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Abstract
Rationale Ketamine, a non-competitive NMDA receptor an-
tagonist, induces acute effects resembling the positive, nega-
tive and cognitive symptoms of schizophrenia. Chronic use
has been suggested to lead to persistent schizophrenia-like
neurobiological changes.
Objectives This study aims to test the hypothesis that chronic
ketamine users have changes in brain neurochemistry and
increased subthreshold psychotic symptoms compared to
matched poly-drug users.

Methods Fifteen ketamine users and 13 poly-drug users were
included in the study. Psychopathologywas assessed using the
Comprehensive Assessment of At-Risk Mental State.
Creatine-scaled glutamate (Glu/Cr), glutamate+glutamine
(Glu+Gln/Cr) and N-acetyl aspartate (NAA/Cr) were mea-
sured in three brain regions—anterior cingulate, left thalamus
and left medial temporal cortex using proton magnetic reso-
nance spectroscopy.
Results Chronic ketamine users had higher levels of sub-
threshold psychotic symptoms (p <0.005, Cohen’s d =1.48)
and lower thalamic NAA/Cr (p <0.01, d =1.17) compared to
non-users. There were no differences in medial temporal
cortex or anterior cingulate NAA/Cr or in Glu/Cr or Glu+
Gln/Cr in any brain region between the two groups. In chronic
ketamine users, CAARMS severity of abnormal perceptions
was directly correlated with anterior cingulate Glu/Cr (p <
0.05, r =0.61—uncorrected), but NAA/Cr was not related to
any measures of psychopathology.
Conclusions The finding of lower thalamic NAA/Cr in chron-
ic ketamine users may be secondary to the effects of ketamine
use compared to other drugs of abuse and resembles previous
reports in individuals at genetic or clinical risk of
schizophrenia.

Keywords Glutamate .N -Acetyl aspartate . Psychotic
symptoms . Ketamine

Introduction

Ketamine, a dissociative anaesthetic agent and non-
competitive NMDA receptor antagonist, induces acute effects
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at subanaesthetic doses that resemble the positive, negative
and cognitive symptoms of schizophrenia (Krystal et al.
1994). When administered to patients with stable schizophre-
nia, ketamine may lead to a relapse of symptoms indistin-
guishable from the idiopathic disease (Lahti et al. 1995).

Despite considerable interest in the NMDA receptor antag-
onist model of psychosis, acute ketamine administration has
been suggested to be somewhat unlike idiopathic psychoses
because of its relatively short-lived effects (Tsai and Coyle.
2002). In contrast, chronic ketamine administration may be
more representative of the long-term NMDA receptor dys-
function hypothesised to occur in schizophrenia (Tsai and
Coyle. 2002). In rats, repeated administration of ketamine
has been reported to lead to neurodegenerative changes in
brain regions resembling those affected in schizophrenia
(Keilhoff et al. 2004). Reductions in brain N -acetyl aspartate
(NAA), suggested to be a marker of neuronal integrity and,
possibly, of glutamatergic neuronal function (Reynolds and
Harte. 2007), have been reported in rats administered the
NMDA receptor antagonist phencyclidine (Reynolds et al.
2005). NAA reductions measured using proton magnetic res-
onance spectroscopy (1H-MRS) are also a consistent finding
in patients with schizophrenia, becoming more marked and
affecting more regions with disease progression (Steen et al.
2005; Brugger et al. 2011). NAA reductions in thalamus have
been reported in individuals at high clinical and genetic risk of
psychosis, whilst more widespread reductions, including tem-
poral cortex and frontal cortex, have been reported in patients
with chronic schizophrenia (Brugger et al. 2011). These find-
ings suggest that reduced thalamic NAA may be an indicator
of early pathophysiological changes linked to the risk for
psychosis.

In terms of brain glutamate levels, 1H-MRS findings have
been mixed. In individuals at risk of psychosis, and in patients
with first-episode psychosis, elevations in medial prefrontal
glutamine or glutamate+glutamine levels have been reported
(Bartha et al. 1997; Théberge et al. 2002; Tibbo et al. 2004;
Stone et al. 2009; Marsman et al. 2013), but others have not
found any evidence of difference in brain glutamate metabolites
in these groups (Wood et al. 2007; Yoo et al. 2009). In contrast,
in patients with chronic schizophrenia, brain glutamate levels
have generally been reported as being normal or low (Szulc
et al. 2013; Marsman et al. 2013), although this may be an
effect of medication as a recent study demonstrated elevated
medial prefrontal glutamate+glutamine levels in unmedicated
patients with chronic schizophrenia (Kegeles et al. 2012).

To date there have been three reports of glutamate metab-
olite estimation with 1H-MRS following acute ketamine ad-
ministration in humans. One reported increased anterior cin-
gulate glutamine (Rowland et al. 2005), one reported in-
creased anterior cingulate glutamate (Stone et al. 2012), and
one reported no change in anterior cingulate glutamate+glu-
tamine levels (Taylor et al. 2011), although the latter study was

potentially underpowered, utilising a between-subject analysis
with a sample size of nine subjects receiving placebo and eight
receiving ketamine. No human studies of the effects of chronic
ketamine use on brain glutamate have been reported, but in
rats elevations in brain glutamate measured using 1H-MRS
have been reported (Kim et al. 2011).

Although chronic NMDA receptor blockade is an
established preclinical model of schizophrenia, it is not known
if chronic NMDA receptor blockade in humans is associated
with reductions in levels of brain NAA and increases in
glutamate seen in preclinical models and in people with early
symptoms of psychosis. It would not be ethical to administer
daily ketamine to healthy volunteers over an extended period
of months or years, but an alternative method to study chronic
NMDA receptor hypofunction in humans is to study people
who choose to take ketamine regularly. Ketamine users have
been reported to have increased prefrontal dopamine D1 re-
ceptors (Narendran et al. 2005) as well as reduced gray matter
volume in anterior cingulate cortex (Liao et al. 2011). In this
study, we tested the hypothesis that compared to non-
ketamine-using poly-drug users, individuals with chronic ke-
tamine use have greater levels of subthreshold psychotic
symptoms, elevations in creatine-scaled anterior cingulate
glutamate (Glu/Cr) and glutamate+glutamine (Glu+Gln/Cr)
and reductions in creatine-scaled thalamic, medial temporal
cortex and anterior cingulate N -acetyl aspartate (NAA/Cr).

Methods

The study was approved by Imperial College London
Research Ethics Committee, UK. Fifteen ketamine users
(age range 20–29 years old, with a history of using ketamine
at least three times per week for the last year) and 13 poly-
drug-using controls (matched for age, sex and education level
but who had no history of regular ketamine use) were included
in the study. All participants completed information about
their level and history of substance use including ketamine.
Levels of subthreshold psychotic symptoms were assessed
using the Comprehensive Assessment of At-Risk Mental
State (CAARMS)—abnormalities of thought content (bi-
zarre+non-bizarre), abnormalities of perceptions and abnor-
malities of speech production subscales (Yung et al. 2005),
with participants describing their experiences when drug-free.

All participants then underwent MRI imaging on a Philips
3-T Intera magnetic resonance system, software release 2.1.3.
An initial localizer scan was performed followed by acquisi-
tion of a whole-brain 3D-MPRAGE (TR=9.6 ms, TE=
4.5 ms, flip angle 8°, slice thickness=1.2 mm, 0.94 mm×
0.94 mm in plane resolution, 150 slices). PRESS (Point
RESolved Spectroscopy) data were then acquired (TE=
35 ms; TR=3,000 ms; 64 averages for anterior cingulate, 96
averages for medial temporal cortex and thalamus), utilising
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the default “Excite” water suppression routine. Auto-
shimming was performed using second-order pencil beam
shim. The 3DMPRAGE was used to place regions of interest
for the PRESS analysis. The anterior cingulate region of
interest (ROI) was prescribed from the midline sagittal slice,
and the centre of the 20 mm×20mm×20mmROI was placed
13 mm above the anterior section of the genu of corpus
callosum at 90o to the AC-PC line (Fig. 1). The centre of the
thalamus ROI (20 mm×15 mm×20 mm) was defined at the
point in the axial slices where the thalamus was widest, using
sagittal and axial planes, and rotating the ROI to ensure that it
was clear of CSF (Fig. 2). The centre of the medial temporal
cortex ROI (20 mm×20 mm×15 mm) was positioned superi-
or to the anterior edge of the cerebellum and angled in line
with the body of the hippocampus (Fig. 3).

PRESS spectra (Fig. 4) were analyzed using LCModel
version 6.3. The raw spectral data were read into LCMgui,
the graphical user interface for LCModel. A standard basis set
of 16 metabolites (L-alanine, aspartate, creatine, phosphocre-
a t i n e , GABA, g luco se , g l u t amine , g lu t ama t e ,
glycerophosphocholine, glycine, myo-inositol, L-lactate, N-
acetyl aspartate, N -acetylaspartylglutamate, phosphocholine,
taurine), included as part of LCModel and acquired with the
same field strength (3 T), localization sequence (PRESS) and
echo time (35 msec) as our study was used. Model metabolites
and concentrations employed in the basis set are fully detailed
in the LCModel manual (http://s-provencher.com/pages/lcm-
manual.shtml). For all metabolites, we used the recommended
cutoff of Cramer-Rao Lower Bounds (CRLB) of 20 % to
exclude poorly fitted metabolite peaks. As absolute quantifi-
cation is not possible at field strengths above 1.5 T due to the
breakdown of the law of reciprocity (Jansen et al. 2006) and

due to the fact that we did not have access to unsuppressed
PRESS spectra for water scaling, we quantified all metabolites
as a ratio to creatine.

Group differences in demographic, drug use, rating and
metabolite data were assessed with Welch's two-sample t -test
and the chi-square test was implemented in R version 2.14.1
(Ihaka and Gentleman. 1996). Correlations between metabo-
lite levels and CAARMS severity of abnormal thought con-
tent, abnormal perceptions or speech production were inves-
tigated in ketamine users using Pearson's correlation.

Results

Ketamine users did not differ from controls in demographic or
other substance use variables, except for amount of amphet-
amine used per month (Table 1). Ketamine users had signifi-
cantly greater severity of CAARMS—abnormalities of
thought content (mean score=2.3 vs. 0.54; t =3.36; p =
0.003, Cohen's d =1.48), with six of the ketamine users and
0 controls reaching formal criteria for an at-risk mental state
(Table 1) (Yung et al. 2005).

1H-MRS spectra were of reasonable quality in anterior
cingulate and left thalamus, with a mean (SD) signal-to-
noise ratio reported by LCModel of 16.9 (3.4) and 11.75 (3),
respectively, and of passable quality in left medial temporal
cortexwith a mean (SD) signal-to-noise ratio of 8.1 (3.4). Line
widths reported by LCModel followed a similar pattern with
mean (SD) of 5.4 (0.97) Hz in anterior cingulate, 6.4 (1.4) Hz
in left thalamus and 8.3 (3.3) Hz in left medial temporal
cortex. Signal-to-noise ratio did not differ in any region be-
tween controls and ketamine users, but the line width in

Fig. 1 Placement of anterior cingulate ROI
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thalamus was wider in ketamine users (mean=5.9 Hz, 7.0 Hz;
p =0.03). Glu+Gln/Cr was not measureable at CRLB<20 %
in thalamus in one ketamine user or in medial temporal cortex
in two ketamine users and two controls. Medial temporal
cortex NAA/Cr was not measureable at CRLB<20 % in one
ketamine user.

Ketamine users had significantly lower NAA/Cr in thala-
mus than controls (mean level=1.17 vs 1.24; t =2.84; p <0.01,
Cohen's d =1.17). This did not appear to be due to differences
in scan quality between ketamine users and controls as there

was no relationship between LCModel-reported line width
and NAA/Cr in thalamus (p =0.2). There were no differences
in medial temporal cortex or anterior cingulate NAA/Cr or in
Glu+Gln/Cr or Glu/Cr in any brain region between the two
groups (p >0.05; Table 2).

In ketamine users, there was a significant relationship
between anterior cingulate Glu/Cr levels and CAARMS se-
verity of abnormal perceptions (p =0.02, r =0.61; Fig. 5). A
similar trend relationship was seen between anterior cingulate
Glu+Gln/Cr and CAARMS severity of abnormal perceptions

Fig. 2 Placement of left thalamus ROI

Fig. 3 Placement of left medial temporal cortex ROI
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Fig. 4 Sample 1H-MRS spectra (LCModel output) from anterior cingulate, thalamus, and medial temporal cortex ROIs (control—left ,
ketamine—right )
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in ketamine users (p =0.06, r =0.48). However, these
relationships were not corrected for multiple compari-
sons (18 tests in total) and were not present in the total
sample (poly-drug controls plus ketamine users). There

was no relationship between thalamic NAA levels and
CAARMS severity of abnormal thought content, abnor-
mal perceptions or speech production in ketamine users
or controls.

Table 1 Participant demographics, self-reported drug use, and clinician-rated psychotic-like symptoms

Ketamine users (n =15) Controls (n =13) Statistical significance analysis

Age mean (SD) 25.7 (2.1) 24.5 (2.6) t =1.3; p =0.2

Sex (M/F) 9/6 11/2 χ2=1.03; p =0.30

Years of education, mean (SD) 14.9 (3.9) 17.3 (4.1) t =1.6; p =0.12

Smoker (Y/N) 9/6 6/7 χ2=0.12; p =0.72

History of alcohol use (Y/N) 15/0 13/0 χ2=N/A; p=1

Alcohol units per week, mean (SD) 54.3 (80.2) 12.1 (9.2) t =1.8; p =0.08

History of cannabis (Y/N) 15/0 13/0 χ2=N/A; p=1

Level of cannabis use—days taken to smoke 1/8 oz cannabis (SD) 9 (17.2) 341 (838) t =1.19; p =0.27

History of MDMA (Y/N) 14/1 9/4 χ2=1.36; p =0.24

MDMA mg per month, mean (SD) 2,218 (5,103) 178 (549) t =1.54; p =0.15

History of cocaine (Y/N) 15/0 10/3 χ2=1.84; p =0.18

Cocaine (grams per month), mean (SD) 6.3 (8.8) 1.78 (5.7) t =1.57; p =0.13

History of amphetamine use (Y/N) 13/2 8/5 χ2=1.20; p =0.27

Amphetamine (grams per month), mean (SD) 0.6 (0.75) 0 t =2.77; p =0.02*

History of ketamine (Y/N) 15/0 5/8 χ2=10.1; p =0.001***

Ketamine (grams per month), mean (SD) 100 (114) 0 (0) t =3.34; p =0.005**

CAARMS—severity of abnormalities of thought content, mean (SD) 0.53 (0.88) 2.33 (1.84) t =3.37; p =0.003***

CAARMS—severity of perceptual abnormalities, mean(SD) 1.69 (2.01) 2.26 (1.67) t =0.81; p =0.42

CAARMS—severity of abnormalities of speech production, mean(SD) 1.38 (1.76) 2.07 (1.79) t =1.01; p =0.32

CAARMS Comprehensive Assessment of At-Risk Mental State

*p <0.05; **p <0.01; ***p<0.005

Table 2 Creatine-scaled metabo-
lite levels as reported by
LCModel

GPC glycerophosphocholine

**p <0.01

Ketamine users,
mean (SD)

Poly-drug controls,
mean (SD)

Statistical significance

Anterior cingulate

Glutamate/creatine 1.55 (0.15); n=15 1.52 (0.24); n =13 t=0.34; p=0.74

Glutamate+glutamine/creatine 2.15 (0.32); n=15 2.11 (0.36); n=13 t=0.32; p=0.75

N-Acetyl aspartate/creatine 1.16 (0.09); n=15 1.11 (0.11); n =13 t=1.59; p=0.12

Myoinositol/creatine 0.72 (0.11); n =15 0.72 (0.05); n =13 t=0.15; p=0.88

GPC/creatine 0.25 (0.027); n=15 0.25 (0.029); n =13 t=0.35; p=0.73

Thalamus

Glutamate/creatine 1.27 (0.12); n=12 1.30 (0.15); n =13 t=0.57; p=0.57

Glutamate+glutamine/creatine 1.77 (0.37); n=14 1.86 (0.33); n =13 t=0.65; p=0.52

N-Acetyl aspartate/creatine 1.17 (0.06); n=15 1.24 (0.07); n =13 t=2.84; p=0.009**

Myoinositol/creatine 0.57 (0.10); n=14 0.57 (0.17); n =13 t=0.028; p =0.98

GPC/creatine 0.30 (0.02); n=13 0.30 (0.02); n =12 t=0.16; p=0.87

Medial temporal cortex

Glutamate/creatine 1.37 (0.26); n=13 1.32 (0.24); n =9 t=0.41; p=0.69

Glutamate+glutamine/creatine 1.73 (0.54); n=13 1.94 (0.52); n =11 t=0.91; p=0.37

N-Acetyl aspartate/creatine 1.04 (0.22); n=14 1.05 (0.11); n=12 t=0.15; p=0.88

Myoinositol/creatine 0.99 (0.30); n=12 0.90 (0.32); n =12 t=0.72; p=0.48

GPC/creatine 0.33 (0.04); n=13 0.33 (0.03); n =11 t=0.17; p=0.87
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Discussion

This is the first study, to our knowledge, to report brain 1H-
MRS findings in chronic ketamine users. The finding that
ketamine users have subthreshold psychotic symptoms as well
as reduced levels of thalamic NAA/Cr reflects previous re-
ports of reduced thalamic NAA in individals at clinical and
generic risk of schizophrenia as well as in patients with first
episode and chronic schizophrenia (Brugger et al. 2011). It
suggests that adding chronic ketamine use to poly-drug use is
associated with psychotic symptoms and brain alterations in
the thalamus similar to those seen during the development of
schizophrenia. This is of relevance in the treatment of people
with chronic ketamine abuse as it suggests that they may be at
increased risk of developing psychosis compared to poly-drug
users.

The thalamus is thought to play a key role in the filtering of
sensory information, integrating internal and external percep-
tions. Abnormalities of thalamic function have been
hypothesised to be central to the development of psychotic
symptoms (Carlsson and Carlsson. 1990; Vollenweider and
Geyer. 2001; Clinton and Meador-Woodruff. 2004; Behrendt.
2006). Recent studies support this mechanism: the neurotoxic
effects of ketamine in rodents appears to occur through action
in the thalamus as opposed to direct effects on cortical brain
regions (Sharp et al. 2001); reductions in thalamic blood flow
have been shown to occur following administration of the
serotonergic hallucinogen psilocybin (Carhart-Harris et al.
2012), and several case reports of patients with thalamic
infarct describe the sudden onset of a schizophrenia-like psy-
chosis (Arikan et al. 2009; Mittal and Khan. 2010; Crail-
Melendez et al. 2012).

Current evidence suggests that alterations in thalamic struc-
ture and function may be one of the earliest detectable changes
in the development of schizophrenia. Volumetric reductions in
thalamus are a consistent finding in patients with schizophrenia,
with a recent meta-analysis reporting that these reductions were
more marked in unmedicated patients than those on antipsy-
chotic treatment (Haijma et al. 2012). AnMRI study of individ-
uals at genetic high risk of developing schizophrenia has also
reported reductions in thalamic volume (Lawrie et al. 1999).

Reductions in NAA, suggested to represent changes in
neuronal integrity, are present at all stages of illness and in
multiple brain regions, but the thalamus is the only region that
has been reported to showNAA reductions in individuals with
prodromal symptoms or at genetic risk of schizophrenia
(Brugger et al. 2011). Thalamic NAA has been reported to
be negatively correlated with duration of untreated psychosis
(Jakary et al. 2005) and with length of prodrome (Theberge
et al. 2004), while antipsychotic treatment is associated with
an increase in thalamic NAA (Szulc et al. 2013). Reductions
in thalamic NAA levels also appear to be related to other
biological endophenotypes of schizhophrenia: we have report-
ed that reductions in thalamic NAA in individuals with pro-
dromal psychosis correlated with deficits in frontal P300
(Stone et al. 2010) as well as with reductions in cortical grey
matter volume (Stone et al. 2009). The significance of the
reductions in thalamic volume and NAA level in ARMS
individuals and patients with psychosis is unclear, but in
post-mortem studies on patients with chronic schizophrenia,
reductions in thalamic neuron density have been found
(Clinton and Meador-Woodruff. 2004), possibly due to loss
of glutamatergic thalamocortical projection neurons (Danos
et al. 1998).

The finding that chronic ketamine users did not differ from
poly-drug-using controls in terms of brain Glu/Cr or Glu+
Gln/Cr levels, although unexpected, is not altogether surpris-
ing. In patients with schizophrenia and first episode psychosis,
there has been a great deal of heterogeneity in studies on brain
glutamate levels. From a meta-analysis of the literature, we
would predict that ketamine users, if they resemble patients
with first episode psychosis, would have elevated glutamine
levels in anterior cingulate (Marsman et al. 2013).
Unfortunately, we were unable to reliably separate glutamine
from glutamate in this study. Our finding of a relationship
between the level of anterior cingulate Glu/Cr and perceptual
distortions in ketamine users should be viewed with caution as
it is uncorrected for multiple comparisons. We previously
reported a relationship between anterior cingulate glutamate
levels and positive psychotic symptoms following acute keta-
mine administration (Stone et al. 2012). Furthermore, we
found elevated Glu/Cr in patients with first episode psychosis
who remain symptomatic following antipsychotic treatment
(Egerton et al. 2012). Thus, it is possible that ketamine users
with more marked psychotic symptoms may have higher Glu/

Fig. 5 Relationship between Glu/Cr in anterior cingulate and CAARMS
severity of abnormal perceptions in ketamine users
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Cr levels in anterior cingulate, but the present study is not
sufficiently powered to address this question.

The findings from this study are broadly in keeping with
the literature on patients with schizophrenia and first episode
psychosis in which NAA reductions are more robustly asso-
ciated with illness trait but are not closely related to symp-
tomatology (Brugger et al. 2011), whereas elevated anterior
cingulate Glu levels, although less strongly associated with
illness trait (Marsman et al. 2013), may be related to the
severity of psychotic symptoms (Egerton et al. 2012; de la
Fuente-Sandoval et al. 2013; Demjaha et al. 2013).

The study has a number of limitations:

(1) Most notable is that ketamine users had taken a variety of
other drugs. In particular, ketamine users had a signifi-
cantly higher monthly intake of amphetamine than poly-
drug-using controls. There was also a large amount of
variance in level of use in the ketamine users group, and
ketamine users generally had a higher mean level of all
substances than controls. At present, although there is no
evidence that other drugs affect thalamic NAA levels,
cannabis, cocaine, methamphetamine and MDMA use
has been associated with reduced NAA in frontal cortex
(Chang et al. 1999; Reneman et al. 2002; Nordahl et al.
2005; Hermann et al. 2007; Salo et al. 2007; Cowan et al.
2009), and alcohol dependence has been reported to be
associated with reduced thalamic grey matter volume and
reduced temporal and parietal NAA levels (Gazdzinski
et al. 2008). Another group reported that chronic cocaine
use was associated with reduced anterior cingulate gluta-
mate levels (Yang et al. 2009). It is thus not possible to be
completely sure that the reported reductions in thalamic
NAA/Cr were due to ketamine exposure rather than to
amphetamine or other substances;

(2) An associated limitation is due to the fact that the control
group was poly-drug users. As drugs of abuse have been
reported to have effects on reducing 1H-NAA levels
(primarily in frontal cortex), as described earlier, the
effect of ketamine may have been masked to a certain
extent by these effects. The lack of a drug-free control
group may make generalisation of the model to schizo-
phrenia more problematic;

(3) A third limitation is that the spectroscopy data were
scaled to creatine rather than water. This approach has
an advantage of not requiring correction for the amount
of CSF in the ROI as brain metabolites such as Cr and
NAA are present in brain tissue and not in CSF. On the
other hand, scaling to creatine means that we cannot
exclude the possibility that the differences in NAA/Cr
were driven by group differences in creatine. The fact
that there were no differences in other creatine-
scaled metabolites between the two groups makes
this unlikely, however;

(4) Lastly, reverse causality is a possibility—individuals
with an At-Risk Mental State, or with low thalamic
NAA, may have been at a higher probability of becom-
ing regular ketamine users. However, given that keta-
mine worsens psychotic symptoms (Lahti et al. 1995), it
seems unlikely that individuals with subthreshold psy-
chotic symptoms would recreationally abuse a drug that
worsened their symptoms. Longitudinal studies are re-
quired to investigate this possibility.

In summary, this study suggests that chronic ketamine use,
a naturalistic model of chronic NMDA receptor dysfunction,
is associated with symptoms and neurochemical changes that
have also been reported in individuals at high risk of devel-
oping schizophrenia. It supports the hypothesis that abnormal-
ities of NMDA receptor function may drive symptoms and
brain pathology in the early stages of the illness. Further work
in our laboratory will seek to determine whether this is a
unique effect of ketamine or whether other drugs of abuse,
such as cannabis, are also associated with reductions in tha-
lamic NAA.
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