions

Summarizing, evidence from long-term studies (>12 weeks;
Table 1) suggests that the consumption of a reduced-fat diet
(Fachinetto et al. 2005) and the coadministration of diphenyl
diselenide (Fachinetto et al. 2007b) can attenuate depot HAL-
and FLU-induced VCMs and mitigate brain OS while reduc-
ing TBARS and elevating striatal SOD, respectively. Howev-
er, enhancing food with CoQ10 (Andreassen et al. 1999),
vitamin E (Sachdev et al. 1999, but see Pathan et al. 2011;
Patil et al. 2012), or coadministering V. officinalis root extract
(Fachinetto et al. 2007a) confers no protection against depot
AP-induced VCMs and OS. Notably, two 4-week depot stud-
ies also demonstrated the protective effects of ω-3 fatty acid
supplementation (Barcelos et al. 2010) and exercise (Teixeira
et al. 2011) against AP-induced VCMs; these effects were
associated with favorable reductions in peripheral and brain
TBARS and increases in brain CAT. Likewise, short-term
studies (<12 weeks; Table 2) applying daily AP injections
indicate that early-onset VCMs, OS, and AX reductions can
be attenuated by a multitude of agents.

While these results offer some support to the OS hypothesis
of TD, there is a shortage of studies of sufficient duration
applying long-acting injectable APs. Additional studies are
needed to evaluate whether the promising results seen with a
variety of compounds in the short term (<12 weeks) can be
obtained in longer-duration studies with depot APs. Likewise,
there is a need for replication: vitamin E (Sachdev et al. 1999;
Pathan et al. 2011; Patil et al. 2012), quercetin (Naidu et al.
2003b, 2003d), curcumin (Bishnoi et al. 2008b, 2011;
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Sookram et al. 2011), progesterone (Bishnoi et al. 2008a,
2008c), ω-3 fatty acids (Barcelos et al. 2010; Benvegnú
et al. 2012), and α-phenyl-N-tert-butylnitrone (Rogoza et al.
2004; Daya et al. 2011) were the only AX treatments assessed
in more than a single study. Surprisingly, although vitamin E
and several B vitamins (Macêdo et al. 2011) were evaluated in
these preclinical studies, none examined vitamin C.

It is also noteworthy that none of the studies captured in this
review examined depot atypical APs. Although Bishnoi and
colleagues (2011) included a CLZ group in their second
curcumin study and report effects on striatal OS and AX
measures similar to those seen with HAL, though much less
pronounced, this atypical AP was administered by daily injec-
tion for only 3 weeks. Interestingly, this finding contrasts with
that of an earlier report where no effect of CLZ was seen on
similar measures in the forebrain (Naidu et al. 2002). The
discrepancy could be accounted for by differences in the doses
of CLZ used (10 vs 2 mg/kg) and/or in the brain regions
assayed in these studies (striatum vs forebrain). Nonetheless,
long-term studies evaluating the potential of depot atypical APs
—such as risperidone, paliperidone, olanzapine, or aripiprazole
—to produce VCMs and in vivo OS would be informative.

In conclusion, it would appear that there is insufficient
preclinical evidence to strongly advocate for preventative
AX-based treatments to guard patients receiving APs against
TD, at least at this point. While limited evidence from clinical
trials suggests that vitamin E and melatonin may hold some
promise as treatments for established TD (Cadet and Lohr
1989; Nelson et al. 2003; Soares-Weiser et al. 2011), more
preclinical work is needed to determine whether such com-
pounds can effectively prevent the onset of AP-induced
VCMs and accompanying in vivo changes in OS and AX
measures in studies of sufficient duration. From a clinical
perspective, the ideal preventative AX compound would be
readily accessible, naturally occurring (if not endogenous),
potent, nontoxic, and capable of crossing the blood-brain
barrier. Melatonin (Naidu et al. 2003a) and curcumin
(Bishnoi et al. 2008b, 2011; Sookram et al. 2011) both appear
to be candidate AXs that fit this profile, and although some
preclinical evidence suggests their protective properties, ex-
periments were of short duration (2–3 weeks) and used daily
IP injections of HAL (1–5 mg/kg) to induce VCMs. Future
studies should be longer in duration (>12 weeks) and incor-
porate a range of long-acting injectable AP doses that better
correspond to those used in the clinic (Egan et al. 1996; Kapur
et al. 2003). Such work would likely have higher translational
value with greater relevance to human TD. As the pathophys-
iology of TD remains obscure and no single treatment has
been proven to effectively manage this iatrogenic condition,
there is a strong rationale for further assessing the efficacy of
AX-based prevention strategies in well-designed rat VCM
studies. Furthermore, given the accumulating evidence impli-
cating OS and AX abnormalities in SZ (Flatow et al. 2013)

and the heightened susceptibility of these patients to TD
(Merrill et al. 2013), the early application of AX-
promoting treatments alongside APs may prove to be a
promising strategy for simultaneously mitigating TD
risk and providing adjunctive AX support to the patients
who need it the most.
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