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Abstract
Rationale Fragile X syndrome (FXS) is considered the lead-
ing inherited cause of intellectual disability and autism. In
FXS, the fragile X mental retardation 1 (FMR1 ) gene is
silenced and the fragile X mental retardation protein
(FMRP) is not expressed, resulting in the characteristic fea-
tures of the syndrome. Despite recent advances in understand-
ing the pathophysiology of FXS, there is still no cure for this
condition; current treatment is symptomatic. Preclinical re-
search is essential in the development of potential therapeutic
agents.
Objectives This review provides an overview of the preclini-
cal evidence supporting metabotropic glutamate receptor 5
(mGluR5) antagonists as therapeutic agents for FXS.
Results According to the mGluR theory of FXS, the absence
of FMRP leads to enhanced glutamatergic signaling via
mGluR5, which leads to increased protein synthesis and de-
fects in synaptic plasticity including enhanced long-term de-
pression. As such, efforts to develop agents that target the
underlying pathophysiology of FXS have focused onmGluR5
modulation. Animal models, particularly the Fmr1 knockout
mouse model, have become invaluable in exploring therapeu-
tic approaches on an electrophysiological, behavioral, bio-
chemical, and neuroanatomical level. Two direct approaches

are currently being investigated for FXS treatment:
reactivating the FMR1 gene and compensating for the lack
of FMRP. The latter approach has yielded promising results,
with mGluR5 antagonists showing efficacy in clinical trials.
Conclusions Targeting mGluR5 is a valid approach for the
development of therapeutic agents that target the underlying
pathophysiology of FXS. Several compounds are currently in
development, with encouraging results.
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Introduction

Martin–Bell syndrome, anX-linked intellectual disability, was
first described in 1943 by James Purdon Martin and Julia Bell
in multiple male members of a family (Martin and Bell 1943).
Years later, in 1969, Herbert Lubs discovered the existence of
a break on the X chromosome of affected males (Lubs 1969),
which was termed “fragile site” by Frederick Hecht in 1970.
This led to the name change from Martin–Bell syndrome to
fragile X syndrome (FXS). It was only in 1991 that the gene
responsible for FXS was identified on the X chromosome at
position q27.3, and named fragile X mental retardation 1 gene
(FMR1 ) (Verkerk et al. 1991). In FXS, the FMR1 gene is
silenced, and consequently its gene product, fragile X mental
retardation protein (FMRP), has reduced expression or is
entirely absent. Lack of FMRP expression appears to be at
the core of the intellectual disability and other features char-
acteristic of FXS. The prevalence of FXS with the full muta-
tion and intellectual disability is 1:4,000 in males and 1:6,000
in females (Sherman 2012; Turner et al. 1992), and it is
considered to be the leading inherited single-gene cause of
intellectual disability and autism.
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The main clinical phenotype of FXS is intellectual disabil-
ity. However, individuals typically present with features that
are also common to autism spectrum disorder, including def-
icits in higher cognitive functions, such as delays in speech
and language development, impaired theory of mind, and
impaired social and emotional processing (Garber et al.
2008). Other characteristic features of FXS include anxiety,
attention deficits, hyperactivity, irritability, and autistic-like
behaviors including social deficits and hand-flapping, as well
as physical characteristics including hypotonia, hypermobility
of joints, and macroorchidism (Garber et al. 2008) (Table 1).
Dendritic spine abnormalities have been reported in postmor-
tem neuropathological studies in patients with FXS (Hinton
et al. 1991; Irwin et al. 2000, 2001; Rudelli et al. 1985).
Neuroimaging studies of patients with FXS revealed increased
brain size, larger caudate nucleus, increased size of amygdala
and hippocampus, cerebellar vermis hypoplasia (Reiss et al.
1995), and ventricular abnormalities (Schapiro et al. 1995),
with the right side of the brain being apparently more affected.

The cognitive, physical, and behavioral phenotypes are
relatively easy to observe and measure in patients with FXS.
Conversely, the neuroanatomical phenotype is much more
difficult to observe as it can only be studied in depth in
postmortem brain material. Therefore, animal models that
mimic the FXS phenotype have become critical in the search
for suitable therapies.

The FMR1 gene and its product, FMRP

The FMR1 gene is located on the X chromosome at position
q27.3. It has a length of 40 kb and contains 17 exons (Verkerk
et al. 1991). Its 5′ untranslated region contains a CGG repeat
with a length varying from 6 to 55 repeats in the general
population. In some individuals, both males and females, this
repeat can become unstable and can reach a length between 55
and 200 CGG repeats, leading to a so-called premutation
(Fig. 1). These individuals are known as carriers with a
premutation and have a high risk of developing fragile X-
associated tremor/ataxia syndrome. Moreover, 20 % of the
females carrying a premutation manifest premature ovarian
insufficiency (Brouwer et al. 2009). In the case of individuals
with FXS, the trinucleotide repeat length expands beyond 200
repeats (full mutation) (Oberle et al. 1991; Yu et al. 1991).

In affected individuals, cytosine residues in the CGG repeat
sequence are methylated, with methylation extending to the
52 CpGs of the FMR1 promoter (Pieretti et al. 1991).
Unmutated FMR1 alleles are also methylated, but in a region
further upstream, separated from the FMR1 promoter by what
appears to be a “boundary” that prevents methylation from
spreading downstream (Naumann et al. 2009). This boundary
is missing in full mutation alleles, and methylation occurs
upstream of the CGG repeat region around the 13 weeks of
embryonic development (Malter et al. 1997). As a conse-
quence, FMR1 transcription is inhibited, leading to a reduc-
tion in or absence of FMRP from early on during development
(Sutcliffe et al. 1992). There are very rare alleles that remain
unmethylated despite containing >200 CGG repeats. These
alleles maintain some transcriptional activity (Smeets et al.
1995; Tabolacci et al. 2008b; Tassone et al. 2000) and produce
reduced levels of FMRP, compatible with “normal” intellec-
tual development. In the case of premutation carriers, FMRP
is produced but at a reduced level and, paradoxically, elevated
levels of FMR1 messenger ribonucleic acid (mRNA) are
produced (Tassone et al. 2007).

The epigenetic status of full mutation alleles is also char-
acterized by deacetylation of histones H3 and H4, reduced
methylation of lysine 4, and increased methylation of lysine 9
(H3K9) on histone H3 (Tabolacci et al. 2008b). These epige-
netic changes promote a heterochromatic configuration that
excludes the binding of specific transcription factors (Kumari
and Usdin 2001), thus turning gene transcription off (Coffee
et al. 1999). Notably, the rare unmethylated full mutation
alleles maintain a normal epigenetic code, except for H3K9
status, which has methylation levels between normal and full
mutation alleles, possibly explaining the reduced transcrip-
tional level of unmethylated full mutations (Smeets et al.
1995; Tabolacci et al. 2008b).

The FMR1 gene has been highly conserved throughout
evolution. Two autosomal paralogs have been identified, frag-
ile X-related genes 1 and 2 (FXR1 and FXR2 ), located on

Table 1 Typical characteristic features of FXS

Features

Physical Macroorchidism

Long, narrow face with sunken eyes
and malar hypoplasia

Highly arched palate

Large and prominent ears

Flat feet

Hypermobility of joints

Hypotonia

Social/emotional/
behavioral

Hand flapping

Biting

Hyperactivity

Attention deficits

Anxiety

Irritability

Social deficits

Intelligence/learning Intellectual disability

Language deficits

Working and short-term memory problems

Deficits in executive function

Mathematical and visuospatial abilities

Sensory Epileptic seizures

Sleep problems
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chromosomes 3q28 and 17p13, respectively (Coy et al. 1995;
Siomi et al. 1995; Zhang et al. 1995). Together the three genes
form the FXR family. There is a high sequence similarity
between FMR1 and FXR1/2 , especially in their functional
domains (Fig. 2) and overlap in tissue distribution. Despite
this, FXR1P and FXR2P do not seem to be able to compensate
for the lack of FMRP, suggesting that the FXR proteins may
have different functions (Coffee et al. 2010).

FMRP is a protein with four major isoforms between 70
and 80 kDa, expressed in many tissues, but predominantly in
the brain. High levels are found in the hippocampus and
cerebellum, and there is moderate expression in the cerebral
cortex (Abitbol et al. 1993; Devys et al. 1993; Hinds et al.
1993; Khandjian et al. 1995). FMRP has also been shown to
bind to nitric oxide synthase 1 transcripts during a specific
period in human embryonic development (Kwan et al. 2012)
that is important for the normal development and function of
the nervous system, especially in processes like speech pro-
duction, language recognition, attention, complex social be-
haviors, decision making, and emotional processing. In neu-
rons, FMRP is localized mainly in the cell cytoplasm (Devys
et al. 1993), where it binds to target mRNAs, including its own
mRNA, and travels throughout the cell, and in and out of the
nucleus (Devys et al. 1993; Feng et al. 1997; Ferrari et al.
2007; Willemsen et al. 1996). Importantly, FMRP travels into
the dendrites via large RNA granules containing target
mRNAs, motor proteins, other RNA binding proteins, and
ribosomal subunits (de Diego et al. 2002). Target mRNAs of
FMRP include: postsynaptic density (PSD)95 (Zalfa et al.
2007), SAPAP1-3 (Brown et al. 2001; Schutt et al. 2009), α-
CaMKII, Arc/Ar3.1 (Kao et al. 2010; Zalfa et al. 2003),
Shank1 (Schutt et al. 2009), and many more (Darnell and
Richter 2012). FMRP regulates the local translation of these
mRNAs into proteins at the synapse in the PSD. This process
regulates the morphology of the spine and the functionality of
the synapse (synaptic plasticity). FMRP also acts as a

translational repressor of target mRNAs encoding proteins
that regulate the internalization of α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptors (AMPARs)
(Fig. 3a), which are essential in the proper function of the
synapse.

The mGluR theory

Aberrant signaling via group 1 metabotropic glutamate recep-
tors (mGluRs), is implicated in the pathophysiology of FXS
(Bear et al. 2004). Group 1 mGluRs include mGluR1,
expressed mainly in the cerebellum, thalamus, and CA3 hip-
pocampal region and metabotropic glutamate receptor
(mGluR)5), highly expressed in the CA1 and CA3 hippocam-
pal regions, cortex and striatum (Dhami and Ferguson 2006;
Lujan et al. 1996). FMRP regulates synaptic protein synthesis
by binding to ribosomes and stalling translation of target
mRNAs (Darnell et al. 2011). In 1997, the first connection
between the FMRP and mGluR pathways was identified by
Weiler et al. (1997) who observed that activation of group I
mGluRs with 3,5-dihydroxyphenylglycine stimulated protein
synthesis in synaptoneurosomes including the expression of
FMRP (Weiler et al. 1997). In later studies in Fmr1 knockout
(KO) mouse models, Huber et al. showed that the absence of
FMRP leads to increased protein synthesis and altered synap-
tic plasticity, including enhanced long-term depression (LTD)
(Huber et al. 2002). These observations led to the formulation
of the mGluR theory (Bear et al. 2004), which states that the
absence of FMRP in FXS results in excessive glutamatergic
signaling via mGluR5. Consequently, this leads to increased
local mRNA translation at the synapse, because FMRP is not
present to regulate the process, and a high rate of AMPAR
internalization and subsequent degradation, which in turn
weakens the synapse (Fig. 3b). Increased internalization of
AMPARs results in an increased number of longer immature
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dendritic spines, which could explain the intellectual disability
found in patients with FXS. This immature spine morphology
has been observed in both patients with FXS and in animal
models mimicking FXS (Portera-Cailliau 2012).

Transgenic animal models for FXS

To date, preclinical FXS studies have been performed on fruit
fly (Drosophila melanogaster) (Dhami and Ferguson 2006;
Dockendorff et al. 2002; Gatto and Broadie 2008;
Kanellopoulos et al. 2012; Pan et al. 2004; Zhang et al.
2001), zebrafish (Danio rerio ) (den Broeder et al. 2009;
Tucker et al. 2004; Tucker et al. 2006; van’t Padje et al.
2005), mouse (Mus musculus ), and lately a rat model (Ratus
norvegicus ; SAGE Labs).

The most widely used animal model for FXS is the labo-
ratory mouse (M. musculus ). Several mouse models have
been generated, such as Fmr1 KO, Fmr1 conditional KO,
Fmr1 conditional restoration (Bakker et al. 1994; Mientjes
et al. 2006), and recently a mouse model for the I304N
mutation, Fmr1 I304N (Zang et al. 2009). All these lines are

available in different strains, such as A/J, C57Bl/6, 129/Ola,
FVB, Balb, DBA, and many more (Paradee et al. 1999;
Pietropaolo et al. 2011; Spencer et al. 2011). The wide variety
of mouse strains (Mouse Genome Database 2012) offers more
possibilities for studying different phenotypic aspects of the
syndrome, as each strain has different genetic characteristics.
However, the interstrain differences sometimes lead to differ-
ent results for the same aspect studied, and therefore, it is
important to choose the correct strain for each study. Addi-
tional factors that may contribute to the differences in findings
include the region studied, age of the mice and the method
used. Despite these differences, it is generally concluded that
the Fmr1 KO mice have abnormal dendritic spine morpholo-
gy and increased spine density (for a recent review, see
Portera-Cailliau 2012), similar to that found in patients with
FXS (Hinton et al. 1991; Irwin et al. 2001; Rudelli et al. 1985).

Clinical evaluation scales used to assess cognitive and
behavioral impairments in humans cannot be applied to mice.
Consequently, several behavioral tests applicable tomice were
developed to test processes like learning andmemory, such as:
T-maze, Morris water maze, fear conditioning test, object
discrimination test and manymore. Fmr1 KOmice have been
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found to exhibit decreased anxiety in open field; a higher
latency to enter a dark box (Michalon et al. 2012); impairment
in the acquisition of a visuospatial discrimination task
(Krueger et al. 2011) and showed reduced freezing behavior
to training context and sound (Guo et al. 2011). In addition,
fear conditioning seems to be normal in Fmr1 KO on a
C57BL/6 background, but impaired in KO mice with a
C57xFVB background (Paradee et al. 1999), indicating that
amygdala function could differ between strains. The same
strain difference could account for the variation in results
obtained with the Morris water maze, where some studies
found impairment in the reversal trials in Fmr1 KO mice
(Bakker et al. 1994; D’Hooge et al. 1997), while others have
not observed any difference between KO and wild-type mice
in learning and reversal tasks (Paradee et al. 1999). Other
behavioral experiments showed that Fmr1 KOmice exhibited
repetitive behavior (measured mainly by marble burying),
abnormal social behavior (measured by the three chamber
automatic test, or direct/indirect social interaction tests), and
audiogenic seizures and anxiety deficiency (in open field or
open-arms plus maze, dark–light box); however, results varied
between studies (Bilousova et al. 2009; Chen and Toth 2001;
de Vrij et al. 2008; Gantois et al. 2013; McNaughton et al.
2008; Michalon et al. 2012; Mineur et al. 2002; Moy et al.
2009; Nielsen et al. 2002; Peier et al. 2000; Pietropaolo et al.
2011; Restivo et al. 2005; Spencer et al. 2005; Spencer et al.
2011).

The abnormal neuroanatomical, cognitive, and behavioral
phenotypes found in the Fmr1 KO mice have been investi-
gated further at the molecular and functional level. Huber et al.
showed that a form of LTD, dependent on mGluRs, is altered
in the Fmr1 KO mouse model (Huber et al. 2002). This form
of LTD is normally protein synthesis-dependent, but in the
case of Fmr1 KOmice it occurs independently (Nosyreva and
Huber 2006; Ronesi and Huber 2008). As mentioned above,
the mGluR theory connects FMRP with long-term potentia-
tion and LTD, mainly with increased internalization of
AMPARs (Bear et al. 2004). Thus, several studies on the
Fmr1 KOmice have looked at the levels of AMPAR subunits,
N-methyl-D-aspartate receptor (NMDAR) subunits and
mGluR5 and also at other postsynaptic proteins. Normal
levels of AMPAR units GluA1 and GluA2/3 have been found
in homogenate preparation from the cortex of 1-week-old
Fmr1 KO mice, but reduced levels in the synaptoneurosome
(SNS) fraction; whereas at 2 weeks of age, only the GluA1
subunit was reduced in SNS, while GluA2/3 and GluN2B
levels were reduced in homogenates (Till et al. 2012).
Giuffrida et al. reported normal levels of AMPA, NMDA
and mGluR5 receptors in total protein homogenates and syn-
aptic membrane preparations from the forebrain of Fmr1 KO
mice (Giuffrida et al. 2005). However, homogenates and SNS
fractions from the prefrontal cortex of KOmice had decreased
levels of NR1, NR2A and NR2B subunits of NMDAR,

SAPAP3, PSD-95, and Arc proteins (Krueger et al. 2011).
FMRP loss of function has also been linked to GABAergic
inhibition in FXS. A decreased level of mRNA for 8/18
GABAA receptor subunits have been found in the brains of
Fmr1 KO mice (D’Hulst et al. 2006), and reduced levels of
GABAA β subunit levels have been observed in the hippo-
campus and brainstem compared with control values (El et al.
2005). This may provide an explanation for amygdala dys-
function seen in Fmr1 KO mice.

FXS animal models, particularly the Fmr1 KO mouse
model, have become invaluable in exploring therapeutic ap-
proaches in this field. However, there are some limitations of
the KO mouse in modeling the human FXS. In the mouse
model the Fmr1 gene is knocked out from conception, thus,
FMRP is not expressed in any cell at any point during devel-
opment (Oostra and Nelson 2006). Conversely, in humans, the
FMR1 gene is methylated and silenced during embryonic
development; therefore, some FMRP is expressed during the
very early stages (Willemsen et al. 2002). Moreover, patients
frequently present with mosaicism due to the presence of cells
(neurons) containing a premutation (size mosaics; ∼50 % of
patients with FXS) and because the FMR1 gene is not meth-
ylated in all cells (methylation mosaics) (Stöger et al. 2011).
Finally, murine lines are inbred and genetically uniform, thus,
they are a poor model for FXS in the human population and in
particular for FXS treatment studies. Consequently, the genet-
ic differences between humans with FXS and the correspond-
ing murine KO model affect the extrapolation of the preclin-
ical results found through mouse research to patients.

Considerations for drug development

There are several reasons that justify cautious optimism in
finding an effective therapy that targets the underlying patho-
physiology of FXS: the condition is a single gene disorder and
genetically homogeneous, with very few exceptions; we have
detailed knowledge of FMR1 gene structure; the open reading
frame of the mutant gene remains intact, its transcription is
stopped by reversible epigenetic changes; we have detailed
knowledge of the consequences of the lack of FMRP at the
level of dendritic post-synapses; and the clinical condition
does not seem to entail irreversible damages to the CNS. For
a recent review of potential therapeutic interventions, see
Levenga et al. (2010) and Tranfaglia (2011).

The search for FXS targeted therapies was initiated follow-
ing the identification and characterization of the genetic defect
causing FXS (Verkerk et al. 1991). Two direct approaches are
currently being investigated for FXS treatment: (1) reactiva-
tion of the affected gene and (2) compensating for the lack of
FMRP. Restoring FMR1 gene activity is based on the concept
that the epigenetic changes that block transcription are poten-
tially reversible. The idea is to convert a nonfunctional
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methylated full mutation to a functional unmethylated full
mutation. This approach has made significant contributions
to the understanding of the genetic, epigenetic and protein
translation mechanism in FXS. Two compounds, 5-Aza-
deoxycytidine (Chiurazzi et al. 1999; Tabolacci et al. 2005)
and valproic acid (Tabolacci et al. 2008a), have been shown to
reactivate the FMR1 gene to some extent in fragile X cells. In
a small, open-label trial of 10 boys with FXS, treatment with
valproic acid resulted in a general improvement of hyperac-
tivity and attention deficit, as measured by the Conners scale
(Torrioli et al. 2010), although no increase in the mRNA levels
of FMR1 could be measured.

The second approach is based on current knowledge of the
signaling pathways impaired by the lack of FMRP, especially
within the dendritic post-synaptic vesicles. Pharmacological
and genetic rescue studies were mainly inspired by the mGluR
theory of FXS. The rationale for the use of mGluR antagonists
to treat FXS is strengthened by an elegant study in which mice
heterozygous for the Grm5 gene (encoding mGluR5) were
crossed with Fmr1 KO mice. The resulting 50 % reduction in
mGluR5 protein levels led to the correction of some of the
typical FXS phenotypic features, especially of the audiogenic
seizures (Dölen et al. 2007).

The search for selective mGluR5 antagonists was initiated
in 1992 following the cloning of the receptor by the team of S.
Nakanishi (Abe et al. 1992). The aim was to identify agents
which selectively inhibited mGluR5 and were tolerated
in vivo. The first candidates identified were amino acid deriv-
atives that did not distinguish between mGluR1 and mGluR5.
The properties of these early agents did not allow them to be
considered for further development or for use as pharmaco-
logical tools.

Significant progress in the understanding of the physiolog-
ical role of mGluR5 and the potential therapeutic applications
of mGluR5 ligands was made following the identification of
the first potent and selective, noncompetitive antagonist 2-
methyl-6-(phenylethynyl)-pyridine (MPEP) and its precursor
molecules SIB1757 and SIB1893 (Gasparini et al. 1999;
Varney et al. 1999). Following the discovery of MPEP and
publication of its detailed mode of action (Pagano et al. 2000),
drug discovery programs were initiated involving industry
and academic research laboratories. These led to the identifi-
cation of a number of candidate mGluR5 antagonists that are
currently in preclinical and clinical development (Lindsley
and Emmitte 2009; Rocher et al. 2011). Treatments with
MPEP in Fmr1 KO mice resulted in suppression of the
audiogenic seizure phenotype (Thomas et al. 2012; Yan
et al. 2005), rescuing of the prepulse inhibition (PPI) (de
Vrij et al. 2008) and a reduction in repetitive-like behavior
(Burket et al. 2011; Thomas et al. 2012). In addition, follow-
ing MPEP administration (2 weeks), the immature morpho-
logical phenotype of pyramidal neurons in the somatosensory
cortex of Fmr1 KOmice was clearly rescued in neonate mice

and less effective in 6 weeks old mice (Su et al. 2011). Very
recently, Michalon et al. demonstrated in mice that chronic
treatment with the novel long-acting mGluR5 antagonist,
CTEP, starting at 4 weeks of age could restore cognitive
deficits, auditory induced seizures, aberrant dendritic spine
density, overactive ERK and mammalian target of rapamycin
(mTOR) signaling, and partially corrects macroorchidism
(Michalon et al. 2012). Clinically, fenobam, developed previ-
ously as an anxiolytic (Pecknold et al. 1982), was the first
mGluR5 antagonist tested in FXS. Beneficial effects included
reduced anxiety and hyperarousal, improved PPI, and better
accuracy on a performance task (Berry-Kravis et al. 2009).
Preclinical results of fenobam treatment showed improved
motor learning deficiency on the Erasmus Ladder in mice
(Vinueza Veloz et al. 2012), and rescuing of the dendritic
spine abnormality of Fmr1 KO cultured neurons in vitro (de
Vrij et al. 2008). In a recently completed study, Gantois et al.
demonstrated that long-term treatment with AFQ056/
mavoglurant, a selective mGluR5 antagonist, can rescue ab-
errant social behavior in the Fmr1 KO mice (Gantois et al.
2013). Furthermore, a recent clinical trial of mavoglurant
identified a responder subgroup which reported significant
improvements in Aberrant Behavior Checklist-Community
Edition total score (−27.8 vs. placebo; P <0.001), despite no
significant improvements in the overall population
(Jacquemont et al. 2011). The responder subgroup consisted
of patients described as completely methylated according to a
bisulfite-sequencing-based method; more sensitive than the
widely used southern blot analysis. Patients who are partially
methylated showed varying responses to treatment. An active
effect on methylation was excluded, as treatment of FXS cell
lines with mavoglurant was not found to result in either
demethylation or transcriptional reactivation of the FMR1
gene (Tabolacci et al. 2012). Further clinical trials, currently
underway, may provide a better understanding of the mode of
action of mavoglurant and severity of the disease, especially
with respect to the methylation pattern of patients.

Indirect approaches include targeting signaling pathways
downstream or upstream of mGluRs, for example by
decreasing the level of glycogen synthase kinase 3β,
linked to group I mGluR signaling, which is upregulated
in FXS (Min et al. 2009). This theory was supported by
the use of lithium in a pilot study trial on 15 patients with
FXS. Results showed that 2-month treatment with lithium
had positive effects on behavioral adaptive skills (Berry-
Kravis et al. 2008).

Currently, the most advanced investigational therapeutic
interventions aim to modulate synaptic transmission, either
through the reduction of synaptic excitability using selective
mGluR5 inhibitors or through the reduction of neurotransmit-
ter release via the activation of the presynaptic GABAB re-
ceptors. Such agents have been developed through large ef-
forts in preclinical research and the use of model organisms
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such as the Fmr1 KOmouse model, as well as established and
validated clinical evaluation scales (Sansone et al. 2012).

Additional approaches, currently being investigated pre-
clinically in the Fmr1 KO mouse model, aim to modulate
intracellular targets such as phosphoinositide 3-kinase (PI3K)
(Gross et al. 2010), MTOR (Hoeffer et al. 2012), or MAP2K1
andMAP2K2 (MEK1/2) (Wang et al. 2012). These agents are
likely to be investigated in emerging cellular models involving
the reprogramming of patient tissue samples in inducible
pluripotent cells with a subsequent differentiation in neuronal
cells (Sheridan et al. 2011). This novel approach has the
potential to improve the validation of biological hypotheses
as well as to investigate the effects of new agents without
compromising patient safety.

Conclusions

The monogenic cause of FXS leads to a relatively genetically
homogeneous patient population, and offers a unique and
favorable situation for research towards developing effective
therapies. It also facilitates the use of a variety of transgenic
animal models mimicking the FXS phenotype. Although the-
se models do not completely reflect the true human FXS
phenotype, they are invaluable for research, understanding
the pathophysiology of FXS, and particularly for assessing
novel therapeutic approaches.

Despite a genetically homogeneous population, individuals
with FXS display significant heterogeneity in clinical pheno-
type and drug response. A possible explanation might be
variance in the epigenetic regulation of the FMRI gene and
differences in the residual levels of FMRP. However, it is not
completely clear how these differences at the molecular level
reflect in the overall clinical phenotype.

Research on pharmacological therapies for FXS has been
mainly focused on mGluR5 antagonists. Preclinical data from
animal research on these agents are encouraging, and there are
positive signs from clinical trials in patients with FXS. The
results from phase III mavoglurant trials are eagerly awaited
and, if positive, could quickly lead to the registration of the
first therapy to specifically target the underlying pathophysi-
ology in an intellectual disability syndrome.
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