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Abstract
Rationale Serotonin (5-HT) neurotransmission is intimately
linked to anxiety and depression and a diverse body of evi-
dence supports the involvement of the main inhibitory sero-
tonergic receptor, the serotonin-1A (5-HT1A) subtype, in both
disorders.
Objectives In this review, we examine the function of 5-HT1A

receptor subpopulations and re-interpret our understanding of
their role in mental illness in light of new data, separating both
spatial (autoreceptor versus heteroreceptor) and the temporal
(developmental versus adult) roles of the endogenous 5-HT1A

receptors, emphasizing their distinct actions in mediating anx-
iety and depression-like behaviors.
Results It is difficult to unambiguously distinguish the effects
of different populations of the 5-HT1A receptors with tradi-
tional genetic animal models and pharmacological ap-
proaches. However, with the advent of novel genetic systems
and subpopulation-selective pharmacological agents, direct
evidence for the distinct roles of these populations in
governing emotion-related behavior is emerging.
Conclusions There is strong and growing evidence for a
functional dissociation between auto- and heteroreceptor pop-
ulations in mediating anxiety and depressive-like behaviors,
respectively. Furthermore, while it is well established that 5-
HT1A receptors act developmentally to establish normal
anxiety-like behaviors, the developmental role of 5-HT1A

heteroreceptors is less clear, and the specific mechanisms

underlying the developmental role of each subpopulation are
likely to be key elements determining mood control in adult
subjects.
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Introduction

Depression and anxiety are among the world's leading public
health problems today. Indeed, approximately 35 million
adults in the US population (16 %) are likely to suffer from
depression at some time in their lives (Samuels et al. 2011)
and the World Health Organization considers that unipolar
depression will be the second highest cause of illness-induced
disability by the year 2020 (World Health Organization 2011).
Although antidepressants are one of the most commonly used
groups of therapeutic agents worldwide, less than half of
depressed patients show full symptom remission and at least
one quarter show treatment resistance to current antidepres-
sants (Corey-Lisle et al. 2004; Samuels et al. 2011). As
concerns anxiety, an authoritative survey in the European
Union found that it was the most prevalent of mental health
disorders (12-month prevalence, 14 %) affecting over 60
million people each year and entailing a massive economic
burden of over 65 billion euros annually (Gustavsson et al.
2010). Despite extensive efforts searching for novel anxiolytic
agents, advances have been incremental, notably due to the
limitations of classical animal models (Griebel and Holmes
2013).

Such considerations emphasize the need for improved un-
derstanding of the mechanisms of action underlying depres-
sive and anxiety states. Thus, while it is known that the
serotonergic system plays an important role in the etiology
and treatment of mood and anxiety disorders (Charney 1998;
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Nemeroff 2002; Rush 2000), the precise means by which this
occurs are the subject of an ongoing study.

Direct experimental evidence in humans implicating 5-HT
in mood disorders came from studies of tryptophan depletion
(Young et al. 1985), reviewed by Ruhe et al. (2007). More
recently, multiple lines of evidence implicate dysregulated 5-
HT neurotransmission as a primary defect in mood and anx-
iety disorders (aan het Rot et al. 2009; Durant et al. 2010;
Ganasen and Stein 2010; Jans et al. 2007; Ravindran and Stein
2010). Furthermore, complementary data suggesting a role for
5-HT in mood disorders, or at least in the recovery frommood
disorders, comes from the use of selective serotonin reuptake
inhibitors (SSRIs) and other serotonergic agents as first-line
treatments. These drugs are believed to exert their therapeutic
action by increasing 5-HT levels and facilitating 5-HT neuro-
transmission (Gartside et al. 1995). However, evidence from
animal models suggests that SSRI treatment during early
development increases anxiety or depression later in adult-
hood, in contrast to the well-known beneficial effects of SSRIs
in adults (Ansorge et al. 2008; Caspi et al. 2003; Lira et al.
2003; Oberlander et al. 2009; Olivier et al. 2008). These
results suggest that 5-HT may impact immature and mature
mood-related circuitry differently. Furthermore, it is important
to underscore that 5-HT's effect on mood occurs in the context
of multiple other neuromodulatory systems such as noradren-
aline, dopamine, and neurotrophins that may have distinct yet
related effects on mood regulation and which have their own
developmental trajectories (Benes et al. 2000; Blier 2003;
Murrin et al. 2007; Covington et al. 2010; Duman 2004;
Durant et al. 2010; Nestler 2006; Nikolaus et al. 2010;
Skolnick et al. 2009).

Serotonergic neurons are mainly located in the dorsal and
median raphe of the brainstem (DRN and MRN, respectively)
(Barnes and Sharp 1999). Projections from these neurons
release serotonin throughout the entire forebrain and
brainstem and modulate a variety of neuronal activities, but
there are other raphe nuclei that also provide innervations to
the midbrain (Bockaert et al. 2006). The largely
neuromodulatory effects of 5-HT are mediated through 14
receptor subtypes that are grouped into subfamilies based on
their primary signaling mechanism (Hoyer and Martin 1997).
Here we focus on the 5-HT1A receptor, as several lines of
evidence from both human and rodent studies suggest that it
may play a particularly important role in both the etiology of
these disorders and their treatment (Akimova et al. 2009;
Gordon and Hen 2004; Hirvonen et al. 2008; Le Francois
et al. 2008; Lesch and Gutknecht 2004; Strobel et al. 2003).

The 5-HT1A receptor is a major inhibitory G-protein-
coupled receptor subtype that exists in two major populations
in the nervous system (autoreceptor and heteroreceptor) and
functions by coupling to Gi/Go proteins that control numerous
intracellular signaling cascades, including inhibition of cAMP
formation, inactivation of calcium channels, and activation of

potassium channels (Barnes and Sharp 1999). The 5-HT1A

autoreceptor resides on the soma and dendrites of serotonin
neurons in the raphe nuclei, where its activation hyperpolar-
izes and reduces the firing rate of these cells and thereby
serotonin extracellular levels in its projection areas (Hjorth
and Sharp 1991; Meller et al. 1990; Sprouse and Aghajanian
1986; Verge et al. 1985; Wang and Aghajanian 1977). Studies
from several laboratories suggest that the molecular signaling
mechanisms of 5-HT1A receptors in the raphe nuclei are
distinct from those in other brain regions and may be prefer-
entially mediated by coupling to Gαi3 G-protein subunits
leading to partial inhibition of adenylyl cyclase (Liu et al.
1999; Marazziti et al. 2002; Palego et al. 1999; Valdizan
et al. 2010). Local release of 5-HT in the raphe nuclei from
axonal collaterals or crosstalk between different 5-HT neurons
will thus diminish neuronal firing and produce a negative
feedback regulation of transmitter release and may add an
extra level of topographical specification (Adell et al. 1991;
Artigas et al. 1996; Bang et al. 2012). Consistent with their
role in regulating serotonergic tone, autoreceptors limit the
initial increase of 5-HT extracellular levels induced by SSRIs
(Hervas et al. 2000; Hjorth and Auerbach 1994; Hjorth et al.
1996; Rollema et al. 1996), delaying the therapeutic response
(Artigas et al. 1996; Blier and De Montigny 1983; Gardier
et al. 1996). This effect is gradually overcome by desensitiza-
tion of 5-HT1A autoreceptors in the raphe nuclei (Dawson and
Nguyen 2000), allowing the firing rate of serotonergic neu-
rons to recover (Blier and De Montigny 1983; El Mansari and
Blier 2005).

Postsynaptic 5-HT1A heteroreceptors are expressed in tar-
get areas receiving serotonergic innervation. These
heteroreceptors are mainly located on pyramidal neurons
and on GABAergic interneurons (Artigas et al. 2006;
Azmitia et al. 1996; Palchaudhuri and Flugge 2005; Santana
et al. 2004). They are highly expressed in brain regions
implicated in the regulation of mood and anxiety, such as the
prefrontal cortex, hippocampus (HP), and amygdala (Beck
et al. 1992; Hamon et al. 1990; Pompeiano et al. 1992; Riad
et al. 2000). Activation of 5-HT1A heteroreceptors in these
areas mediates a hyperpolarizing response to released seroto-
nin on pyramidal neurons (Andrade et al. 1986; Hamon et al.
1990; Riad et al. 2000), an effect that may be mediated by
coupling of the receptors mainly to Gαo subunits in the
hippocampus, and equally to Gαo and Gαi3 in cerebral cortex
(Mannoury la Cour et al. 2001), unlike 5-HT1A autoreceptors
that may couple preferentially to Gαi3. Moreover, there is a
second indirect mechanism regulating serotonergic neuro-
transmission that involves 5-HT1A heteroreceptors in the
mPFC–raphe pathway (Celada et al. 2001; Hajos et al.
1999). Hence, 5-HT1A receptors are powerful modulators of
5-HT function through their distinct populations, likely
exerting differential effects both by their distinct anatomical
localizations as well as by distinct Gα subunit coupling that
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may account for regional differences in activation versus
inhibition of downstream signaling targets. In the present
review, we focus on the evidence that demonstrates a distinct
role of 5-HT1A autoreceptors versus heteroreceptors in the
initial establishment of mood and anxiety homeostasis as well
as their developmental requirement in affective illness.

Role of 5-HT1A receptors in depression and anxiety

Human studies

Dysregulation of 5-HT1A receptors occurs in patients suffer-
ing from depression and related mood disorders. While there
has been considerable discrepancy among postmortem and
human imaging studies of 5-HT1A receptor levels in depres-
sion, there is growing evidence supporting an increase of 5-
HT1A autoreceptors and a decrease of heteroreceptors in major
depression (Arranz et al. 1994; Boldrini et al. 2008; Cheetham
et al. 1990; Dillon et al. 1991; Joyce et al. 1993; Lowther et al.
1997; Matsubara et al. 1991; Parsey et al. 2010; Stockmeier
et al. 1996).

Increases in 5-HT1A autoreceptor density in the midbrain
have been demonstrated in depressed suicide patients
(Stockmeier et al. 1998). Boldrini et al. (2008) confirmed
and extended this observation by using (H3) 8-OH-DPAT
autoradiography and reported an increase in rostral divisions
of the dorsal raphe nuclei, which project to the prefrontal
cortex, but decreased levels of 5-HT1A autoreceptors in the
caudal dorsal raphe nuclei. An increase in autoreceptor levels
in rostral divisions might result in a decreased serotonin
activity in projection areas by lowering firing rate. However,
disagreement exists within the postmortem literature regard-
ing this subpopulation, suggesting that a more complex pat-
tern of 5-HT1A autoreceptor binding abnormalities exists in
depression. Indeed, reductions in 5-HT1A autoreceptor bind-
ing have also been reported in different PET studies using
primary depressives as subjects (Drevets et al. 1999, 2007;
Meltzer et al. 2004).

5-HT1A receptors have been also examined in a number of
cerebral cortical and subcortical areas in subjects with a his-
tory of mood disorders. PET studies revealed decreased 5-
HT1A heteroreceptor levels in the orbitofrontal, anterior cin-
gulate, occipital, and parietal cortex in untreated or treated
depressed patients, and it was also decreased in patients with
remitted depressive episodes and unmedicated subjects
(Bhagwagar et al. 2004; Drevets et al. 2000, 2007; Sargent
et al. 2000). Furthermore, reduced 5-HT1A heteroreceptor
levels have also been reported in patients with social anxiety
disorders (Lanzenberger et al. 2007), as well as in cortical
regions from patients suffering from panic disorder (Nash
et al. 2008; Neumeister et al. 2004), although not all studies

are in agreement (see Meltzer et al. 2004; Parsey et al. 2006;
Parsey 2010).

Nevertheless, despite some discrepant findings, overall
evidence suggests that 5-HT1A receptor function is altered in
clinical populations when compared to controls. Furthermore,
it should be underscored that the observed abnormalities in 5-
HT1A receptor levels are found in a number of affective and
anxiety-related disorders (Neumeister et al. 2004), suggesting
that these findings may reflect a general vulnerability factor
for psychopathology.

5-HT1A polymorphism

Stress diathesis theories of depression predict that an
individual's sensitivity to stressful events depends on their
genetic makeup (Costello et al. 2002; Monroe and Simons
1991), and such predictions are now increasingly supported
by experimental evidence. Indeed, in the case of 5-HT1A

receptors, a functional C(−1019)G single nucleotide polymor-
phism (SNP) in the transcriptional control region of the
HTR1A gene (HTR1A-1019) has been associated with a
number of mood-related variables, including depression, risk
of suicide, response to antidepressant treatment, and amygdala
reactivity (Fakra et al. 2009; Le Francois et al. 2008; Lesch
and Gutknecht 2004; Strobel et al. 2003). Lemonde et al.
(2003) were the first to report that the G/G genotype is
associated with major depression and suicide in two different
cohorts. This association has been replicated and extended in
most subsequent studies (Anttila et al. 2007; Kraus et al. 2007;
Neff et al. 2009; Parsey et al. 2006). The 5-HT1A G(−1019)
allele has also been associated with anxiety (Choi et al. 2010;
Domschke et al. 2006; Fakra et al. 2009). More recently, it has
been suggested that the HTR1AG allele of the polymorphism
is associated to the frequent clinical presentation of comorbid
major depression and anxiety, suggesting a common genetic
background for mixed depression and anxiety state (Molina
et al. 2011). Furthermore, the G allele of the polymorphism
has also been associated with several mood disorders, such as
panic disorder (Rothe et al. 2004; Strobel et al. 2003) and
panic attack (Huang et al. 2004). Perhaps not surprisingly for a
complex pyschiatric disorder, not all studies have found a
clear association of the G allele of the polymorphism with
depression (Arias et al. 2002; Hettema et al. 2008; Huang et al.
2004). These discrepancies could be related to different vari-
ables such as the frequency of the risk allele, ethnicity, or
disease in the population studied. However, the overall mes-
sage that emerges from literature suggests that the 5-HT1A

receptor G(−1019) allele is a risk allele for depression and
related mood disorders.

Not only is there evidence for increased risk for mood
disorders, but patients homozygous for the G allele consis-
tently have a reduced response to SSRI treatment (Arias et al.
2005; Lemonde et al. 2004; Parsey et al. 2006) compared to

Psychopharmacology (2014) 231:623–636 625



patients with the C/C genotype (Hong et al. 2006; Serretti
et al. 2004; Yu et al. 2006) but see (Levin et al. 2007). Overall,
these finding suggest that genetic variations in the HTR1A
gene may contribute not only to susceptibility to depression
but also to individual differences in response to antidepressant
treatment.

At the molecular level, the C(−1019)G polymorphism is
located in a 26-bp palindrome region within the repressor/
enhancer region of the HTR1A promoter (Albert et al. 1996;
Albert and Lemonde 2004). This region is recognized by a
number of transcription factors including Deaf-1 and Hes5
that act as repressors of the C– but not the G allele of the 5-
HT1A polymorphism in the raphe. While Hes5 also appears to
function as a repressor of heteroreceptor populations, Deaf-1
may enhance expression of 5-HT1A heteroreceptors in C allele
carriers (Lemonde et al. 2003; Czesak et al. 2006). In addition
to the effects of Deaf-1 and Hes-5, Hes1 is also a repressor of
5-HT1A autoreceptors, both in vitro and in vivo (Jacobsen
et al. 2008). Thus, although initial in vitro reports suggested
that this polymorphism could impact autoreceptor levels
(Lemonde et al. 2003), a subsequent in vivo study reported
that the G allele resulted in increased 5-HT1A expression in
both the raphe and other brain regions of antidepressant naive
depressed patients (Parsey et al. 2006). Furthermore, a subse-
quent study showed the opposite regulation of heteroreceptor
compared to autoreceptor by the G allele (Czesak et al. 2006)
and this was further confirmed in vivo using Deaf1-null
mouse model lacking the key transcription factor thought to
act at this polymorphism in adults (Czesak et al. 2012). In this
model, raphe 5-HT1A receptor RNA and protein were in-
creased by 50 %, while in the prefrontal cortex but not the
hippocampus, a smaller 30% reduction in RNAwas observed.
However, whether the effects on forebrain levels observed
in vivo are primary or secondary to changes in autoreceptor
levels remains to be elucidated.

In summary, this model predicts that having relatively
higher levels of 5-HT1A autoreceptors results in increased
susceptibility to depression and decreased response to treat-
ment. A recent study looking at mice that differed only in their
level of autoreceptors supports such a prediction (Richardson-
Jones et al. 2010).

Preclinical pharmacological studies

Data from the depression and anxiety literature provide evi-
dence that 5-HT1A receptors are involved in both disorders.
Indeed, several clinically approved drugs, including buspirone
and tandospirone, likely mediate their anxiolytic properties
via prominent 5-HT1A partial agonist activity (Lacivita et al.
2008). Other drugs, such as flesinoxan or flibanserin, exhibit
high agonist efficacy at 5-HT1A receptors and have proven
active in clinical trials as antidepressants (Pitchot et al. 2005).
Further evidence for the involvement of 5-HT1A receptors in

the regulation of depressive states comes from co-treatment of
depressed subjects with SSRIs and the 5-HT1A weak partial
agonist, pindolol. The latter drug (which is also an adrenergic
beta-blocker) preferentially occupies 5-HT1A autoreceptors,
thus preventing feedback inhibition of serotonin release and
accelerating antidepressant response in most though not all
studies (Celada et al. 2013; Portella et al. 2011). Consistent
with this mechanistic interpretation, co-treatment of depressed
patients with buspirone and pindolol elicited an antidepressant
effect (McAllister-Williams and Massey 2003), whereas
buspirone lacks antidepressant efficacy by itself, likely be-
cause of its insufficient partial agonist efficacy at post-
synaptic receptors (and full agonist activity at 5-HT1A

autoreceptors) (Celada et al. 2013). Furthermore, vilazodone,
a combined SSRI and 5-HT1A receptor partial agonist
(Sorbera et al. 2001), exhibits anxiolytic and antidepressant-
like effects (Bartoszyk et al. 1997; Page et al. 2002).

Taken together, these observations support the importance
of 5-HT1A receptors in the control of mood disorders in a
clinical context and have spurred investigation of 5-HT1A

receptor function using animal models. In particular, efforts
have been made to probe 5-HT1A receptor function using
pharmacological and genetic approaches.

The existence of specific 5-HT1A ligands has made it
possible to study the function of this receptor (Fletcher et al.
1996; Hamon et al. 1990). For example, pharmacological
studies demonstrate that 5-HT1A receptor partial agonists such
as buspirone exert modest antidepressant and anxiolytic ef-
fects in animal studies (Detke et al. 1995; Lucki 1991), and the
behavioral effects of imperfectly selective agonists such as 8-
OH-DPAT are absent in the 5-HT1A KO mice during the
novelty-supressed feeding test (Santarelli et al. 2003).
However, these ligands bind to both 5-HT1A autoreceptors
and heteroreceptors (Yocca 1990), making it difficult to de-
termine which subpopulation mediates specific behavioral
effects. Despite this, behavioral models of stress have consis-
tently shown that activation of 5-HT1A heteroreceptors pro-
duce similar changes to conventional antidepressants (Lucki
1991) and several preclinical studies have suggested that 5-
HT1A heteroreceptors are particularly important to the antide-
pressant response (Blier and de Montigny 1994; De Vry
1995).

In order to circumvent the limitation of systemic injections,
investigators have used localized infusions of 5-HT1A ligands
into restricted brain regions in an attempt to selectively acti-
vate 5-HT1A autoreceptors or heteroreceptors. For example, it
has been reported that infusion of 5-HT1A agonists into the
DRN increased social interaction (SI), suggesting that the
drug-induced increases in SI reflected decreases in anxiety
(Higgins et al. 1992). Furthermore, the 5-HT1A agonist, 8-
OH-DPAT, has been acutely injected into restricted brain areas
such as MRN and DRN resulting in an anxiolytic action
(Andrews et al. 1994; De Almeida et al. 1998; File et al.
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1996; Hogg et al. 1994). On the other hand, acute stimulation
of the post-synaptic 5-HT1A receptors in the dorsal HP results
in an anxiogenic effect in the same tasks in which the knock-
outs behave abnormally (Andrews et al. 1994; File and
Gonzalez 1996; File et al. 1996; Stefański et al. 1993). Thus,
results from localized infusions suggest that stimulating auto-
and heteroreceptors may result in opposing phenotypes, a
conclusion that would be difficult to reach from systemic
administration experiments.

More recently, pharmacological investigation of 5-HT1A

receptors has advanced with the availability of a new genera-
tion of agonists that preferentially target 5-HT1A subpopula-
tions. Indeed, the novel drug, F15599, exhibits a pronounced
preference for activation of 5-HT1A heteroreceptors in the
frontal cortex, whereas its chemical congener, F13714, has
the opposite profile, potently activating 5-HT1A autoreceptors
in the raphe. Data supporting this assertion have been gener-
ated in models of c-Fos expression in different brain regions,
in electrophysiology tests measuring electrical activity of
DRN and pyramidal neurons, and in microdialysis experi-
ments, measuring dopamine release as an index of cortical
heteroreceptors activation and 5-HT release as an index of
autoreceptor activation (Newman-Tancredi 2011). Both
F15599 and F13714 drugs are highly selective for 5-HT1A

receptors, and their activity in a range of pharmacological
models is antagonized by selective 5-HT1A antagonists. The
possibility of interactions by F15599 and F13714 at cross-
reacting sites can therefore be discounted and the capacity of
the drugs to target receptor subpopulations may be attributed
to the “biased agonist” profile of these drugs. Indeed, F15599
has a distinctive profile of in vitro signaling in cellular tests of
G-protein activation, adenylyl cyclase inhibition, ERK1/2
phosphorylation, and receptor internalization (Newman-
Tancredi et al. 2009). F15599 showed a marked potency for
ERK1/2 phosphorylation, whereas other 5-HT1A agonists,
such as F13714 and 5-HT, did not discriminate (Newman-
Tancredi et al. 2009). Interestingly, preferential stimulation of
ERK phosphorylation may lead to improved antidepressant
efficacy, because ERK phosphorylation deficits are associated
with depressed mood. Indeed, deficits in ERK expression and
phosphorylation are seen in postmortem brain of depressed
suicide victims (Dwivedi et al. 2001, 2009). In rat, chronic
stress-induced depression elicits deficits in ERK phosphory-
lation which are fluoxetine reversible (Qi et al. 2006, 2008).
Conversely, chronic administration of a ERK inhibitor elicits
anhedonia and anxiety-like behavior (Qi et al. 2009).
Consistent with these observations, the potent phosphoryation
of ERK1/2 elicited by F15599 in vitro and also demonstrated
in ex vivo studies of frontal cortex tissue (Newman-Tancredi
et al. 2009) may underlie its antidepressant-like effects of
F15599. Indeed, F15599 exhibits antidepressant-like proper-
ties in rodent models of mood deficit (FST and ultrasonic
vocalization) (Assié et al. 2010) and demonstrates beneficial

activity on cognitive function in rats treatedwith the psychoto-
mimetic drug, phencyclidine (Depoortère et al. 2010). Taken
together, the above observations suggest that availability of
highly selective biased agonists should facilitate the pharma-
cological characterization of the role of 5-HT1A receptor
subpopulations.

Preclinical genetic approaches

In addition to pharmacologic approaches, genetic strategies
have also been used to assess 5-HT1A function, initially with
transgenic and KO mice and later with techniques capable of
regulating the expression of receptors in a tissue-specific and
temporally specific manner. In 1998, three different lines of
mice lacking the 5-HT1A receptors were generated (Heisler
et al. 1998; Parks et al. 1998; Ramboz et al. 1998). In each of
the three studies, 5-HT1A knockout mice exhibited an anxiety-
like phenotype in behavioral conflict tests such as open field,
elevated plus maze, zero maze, and novelty-suppressed feed-
ing test, a phenotype that is also present in the heterozygote 5-
HT1A receptor knockout mice, that expressed approximately
one half of the wild-type receptor density, indicating that a
partial receptor deficit is sufficient to elicit the anxious behav-
ior (Ramboz et al. 1998). The impaired performance of 5-
HT1A knockout mice is likely due to an enhanced fear re-
sponse to threatening context, but not due to a deficit in
exploratory drive (Klemenhagen et al. 2006). Interestingly,
despite the association of 5-HT1A function with depression
in humans, 5-HT1A knockout mice did not display a promi-
nent depression-like phenotype. Moreover, 5-HT1A KO mice
display increased physiological responses to acute stress (Van
Bogaert et al. 2006). However, these behavioral alterations are
not correlated with 5-HT or 5-HIAA (5-hydroxyindoleacetic
acid, the major 5-HT metabolite) brain tissue levels.
Furthermore, microdialysis studies have not shown alterations
in basal 5-HT extracelullar levels in 5-HT1A KO mice in
different brain areas such as the hippocampus, striatum, raphe
nuclei, and frontal cortex (Bortolozzi et al. 2004; Guilloux
et al. 2006; Knobelman et al. 2001). These results demonstrate
that genetic deletion of 5-HT1A receptors leads to an enhanced
anxiety phenotype without affecting 5-HT levels (Ramboz
et al. 1998), suggesting either a lack of tonic control of 5-
HT1A autoreceptors on nerve terminal 5-HT release, or devel-
opmental compensation (see below). Indeed, despite findings
that serotonin levels are unchanged, there is evidence to
suggest increased 5-HT turnover, indicating increased activity
of serotonergic neurons or compensatory changes due to the
lack of 5-HT1A receptors (Ase et al. 2000).

Pharmacological studies have also provided insight into the
role of 5-HT1A receptors in the regulation of 5-HT levels in
KO mice. Indeed, SSRIs increase dialysate 5-HT levels in
both the frontal cortex and raphe nuclei areas, but this effect is
greater in 5-HT1A KO mice (Bortolozzi et al. 2004; Guilloux
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et al. 2006; Knobelman et al. 2001), suggesting the absence of
an inhibitory feedback control over 5-HT release.
Interestingly, 5-HT1A KO mice respond to tricyclic antide-
pressants (TCAs), but not to the SSRI fluoxetine, in the tail
suspension test and the novelty-suppressed feeding test, sug-
gesting that the 5-HT1A receptors are a critical component in
the mechanism of action of SSRIs but not TCAs (Mayorga
et al. 2001; Santarelli et al. 2003). In contrast to the behavioral
changes observed in mice lacking the 5-HT1A receptor, a
transgenic line overexpressing the murine 5-HT1A receptor
in the central nervous system under control of its endogenous
promoter (Kusserow et al. 2004) had reduced anxiety-like
behavior, reduced 5-HIAA/5-HT ratio in several brain areas,
and elevated serotonin levels in the hippocampus and stria-
tum. The behavioral data from this study suggest the opposite
phenotype of 5-HT1A knockout mice and an inverse correla-
tion between 5-HT1A receptor levels and anxiety.

Since 5-HT1A receptors can influence anxiety and depres-
sion by impacting either 5-HT levels (as an autoreceptor) or
the limbic response to released 5-HT (as a heteroreceptor), it is
important to understand the role of these receptor populations
in maintaining normal levels of anxiety and depression. Gross
et al. (2002), using a gain-of-function approach, ectopically
expressed 5-HT1A receptors using a vector driven by CamKII
promoter. This results in 5-HT1A overexpression in pyramidal
excitatory neurons, but not GABAergic interneurons, in fore-
brain areas such as the cortex, hippocampus, striatum, and
lateral amygdala, in the absence of autoreceptors. They found
that this 5-HT1A receptor expression pattern reversed the

increased anxiety behavior in 5-HT1A KO mice, leading to
the hypothesis that endogenous 5-HT1A heteroreceptors in the
forebrain may control the normal establishment of anxiety-
like behavior (Akimova et al. 2009; Goodfellow et al. 2009;
Gross and Hen 2004; Zhang et al. 2010). However, it is worth
noting that this phenotypic reversal occurs in the context of
missing autoreceptors (Fig. 1).

More recently, we developed another transgenic system to
independently assess the function of 5-HT1A autoreceptors
and heteroreceptors (Richardson-Jones et al. 2011). This sys-
tem provides a number of advances over classic KO and
previous transgenic technology. This study demonstrated that
supression of endogenous heteroreceptors is not sufficient to
impact anxiety-like behavior. However, loss of autoreceptors
impacts anxiety in the adult, suggesting that the anxious-like
phenotype of the 5-HT1A KO mouse likely results from in-
creased serotonergic neuron excitability during development
(reviewed below). Furthermore mice lacking 5-HT1A

heteroreceptors throughout life displayed decreased mobility
in the FST, or increased behavioral despair, in adulthood.
Surprisingly, whole brain knockout mice display higher mo-
bility time in the FST and TST, suggesting that the absence of
5-HT1A receptors could result in an “antidepressant-like” ef-
fect. In contrast, loss of 5-HT1A autoreceptors throughout life
did not impact behavior in the FST in adulthood.

These results provided the first direct genetic evidence for
the distinct roles of the two endogenous receptor populations
inmediating anxious or depression-like phenotypes, providing
evidence that autoreceptors could impact the establishment of

Fig. 1 Model of 5-HT1A autoreceptor effects on the serotonergic raphe
nuclei. Schematic depicting representative raphe neurons in 1A-High and
1A-Low animals, emphasizing the differences between the two groups.
Top , In 1A-Low mice, low levels of somatodendritic 5-HT1A

autoreceptors result in a weak negative feedback, resulting in higher firing
rates of raphe neurons and concomitant increased release of serotonin.
Bottom, Conversely, 1A-High mice have lower basal firing rate and high
levels of somatodendritic 5-HT1A autoreceptor, which exert robust

inhibitory effects on raphe firing. This results in a greater behavioral
despair in response to stress, compared to 1A-Low mice. While 1A-
High mice do not respond behaviorally to treatment with the antidepres-
sant fluoxetine, 1A-Low mice display a robust behavioral response. 1A-
High and 1A-Low mice provide a mechanistic model for humans carry-
ing, respectively, the G/G and C/C alleles of the Htr1aI C(−1019)G
polymorphism. Adapted from Richardson-Jones et al. (2010)
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anxiety-like behavior, with heteroreceptors affecting behavior
in the forced swim test, a depression-related test.

Developmental requirement of 5-HT1A receptor

The serotonergic system is perfectly poised to play an impor-
tant role in sculpting the circuitry that subserves anxiety and
depression. First, serotonin has clearly been implicated in
development at key periods in a number of systems at different
developmental timepoints (Benes et al. 2000; Trowbridge
et al. 2011; van Kleef et al. 2012). For example, serotonin is
known to play a critical role in the development of whisker
barrel fields in the somatosensory cortex of the mouse. The
critical period for this process appears to be postnatal days 1–6
(Fox 1992). More recently, it has been suggested that the
postsynaptic 5-HT1A receptor appears to be critical in the
development of the barrel cortex organization (Maya
Vetencourt et al. 2008, 2011). At a later stage, Nakamura
and colleagues have identified TPH1, an enzyme involved in
the rate-limiting step for serotonin synthesis as playing a role
in the maturation of sensorimotor gating (Nakamura et al.
2006). TPH1 is specifically required during postnatal days
21–24 for proper maturation of the circuit. Thus, it is clear that
serotonin has distinct, clearly defined roles in circuit matura-
tion at different times during development.

In the case of the 5-HT1A receptor, numerous studies have
implicated this receptor in the development of normal anxiety-
like behavior (Gross et al. 2002; Heisler et al. 1998; Parks et al.
1998; Ramboz et al. 1998). In particular, there is evidence to
suggest that normal expression of the 5-HT1A receptor is
required in the second and third week of life for the emergence
of normal anxiety, with mice lacking functional 5-HT1A re-
ceptors during this time developing pathological levels of
anxiety (Gross et al. 2002; Leonardo and Hen 2008).
Furthermore, the same behavioral phenotype is also seen with
pharmacological blockade of 5-HT1A receptors during post-
natal development (Lo Iacono and Gross 2008). These studies
have also demonstrated that disruption of the 5-HT1A receptor
in adulthood does not result in an anxiety phenotype, suggest-
ing that the phenotype of the 5-HT1A knockout mouse is due
to its absence during a critical developmental window.
Therefore, these data firmly establish the opening of a critical
window in the second and third postnatal week.

The requirement for 5-HT1A receptors in the third week of
life coincides with the emergence of behaviors that are con-
sistent with conflict-based anxiety. Thus, exploration of and
habituation to novel environments emerge at this time (Murrin
et al. 2007). In addition, postnatal day 21 is the earliest
timepoint in which behavioral differences in anxiety measures
can be detected in the 5-HT1A knockout mice (Kristin
Klemenhagen, personal communication). As a result, it is
reasonable to assume that 5-HT1A receptors during this time

period play a role in establishing the circuits that mediate these
behaviors. These results also suggest that by the end of the
third week of life in the mouse, circuitry capable of mediating
anxiety-like behavior is in place. Indeed, genetic attempts to
“rescue” normal levels of anxiety after this P21 period have
not been successful (Gross et al. 2002). This data leads to the
conclusion that if the circuits do not form properly in the first
place, they cannot be rescued later. Similarly, the lack of an
anxiety phenotype in mice that do not have 5-HT1A receptors
in adulthood suggests that once formed, the circuits are either
sufficiently stable to withstand the loss of 5-HT1A receptors,
or that 5-HT1A receptors play a different role in adulthood than
they do in development.

Given the evidence that the 5-HT1A receptor is important
for normal development of mood control, it is reasonable to
hypothesize that at least some of these effects could be linked
to different 5-HT1A receptor subpopulations. Therefore, de-
fining the stage-specific effects of 5-HT1A autoreceptors and
heteroreceptors in the establishment and maturation of circuits
that subserve anxiety and depression-related behavior in the
mouse would form hypotheses concerning mechanisms
through which variation in 5-HT1A receptor function leads to
related phenotypes in humans.

A few studies have attempted to dissect the developmental
requirements of 5-HT1A autoreceptors and heteroreceptors.
For example, as mentioned above, overexpression of 5-
HT1A heteroreceptors after P21 (in the absence of
autoreceptors) using a gain-of-function approach in a knock-
out background resulted in anxiety levels that are
indistiguishable from whole brain knockout animals.
Conversely, earlier expression (P15) of the heteroreceptor in
the absence of autoreceptors leads to normal anxiety levels in
adulthood. These results suggest that normal anxiety-like
behavior in the adult requires the proper establishment of
circuitry in the early postnatal period and cannot be rescued
later (Gross et al. 2002). Likewise, another report showed,
using a loss-of-function approach, that supression of endoge-
nous 5-HT1A autoreceptors throughout life is sufficient to
increase anxiety-like behavior in the adult (Richardson-Jones
et al. 2011). However, modulating 5-HT1A autoreceptors in
adulthood does not impact anxiety-like behavior (Richardson-
Jones et al. 2010). While seemingly in conflict regarding the
population of receptors involved, these data taken together are
consistent with a developmental role for 5-HT1A autoreceptors
in the establishment of anxiety-related circuitry (Gross et al.
2002; Lo Iacono and Gross 2008). These findings further
suggest that serotonin plays a critical role in the maturation
and/or development of circuits that influence the processing of
anxiety-related cues in adulthood. Furthermore, these results
suggest the opening of a critical window in the second and
third postnatal week and that this plasticity no longer remains
in adult animals. The question of how long these plastic
periods last remains to be answered.
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The apparent conflict in the population responsible for the
anxious phenotype can be resolved by closely examining the
different experimental approaches taken in each experiment
and the information that each provides. The 5-HT1A

autoreceptor knockout mouse was a loss of function model
that looked at the effect of disrupting endogenous receptors:
absence of 5-HT1A autoreceptors appears to be the dominant
element that determines the phenotype of the constitutive
knockout mice. In the case of the heteroreceptor overexpres-
sion study, a gain-of-function approach was used to demon-
strate that ectopic/overexpression of 5-HT1A heteroreceptors
in the forebrain can normalize anxious behavior in a knock-
out mouse. In a loss-of-function approach, another study
(Richardson-Jones et al. 2011) demonstrated that suppres-
sion of heteroreceptor expression is not sufficient to recapit-
ulate the anxious phenotype of the constitutive 5-HT1A

knockout mouse. Thus, the data are most consistent with a
loss of autoreceptors resulting in increased anxiety through
increased serotonergic signaling from a disinhibited raphe.
The gain-of-function experiment suggests that this anxiety
can be rescued in these “raphe-disinhibited” mice by in-
creasing signaling through 5-HT1A heteroreceptors which
are the major inhibitory serotonin receptor in the forebrain.
Thus, there is a fine balance between serotonin levels and

inhibitory receptors that seems to be established during this
early period.

Regarding 5-HT1A heteroreceptors, there is only one study
examining the developmental requirement of this receptor
(Richardson-Jones et al. 2011). This study showed that
supression of this receptor during development leads to an
increased behavioral despair in adulthood. In contrast, this
phenotype was not observed when heteroreceptor suppression
was initiated in adulthood, suggesting that 5-HT1A

heteroreceptors act developmentally to establish the circuitry
underlying the behavioral response to forced swim stress
without affecting conflict-based anxiety paradigms (Fig. 2).
Furthermore, it should be noted that supression of 5-HT1A

heteroreceptors results in behavioral despair but not anxiety,
while ectopic overexpression in the forebrain of this receptor
during development rescues the anxious phenotype of whole
brain 5-HT1A KO mice. Future studies should be directed to
the suppression of interneuronal versus pyramidal 5-HT1A
receptors, potentially elucidating their distinct in the etiology
of anxiety and depression.

In humans, it is increasingly accepted that developing
circuits are sensitive to environmental insults, with different
circuits being sensitive at distinct points in development. In
addition, it is increasingly clear that some individuals are more

Fig. 2 A summary of data supporting a critical role for 5-HT1A

autoreceptors and heteroreceptors in establishing normal anxiety and
depressive-like behavior circuits. Top, Transgenic forebrain expression
of 5-HT1A heteroreceptors in a knockout background beginning at day 15
is sufficient to rescue normal behavior, while graded re-expression of the
heteroreceptor beginning at P21 results in an anxious phenotype (Gross
et al. 2002).Middle , Supression of 5-HT1A autoreceptors throughout life
resulted in an increased anxiety-like behavior in the adult. Conversely,

loss of endogenous autoreceptors in adulthood is not sufficient to impact
anxiety-like behavior (Richardson-Jones et al. 2011). Bottom , Supression
of 5-HT1A heteroreceptors throughout life resulted in an increased immo-
bility in the forced swim test in the adult. Conversely, loss of endogenous
heteroreceptors in adulthood is not sufficient to impact behavior (Rich-
ardson-Jones et al. 2011). These results suggest that a critical period exists
beginning on the P15. The end of this critical period remains unclear
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sensitive to these environmental insults than are others. As
described above, there is a growing body of literature describ-
ing the effects of a functional polymorphism in the promoter
of the human 5-HT1A receptor (Lemonde et al. 2003). The
polymorphismC(−1019)G is thought to result in altered levels
of 5-HT1A receptor expression and is thought to moderate
susceptibility to stress (Albert and Lemonde 2004). The time
course of susceptibility has not been mapped out for this
polymorphism. Given the evidence that 5-HT1A receptors
are important during normal development in the mouse, at
least some of the effects seen from this polymorphism in
human populations may be due to alterations in circuit forma-
tion that occurred during critical developmental periods.

Conclusions

The elucidation of the role of 5-HT1A receptors in the develop-
ment and/or stabilization of circuitry that mediates emotional
behaviors has been complicated by the fact that the receptor
exists as two distinct populations, having the dual ability to
modulate both global serotonin levels, and local responses to
released serotonin. However, various approaches are being used
to cast light on the role of 5-HT1A auto- and heteroreceptors in
mood disorders. Experimental strategies include pharmacologi-
cal approaches, using local administration by microinjection or
using novel biased agonists targeting receptor subpopulations,
and new transgenic approaches that allow independent manipu-
lation of endogenous autoreceptors and heteroreceptors. Results
from these new experimental strategies, in conjunction with
results from more classic approaches, have provided new per-
spectives on how 5-HT1A receptor subpopulations differentially
influence anxiety and depression.

However, although it is well established that 5-HT1A recep-
tors act developmentally to establish normal anxiety and
depressive-like behaviors, the specific mechanisms underlying
the developmental role of each subpopulation require further
investigation. In addition, although disruption of 5-HT1A recep-
tor functioning during adulthood does not result in a prolonged
anxious or depressive phenotype, the 5-HT1A receptor may still
play a role in the regulation of the plasticity of behavior once
circuits mediating anxiety are functional. It is possible that there
is time after the circuits are developed when the system remains
plastic and enduring, even permanent changes to be effected by
alterations in 5-HT1A receptor function. This may be true for the
development of pathological states but also for therapeutic
interventions, potentially opening new avenues for improved
treatment of debilitating mood deficit disorders
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