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Abstract
Rationale Accumulating evidence indicates that brain kappa-
opioid receptors (KORs) and dynorphin, the endogenous li-
gand that binds at these receptors, are involved in regulating
states of motivation and emotion. These findings have stimu-
lated interest in the development of KOR-targeted ligands as
therapeutic agents. As one example, it has been suggested that
KOR antagonists might have a wide range of indications,
including the treatment of depressive, anxiety, and addictive
disorders, as well as conditions characterized by co-morbidity
of these disorders (e.g., post-traumatic stress disorder) A
general effect of reducing the impact of stress may explain
how KOR antagonists can have efficacy in such a variety of
animal models that would appear to represent different disease
states.
Objective Here, we review evidence that disruption of KOR
function attenuates prominent effects of stress. We will de-
scribe behavioral and molecular endpoints including those
from studies that characterize the effects of KOR antagonists
and KOR ablation on the effects of stress itself, as well as on
the effects of exogenously delivered corticotropin-releasing
factor, a brain peptide that mediates key effects of stress.
Conclusion Collectively, available data suggest that KOR
disruption produces anti-stress effects and under some con-
ditions can prevent the development of stress-induced adap-
tations. As such, KOR antagonists may have unique poten-
tial as therapeutic agents for the treatment and even preven-
tion of stress-related psychiatric illness, a therapeutic niche
that is currently unfilled.
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Background

Neuropsychiatric conditions ranging from depressive disor-
ders to addiction can be caused by environmental factors
(e.g., life experiences), genetic factors, or interactions of the
two. One environmental factor that can serve as a common
trigger for all of these conditions is stress. Severe stress has
many damaging effects; as one example, it can have acute
cognitive-disrupting effects (Campeau et al. 2011; Putnam
2013) that lead to injury or death. There is compelling
evidence that even a single exposure to a severe stressor
can cause chronic psychiatric illnesses such as major depres-
sive disorder, generalized anxiety disorder, and post-
traumatic stress disorder (PTSD) (Kendler et al. 1999;
Kessler 1997, 2000; Pine et al. 2002). Stress can also pro-
mote substance abuse and addiction (Koob and Volkow
2010), which are often co-morbid with depressive and anx-
iety disorders (Brown and Wolfe 1994; Koob and Kreek
2007; Logrip et al. 2012). In addition to causing new cases
of psychiatric illness, stress can exacerbate existing illnesses
(Pittenger and Duman 2008) and trigger relapse of drug-
seeking behaviors in humans and laboratory animals
(Beardsley et al. 2005; Marchant et al. 2013; Shaham and
Stewart 1995; Wee and Koob 2010). Collectively, the disor-
ders caused or exacerbated by stress are costly and frustrat-
ing because they tend to be debilitating, persistent, and
resistant to existing treatments.

There is accumulating evidence that brain kappa-opioid
receptors (KORs) play an important role in transducing the
effects of stress. Activation of KORs produces aversive and
depressive-like states in humans (Pfeiffer et al. 1986) and in
laboratory animals (Carlezon et al. 2006; Mague et al. 2003;
Todtenkopf et al. 2004) that may mimic, at least in part, those
caused by stress (Land et al. 2008; McLaughlin et al. 2003a).
Although the mechanisms by which KOR activation pro-
duces stress-like effects are not understood, recent studies
suggest that interactions with brain corticotropin-releasing
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factor (CRF) systems are critical. CRF is a neuropeptide that
is released in the brain in response to stress (Koob 1999), and
administration of exogenous CRF produces many of the
same physiological and behavioral effects as stress (Hauger
et al. 2009). Interestingly, key behavioral and molecular ef-
fects of stress and CRF are blocked by selective KOR antag-
onists (Land et al. 2008; McLaughlin et al. 2003a; Van’t Veer
et al. 2012), which is consistent with other evidence that these
agents have antidepressant-like (Mague et al. 2003; Pliakas
et al. 2001) and anxiolytic-like effects, including attenuation
of fear-potentiated startle (Knoll et al. 2007; Knoll et al. 2011)
and stress-induced reinstatement of drug-seeking behavior
(Beardsley et al. 2005; Graziane et al. 2013). A broad effect
of reducing the impact of stress may explain how KOR
antagonists can have efficacy in such a wide variety of animal
models that would appear to represent different disease states.

Regardless of mechanism, KOR antagonist-induced
blockade of stress effects may serve as the basis for improved
medications that relieve the signs and symptoms of depres-
sive, anxiety, and addictive disorders. It may also represent
an opportunity to develop an entirely new therapeutic area:
prevention of certain types of psychiatric illness (i.e., those
directly caused by stress). In this review, we describe
existing data from studies utilizing behavioral pharmacology
and genetic engineering to manipulate KORs or their endog-
enous agonist, dynorphin (Chavkin et al. 1982). We high-
light strengths and limitations of existing studies, and iden-
tify gaps in current knowledge that should be filled.

Overview of stress effects

Stress is an organism’s response to internal or external chal-
lenges (stressors) and can negatively impact psychological
and physical well-being. Acutely, stressors lead to involun-
tary hormonal (e.g., increased free fatty acid generation,
inhibition of the immune system), autonomic (e.g., increased
heart and breathing rate, increased blood flow to the brain
and muscle), and behavioral (e.g., feelings of anxiety and
fear, heightened vigilance) changes—often collectively
called “the stress response”—that prepare the body to main-
tain homeostasis in response to a real or perceived threat
(Chrousos and Gold 1992). This adaptive response is gener-
ally activating and protective in the short-term (Keay and
Bandler 2001), but can become impairing with increasing
intensity, duration, and frequency of the stressor (Buydens-
Branchey et al. 1990; Miczek et al. 2008; Sapolsky 1996).
Further, predictability and controllability of the stressor are
key parameters of the stress response as even brief, low
intensity stressors can have negative effects if unpredictable
and uncontrollable (Adell et al. 1988; Foa et al. 1992).
Severe or sustained stressors can disrupt cognitive processes
and cause confusion (Campeau et al. 2011; Janis and Mann

1977; Keinan 1987; Putnam 2013; Shaham et al. 1992), and
often precede the development of anxiety disorders, clinical
depression, and substance abuse (Fox et al. 2007; Kendler
et al. 1999; Kessler 1997; Koob and Kreek 2007; Pine et al.
2002; Volkow and Li 2004). In humans, clinical depression
in characterized by depressed mood, anhedonia, and reduced
energy while anxiety disorders entail excessive worrying that
is difficult to control and problems concentrating. Some
signs of psychiatric illness can be observed; thus testing in
animals to quantify, for example, hedonic state, avoidance,
escape, and physiologic state can be used to infer depression-
and anxiety-like behaviors. In laboratory settings, stress pro-
cedures often trigger depressive- and anxiety-like behaviors
and drug-seeking in animal models. Discrete stressors in-
cluding footshock, maternal deprivation, and restraint induce
depressive-like behaviors including increased immobility in
the forced swim test [FST] (Aisa et al. 2008; Platt and Stone
1982), an effect that is opposite to that of antidepressants
(Detke et al. 1995; Porsolt et al. 1977) and thus interpreted to
indicate a prodepressive-like effect (Pliakas et al. 2001), as
well as elevations in brain reward thresholds (Zacharko and
Anisman 1991) that indicate anhedonia. More naturalistic
stressors also produce similar outcomes: as an example,
subordinate mice in a chronic social defeat stress (CSDS)
paradigm—an ethologically relevant stressor involving daily
exposure to an aggressor—show anxiogenic-like responses
such as spending less time in the lit area of a light/dark box
and the open arms of an elevated plus maze (EPM) (Keeney
and Hogg 1999; Slattery et al. 2012), as well as decreases in
social interaction with other mice (Avgustinovich et al. 2005;
Berton et al. 2006). These studies demonstrate how models
of stress in rodents may provide valuable insights into the
mechanisms of stress-induced illness in humans.

Several mediators have been implicated in the stress re-
sponse, including the CRF, catecholamine, serotonin, and
vasopressin systems (see Carrasco and Van de Kar 2003;
Tsigos and Chrousos 2002). Here, we focus on CRF because
it plays a well-characterized role in stress-induced behaviors,
its function can be dysregulated in people with psychiatric
illness, and its effects are linked to KOR systems. First
described by Vale and colleagues (1981), CRF is the princi-
pal regulator of the stress response (Majzoub 2006; Spiess
et al. 1981). The peptide is produced by cells in the
paraventricular nucleus of the hypothalamus (PVN) and trig-
gers hormonal stress responses by activating the hypothalam-
ic–pituitary–adrenal (HPA) axis, which leads to the release of
adrenocorticotropic hormone (ACTH) from the pituitary
(Antoni 1986). In turn, ACTH stimulates glucocorticoid re-
lease from the adrenal glands, which produces subsequent
metabolic and cardiovascular changes (Fig. 1). Glucocorticoid
actions are mediated by two receptors: glucocorticoid recep-
tors (GRs) and mineralocorticoid receptors (MRs) which are
expressed throughout the brain including areas involved in
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emotion, memory, and behavior such as the septum, hippo-
campus (HIP), and prefrontal cortex (PFC) (Ahima and
Harlan 1990; Cintra et al. 1994; Fuxe et al. 1985; Morimoto
et al. 1996; Reul and de Kloet 1985; Viengchareun et al. 2007).
GRs and MRs regulate hormonal, autonomic and behavioral
responses to stress via their widespread expression (Munck
et al. 1984), and trigger negative feedback circuits that termi-
nate HPA axis activation following stress (Autelitano et al.
1990; Herman et al. 1989; Swanson and Simmons 1989).

HPA axis regulation is achieved through actions integrated
within the PVN. Afferents from cicumventricular organs,
brainstem nuclei, and hypothalamic–basal forebrain systems
can directly activate PVN neurons (Ziegler and Herman 2002)
and relay information on the state of the body such as cardio-
vascular tone, blood oxygenation, arousal and osmotic state.
In particular, the bed nucleus of the stria terminalis (BNST)

sends projections from multiple subregions (Dong et al. 2001;
Dong and Swanson 2004; Ziegler and Herman 2002),
suggesting that this region plays a crucial role in regulation
of PVN activity. Inputs to the BNST include regions demon-
strated to regulate the HPA axis such as the amygdala (AMY),
HIP and PFC despite having sparse or no direct connections
with the PVN (Canteras et al. 1995; Crane et al. 2003;
Cullinan et al. 1993; Gray et al. 1989; Herman et al. 2005;
Ziegler and Herman 2002), suggesting the BNST may repre-
sent a relay where limbic information feeds in and is passed to
the PVN (Cullinan et al. 1993; Herman et al. 2005). Other
regions with direct input to the PVN (e.g., nucleus of the
solitary tract) may also relay information from afferent con-
nections (e.g., AMY) (Beaulieu et al. 1987; Schwaber et al.
1982; Xu et al. 1999; Ziegler and Herman 2002). Additional-
ly, CRF receptors are expressed within circuits implicated in
motivation and emotion (Dautzenberg and Hauger 2002; De
Souza et al. 1985; Millan et al. 1986; Van Pett et al. 2000),
such as the mesocorticolimbic system, where they can alter
behavior by modulating reward, anxiety, and depressive re-
sponses independent of HPA axis activation (Dautzenberg and
Hauger 2002; Koob et al. 1993; Merchenthaler 1984;
Sakanaka et al. 1987; Swanson et al. 1983). Indeed, CRF is
implicated in the detrimental consequences of prolonged
stress, and hypersecretion of CRF has been hypothesized to
be the primary contributing factor in the development of
depressive and anxiety disorders (De Souza 1995; Nemeroff
1992; Owens et al. 1993). In humans, major depressive dis-
order has been associated with higher levels of cerebrospinal
fluid CRF (Arato et al. 1989; Kasckow et al. 2001; Nemeroff
et al. 1984; Widerlov et al. 1988), and CRF levels are also
elevated in patients with PTSD (Baker et al. 1999; Bremner
et al. 1997; de Kloet et al. 2008).

Administration of exogenous CRF induces anxiety- and
depressive-like behavior in laboratory animals, enabling stud-
ies of cause–effect relationships between stress and behaviors
that reflect the signs of psychiatric illness. For example, so-
cially housed non-human primates exhibit depressive-like
behaviors such as huddling and wall-facing after intracerebro-
ventricular CRF infusion (Kalin 1990; Strome et al. 2002). In
rodents, CRF administration or genetic overexpression also
precipitates depressive- and anxiety-like behaviors (Britton
et al. 1982; Dunn and File 1987; Liang et al. 1992; Stenzel-
Poore et al. 1994; Swiergiel et al. 2008; van Gaalen et al.
2002). In contrast, antagonism or genetic knockout of CRF
receptors may produce antidepressant- and anxiogenic-like
effects in laboratory animals (Britton et al. 1986; Deak et al.
1999; Griebel et al. 2002; Smith et al. 1998; Timpl et al. 1998),
especially when animals are exposed to acute stress before
testing (Zorrilla et al. 2013). For example, administration of a
CRF receptor antagonist to non-human primates decreases
anxiety and fear behavior and increases exploratory and sex-
ual behavior when animals are exposed to stressful stimuli

Fig. 1 HPA axis and neuronal inputs. Stress causes the release of CRF
and AVP from parvocellular neurons in the PVN that project to the
anterior pituitary. ACTH secretion then leads to glucocorticoid synthe-
sis and release from the adrenal cortex. Glucocorticoid actions are
mediated by GRs and MRs throughout the brain and periphery. Gluco-
corticoids activate negative feedback loops within the PVN, pituitary
and HIP denoted with minus signs in the illustration. Neuronal inputs
from the HIP, BNST, PFC and AMY regulate HPA axis (red arrows)
activity. Dashed lines represent indirect connections to the PVN. KORs
are expressed in organs of the HPA axis and brain regions that influence
HPA axis activation. ACTH adrenocorticotropic hormone, AMY amyg-
dala, AVP arginine vasopressin, BNST bed nucleus of the stria
terminalis, CRF corticotropin-releasing factor, GR glucocorticoid re-
ceptor, HIP hippocampus, HPA hypothalamic–pituitary–adrenal, MR
mineralocorticoid receptor, PFC prefrontal cortex, PVN paraventricular
nucleus of the hypothalamus
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(Habib et al. 2000). Similarly, CRF antagonists block drug
withdrawal-induced anxiety-like behaviors (Basso et al. 1999;
Heinrichs et al. 1995; Rassnick et al. 1993; Sarnyai et al.
1995) and reduce self-administration to drugs including co-
caine, nicotine and heroin in dependent animals (George et al.
2007; Goeders and Guerin 2000; Greenwell et al. 2009;
Specio et al. 2008).

Despite these promising effects in preclinical studies, the
development of CRF receptor antagonists as therapeutics has
been hindered by the high lipophilicity of initial drugs,
although several novel compounds are in clinical trials
(Zorrilla and Koob 2010). Nevertheless, further investigation
into the systems downstream of CRF receptor activation may
provide new targets for treatment. One mediator of stress
effects that may provide unique drug targets is the KOR
system.

Links between stress and KORs

It is well established that endogenous opioid systems play
important roles in stress, reward processing, and mood reg-
ulation. These systems consist of the neuropeptides endor-
phins, enkephalins, and dynorphins and their cognate recep-
tors (mu, delta, and kappa, respectively). Biologically active
peptides for all opioid receptors are derived from inactive
prohormones that are post-translationally processed. The
dynorphin family of peptides arises from processing of
prodynorphin (Pdyn) into major products (see Bruijnzeel
2009; Schwarzer 2009) that preferentially bind to and acti-
vate KORs (Chavkin et al. 1982), although with differing
potency (James et al. 1984).

KORs are G-protein-coupled receptors that mainly interact
with inhibitory Gα subunits (Law et al. 2000). KOR activation
by endogenous or synthetic agonists can produce inhibition of
adenylate cyclase activity (Attali et al. 1989; Konkoy and
Childers 1989; 1993; Lawrence and Bidlack 1993) and can
decrease cell excitability and neurotransmitter release by al-
tering calcium and potassium currents (Gross et al. 1990;
Henry et al. 1995; Hjelmstad and Fields 2003; Rusin et al.
1997; Simmons and Chavkin 1996; Tallent et al. 1994). KOR
activation has also been shown to activate mitogen activated
protein kinase (MAPK) pathways in neurons and astrocytes
(Belcheva et al. 1998, 2005; Bohn et al. 2000; Bruchas et al.
2006, 2007a; Kam et al. 2004). The MAPK family includes
several kinases that respond to a variety of cell stimuli and
regulate diverse functions such as proliferation, differentia-
tion, apoptosis, and gene expression. Thus KOR-mediated
effects on ion channels and signaling cascades allows for rapid
effects on cell excitability and neurotransmitter release that
may underlie acute stress effects, while delayed effects such as
gene expressionmay play a role in conditions of chronic stress
(Knoll and Carlezon 2010).

Consistent with a role in mediating stress effects, moderate
to high levels of dynorphin and KOR mRNA expression have
been detected in stress-responsive brain regions including the
PVN, AMY, HIP, and BNST of rodents (Lin et al. 2006;
Mansour et al. 1987, 1988; Meng et al. 1993; Merchenthaler
et al. 1997; Morris et al. 1986; Peng et al. 2012). A similar
expression profile exists in human brain (Hurd 1996;
Nikoshkov et al. 2005; Simonin et al. 1995; Zhu et al. 1995),
suggesting the KOR system plays an evolutionary conserved
role. The expression pattern of KORs and its overlap with the
systems traditionally implicated in the stress response raises
the possibility that they may participate in HPA axis regulation
(Fig. 1). Indeed, stress induces dynorphin release and activa-
tion of KORs with synthetic agonist increases corticosterone
(CORT) levels in rats (Hayes and Stewart 1985; Iyengar et al.
1986) and cortisol levels in rhesus monkeys and humans
(Pascoe et al. 2008; Ur et al. 1997). The mechanism through
which KORs activate the HPA axis is unclear, but likely in-
volves stimulation of CRF release in the hypothalamus as well
as CRF-independent mechanisms (Buckingham and Cooper
1986; Calogero et al. 1996; Nikolarakis et al. 1987). Data from
these studies suggest that disruption of KOR function may
reduce HPA axis activation. Consistent with this possibility,
CORT levels are reduced in both Pdyn knockouts and wild-
type mice treated with the prototypical KOR antagonist nor-
binaltorphimine (norBNI). Furthermore, injection stress-
induced increases in CORT are attenuated in these knockouts
(Wittmann et al. 2009) suggesting KOR activation facilitates
HPA axis activation. Reduced CORT levels are also observed
in norBNI-treated rats in response to food restriction and
cocaine challenge (Allen et al. 2013). However, it does not
appear that KOR activation is necessary for all stress-induced
HPA axis activation. For example, there are no differences
between norBNI-treated or Pdyn knockouts and wild-type
mice at either baseline or following forced swim stress
(McLaughlin et al. 2006a). In yet a third Pdyn knockout strain,
CORT levels following exposure to an elevated zero maze
reach a lower peak concentration, but are prolonged compared
to controls (Bilkei-Gorzo et al. 2008). These differences may
arise from the type of stress used, blood collection time points,
differences in targeting construct or strain differences, but
overall suggest the KOR system can modulate stress-induced
glucocorticoid release in some instances. As many of these
studies used systemic KOR agonist treatment and constitutive
Pdyn knockouts, additional studies are needed to identify the
sites in which KORs regulate HPA axis activation.

Role of kappa-opioid receptors in stress-induced
behaviors

Key aspects of KOR-mediated behaviors resemble those
observed following stress or CRF administration, suggesting
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common mechanisms of action. Like stress or CRF, KOR
agonists elevate brain reward thresholds (Carlezon et al. 2006;
Dinieri et al. 2009; Todtenkopf et al. 2004; Tomasiewicz et al.
2008), and produce depressive-like effects including increased
immobility in the FST (Carlezon et al. 2006; Mague et al.
2003). In humans, selective KOR agonists produce negative
mood states including dysphoria, anxiety, and abnormal be-
havior along with psychotomimesis at higher doses (Pfeiffer
et al. 1986). There is now considerable evidence that KOR
antagonists block KOR agonist effects and have antidepressant-
and anxiolytic-like effects on their own. For example, KOR
antagonism produces anxiolytic-like effects in the EPM, fear-
potentiated startle (FPS), novelty-induced hypophagia and de-
fensive burying tests (Carr and Lucki 2010; Knoll et al. 2007;
Wiley et al. 2009), suggesting that KOR activation is necessary
for the acquisition and/or expression of anxiety-like behavior.
Anxiolytic-like effects have been observed in KOR system-
deficient mice (Van’t Veer et al. 2013; Wittmann et al. 2009),
although it is important to note that some lines of constitutive
KOR knockout mice do not differ from controls in measures of
anxiety-like behavior (Filliol et al. 2000; Simonin et al. 1998),
and that Pdyn ablation can reportedly increase anxiety (Bilkei-
Gorzo et al. 2008). These discrepant results may be explained
by differences in compensatory changes that occur during
development in these lines, differences in genetic background,
as well as differences in the stressfulness of the procedures,
environment and factors including husbandry (e.g., Crabbe
et al. 1999) among labs. Indeed, restricting KOR ablation to
dopamine systems produces a clearer anxiolytic-like pheno-
type, with increased center exploration in an open field and
shorter latencies to enter the lit compartment of the light/dark
box (Van’t Veer et al. 2013). Furthermore, effects of KOR
blockade may not be apparent until after an initial stressor, at
which time putative KOR-dependent neuroadaptations occur
(for review, see Knoll and Carlezon 2010). For instance, KOR
antagonists and KOR system gene disruption reduce immobil-
ity in the FST, but the effects are typically detected during the
second exposure to forced swim stress (Mague et al. 2003;
McLaughlin et al. 2003a, 2006a; Pliakas et al. 2001, but see
Carey et al. 2009). Antidepressant-like effects are also observed
when KOR antagonists are administered after the first swim
sessions suggesting that blockade of KOR activation follow-
ing stress may be sufficient to prevent neural adapta-
tions that facilitate immobility during the second swim ses-
sion (Beardsley et al. 2005; Carr et al. 2010; Wiley et al.
2009). Similarly, central administration of norBNI following
footshock stress produces antidepressant-like effects in the
learned helplessness paradigm (Newton et al. 2002). The
mechanisms of KOR-dependent behaviors are not yet under-
stood, but may involve distinct neural circuits and reflect the
differences in immediate actions of KOR activation versus
delayed effects such as gene expression changes (see Bruchas
and Chavkin 2010; Knoll and Carlezon 2010), which may be

especially important in animal models involving initially nor-
mal (i.e., non-depressed) subjects.

In addition to forced swimming, stressors including foot-
shock and social defeat also activate theKOR system (Beardsley
et al. 2005; Land et al. 2008;McLaughlin et al. 2003a, 2006b;
Redila and Chavkin 2008), suggesting it plays an important
role in generalized stress effects. In conditioned place prefer-
ence (CPP) tests, the rewarding effects of a treatment (e.g., a
drug of abuse) become associated with the environment in
which it was paired, thereby causing a preference for this
environment during subsequent drug-free exposure. This ef-
fect can be extinguished by repeated access to the testing
apparatus, and then rapidly reinstated by stress or drug prim-
ing. Disruption of KOR signaling blocks stress-induced but
not drug-primed reinstatement (Aldrich et al. 2009; Carey
et al. 2007; Eans et al. 2013; Jackson et al. 2013; Redila and
Chavkin 2008), suggesting the KOR system plays a highly
specific role in mediating the motivational effects of stress.
Exposure to stress can also increase the magnitude of drug
reward, as measured in the CPP test. Potentiation of drug-
induced CPP following social defeat and forced swim stress is
blocked by the KOR antagonist norBNI and absent in Pdyn
and KOR knockout mice (McLaughlin et al. 2003a, 2006a, b;
Schindler et al. 2010; Smith et al. 2012; Sperling et al. 2010).
Further, disruption of KOR signaling attenuates the potentia-
tion of cocaine-induced locomotor sensitization by stress
(Allen et al. 2013). In contrast, activation of KORs mimics
the effects of stress on reward (McLaughlin et al. 2006a;
Schindler et al. 2010), demonstrating that KOR activation is
a necessary and sufficient element of at least certain stress
effects on behavior. These data, together with findings that
KOR antagonists block stress-induced drug-seeking behavior
in drug self-administrationmodels (Beardsley et al. 2005, 2010;
Graziane et al. 2013) and withdrawal-induced anxiogenic- and
depressive-like behavior (Chartoff et al. 2012; Jackson et al.
2010; Valdez and Harshberger 2012), without reward-related
effects in drug self-administration tests (Beardsley et al. 2005;
Todtenkopf et al. 2004), raise the possibility that KOR antag-
onist treatment may reduce relapse in drug abusers attempting
to abstain from use.

Dynorphin release appears critical for encoding the aver-
sive (dysphoric) effects of stress. It is known that mice will
develop a conditioned place aversion (CPA) to an odorant
that was previously paired with stress. The avoidance behav-
ior is abolished by pretreatment with norBNI before stress
(forced swim or footshock) and absent in Pdyn knockout
mice (Land et al. 2008), suggesting reduced aversions. Treat-
ment with norBNI blocks both psychological (Takahashi
et al. 1990) and physical stress-induced antinociception
(McLaughlin et al. 2003a, 2006a) a phenomenon in which
stress reduces sensitivity to pain. Both norBNI and Pdyn
gene disruption block stress-induced antinociception ob-
served immediately after the first and subsequent days of
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social defeat (McLaughlin et al. 2006b). During CSDS ses-
sions, rodents display characteristic immobility and social
defeat postures, which tend to increase progressively (Miczek
et al. 2004). Postures reflecting social defeat are reduced in
norBNI-treated and Pdyn knockout mice, suggesting that
KOR blockade produces signs of stress resilience. How-
ever, these differences are not apparent proceeding the
first day of stress, revealing that KOR signaling is not
necessary for initial defeat-induced postures in this par-
adigm, but instead in the progressive, neuroadaptive effects of
chronic stress.

Stress produces KOR-dependent effects in learning and
memory tasks which may reveal a role for KORs in stress-
induced deficits in cognitive function. Mice subjected to
repeated forced swim stress or systemic KOR agonist show
a deficit in novel object recognition that can be prevented
with KOR antagonist treatment and is absent in Pdyn knock-
out mice (Carey et al. 2009; Paris et al. 2011). Further, chicks
treated with a KOR agonist show impairments in a one-trial
peck avoidance task while norBNI treatment facilitated per-
formance (Colombo et al. 1992). Pdyn and KOR knockout
mice have enhanced performance in the spatial Morris water
maze (MWM), suggesting that KOR activation, perhaps
induced by swim, may inhibit performance (Jamot et al.
2003; Nguyen et al. 2005). KOR effects on memory may
depend, at least in part, on receptors in the HIP as intra-CA3
HIP infusions of KOR agonist induce deficits in the MWM
(Daumas et al. 2007). These results are consistent with the
hypothesis that stress-induced dynorphin release impairs mem-
ory, although there is evidence that KOR activation can im-
prove memory (Hiramatsu and Hoshino 2004; Hiramatsu et al.
1996; Kuzmin et al. 2006). These improvements may be the
result of non-KOR effects (Hiramatsu and Hoshino 2004, 2005;
Kuzmin et al. 2006) or may represent acute activating effects of
KORs as is seen with stressors. Regardless, considering that
memory impairments are a symptom of a variety of mood
disorders and other psychiatric illnesses, therapeutic agents that
mitigate them may have broad indications that cut across con-
ditions previously conceptualized as being unrelated (Morris
and Cuthbert 2012).

As described above, CRF is the primary regulator of the
stress response; when centrally administered, it can recapit-
ulate many of the behavioral, hormonal and autonomic ef-
fects of stress, including dynorphin release. CRF has been
shown to stimulate release of dynorphin from spinal cord
(Song and Takemori 1992), hypothalamus (Almeida et al.
1986; Nikolarakis et al. 1986), globus pallidus and striatum
(Sirinathsinghji et al. 1989). It also produces increases in
KOR phosphorylation—a marker of receptor activation
(McLaughlin et al. 2003b)—in components of stress and
anxiety circuits including the striatum, dorsal raphe nucleus
(DRN), AMY, HIP, and NAc that are reduced or absent in
norBNI pretreated mice and Pdyn knockouts (Land et al.

2008). The fact that CRF and KOR agonists produce aver-
sive and anxiogenic-like effects raises the possibility that
CRF effects may be mediated by the KOR system. To ad-
dress this question, Land et al. (2008) examined the effect of
KOR blockade on CRF-induced CPAs in mice. In these
experiments, central CRF administration induced aversion
to the context in which mice were placed following infusion.
CRF-induced CPAwas abolished with norBNI pretreatment
and in Pdyn knockout mice (Land et al. 2008), suggesting
that CRF receptor activation promotes dynorphin release and
subsequent KOR activation to mediate the aversive compo-
nent of stress. Important interactions also exist between the
CRF and KOR systems as measured in the 5-choice serial
reaction time task (5CSRTT), a test of cognitive behavior
analogous to the continuous performance task used to study
attention in humans (Beck et al. 1956; Robbins 2002). CRF
dose-dependently disrupts several performance measures in
the 5CSRTT, and these deficits are attenuated by systemic
administration of the KOR antagonist JDTic at a dose with-
out effects of its own (Van’t Veer et al. 2012). These findings
further demonstrate that KOR antagonists can prevent acute
CRF-related effects, including those that degrade perfor-
mance in tasks requiring attention.

Brain regions implicated in KOR-mediated effects

Identifying the brain regions in which drugs have their effect
has become a crucial element of neuroscience research, in
part because characterizing the substrates and mechanisms of
drug action may ultimately lead to dramatic improvements in
therapeutics. It is important to emphasize that it is already
established that systemic administration of KOR agonists
produce depressive-like effects whereas KOR antagonists
have antidepressant- and anxiolytic-like effects, as well as
general anti-stress effects that can attenuate reinstatement of
drug-seeking behaviors. The efficacy of KOR antagonists in
these various preclinical models has provided sufficient ra-
tionale for moving them into human studies; indeed, there
have been early clinical trials of JDTic, as well as novel
proprietary agents from Alkermes, Lilly, and Pfizer (see
Carroll and Carlezon 2013). Unfortunately, peer-reviewed
reports on these trials are yet to appear in the literature. There
is a report that buprenorphine—which has weak partial KOR
agonist effects (Zhu et al. 1997)—has antidepressant effects
(Bodkin et al. 1995), but broad use of this agent to treat
depressive illness is limited by mu agonist effects that may
engender abuse liability. A better understanding of the brain
regions in which KOR ligands produce behavioral effects may
facilitate the development of new—and potentially non-
pharmacological—methods of targeting specific brain areas.
Our research has traditionally focused on themesocorticolimbic
system (Fig. 2), which plays an important role in affective
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behavior despite not being implicated in classical theories of
depression and anxiety (Nestler and Carlezon 2006). The neu-
rons of the mesocorticolimbic DA system originate in the VTA
and project to the NAc, HIP, AMY, PFC, and BNST (Swanson
1982). Historically, the VTA and its dopaminergic projections
have been studied primarily in the context of motivation and
reward (Wise and Bozarth 1987). However, accumulating work
has led to greater recognition of the role of this system in
aversion as well (Carlezon and Thomas 2009; Pezze and
Feldon 2004; Salamone 1994). Aversive stimuli can increase
DA neuron population activity (Valenti et al. 2011) and activate
the mesocorticolimbic system resulting in postsynaptic DA
release (Abercrombie et al. 1989; Imperato et al. 1993; Pascucci
et al. 2007; Piazza and Le Moal 1998; Thierry et al. 1976) that
may promote or antagonize stress effects on behavior. A key
area where additional research is needed is how activation of
the VTA might participate in both rewarding and aversive
stimuli; indeed, even studies utilizing the most modern and
sophisticated techniques can provide somewhat conflicting in-
formation (Chaudhury et al. 2013; Lammel et al. 2012; Tye
et al. 2013). One possibility is that these stimuli have similar
effects on the VTA but different effects upon other brain areas,
which thereby regulate the activity of the many VTA target
regions and/or affect signal gating in the NAc (Carlezon and
Thomas 2009).

Early investigations into the neural substrates of KOR-
induced aversion using CPA identified the VTA as a key area
of activation (Bals-Kubik et al. 1993). Aversion was postulat-
ed to be the result of KOR-mediated decreases in DA release.

Indeed, KOR agonists decrease DA release in VTA cell cul-
tures (Dalman and O’Malley 1999; Ronken et al. 1993) and
directly inhibit DA cell firing through G-protein-coupled in-
wardly rectifying potassium channels (GIRKs) in slice
(Margolis et al. 2003). In addition to postsynaptically inhibiting
DA release through hyperpolarization, KOR activation in the
VTA can induce presynaptic inhibition of somatodendritic DA
at its release sites (Ford et al. 2007). KORs can also regulate
VTA activity through the control of glutamate input (Margolis
et al. 2005) demonstrating the broad range of KOR control over
DA function. Dynorphin terminals synapse onto both TH-
labeled (presumably DA neurons) and unlabeled dendrites as
well as terminals and astrocytes in the VTA (Pickel et al. 1993)
where KOR activation can produce differential responses. Be-
cause several dynorphin-expressing nuclei project to the VTA
including those from the hypothalamus, AMY, CPu, and NAc
(Fallon and Leslie 1986), VTA cells expressing KORs may be
involved in integrating information frommultiple brain circuits
or have unique responses based on input and/or projection
target. For example, KOR-mediated inhibition of DA neurons
varies as a function of projection target (Ford et al. 2006;
Margolis et al. 2006, 2008). KORs are also located on the
terminals of DA projections from the VTA to the NAc and
PFC where they can presynaptically inhibit DA release
(Carlezon et al. 2006; Di Chiara and Imperato 1988; Grilli
et al. 2009; Spanagel et al. 1992; Werling et al. 1988). Indeed,
intra-PFC KOR agonist decreases local DA overflow, while
KOR antagonist enhances it (Tejeda et al. 2013). Furthermore,
direct infusion of KOR agonist into the PFC can cause place
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Fig. 2 The KOR system in
anxiety- and depressive-like
behaviors. Schematic illustration
of mesocorticolimbic brain areas
involved in KOR effects on
depressive- and anxiety-like
behaviors in preclinical models.
Relevant references are noted on
the representation. Regions
implicated in KOR effects on
anxiety-like behavior are colored
orange and those so far only
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aversions (Bals-Kubik et al. 1993) whereas intra-PFC KOR
antagonist attenuates place aversions induced by systemic
KOR agonism (Tejeda et al. 2013), suggesting these effects
may be due at least in part to changes in DA transmission.
Similarly, infusion of KOR agonist into the NAc induces
depressive-like behaviors in rodents including place aversions
and increases brain reward thresholds (Bals-Kubik et al. 1993;
Muschamp et al. 2011) while intra-NAc norBNI decreases
escape failures in a learned helplessness paradigm, an
antidepressant-like effect (Newton et al. 2002; Shirayama
et al. 2004). These effects are also observed following intra-
HIP infusions of norBNI (Shirayama et al. 2004), although it is
unclear whether the KORs mediating this effect are expressed
on terminals from the VTA.

Additional evidence for a role of the mesocorticolimbic
system in KOR effects on behavior has come from studies
utilizing the transcription factor cAMP-response-element-
binding protein (CREB) (for review, see Carlezon et al. 2005
and Muschamp and Carlezon 2013). Cell signaling events can
activate CREB which in turn alters expression of CREB-
regulated genes, including Pdyn. Stress has been shown to
cause behaviors characteristic of depression such as anhedo-
nia, behavioral despair, and dysphoria in rats (Land et al.
2008; Moreau et al. 1992; Pliakas et al. 2001) that are mim-
icked by elevating CREB levels in the NAc using viral-
mediated gene transfer (Barrot et al. 2002; Pliakas et al.
2001). In contrast, decreasing CREB activity in the NAc
through expression of a dominant-negative form of CREB
leads to antidepressant-like effects in rodents (Newton et al.
2002; Pliakas et al. 2001). Notably, these changes in behavior
due to increases or decreases in CREB activity were shown to
be mediated largely by CREB-induced changes in dynorphin
expression. Dynorphin is a target of CREB-induced gene
expression in vitro (Cole et al. 1995; Douglass et al. 1994;
Turgeon et al. 1997) and manipulating CREB levels changes
dynorphin expression in vivo (Carlezon et al. 1998; Pliakas
et al. 2001). Administration of norBNI attenuates the behav-
ioral effects of elevated CREB levels within the NAc
(Carlezon et al. 1998; Pliakas et al. 2001), whereas blockade
of endogenous dynorphin actions through direct injection of
norBNI into the NAc is sufficient to produce antidepressant-
like effects (Newton et al. 2002). It is postulated that some
features of depression are the result of dynorphin control of
mesocorticolimbic DA function, either by actions at KORs on
VTA cell bodies or terminals that project to the NAc (Nestler
and Carlezon 2006). Given the high co-morbidity of depres-
sive and anxiety disorders (Kaufman and Charney 2000;
Kessler 2000), KOR signaling and control of DA function
may underlie the pathophysiology of both. The question of
whether these effects are mediated within the NAc itself, or
the result of alterations in NAc-to-VTA feedback that subse-
quently affect neural activity in regions that receive VTA
input, remains open.

The AMYis another target of VTA dopamine neurons, and
is the brain region most often considered to be the epicenter of
fear responsiveness. Much preclinical work has elucidated
AMY cellular and molecular mechanisms in fear as reviewed
elsewhere (Davis 1997; Davis and Shi 2000). Recent evidence
indicates that fear conditioning induces plasticity in KOR
systems leading to upregulation of KOR mRNA in the
basolateral nucleus of the AMY (BLA) suggesting that KOR
signaling in this region may mediate the expression of condi-
tioned fear. Indeed, microinfusions of KOR antagonist into the
BLA reduces conditioned fear responses and produces
anxiolytic-like effects in the EPM (Knoll et al. 2011). Induc-
tion of stress-like states through central administration of CRF
induces avoidance of the open arms of an EPM, an effect that
is abolished with prior norBNI treatment or Pdyn gene dis-
ruption (Bruchas et al. 2009). In agreement with fear condi-
tioning studies, the BLA is critical for this anxiogenic effect,
because direct injection of norBNI into this region is sufficient
to block CRF-induced decreases in open arm time (Bruchas
et al. 2009). Microinjections of KOR antagonist into the AMY
also attenuate the stress-related effects of withdrawal from
nicotine (Smith et al. 2012). Although the AMY is clearly
involved in the expression of fear and anxiety behaviors, it is
embedded within a circuit of highly interconnected brain
structures that are known to be involved in processes that
reflect motivation and emotion. Recent work suggests that
KORs are expressed on the terminals of AMY inputs to the
BNST (Li et al. 2012), a brain area strongly implicated in
anxiety behavior (Walker et al. 2003). It is increasingly evi-
dent that structures with amygdalar afferent and/or efferent
projections contribute to normal and pathologic anxiety. A
deeper understanding of how these interconnected regions
function in isolation as well as in circuits may enable new
insights into the neurobiology of stress and anxiety responses
as well as the pathophysiology of psychiatric disorders.

In studies of stress-induced aversion and potentiation of
drug reward, the DRN is implicated in an elegant mechanism
that explains how KORs expressed on terminals of axon
projections from the DRN to the NAc are involved in
stress-induced responses (Land et al. 2009; Schindler et al.
2012). KOR-dependent activation of p38 MAPK by stress in
DRN serotonergic neurons is necessary and sufficient to
induce a negative affective state (Bruchas et al. 2007a,
2011; Land et al. 2009). These effects are hypothesized to
result from decreased serotonergic tone considering that
KOR activation in DRN slice preparations induces p38
MAPK-dependent activation of GIRKs and presynaptic in-
hibition of excitatory neurotransmission resulting in de-
creased serotonergic neuron excitability and increased sero-
tonin uptake in nerve terminals (Bruchas et al. 2011; Lemos
et al. 2012).

Although the role that KORs within these regions play on
stress and anxiety-related behavior has not been thoroughly
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Table 1 Evidence that systemic KOR antagonists can prevent the behavioral consequences of stress

Behavior Paradigm KOR antagonist Stressor Outcome Reference

Anxiety-like EPM NorBNI, JDTic (IP) EPM Increased open arm time Knoll et al. 2007

EPM NorBNI (IP) EPM Increased open arm time Wiley et al. 2009

EPM NorBNI (IP), GNTI
(IC)

EPM Increased open arm time Wittmann et al. 2009

EPM NorBNI (IP) EPM Increased open arm time Bruchas et al. 2009

EPM NorBNI (IP) CRF Increased open arm time Bruchas et al. 2009

OF NorBNI (IP), GNTI
(IC)

OF Increased center time Wittmann et al. 2009

FPS NorBNI, JDTic (IP) Footshock Decreased conditioned fear Knoll et al. 2007

NIH DIPPA (SC) Novel cage Decreased latency to approach food Carr and Lucki 2010

SPB DIPPA (SC) shock probe Decreased probe burying time Carr and Lucki 2010

5CSRTT JDTic (IP) CRF Decreased disruption of cognitive function Van’t Veer et al. 2012

EPM NorBNI (IP) EtOH
withdrawal

Increased open arm time Valdez and Harshberger
2012

EPM JDTic (SC) Nic withdrawal Increased open arm time Jackson et al. 2010

Depression-
like

FST NorBNI (ICV) Forced swim Decreased latency to immobility Pliakas et al. 2001

FST NorBNI, GNTI (ICV) Forced swim Decreased immobility Mague et al. 2003

FST ANTI (IP)a Forced swim Decreased immobility Mague et al. 2003

FST NorBNI (IP) Forced swim Decreased immobility McLaughlin et al. 2003a

FST NorBNI, JDTic (SC)a Forced swim Decreased immobility Beardsley et al. 2005

FST NorBNI (IP) Forced swim Decreased immobility Carey et al. 2009

FST NorBNI (IP)a Forced swim Decreased immobility Wiley et al. 2009

FST NorBNI, DIPPA
(SC)a

Forced swim Decreased immobility Carr et al. 2010

LH NorBNI (ICV)a Footshock Decreased escape failures, increased latency to
escape

Newton et al. 2002

SDS NorBNI (IP) Social defeat Decreased time in socially defeated postures McLaughlin et al. 2006b

SI-OA NorBNI (IP) Forced swim Decreased odorant avoidance Land et al. 2008

CPA NorBNI (IP) Footshock Increased time in stress-paired compartment Land et al. 2008

CPA NorBNI (IP) CRF Increased time in CRF-paired compartment Land et al. 2008

ICSS NorBNI (ICV) Coc
withdrawal

Decreased brain reward thresholds Chartoff et al. 2012

FST NorBNI (ICV)a Coc
withdrawal

Decreased immobility Chartoff et al. 2012

Addiction-
like

Coc-SA JDTic (IG) Footshock Decreased reinstatement of active lever pressing Beardsley et al. 2005

Coc-SA RTI-194 (IG) Footshock Decreased reinstatement of active lever pressing Beardsley et al. 2010

Coc-CPP NorBNI (IP) Forced swim Decreased potentiation of Coc-CPP McLaughlin et al. 2003a,
2006a

Coc-CPP NorBNI (IP) Forced swim Decreased potentiation of Coc-CPP Schindler et al. 2010

Coc-CPP Arodyn (ICV) Forced swim Decreased reinstatement of Coc-CPP Carey et al. 2007

Coc-CPP NorBNI (IP) Forced swim Decreased reinstatement of Coc-CPP Redila and Chavkin 2008

Coc-CPP Zyklophin (SC) Forced swim Decreased reinstatement of Coc-CPP Aldrich et al. 2009

Coc-CPP [D-Trp]CJ-15,208
(PO)

Forced swim Decreased reinstatement of Coc-CPP Eans et al. 2013

Coc-CPP NorBNI (IP) Social defeat Decreased potentiation of Coc-CPP McLaughlin et al. 2006b

Coc-CPP NorBNI (IP) Footshock Decreased reinstatement of Coc-CPP Redila and Chavkin 2008

EtOH-
CPP

NorBNI (IP) Forced swim Decreased potentiation of EtOH-CPP Sperling et al. 2010

EtOH-
TBC

NorBNI (IP) Forced swim Decreased potentiation of EtOH consumption Sperling et al. 2010

Nic-CPP NorBNI (IP) Forced swim Decreased potentiation of Nic-CPP Smith et al. 2012

Nic-CPP NorBNI (SC) Footshock Decreased reinstatement of Nicotine-CPP Jackson et al. 2013
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examined, future studies using the recently generated floxed
KOR mouse (Van’t Veer et al. 2013) in combination with
promoter-driven Cre viral vectors have the potential to eluci-
date the function of KORs within particular cell populations
and brain regions and lead to a more comprehensive under-
standing of interactions between stress and KOR systems.

Systemic administration of KOR antagonists to prevent
stress-related illness

The idea of preventing psychiatric illness may seem fanciful
or provocative, in part because our understanding of the brain
and the pathophysiology of neuropsychiatric disorders re-
mains incomplete. However, if stress can cause psychiatric
illness and KOR antagonists can block stress, the concept of
prevention becomes feasible. The discovery that systemic (or
central) administration of KOR antagonists can block the
effects of stress has at least some of its basis in the unusual
pharmacodynamics of the prototypical KOR antagonist
norBNI: slow onset, lack of initial selectivity for KORs, and
exceptionally long duration of action. Early work indicated
that norBNI initially blocks all opioid receptors non-selectively
and requires 4–24 h to reach maximal kappa-selective antago-
nism (Endoh et al. 1992) and that a single injection produces
behavioral effects that persist for weeks (Bruchas et al. 2007b;
Horan et al. 1992; Jones andHoltzman 1992). Indeed, we have
found that a single injection of norBNI blocks the depressive-
like effects of the highly selective KOR agonist salvinorin A
for at least 84 days, at which time the experiments were
terminated (Potter et al. 2011). The mechanisms by which
norBNI and other KOR antagonists (JDTic) produce long-
lasting effects are not understood, but may involve a process
known as biased agonism (or ligand-directed signaling) (see
Carroll and Carlezon 2013). These unique properties made it
necessary to use experimental designs in which KOR antago-
nists were administered far in advance of exposure to stress, to
ensure selective KOR antagonism at the time of initial stress
exposure (Pliakas et al. 2001), since the long-lasting effects of
the drug made concerns about time course irrelevant. The
interpretation of these original studies, which demonstrated

that norBNI produced antidepressant-like effects, were focused
on the similarities between the effects of KOR antagonists and
standard antidepressant drugs in the FST rather than the fact
that the data also raised the possibility of anti-stress actions.
Subsequent studies in which the effects of KOR antagonists
were evaluated in the EPM and FPS test also used this exper-
imental design—administration of the drug before exposure to
stress (Knoll et al. 2007). These studies provided clear evidence
that these agents had acute anxiolytic-like effects and could
reduce the persistent behavioral consequences of fear condi-
tioning. To the extent that fear conditioning can accurately
model key aspects of PTSD (Mahan and Ressler 2012) the
ability of KOR antagonists to reduce FPS may reflect an ability
to prevent stress-related neuroadaptations that can cause psy-
chiatric illness. It is important to note that some studies showing
anxiolytic or antidepressant effects of KOR antagonists use
pretreatment times and/or drug doses capable of antagonizing
other opioid receptors (Endoh et al. 1992; Thomas et al. 2004),
suggesting these behavioral effects may occur through non-
KOR receptors. Because delta-opioid receptor-deficient mice
and those treated with delta receptor antagonist show
prodepressant- and anxiogenic-like effects (Filliol et al.
2000; Perrine et al. 2006), it seems unlikely that the effects
of KOR antagonists on depressive and anxiety behavior in
these studies are due to blockade of delta receptor function.
However, mu opioid receptor knockout mice or mice treated
with mu antagonists demonstrate antidepressant- and
anxiolytic-like behaviors (Filliol et al. 2000; Komatsu et al.
2011; Yoo et al. 2004), which could potentially underlie
KOR antagonist effects in some instances, although the pre-
ponderance of data are collected at time points of selective
KOR antagonism. In addition, non-selective opioid antago-
nists produce anhedonia in the ICSS test (West and Wise
1988), suggesting that blockade of mu and/or delta receptors
can induce a prominent sign of depressive illness. The com-
bination of acute antidepressant-like and anxiolytic-like ef-
fects distinguishes KOR antagonists from standard antide-
pressant drugs, which tend to have acute anxiogenic effects
(Knoll et al. 2007). The ability of KOR antagonists to block
the cognitive-disrupting effects of CRF (Van’t Veer et al.
2012), as well as other behaviors that characterize PTSD

Table 1 (continued)

Behavior Paradigm KOR antagonist Stressor Outcome Reference

Coc sens. NorBNI (SC) Food
restriction

Decreased cocaine-induced locomotor
sensitization

Allen et al. 2013

5CSRTT 5-choice serial reaction time task, Coc cocaine, CPA/P conditioned place aversion/preference, EPM elevated plus maze, EtOH ethanol, FPS
fear-potentiated startle, FST forced swimming test, ICSS intracranial self-stimulation, IC intracisternal, ICV intracerebroventricular, IG intragastric,
IP intraperitoneal, LH learned helplessness, Nic nicotine, NIH novelty-induced hypophagia, OF open field, PO oral, SA self-administration, sens
sensitization, SC subcutaneous, SDS social defeat stress, SI-OA stress-induced odorant aversion, SPB shock probe burying, TBC two-bottle choice
a Administered between stressors
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(e.g., persistent hyperarousal; Van’t Veer et al. 2011), provides
converging evidence for the anti-stress effects of these agents.

Preclinical studies that provide support for the concept that
systemic administration of KOR antagonists might be useful
for mitigating stress effects and thus preventing the develop-
ment of stress-related psychiatric illness are summarized in
Table 1. Clearly, the ability of KOR antagonists to block
reinstatement of addiction-like behaviors does not qualify as
prevention of addiction, per se. However, addiction and psy-
chiatric illness are often co-morbid, and it is not always clear
which condition precedes which (Kessler 1997). As such,
KOR antagonist-induced reductions in addictive behaviors
may serve to prevent psychiatric illnesses that are secondary
consequences of addiction.

Summary

It is often easier and less costly to prevent illness than to treat
it. Familiar examples of broad efforts to prevent disease in-
clude campaigns to decrease smoking, promote exercise, and
outlaw harmful foods. Vaccines have been developed to pre-
vent debilitating diseases ranging from polio to, more recently,
influenza. The best-selling prescription medication of all time
(atorvastatin [Lipitor™]) treats a risk factor for disease (high
cholesterol) rather than a disease itself. The idea of preventing
psychiatric illness, however, can seem fanciful. Although
there have been advances in early diagnosis and intervention
to mitigate conditions such as bipolar disorder, schizophrenia,
and attention-deficit hyperactivity disorder (Andersen 2003;
McNamara et al. 2012; Sonuga-Barke et al. 2011), as well as
increasing efforts to identify the biological basis of resilience
(Russo et al. 2012), there are still no widely accepted methods
of actually preventing psychiatric illness. One strategy is to
attenuate the effects of stress, a major cause of new illness and
a precipitating factor in existing illness. While it is certainly
true that stress can be unpredictable in the context of everyday
life, there is often adequate lead-time preceding exposure to
some of themost severe, debilitating, and costly forms of stress
(e.g., those encountered during a combat mission or while
responding to a disaster). In animal models, KOR antagonists
appear to have a general effect of mitigating the perception
and/or consequences of stress, which may account for their
ability to produce such a wide variety of beneficial effects.
Perhaps most importantly, these agents produce combined
antidepressant and anxiolytic effects, whereas standard antide-
pressants initially produce anxiogenic effects that, in humans,
may contribute to problems with tolerability and adherence.
Together, these results indicate that KOR antagonists may be
useful in humans to prevent the development and expression of
stress-induced illnesses such as anxiety, depressive disorders,
and addiction. While there are numerous gaps in our knowledge
with regard to the mechanisms of their beneficial effects (e.g.,

how KOR antagonists might block stress, the brain areas in
which their effects are mediated) as well as their pharmacody-
namics (e.g., why the effects of the prototypical antagonists are
so persistent despite little apparent structural overlap, if shorter-
acting agents would also be effective), there is an increasing
appreciation that this class of agents may fill a novel and unique
therapeutic niche.
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