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Abstract
Rationale Nitric oxide (NO)-mediated transmission in the
dorsolateral periaqueductal gray matter (dlPAG) has been
involved in the expression of anxiety-like behaviors. Etha-
nol withdrawal sensitizes the dlPAG and results in increased
anxiety-like responses.
Objectives The objective of the study was to test the hy-
pothesis that NO in the dlPAG is involved in the expression
of ethanol withdrawal-induced anxiety.
Methods Male Wistar rats were implanted with guide can-
nulae aimed at the dlPAG. The animals were forced to
consume a liquid diet containing ethanol 6–8 % (v/v) for
15 days as their only source of diet. Six days after surgery
and 24 h after ethanol discontinuation, the animals received
microinjections of the NO scavenger 2-(4-carboxyphenyl)-
4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-
PTIO), nonselective nitric oxide synthase inhibitor NG-ni-
tro-L-arginine methyl ester (L-NAME), selective neuronal
nitric oxide synthase inhibitor 1-(2-[trifluoromethyl]phenyl)
imidazole (TRIM), or selective inducible nitric oxide
synthase (iNOS) inhibitor N-([3-(aminomethyl)phenyl]
methyl) ethanimidamide dihydrochloride (1400W) into the
dlPAG. Ten minutes later, the animals were tested in the
light/dark box.
Results Carboxy-PTIO (1 nmol), L-NAME (200 nmol),
TRIM (20 nmol), and 1400W (0.3 and 1 nmol) decreased
the anxiogenic-like effects of ethanol withdrawal in rats in
the light/dark box test. The NO precursor L-arginine re-
versed the effects of L-NAME.

Conclusions NO production in the dlPAG may play a role in
the modulation of ethanol withdrawal-induced anxiety-like
behavior in rats. Furthermore, iNOS-mediated NO synthesis
in the dlPAG is predominantly involved in the behavioral
expression of anxiety-like behavior during ethanol
withdrawal.
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Introduction

The dorsolateral periaqueductal gray (dlPAG) is part of a
longitudinally organized neural system involved in numer-
ous physiological functions, including cardiovascular regu-
lation, pain modulation, and behavioral responses to
aversive stimuli (Bandler and Shipley 1994). Electrical stim-
ulation of the human dorsal PAG produces anxiety, terror,
desire to flee, palpitation, and hyperventilation (Amano et
al. 1978; Nashold et al. 1969). Besides, chemical or electri-
cal stimulation of the dlPAG in cats and rodents results in
similar autonomic, somatic, and behavioral responses rec-
ognized as defensive reactions (Bandler and Carrive 1988;
Bittencourt et al. 2005). These responses resemble many of
the effects observed during abrupt ethanol discontinuation
or withdrawal in rats (Cabral et al. 2006; Kliethermes 2005).
The dlPAG has also been involved in the anxiolytic effects
of different classes of drugs, including benzodiazepines
(Russo et al. 1993; Schenberg and Graeff 1978), that are
clinically used to alleviate the symptoms of ethanol with-
drawal (Chick and Nutt 2012; Clapp 2012).

Ethanol withdrawal has been shown to function as an
unconditioned stressor promoting unconditioned withdrawal
responses and activation of several brain structures, in
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particular those involved in the modulation and expression
of anxiety- and defensive-related behaviors such as the
hypothalamus, amygdala, and dlPAG (Bonassoli et al.
2011; Knapp et al. 2007; Vilpoux et al. 2009). Rats
subjected to ethanol withdrawal and electrical stimulation
of the dlPAG exhibited reductions of the stimulation thresh-
olds required to elicit freezing and escape responses and
number and duration of ultrasonic vocalizations (Cabral et
al. 2006). In this context, the dlPAG has been recognized as
the mesencephalic output underlying both the expression of
unconditioned anxiety elicited by anxiety-evoked situations
and those promoted by ethanol withdrawal (Brandão et al.
1999; Leite and Nobre 2012). The dlPAG has a dense
connection with a set of hypothalamic subnuclei (e.g., ante-
rior hypothalamic nucleus, ventromedial hypothalamic nu-
cleus, and dorsal premammillary nucleus) that influence
defensive responses (Cameron et al. 1995; Canteras and
Swanson 1992). The dlPAG also shares direct and reciprocal
connections with the central nucleus of amygdala (CeA)
(Rizvi et al. 1991), which has been proposed to be critical
for mediating ethanol withdrawal-related behaviors (Gilpin
2012). The CeA amygdala sends inhibitory projections to
the hypothalamus and PAG, which could account for the
increased anxiety observed in ethanol withdrawn rats.

Accumulating evidence suggests that an enhanced
glutamatergic transmission may play a role in dlPAG
neuronal excitability in response to ethanol withdrawal.
Microinjection of N-methyl-D-aspartate (NMDA) or
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
glutamate receptor antagonists into the PAG was shown
to block the susceptibility of rats to develop audiogenic
seizures during ethanol withdrawal (Long et al. 2007;
Yang et al. 2003) and to decrease voluntary alcohol drinking
in both low-anxiety and high-anxiety alcohol-withdrawn rats
(Leite and Nobre 2012).

Activation of NMDA receptors by glutamate has been
shown to generate nitric oxide (NO) (Garthwaite et al.
1988). Nitric oxide is synthesized by nicotinamide adenine
dinucleotide phosphate (NADPH)-dependent enzymes, re-
ferred to as NO synthases (NOSs), that catalyze the conver-
sion of L-arginine (L-Arg) to L-citrulline and NO (Bredt and
Snyder 1994). The physiological actions of NO are mainly
mediated by the stimulation of soluble guanylate cyclase,
which in turn leads to an increase in the levels of cyclic
guanosine 3′,5′-monophosphate (cGMP) (Schuman and
Madison 1991). Nitric oxide synthase exists in three
isoforms: neuronal NOS (nNOS), inducible NOS (iNOS),
and endothelial NOS (eNOS) (Bredt et al. 1990;
Förstermann et al. 1995; Guix et al. 2005; Murphy et al.
1993). The nNOS and eNOS isoforms have been character-
ized as constitutively expressed, and their activity is Ca2+–
calmodulin dependent. iNOS is a Ca2+–calmodulin-inde-
pendent enzyme that is regulated by de novo synthesis

following immunological or inflammatory stimulation
(Lyons et al. 1992; Zhou et al. 2009).

Functional studies have indicated increases in NO pro-
duction and NOS activity during ethanol withdrawal. Sys-
temic administration of NG-nitro-L-arginine methyl ester
(L-NAME), a nonspecific inhibitor of NOS (Moncada et
al. 1997), attenuated many signs of ethanol withdrawal
and decreased ethanol intake in alcohol-preferring rats
(Adams et al. 1995; Uzbay et al. 1997; 2000). More7-
over, L-NAME pretreatment in rats blocked the increase in
L-citrulline concentrations in the striatum during ethanol
withdrawal (Gören et al. 2001). Ethanol intoxication and
withdrawal was also shown to induce inflammatory pro-
cesses in the brain by stimulating intracellular signaling
pathways that trigger the induction of cytokines and
cyclooxygenase-2 (COX-2) and iNOS expression (Pascual
et al. 2007).

The dlPAG has been histologically characterized by the
presence of a well-delimited population of nicotinamide
adenine dinucleotide phosphate-diaphorase (NADPH-d)-
and NOS-positive neurons (Onstott et al. 1993; Vincent
and Kimura 1992). Nitric oxide in this brain area has been
systematically shown to be involved in the modulation of
anxiety-like behavior in rodents (for review, see Guimarães
et al. 2005). Intra-dlPAG injections of nNOS inhibitors
(Guimarães et al. 1994), guanylate cyclase inhibitors
(Aguiar et al. 2006; De Oliveira and Guimarães 1999;
Guimarães et al. 2005), and a NO scavenger (Aguiar et al.
2006) exerted anxiolytic-like effects, whereas NO donors
administered into the dlPAG produced flight and defensive
reactions in rats (De Oliveira et al. 2000a). Additionally,
NOS expression and activity increases in the dlPAG in rats
subjected to restraint stress (De Oliveira et al. 2000b, 2001;
Kishimoto et al. 1996; Smalls and Okere 2012) and in rats
that express fear response to a predator (Chiavegatto et al.
1998). Recently, Bonassoli et al. (2011) found that NADPH-
d-positive neurons in the dlPAG are activated 24 and 48 h
after ethanol discontinuation. These authors suggested that
NO in the dlPAG might be involved in the development and
expression of ethanol withdrawal-induced anxiety.

To our knowledge, experiments that have used direct
application of NO-interfering compounds into the dlPAG
during ethanol withdrawal have not been conducted. Given
that anxiety-related behavior may be associated with an
increase in NO transmission in the dlPAG, we hypothesized
that ethanol withdrawal mediates similar increases in NO
transmission, ultimately driving increased anxiety during
ethanol withdrawal. Therefore, the aim of the present study
was to test the hypothesis that NO in the dlPAG is involved
in the expression of ethanol withdrawal-induced anxiety-
like behavior in rats. Because NO production can occur as
a result of activity of either constitutive nNOS or iNOS, we
tested the effects of the selective nNOS and iNOS inhibitors
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1-(2-[trifluoromethyl]phenyl) imidazole (TRIM) and
1400W, respectively, directly injected into the dlPAG in rats
during ethanol withdrawal.

Materials and methods

Animals

Male Wistar rats (Rattus norvegicus), weighing 250–300 g,
were housed in groups of three per cage under a 12/12-h
light/dark cycle (lights on at 7:00 AM) at 23±1 °C and
given free access to water. The procedures were conducted
in accordance with the Brazilian Society of Neuroscience
and Behavior Guidelines for the Care and Use of Laboratory
Animals and approved by the local committee on animal
ethics (CEAE 031/2010). All efforts were made to minimize
animal suffering.

Drugs

The following drugs and doses were used: the NO scavenger
2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-
oxyl-3-oxide (carboxy-PTIO; 1, 3, and 10 nmol) (Aguiar et
al. 2006; Gualda et al. 2011), the NO precursor L-Arg
(100 nmol) (Forestiero et al. 2006; Spiacci et al. 2008), the
nonselectiveNOS inhibitor L-NAME (50, 100, and 200 nmol)
(Calixto et al. 2008), the selective nNOS inhibitor TRIM (40,
80, and 160 nmol) (Hall and Behbehani 1998), and the selec-
tive iNOS inhibitor N-([3-(aminomethyl)phenyl]methyl)
ethanimidamide dihydrochloride (1400W; 0.1, 0.3, and
1.0 nmol) (Kalinchuk et al. 2006). All of the drugs were
purchased from Sigma (St. Louis, MO, USA) and dissolved
in sterile isotonic saline immediately before use. The selected
doses were based on previous studies that used intracerebral
injections.

Chronic ethanol administration

Chronic ethanol administration consisted of a procedure of
forced dietary fluid intake by drinking an alcohol-containing
liquid diet (Bonassoli et al. 2011; Cabral et al. 2006). The
animals had access to bottles (180 ml each, i.e., 17.1 g of
Sustagen per 60 ml water per rat per day) that contained
only a dietary base composed of Sustagen M (chocolate
flavor; Mead Johnson, São Paulo, Brazil). This diet is a
ready-to-feed liquid formula that provides protein, carbohy-
drates, fat, vitamins, and mineral salts, corresponding to
1.1 kcal/ml. The liquid diet was the only source of food
available daily to the animals, and it was prepared daily and
presented to the animals at the same time each day
(2:00 PM). Initially, a liquid diet without ethanol was pro-
vided to rats for 2 days. The animals were then randomly

assigned to experimental groups: control and ethanol with-
drawal groups. For control animals, the liquid diet without
ethanol was provided until the end of the treatment. For
ethanol withdrawal groups, on the first 2 days of treatment,
the ethanol concentration was 6 % (v/v), which was then
increased to 8 % (v/v) until the end of treatment. The
animals received ethanol for 15 consecutive days, followed
by 24 h of ethanol withdrawal, in which ethanol was with-
drawn from the diet by replacing it with a diet that did not
contain ethanol. This method of ethanol administration has
been shown to reliably induce ethanol dependence with
blood ethanol concentrations (BEC) of 80 to 132 mg%
during ethanol consumption (Baldwin et al. 1991; Cabral
et al. 2006). Using the same protocol, we have previously
detected BEC of 80±14 mg% in ethanol-treated rats and
very low amount of ethanol (4.0±2.0 mg%) in the 24-h
ethanol-withdrawn rats (Bonassoli et al. 2011).

The body weights of the rats were recorded every 2 days,
and ethanol intake was measured daily and is expressed in
gram per kilogram per animal.

Surgery and drug administration

Six days before behavioral testing, the animals were anes-
thetized with 45 mg/kg pentobarbital, i.p. (Thiopentax;
Cristália, São Paulo, Brazil) and fixed in a stereotaxic
frame (David Kopf, Tujunga, CA, USA). Stainless-steel
guide cannulae (outer diameter 0.7 mm) were implanted
directly into the dlPAG, with bregma serving as the ref-
erence for each stereotaxic plane (anterior/posterior,
1.7 mm; medial/lateral, 0.7 mm; dorsal/ventral, 4.5 mm),
according to the atlas of Paxinos and Watson (1997). The
tip of the guide cannula was positioned 1 mm above the
dlPAG and fixed to the skull using acrylic resin and two
stainless-steel screws. Afterwards, a stylet was introduced
inside the guide cannula to reduce the incidence of occlu-
sion. At the end of surgery, the animals were injected
intramuscularly with an antibiotic solution (Pentabiótico,
1 mg/kg; Fort Dodge, São Paulo, Brazil) to prevent pos-
sible infection.

Intracerebral injections were performed with a thin dental
needle (outer diameter 0.3 mm) that was 1 mm longer than
the guide cannula and was connected to a 2-μl microsyringe
(7002H, Hamilton, Reno, NV, USA). The needles were
carefully inserted to the guide cannulae, and a volume of
0.3 μl was injected over 30 s using a Hamilton microsyringe
(Reno, NV, USA) controlled by an infusion pump (BI200
Insight Equipment, Ribeirão Preto, Brazil). A polyethylene-
10 catheter was interposed between the upper end of each
dental needle and microsyringe. For the combined treat-
ments, the animals received a first microinjection of either
saline or L-NAME (200 nmol), followed by a second mi-
croinjection of L-Arg (100 nmol) or saline 10 min later.
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Behavioral testing

The animals were randomly divided into different experi-
mental groups according to the pharmacological treatments.
Six days after surgery and 24 h after ethanol withdrawal, the
animals were transported to a dimly illuminated (40 lux),
sound-attenuated, and temperature-controlled (23±1 °C)
room and remained undisturbed for at least 1 h prior
to testing. They were then individually evaluated in the
light/dark box followed by the open field test 10 min
after the last drug administration. After each trial, the
light/dark box and open field were cleaned with a 70 %
alcohol solution.

To confirm the behavioral effects of ethanol withdrawal,
two additional nonoperated experimental groups were in-
cluded: (1) a control nonoperated group that received a
liquid diet without ethanol and (2) an ethanol withdrawal
nonoperated group that received a liquid diet with ethanol.
All of the behavioral procedures were identical to the pro-
cedures for the dlPAG-operated rats.

All of the behavioral sessions were performed during
the diurnal phase (between 8:00 AM and 12:00 PM)
and videotaped for later analysis using a video-tracking
analysis system (ANY-maze version 1.9; Stoelting,
Wood Dale, USA).

Light/dark box test

The apparatus consisted of a wooden box (80×40×20 cm)
divided into two equal-size compartments (40×40×20 cm)
by a barrier that had a doorway (8×12 cm). One of the
compartments was black, and the other compartment was
white and well illuminated. The animals were placed in the
middle of the lit compartment, facing away from the dark
compartment, and were allowed to freely explore the
box for 5 min. The latency (in seconds) to enter the
dark compartment with all four paws, number of tran-
sitions, and time (in seconds) spent in the light com-
partment were manually scored.

Open field test

After light/dark box testing, each animal was immediately
exposed to the open field apparatus, which consisted of a
wooden black box (80×80×50 cm), for 10 min. The soft-
ware detected the position of the animal in the open field
and calculated the distance traveled (in meters).

Histology

After the behavioral tests, the rats were anesthetized with an
overdose of pentobarbital (Thiopentax; Cristália, São Paulo,
Brazil) and transcardially perfused with saline followed by a

10 % formalin solution. The brains were removed and
immersed in a 10 % formalin solution for a minimum of
3 days. Using a freezing microtome, 40-μm coronal brain
sections were then cut (Criocut CM 1850; Leica, Bensheim,
Germany). The sections were mounted on gelatin-coated
slides and stained with Nissl’s dye. In some adjacent
sections, NADPH-diaphorase histochemistry was performed
in order to visualize NOS-expressing neurons. The injec-
tion sites were identified using the Paxinos and Watson
(1997) atlas.

Statistical analysis

The data are expressed as mean±standard error of the mean
(SEM). Between-group differences in body weight and eth-
anol consumption were analyzed using repeated-measures
analysis of variance (ANOVA), with group as the indepen-
dent factor and day (1 to 15) as the repeated measure.

The data obtained in the light/dark box and open field test
were analyzed using Student’s t test or one-way ANOVA.
Post hoc comparisons were performed using Tukey’s test.
Values of p<0.05 were considered statistically significant.

Results

The total daily liquid diet intake of the rats ranged from 6.4
to 12.6 g/kg/day over the 15-day period. The body weights
of the animals ranged from 262.5 to 282.7 g at the beginning
of the treatment to 304.5–323.0 g after ethanol withdrawal.
No differences in body weights were observed among the
experimental groups (F14, 149=1.33, p=0.19). A significant
group × day interaction was found (F14, 149=1.79, p<0.001).
From day 7, all experimental groups exhibited increase of
weight when compared to the first day.

As shown in Fig. 1, ethanol withdrawal decreased the
latency (t16=2.57, p=0.021) and percent time in the light
compartment (t16=5.33, p<0.0001) in the light/dark box in
ethanol-withdrawn rats compared with controls. A decrease
was also found in the number of transitions in ethanol-
withdrawn rats compared with controls, although the differ-
ence did not reach statistical significance (t16=1.74,
p=0.10). A significant difference in the distance traveled
was observed in ethanol-withdrawn rats compared with
controls (t10=2.79, p=0.019).

Figure 2 shows representative diagrams and photomicro-
graphs of the injection sites in the dlPAG. The animals that
received microinjections outside the dlPAG were excluded
from the statistical analysis.

The ANOVA revealed that the NO scavenger carboxy-
PTIO (1 nmol) increased the latency to the first entry in the
dark compartment (F3, 43=2.91, p=0.05) and percent
time spent in the light compartment of the light/dark
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box (F3, 43=2.72, p=0.05) compared with the saline
group (Fig. 3), indicating that this treatment decreased
ethanol withdrawal-induced anxiety-like behavior in rats.
No significant difference was found among the experi-
mental groups with regard to the number of transitions
between the two compartments in the light/dark box or
distance traveled in the open field test (Table 1).

As shown in Fig. 4, L-NAME (200 nmol) increased the
latency to the first entry in the dark compartment (F3, 46=3.24,
p=0.03) and percent time spent in the light compartment of
the light/dark box (F3, 46=7.93, p<0.001) compared with the
saline group. A trend to decrease the number of transitions in
the light/dark box was detected (F3, 46=2.24, p=0.10). No
significant effect was observed in distance traveled in the open
field test (Table 1). The effects of L-NAME on the latency and
percent time spent in the light compartment were reversed by
L-Arg (F3, 30=5.45, p=0.005, and F3, 30=4.03, p=0.017,

respectively), implicating the involvement of NO in
the observed effects. No changes were detected in the
number of transitions and distance traveled in the open
field test.

TRIM (20 nmol) increased the percent time in the
light compartment (F3, 42=3.19, p=0.034; Fig. 5). A
trend to increase the number of transitions was also
detected with TRIM (20 nmol) (F3, 42=2.58, p=0.07).
ANOVA revealed no difference in the latency or dis-
tance traveled in the open field test when compared
with controls.

Figure 6 shows the effects of injections of the selective
iNOS inhibitor 1400W into the dlPAG. 1400W at 0.3 and
1 nmol significantly increased the percent time spent in
the light compartment of the light/dark box compared with
the saline group (F3, 39=6.26, p=0.0016). No differences
were found with regard to the latency to the first entry in

Fig. 2 a Diagram of the dlPAG, modified from the Paxinos and
Watson (1997) atlas. b, c Photomicrographs of a coronal section
(40 μm) from a rat brain with a guide cannula implanted into the
dlPAG. Notice the presence of NADPH-diaphorase-positive neurons
that delimit the dorsal column of the dlPAG. Aq aqueduct of Sylvius. d

Representative diagrams showing the localization of microinjection
sites inside (filled circles) and outside of the dlPAG (open circles).
Numbers on each section indicate the distance from bregma (Paxinos
and Watson 1997)

Fig. 1 Effects of ethanol
withdrawal on the latency to enter
the dark side, the percent of time
in the light compartment, and the
number of transitions in the light/
dark box. Asterisks indicate the
significant difference from
control animals (*p<0.05,
**p<0.001, Student’s t test, n=6)
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the dark compartment, number of transitions in the
light/dark box, or distance traveled in the open field test
when compared with the saline group.

Discussion

The dlPAG has been shown to be involved in the expression
of anxiety-like behavior during ethanol withdrawal in rats
(Bonassoli et al. 2011; Cabral et al. 2006; Long et al. 2007;
Yang et al. 2003). Our results suggest that these behaviors
may be attributable to increases in NO levels in the dlPAG.
In the present study, direct dlPAG administration of
carboxy-PTIO and L-NAME, a NO scavenger and a
nonselective NOS inhibitor, respectively, decreased the
anxiogenic-like effects of ethanol withdrawal in rats
subjected to the light/dark box. Because L-Arg, a NO pre-
cursor, reversed the effects of L-NAME, these findings
support the hypothesis that NO production in the dlPAG
plays a role in the modulation of ethanol withdrawal-
induced anxiety-like behavior in rats. Our results further
demonstrated that iNOS-mediated NO synthesis in the
dlPAG is predominantly involved in the behavioral expres-
sion of anxiety during ethanol withdrawal.

Abrupt cessation of chronic ethanol administration in-
creases anxiety-like behavior in rodents subjected to different
behavioral tasks, whichmay reflect different aspects of human
ethanol dependence (for review, see Kliethermes 2005).
Anxiety-like behaviors in the light/dark box have been
suggested to be an index of acute anxiety 10 to 48 h after
ethanol discontinuation (Costall et al. 1988; Kliethermes et al.
2004; Kliethermes 2005). Anxiogenic-like effects have been
characterized by a decrease in the latency to enter the dark
compartment and time spent in the light compartment (Bourin
and Hascoët 2003). The number of transitions between the
light and dark compartments of the light/dark box has been
reported to be an index of activity/exploration and, in general,
this parameter is decreased during ethanol withdrawal
(Kliethermes et al. 2004; Costall et al. 1993). Accordingly,
we found that ethanol-withdrawn rats exhibited decreases in
latency and the percent time spent in the light side of the
light/dark box 24 h after abrupt ethanol discontinuation com-
pared with control animals. A statistical trend to decrease the
number of crossings in the light/dark box and a significant
decrease in the distance traveled in the open field were also

Fig. 3 Effects of carboxy-PTIO (1 nmol) injected into the dlPAG of
rats tested in the light/dark box. The data are expressed as mean±SEM
(n=8–15 per group). Rats that received injections of carboxy-PTIO

outside the dlPAG (n=7) are represented as an OUT group. Asterisks
indicate the significant difference from saline (Sal) group (*p<0.05,
ANOVA followed by Tukey’s test)

Table 1 Effects of carboxy-PTIO (1–10 nmol), L-NAME (50–
200 nmol), TRIM (20–80 nmol), 1400W (0.1–1.0 nmol), and L-
NAME (200 nmol) + L-Arg (100 nmol) administered into the dlPAG
of rats tested in the open field test

Experimental group Distance traveled (m) in the
open field (mean±SEM)

Control nonoperated 46.90±2.36

Ethanol withdrawal nonoperated 20.25±5.87*

Saline 21.08±1.51

Carboxy-PTIO (1 nmol) 14.57±3.47

Carboxy-PTIO (3 nmol) 15.62±2.11

Carboxy-PTIO (10 nmol) 15.13±3.12

OUT 15.11±1.60

L-NAME (50 nmol) 16.92±2.40

L-NAME (100 nmol) 22.58±2.24

L-NAME (200 nmol) 23.74±4.85

OUT 22.49±4.39

TRIM (20 nmol) 24.38±1.78

TRIM (40 nmol) 19.39±2.81

TRIM (80 nmol) 17.98±2.20

OUT 29.74±5.52

1400W (0.1 nmol) 17.81±2.53

1400W (0.3 nmol) 23.85±4.00

1400W (1.0 nmol) 23.21±2.98

OUT 19.93±2.09

Saline + saline 19.24±2.10

L-NAME (200 nmol) + saline 14.98±3.22

Saline + L-Arg (100 nmol) 18.04±3.06

L-NAME (200 nmol) + L-Arg (100 nmol) 14.23±2.18

OUT 17.27±3.81

The data are expressed as mean±SEM (n=6–15). Rats that received
injections of active compounds outside the dlPAG are represented as
OUT groups

*p<0.05 (indicates the significant difference from control nonoperated
animals, Student’s t test)
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detected in the ethanol-withdrawn rats compared with con-
trols. These results are in agreement with previous reports
(Bonassoli et al. 2011) showing that ethanol withdrawal sig-
nificantly decreased the traveled by rats exposed to the open
field test. Trends to increase the number of transitions in the
light/dark box, on the other hand, were observed following
TRIM (20 nmol), L-Arg (100 nmol), or L-Arg + L-NAME
administrations into the dlPAG. The increase in the number of
transitions in the light/dark box may indicate a decrease in the
anxiogenic-like effect induced by ethanol withdrawal.

The effects of NO in the dlPAG appear to occur at the
level of mediator release because inhibition of endogenous
NO by the NO scavenger carboxy-PTIO or NOS inhibitors
decreased anxiogenic-like behavior induced by ethanol
withdrawal. Curiously, two distinct effect profiles of NO-
interfering drugs were observed in ethanol-withdrawn rats
subjected to the light/dark box. The effects of the NO
scavenger carboxy-PTIO and TRIM were evident only at
the lowest doses tested (i.e., 1 and 20 nmol, respectively),
and the effects of the nonselective NOS inhibitor L-NAME

Fig. 4 Effects of L-NAME
(50–200 nmol) or L-NAME
(200 nmol) followed by saline
or L-Arg (100 nmol) injected
into the dlPAG of rats tested in
the light/dark box. Rats that
received injections of active
compounds outside the dlPAG
(L-NAME, n=6 and L-NAME
combined treatment groups,
n=3) are represented as OUT
groups. The data are expressed
as mean±SEM (n=8–15 per
group) and were analyzed by
ANOVA followed by Tukey’s
test. Asterisks indicate the
significant difference from Sal
or Sal + Sal control groups
(*p<0.05, **p<0.001) and
number signs (#p<0.05,
##p<0.001) indicate the
significant difference from the
L-NAME (200 nmol) + Sal
group

Fig. 5 Effects of TRIM (20–80 nmol) injected into the dlPAG of rats
tested in the light/dark box. Rats that received injections of TRIM
outside the dlPAG (n=10) are represented as an OUT group. The data

are expressed as mean±SEM (n=8–15 per group) and were analyzed
by ANOVA followed by Tukey’s test. Asterisk indicates the significant
difference from Sal group (*p<0.05)
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and selective iNOS inhibitor 1400W were obtained with
higher doses (i.e., 200 and 0.1–0.3 nmol, respectively). The
reasons for these discrepant results are unclear. The absence of
effects of the higher TRIM doses is consistent with previous
studies that found inverted U-shaped dose–response curves
for NOS inhibitors injected into the dlPAG (Guimarães et al.
1994; Tonetto et al. 2009). Local dlPAG injection of carboxy-
PTIO (2 nmol) into dlPAG resulted in anxiolytic-like effects in
the Vogel conflict test while a similar treatment (carboxy-
PTIO, 1 and 3 nmol) failed to prevent defensive reaction
induced by NMDA injection in the dlPAG (Aguiar et al.
2006). Carboxy-PTIO, in addition to its potent activity as a
NO scavenger, has been shown to enhance the effects of the
NO donor 3-morpholinosylnomine hydrochloride in cultured
endothelial cells by inducing peroxynitrite formation (Pfeiffer
et al. 1997). Peroxynitrite may in fact exert similar physiolog-
ical effects as NO, such as the induction of NO-like relaxation
of vascular smooth muscles (Liu et al. 1994), inhibition of
platelet aggregation (Moro et al. 1994), and stimulation of
soluble guanylyl cyclase (Mayer et al. 1995). Therefore, if a
carboxy-PTIO-induced increase in peroxynitrite occurs in the
dlPAG in ethanol-withdrawn rats, then this effect may coun-
teract the scavenger properties of carboxy-PTIO. Neverthe-
less, we cannot exclude the possible participation of other
molecules in the NO-cGMP cascade and downstream effec-
tors in ethanol withdrawal-induced anxiety-like behavior.
cGMP acts as a second messenger, amplifying signals re-
ceived at postsynaptic receptors and activating effector mole-
cules that result in gene expression changes and specific
neuronal responses. These aspects deserve further investiga-
tion and will be matter of future work in our laboratory.

Anxiolytic- and antidepressant-like effects have been
largely attributed to the selective inhibition of nNOS by 7-
nitroindazole (Yildiz et al. 2000), TRIM (Volke et al. 2003),
and N-propyl-L-arginine (Montezuma et al. 2012). Preclin-
ical and clinical findings, such as the increased expression
of nNOS in limbic regions in stressed animals (De Oliveira
et al. 2001) and depressed patients (De Oliveira et al. 2008),
have also helped to link nNOS with anxiety-like behavior
and a depressive phenotype in the Flinders sensitive rat line

(Wegener and Volke 2010). A recent study found that iNOS
inhibitors induced an antidepressant-like effect (Montezuma
et al. 2012). Despite the presence of NOS isoforms in the
brain, the role of eNOS in experimental anxiety, including
ethanol withdrawal-induced anxiety-like behavior in rats, is
still unknown. One reason for this lack of knowledge is the
lack of high-affinity eNOS inhibitors on the market. The
selectivity of some nNOS compounds has been attributed to
the presence of extra charge–charge interactions caused by
nNOS’s extended conformation, whereas the selectivity of
high-affinity iNOS inhibitors may be explained by the for-
mation of an iNOS-specific subpocket upon binding
(Oliveira et al. 2012). Our results suggest that both the
nNOS and iNOS isoforms contribute to the action of NO,
with iNOS as the likely main source for NO in the dlPAG
during ethanol withdrawal. This is consistent with the phar-
macological potency of both TRIM and 1400W in inhibiting
NOS isoforms. TRIM has been described as a selective
nNOS inhibitor in the rat brain under normal physiological
conditions (Handy et al. 1996). However, the ability of
TRIM to inhibit both the nNOS (Ki=27 μM) and iNOS
(Ki=28.2 μM) isoforms is equivalent (Handy et al. 1995).
1400W has been shown to be an irreversible and specific
iNOS inhibitor (Ki=7 nM, i.e., 5,000- and 200-fold more
potent against iNOS than eNOS and nNOS, respectively)
(Garvey et al. 1997). In the present study, TRIM was less
effective than 1400W in decreasing ethanol withdrawal-
induced anxiety-like behavior. Additionally, the actions of
both 1400W and L-NAME in ethanol-withdrawn rats
yielded similar behavior profiles, indicating that the iNOS
isoform in the dlPAG may play a predominant role in the
modulation of anxiety during ethanol withdrawal.

In the brain, NO production can occur as a result of the
activity of either dominant constitutive nNOS or iNOS, and
NO production can be induced by both under stressful
conditions. In general, iNOS overexpression has been asso-
ciated with the presence of inflammatory and infectious
processes (Brown 2007; Guix et al. 2005). However, several
studies have pointed to a constitutive expression of iNOS in
the brain, and raised the possibility of astrocyte-derived NO

Fig. 6 Effects of 1400W (0.1–1.0 nmol) injected into the dlPAG of
rats tested in the light/dark box. Rats that received injections of 1400W
outside the dlPAG (n=8) are represented as an OUT group. The data

are expressed as mean±SEM (n=7–15 per group). Asterisk indicates
the significant difference from Sal group (*p<0.05, ANOVA followed
by Tukey’s test)

494 Psychopharmacology (2013) 228:487–498



participating in physiological process (for review, see
Amitai 2010). iNOS has been detected in the hippocampus
of young and aged rats under basal circumstances, in close
proximity to newly born cells (Adachi et al. 2010; Pinnock
et al. 2007). iNOS expression has also been described in the
neocortex, striatum, amygdala, hypothalamus, and brain
stem, where it could be involved in the modulation of
autonomic activity and synaptic transmission (Amitai
2010). Recently, Montezuma et al. (2012) demonstrated that
selective iNOS inhibition or knockdown induced
antidepressant-like effects in rats, suggesting that iNOS-
mediated NO synthesis may be involved in the modulation
of stress-induced behavioral effects. Additionally, increased
levels of iNOS and COX-2 have been described in the
hippocampus, cortex, and cerebellum in rats 24 h after a
cyclic pattern of ethanol exposure and withdrawal. These
findings were associated with the development of motor and
cognitive deficits (Pascual et al. 2007). Elevated glutamate
levels have been directly associated with increased iNOS
expression and glial activation in the hippocampus of rats
subjected to an ethanol binge drinking model (Ward et al.
2009). In the present study, 1400W administered into the
dlPAG decreased anxiety-like behavior induced by ethanol
withdrawal. Altogether, these results support the hypothesis
that NO production in the dlPAG is involved in the modu-
lation of anxiety during ethanol withdrawal.

Behavioral signs of ethanol withdrawal in rodents are
consequences of neuroadaptative processes elicited by the
interruption of ethanol consumption following prolonged eth-
anol exposure (Cowen and Lawrence 2006; Kliethermes
2005). During ethanol withdrawal, excitatory transmission
increases in an attempt to maintain homeostasis in the face
of the ethanol-mediated enhancement of γ-aminobutyric acid
(GABA) inhibition (De Witte et al. 2003; Koob 2004). Accu-
mulating evidence suggests that the NMDA glutamate recep-
tor is upregulated during ethanol withdrawal, which has been
related to the occurrence of signs of ethanol withdrawal, such
as seizures, convulsions, and anxiety-like behavior (Grant et
al. 1990; Kotlinska and Bochenski 2008; Nagy et al. 2005).
Increases in glutamatergic function have been shown to occur
during ethanol withdrawal in brain structures related to the
control and expression of anxiety, such as the hippocampus
(Dahchour and De Witte 2003; Whittington et al. 1995),
basolateral amygdala (Christian et al. 2012; Läck et al. 2007;
McCool et al. 2010), and bed nucleus of stria terminalis (Kash
et al. 2009). Increased glutamatergic transmission has also
been detected in the hippocampus in benzodiazepine-
withdrawn rats (Das et al. 2008; Van Sickle et al. 2004).
Souza-Pinto et al. (2007) showed that the inhibition of
glutamatergic neurotransmission in the dlPAG reduces the
anxiety-like effects of diazepam withdrawal in rats, a finding
that implicates involvement of excitatory transmission in the
dlPAG in the modulation of the aversive state induced by

benzodiazepine withdrawal. Given the similar pharmacologi-
cal mechanisms of action of benzodiazepines and ethanol,
similar neurochemical effects may also occur in the dlPAG
during ethanol withdrawal. However, this assumption remains
to be further investigated.

The mechanisms by which NO influences dlPAG function
during ethanol withdrawal are unknown. Intracellular NO sig-
naling involves the activation of guanylate cyclase, but it also
interacts with mitogen-activated protein kinases, apoptosis-
related proteins, and the mitochondrial respiratory chain (Guix
et al. 2005). In the dlPAG, complex interactions between NO
and glutamatergic, GABAergic, or serotoninergic systems have
been shown to modulate anxiety-like behavior (Guimarães et
al. 2005; Moreira et al. 2012), blood pressure (Chaitoff et al.
2012; Hall and Behbehani 1998), and nociception (Hamalainen
and Lovick 1997). Recently, an interaction betweenNO and the
cannabinoid system in the dlPAG in the modulation of defen-
sive behavior has also been proposed (Lisboa and Guimarães
2012). Given the putative important role that anxiety plays in
the etiology of ethanol addiction, future studies are needed to
solve the specific molecular mechanisms through which NO
transmission in the dlPAG contributes to anxiety-like behavior
during ethanol withdrawal.

In conclusion, the present study showed that inhibition of
iNOS in the dlPAG decreases ethanol withdrawal-induced
anxiety-like behavior in rats, an observation supporting the
involvement of NO in the dlPAG in the modulation and
expression of anxiety-like behavior.
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