
ORIGINAL INVESTIGATION

Central administration of oxytocin receptor ligands
affects cued fear extinction in rats and mice
in a timepoint-dependent manner

Iulia Toth & Inga D. Neumann & David A. Slattery

Received: 12 December 2011 /Accepted: 22 March 2012 /Published online: 20 April 2012
# Springer-Verlag 2012

Abstract
Rationale Oxytocin (OXT) has been proposed as a potential
therapeutic agent for post-traumatic stress disorder (PTSD).
Objectives We aimed to verify whether pharmacological
manipulation of the brain OXT system affects cued fear
conditioning and fear extinction.
Methods Male rats and mice were intracerebroventricularly
administered synthetic OXT (rats, 0.1 or 1.0 μg/5 μl; mice,
0.1 or 0.5 μg/2 μl) and/or an OXT receptor antagonist
(OXTR-A; rats, 0.75 μg/5 μl) either prior to fear condition-
ing or extinction training.
Results Preconditioning administration of OXT did not af-
fect fear conditioning in rats, but decreased fear expression
and facilitated fear extinction. In contrast, preconditioning
blockade of OXT neurotransmission by OXTR-A did not
affect fear conditioning or fear expression, but impaired fear
extinction. When administered before extinction training,
OXT impaired fear extinction in both rats and mice, indi-
cating that the effects of OXT on fear extinction are con-
served across species. This impairment was OXTR-
mediated, as the inhibitory effect of OXT on fear extinction
was abolished by prior treatment with OXTR-A. The im-
paired fear extinction was not a result of reduced locomotion
in rats, whereas an apparent decrease in fear expression and
facilitation of fear extinction with the higher OXT dose in
mice was the result of behavioral hyperactivity.
Conclusions These results suggest that increasing OXT neu-
rotransmission during traumatic events is likely to prevent the

formation of aversive memories. In contrast, OXT treatment
before fear extinction training, which would be the compara-
ble timepoint for psychotherapy in PTSD patients, rather
delays fear extinction and, therefore, caution is needed before
recommending OXT for the treatment of PTSD.
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Introduction

Pavlovian fear conditioning is a form of learning in which
an association between a stimulus and its aversive conse-
quences is made. Cued fear conditioning has been used in
laboratory animals as a model of post-traumatic stress dis-
order (PTSD) and involves the presentation of a neutral
stimulus, such as a tone or light (conditioned stimulus
[CS]) in association with an aversive stimulus, such as a
mild footshock (unconditioned stimulus [US]). Through
repeated CS–US associations, animals learn that the CS
predicts the US, and a conditioned response, such as freez-
ing (Fanselow 1980), is elicited in the absence of the US.
Fear extinction is regarded as a form of new learning (for
reviews, see Cammarota et al. 2007; Quirk et al. 2010) and
is defined as the attenuation of the conditioned response by
repeated exposure to the CS without the US. Inability to
extinguish fear memories was shown to involve hyperactiv-
ity of the amygdala (Rauch et al. 2000; Stein et al. 2002;
Dilger et al. 2003) and is a core symptom in several psychi-
atric disorders, such as specific phobias, generalized and
social anxiety disorder, panic disorder, and PTSD. The
current treatment for PTSD consists of psychotherapy, often
combined with antidepressant, benzodiazepine, and antipsy-
chotic treatment, with selective serotonin reuptake inhibitors
providing the best response rates (Marshall and Pierce 2000;
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Stein et al. 2006, 2009). However, treatment-resistant PTSD
patients achieve only partial symptom remission or show a
high rate of relapse after treatment discontinuation (Davidson
et al. 2004; Bisson et al. 2007; Brunello et al. 2001; Ipser et al.
2006). Therefore, the development of approaches that combine
psychotherapy with novel pharmacotherapy is still needed.

Neuropeptides, which have discrete synthesis, release,
and receptor sites in the brain (Landgraf and Neumann
2004; Wotjak et al. 2008), have emerged as viable research
candidates with respect to both pathophysiology and treat-
ment of PTSD (Gülpinar and Yegen 2004; Viero et al.
2010). One such neuropeptide, oxytocin (OXT), which is
synthesized in the paraventricular and supraoptic nuclei of
the hypothalamus and centrally released within these hypo-
thalamic and other limbic regions, including the septum,
hippocampus, and central amygdala (CeA) in response to
various stressful stimuli (Ebner et al. 2005; Neumann 2007),
has been recently proposed as a potential therapeutic agent
for PTSD (Olff et al. 2010). Both synthetic and endogenous
OXT exert anxiolytic properties in rodents (McCarthy et al.
1996; Ring et al. 2006; Waldherr and Neumann 2007;
Blume et al. 2008) and inhibit the activity of the hypotha-
lamic–pituitary–adrenal (HPA) axis (Windle et al. 1997;
Neumann et al. 2000). Comparable effects were also found
in humans (Heinrichs et al. 2003), as OXT was shown to
reduce the activation of the amygdala to threatening faces,
thereby reducing the autonomic and behavioral manifesta-
tion of fear in healthy volunteers and social anxiety disorder
patients (Kirsch et al. 2005; Labuschagne et al. 2010). More
indirect evidence for the anxiolytic and antistress effects of
OXT in humans comes from nursing mothers who are
calmer and less anxious during stressful situations, possibly
due to high brain OXT activity (Heinrichs et al. 2001; Carter
et al. 2001; Slattery and Neumann 2008). Given that PTSD
is marked by deficits in anxiety/stress regulation and
hyperactivity of the amygdala (Rauch et al. 2000; Shin
et al. 2004), OXT might be a good candidate for the treat-
ment of PTSD (Olff et al. 2010; Viviani et al. 2011).
Therefore, we aimed to study in detail whether OXT
affects fear conditioning and fear extinction and whether
such effects depend on the timing of administration. The
classical fear conditioning paradigm involves acquisi-
tion, expression, and extinction of fear memories, and
drugs can differentially affect these processes (Lattal
and Abel 2001; Makkar et al. 2010). Therefore, we
manipulated the OXT system by intracerebroventricular
(icv) administration of synthetic OXT and/or an OXT
receptor antagonist (OXTR-A) either prior to condition-
ing (also referred to as acquisition) or extinction train-
ing. In order to be able to draw more general
conclusions, we performed the experiments in both rats
and mice and hypothesized that OXT would facilitate
fear extinction in both species.

Materials and methods

Animals

Male Wistar rats (280–300 g) and male CD1 mice (35–
40 g) were purchased from Charles River, Sulzfeld,
Germany. Animals were group-housed in polycarbonate
cages (rats, 55×22×18 cm; mice, 42×26×15 cm) for
1 week before surgery and kept under standard labora-
tory conditions (12:12 light/dark cycle, lights on at
6 am, 22 °C, 60 % humidity, food and water ad
libitum). After surgery, animals were single-housed in
observation cages (rats, 40×24×36 cm; mice, 30×
23×36 cm). All behavioral procedures took place during
the light phase and were conducted in accordance
with the local government of the Oberpfalz (Bavaria,
Germany) and the guidelines of the National Institute of
Health.

Cannula implantation

Guide cannula implantation was performed under iso-
flurane anesthesia (Forene®, Abbott GmbH & Co. KG,
Wiesbaden, Germany). To avoid post-surgical infections,
all animals received antibiotics (s.c.; 3 mg/30 μl Baytril®,
Bayer Vital GmbH, Leverkusen, Germany). Animals were
mounted on a stereotaxic frame, and a guide cannula
(21 G; rats, 12 mm length; mice, 8 mm length; Injecta
GmbH, Klingenthal, Germany) was implanted above the
right lateral ventricle (rats: AP +1.0 mm from bregma,
ML +1.6 mm, V +1.8 mm; mice: AP +0.2 mm,
ML +1.0 mm, V +1.4 mm). The guide cannula was fixed with
two stainless steel screws using dental cement (Kallocryl,
Speiko-Dr. Speier GmbH, Münster, Germany) and closed by
a stainless steel dummy cannula. After surgery, animals were
handled daily (stroking, holding, and cleaning of dummy
cannulas) for 5 days to minimize nonspecific stress responses
during the experiment.

Intracerebral infusions

Animals received icv infusions of either vehicle (sterile
Ringer solution, pH 7.4; rats, 5 μl; mice, 2 μl), syn-
thetic OXT (Sigma-Aldrich, Munich, Germany; rats, 0.1
or 1.0 μg/5 μl; mice, 0.1 or 0.5 μg/2 μl—from this
point onward referred to as lower and higher OXT doses
for rats and mice, respectively), or a selective OXTR-A
(desGly-NH2,d(CH2)5[Tyr(Me)2,Thr4]OVT; rats ,
0.75 μg/5 μl) (Manning et al. 2008) via an infusion
cannula (25 G, extended 2 mm beyond the guide can-
nula) connected via polyethylene tubing to a Hamilton
syringe. The infusion system was left in place for 30 s
following the infusion to allow diffusion of the solution.
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To verify the infusion site, animals were killed using CO2

and ink was infused icv before removal of the brain. Brains
were cut coronally and checked for staining of the ventricle.
Only animals with correct infusion sites were included in the
statistical analyses. Drug doses and timing were selected based
on previous studies in our laboratory (Waldherr and Neumann
2007; Bosch and Neumann 2008; Lukas et al. 2011).

Cued fear conditioning apparatus

The cued fear experiments were performed in two different
contexts, A and B, which differed in visual, tactile, and
olfactory cues as previously described (Toth et al. 2012a).
Briefly, fear conditioning occurred in context A, which con-
sisted of a transparent Perspex box (rats, 45×45×40 cm; mice,
23×23×36 cm) with an electric grid floor. Context A was
cleaned with water containing a small amount of a neutral-
smelling detergent before each trial. Extinction training and
retention occurred in context B, which consisted of a black
Perspex box (rats, 45×45×40 cm; mice, 23×23×36 cm) with
a smooth floor. Context B was cleaned with water containing a
small amount of a lemon-scented detergent before each trial.
The boxes were enclosed in a wooden chamber to reduce
external noise and visual stimulation. A low level of back-
ground noise was produced by ventilation fans within the
chamber. Illumination (300 lx for context A and 20 lx for
context B) was provided by four white light-emitting diodes.
Auditory stimuli were delivered through a speaker attached
30 cm above the floor of the box. Freezing, defined as the
absence of all movement except that required for respiration
(Fanselow 1980), was measured with the TSE fear condition-
ing system (TSE System GmbH, Bad Homburg, Germany).
The conditioning chamber contained two horizontal detection
fields, each with 32 (rats) or 16 (mice) infrared light beams set
1.3 cm apart. Inactivity was measured by the infrared beams
and defined as no light beam interruption for at least 3 s (rats)
or 1 s (mice). We have previously shown that such measure-
ments are comparable with hand-scoring by an experienced
observed (Toth et al. 2012a).

Cued fear conditioning procedure

The procedure was adapted from the literature (Muigg et al.
2008) and has been shown to induce a robust cued fear
conditioning in our laboratory (Toth et al. 2012a).

Fear conditioning (day 1)

Animals were placed in the conditioning chamber (context A)
and, after a 5-min adaptation period, exposed to five CS–US
pairings with a 2-min interstimulus interval. The CS was an
80-dB, 4.5-kHz (rats) or 8-kHz (mice), 30-s white noise,
which co-terminated with a mild electric footshock (US,

0.7 mA; pulsed current, 2 s). Animals were returned to their
home cage 5 min after the last CS–US pairing.

Extinction training (day 2)

One day after fear conditioning, animals were placed in context
B and, after a 5-min adaptation period, exposed to 30 (rats) or
20 (mice) CS presentations (30 s white noise, 5 s interstimulus
interval). Animals were returned to their home cage 5 min after
the last CS presentation. Freezing during extinction training
increased until the sixth CS; therefore, this period was defined
as fear expression. After the sixth CS, freezing decreased;
therefore, this period was defined as fear extinction. These
CS presentations were collapsed into ten blocks with the mean
freezing percentage during three or two CS presentations rep-
resented in each block for rats and mice, respectively.

Extinction retention (day 3)

One day after extinction training, animals were again placed in
context B; after a 5-min adaptation period, they were exposed to
five CS presentations (30 s white noise, 5 s interstimulus inter-
val). Animals were returned to their home cage after the last CS
presentation. These CS presentations were then collapsed into
one block.

Home cage locomotion

In separate groups of rats and mice, locomotion was assessed
immediately after OXTadministration in the home cage for 1 h
using the Noldus Ethovision XT 5.1 program (Noldus Infor-
mation Technology, Wageningen, The Netherlands), as previ-
ously described (Slattery et al. 2012; Toth et al. 2012b).

Statistical analysis

PASW/SPSS (Version 17) was used to perform all statistical
analyses. Fear conditioning and extinction training data
were analyzed using repeated-measures analysis of variance
(ANOVA), followed by a Bonferroni post hoc analysis
whenever appropriate. Extinction retention and home cage
locomotion data were analyzed using a one-way ANOVA,
followed by a Bonferroni post hoc analysis whenever ap-
propriate. The criterion for significance was p≤0.05.

Results

Effects of preconditioning manipulation of the OXT system
on cued fear in rats

To determine whether preconditioning manipulation of the
OXT system influences cued fear, rats were infused icv with
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either vehicle (n012), OXT (1.0 μg/5 μl; n013), or OXTR-A
(n013) 10 min before conditioning.

Fear conditioning

Fear conditioning was successful, as the level of freezing
increased across trials (F(4,140)042.77; p<0.001; Fig. 1a).
There was no difference in conditioning between treatment
groups (F(2,35)00.475; p00.63).

Extinction training

There was a significant difference in fear extinction between
treatment groups (F(2,35)011.50; p<0.001), with OXT-
treated rats showing lower CS-elicited freezing during
blocks 2 and 3 compared with vehicle-treated rats, while
OXTR-A-treated rats showed higher freezing during blocks
6–10 compared with vehicle-treated rats (p<0.05; Fig. 1b).

Extinction retention

There was a significant difference in extinction retention
between treatment groups (F(2,35)06.95; p00.003; Fig. 1c),
with OXTR-A-treated rats showing higher CS-elicited
freezing compared with both vehicle- and OXT-treated rats
(p<0.05). There was no difference between vehicle- and
OXT-treated rats.

Effects of OXT prior to extinction training on cued fear
in rats and mice

To determine whether OXT administered before extinction
training influences cued fear, rats and mice were infused icv

with either vehicle (rats: n09; mice: n021), a lower OXT dose
(rats: n06; mice: n08), or a higher OXT dose (rats: n012;
mice: n016) 10 min before extinction training.

Fear conditioning

Fear conditioning was successful in both rats and mice, as
the level of freezing increased across trials (rats: F(4,96)0
14.84; p<0.001; Fig. 2a; mice: F(4,168)022.15; p<0.001;
Fig. 3a). There was no difference in conditioning between
groups the day before treatment (rats: F(2,24)00.065; p00.94;
mice: F(2,42)00.081; p00.92).

Extinction training

There was a significant difference in fear extinction between
treatment groups in both rats (F(2,24)03.401; p00.05; Fig. 2b)
and mice (F(2,42)024.33; p<0.001; Fig. 3b). While both OXT
doses increased CS-elicited freezing compared with vehicle in
rats (0.1 μg, blocks 7, 10; 1.0 μg, blocks 7–10), OXT
exhibited a dose-dependent effect in mice. More specifically,
the lower OXT dose increased (p00.05), while the higher
dose decreased (p<0.001) CS-elicited freezing across the
whole trial compared with the vehicle-treated group. Further
post hoc analyses revealed that the lower dose increased
(block 9; p<0.05) and the higher dose decreased (blocks 1–
7, 9; p<0.05) CS-elicited freezing (Fig. 3b).

Extinction retention

There was a tendency towards an increased CS-elicited
freezing during extinction retention in OXT-treated rats
compared with vehicle-treated rats (F(2,24)02.881; p0
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Fig. 1 OXT facilitates, whereas OXTR-A impairs fear extinction
when infused prior to conditioning in rats. a Rats were infused icv
with either vehicle (5 μl; n012), OXT (1.0 μg/5 μl; n013), or OXTR-
A (0.75 μg/5 μl; n013) 10 min before conditioning. b On day 2,

extinction training was assessed. c On day 3, extinction retention was
assessed. Data represent the mean time of CS-elicited freezing±SEM.
*p<0.05 compared with vehicle-treated rats
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0.076; Fig. 2c), while no difference in extinction retention
was found between treatment groups in mice (F(2,42)00.324;
p00.73; Fig. 3c).

Effects of OXTR-A alone and on OXT-induced delay in fear
extinction in rats

To determine whether OXTR-A infusion itself facilitates
fear extinction and whether synthetic OXT impairs fear
extinction by binding to the OXTR, rats were infused icv
with either vehicle (n08) or OXTR-A (n016) 40 min
before extinction training. Thirty minutes later, vehicle-
treated rats were infused icv with vehicle, while OXTR-A-
treated rats were infused with either vehicle (n08) or OXT
(1.0 μg/5 μl; n08).

Fear conditioning

Fear conditioning was successful, as the level of freez-
ing increased across trials (F(4,84)014.75; p<0.001;
Fig. 4a). There was no difference in conditioning be-
tween groups the day before treatment (F(2,21)00.023;
p00.98).

Extinction training

Extinction was successful in all treatment groups, as the
high levels of freezing during the first trials decreased sub-
stantially by the last trial (F(9,189)08.29; p<0.001; Fig. 4b).
There was no difference in fear extinction between treatment
groups (F(2,21)00.42; p00.66).
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Fig. 2 OXT impairs fear extinction when infused prior to extinction
training in rats. a On day 1, rats were fear conditioned. b On day 2,
10 min before extinction training, rats were infused icv with either
vehicle (5 μl; n09), a lower OXT dose (0.1 μg/5 μl; n06), or a higher
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Extinction retention

There was no difference in extinction retention between
treatment groups (F(2,21)00.99; p00.39; Fig. 4c).

Effects of OXT on home cage locomotion in rats and mice

To determine whether the doses of OXT used for the cued
fear experiments affect locomotion, separate groups of rats
and mice were infused icv with either vehicle (rats: n08;
mice: n06), a lower OXT dose (rats: n07; mice: n07), or a
higher OXT dose (rats: n07; mice: n07) and home cage
locomotion was measured immediately for 1 h.

There was no difference in home cage locomotion be-
tween groups in rats (F(2,19)00.22; p00.80; Fig. 5a). In
mice, however, there was a significant difference between

groups (F(2,17)06.88; p00.006; Fig. 5b), with the higher
OXT dose increasing locomotion compared with both
vehicle (p00.029) and the lower OXT dose (p00.01).
The lower OXT dose, however, did not affect home
cage locomotion.

Discussion

The present study demonstrates that modulation of the cen-
tral OXT system affects cued fear extinction in a timepoint-
dependent manner. In more detail, we could show that,
when administered before fear conditioning, OXT did not
affect fear conditioning, but decreased fear expression dur-
ing fear extinction training and facilitated fear extinction. In
contrast, OXTR-A administered at the same timepoint did
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not affect fear conditioning or fear expression, but impaired
fear extinction. In contrast, when administered before ex-
tinction training, OXT impaired fear extinction, while
OXTR-A had no effect, suggesting a lack of involvement
of the endogenous OXT system at this timepoint. These
findings could be observed both in rats and mice, indicating
that the effects of OXT on fear extinction are conserved
across species, making the translation of these findings to
humans more applicable. OXT impaired fear extinction by
binding to the OXTR, as the inhibitory effect of icv OXT on
fear extinction was abolished by prior treatment with icv
OXTR-A. However, the impaired fear extinction was not a
result of reduced locomotion, as neither rats nor mice
showed changes in locomotion after OXT treatment. These
findings suggest that, while elevated OXT levels at the time
of a traumatic event prevent the formation of aversive mem-
ories, caution is needed before recommending OXT for the
treatment of PTSD.

Preconditioning manipulation of the OXT system

According to our hypothesis, preconditioning administra-
tion of OXT decreased fear expression and facilitated fear
extinction, without directly affecting fear conditioning. In
contrast, OXTR-A administration impaired both fear extinc-
tion and extinction retention, indicating that an elevated
activity of the endogenous OXT during conditioning is re-
quired for successful fear extinction.

A possible explanation for these effects is the modulatory
effect of OXT on corticosterone (CORT) secretion. In fe-
male rats, chronic OXT reduced stress-induced CORT re-
lease (Windle et al. 1997), while OXTR-A increased CORT
secretion into the blood in both male and female rats via an
activation of the HPA axis (Neumann et al. 2000). Previous
studies demonstrated that decreasing CORT concentration
before conditioning by glucocorticoid synthesis inhibitors,
such as metyrapone (Loscertales et al. 1997; Cordero et al.
2002) or dehydroepiandrosterone (Fleshner et al. 1997), or
by blocking CORT activity through a glucocorticoid recep-
tor antagonist (Cordero and Sandi 1998) attenuated fear ex-
pression. Although CORT activation before exposure to tasks
that involve acquisition of information has been shown to
impair cognitive processing (Conrad et al. 1996; Kirschbaum
et al. 1996; Lupien and McEwen 1997), CORT release
during the actual learning process facilitates cognitive pro-
cessing (for reviews, see Sandi 1998; de Kloet et al. 1999).
However, whether alterations in available CORT mediate the
facilitatory effects of preconditioning OXT on fear extinction
remain to be verified.

As OXT and OXTR-A treatment did not alter fear con-
ditioning itself, the observed effects on extinction are un-
likely to be due to the antinociceptive properties of OXT.
However, several studies have shown that the OXT system

modulates pain perception (Yang et al. 2007, 2011; Condés-
Lara et al. 2009), with OXT increasing and OXTR-A de-
creasing the pain threshold in a dose-dependent manner
(Uvnäs-Moberg et al. 1992; Lundeberg et al. 1994; Yang
et al. 2011).

Although the mechanisms underlying the facilitatory ef-
fect of preconditioning OXT on cued fear extinction are yet
unknown, these findings suggest that activation of the en-
dogenous OXT system is beneficial during traumatic expe-
riences to protect against the development of traumatic
memory pathologies, such as PTSD.

Manipulation of the OXT system prior to extinction training

Contrary to our hypothesis, icv administration of OXT prior
to extinction training impaired fear extinction as reflected by
increased CS-elicited freezing. This was observed both in
rats and mice, indicating that the inhibitory effects of OXT
on fear extinction are conserved across species. However,
while we could show that the impairing effects of OXTwere
mediated via the OXTR as preadministration of an OXTR-A
blocked its effects, OXTR-A treatment alone did not facil-
itate fear extinction, indicating that the endogenous OXT
system is not involved in fear extinction at this timepoint.
The enhanced OXT-induced freezing to the CS was tone-
specific and not generalized as neither rats nor mice froze
before tone onset nor did they show increased freezing
responses to the tone prior to its association with the shock.
Taken together, these results suggest that OXT treatment
before extinction training delays the extinction of cued
fear. Considering that extinction training is regarded as
a form of new learning (for reviews, see Cammarota et
al. 2007; Quirk et al. 2010), when animals learn that the
CS no longer predicts the US, drugs that interfere with the
acquisition of fear learning should also block the acqui-
sition of extinction memories when administered before
extinction training (Myers and Davis 2002). This might
explain why OXT decreased fear expression and facili-
tated fear extinction when administered before fear con-
ditioning and impaired fear extinction when administered
before extinction training.

We propose that CORT is a possible mediator of the pre-
extinction training effects of OXT on fear extinction, similar
to its preconditioning effects. While decreasing CORT con-
centrations before conditioning attenuates fear expression
(Fleshner et al. 1997; Loscertales et al. 1997; Cordero and
Sandi 1998; Cordero et al. 2002), decreasing CORT con-
centrations before extinction training by icv and basolateral
amygdala (BLA) administration of metyrapone (Barrett and
Gonzalez-Lima 2004; Yang et al. 2006) blocks fear extinc-
tion. In contrast, glucocorticoid receptor agonists were
shown to facilitate fear extinction when administered before
extinction training (Yang et al. 2006, 2007).
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Several studies have shown that OXT facilitated, rather
than impaired, fear extinction when administered before
extinction training directly into the CeA (Roozendaal et al.
1992; Viviani et al. 2011), a brain region that coordinates the
behavioral and physiological correlates of fear expression
(LeDoux et al. 1988). In our study, however, OXT was
administered icv, which is likely to explain the discrepant
results. While OXT administered into the cerebral ventricles
may reach the CeA, it may not do so in a concentration
sufficient to facilitate fear extinction. Moreover, it is likely
to reach brain areas which increase fear responses, such as
the BLA. The BLA, a storage site for fear memories, is
thought to mediate the initial acquisition of extinction (Herry
et al. 2006, 2008; Sotres-Bayon et al. 2007) and the expression
of extinction memory via inhibition of CeA output neurons
(Quirk et al. 2003; Likhtik et al. 2008). However, whether
OXT impairs fear extinction when administered into the BLA
remains to be verified.

In support of this region-dependent hypothesis, several
studies have shown that OXT facilitated the extinction of
passive avoidance behavior when applied either icv into the
hippocampal dentate gyrus or into the dorsal raphe nucleus
immediately after the learning trial (Bohus et al. 1978;
Kovács et al. 1979; de Wied et al. 1991). However, when
applied into the dorsal septal nucleus, OXT impaired the
extinction of passive avoidance (Kovács et al. 1979), sug-
gesting that OXT affects extinction memory in a region-
dependent manner. Although both passive avoidance and
cued fear conditioning use footshocks as the aversive sen-
sory stimuli, several studies utilizing knockout mice have
shown deficits in cued fear conditioning, while passive
avoidance behavior was normal (Weeber et al. 2000; Takao
et al. 2010; Kaidanovich-Beilin et al. 2009). The subtle
differences between the two paradigms and the different
timepoints of OXT administration might also account for
the different effects of central OXT on extinction of cued
fear versus passive avoidance behavior.

Despite previous studies showing that OXT causes seda-
tion at high doses in rats (Uvnäs-Moberg et al. 1994),
neither dose of OXT used in the present study altered home
cage locomotion in rats. This indicates that the impairment
of fear extinction by OXT in rats is not due to nonspecific
alterations in locomotion. In contrast, the higher OXT dose
employed in mice resulted in behavioral hyperactivity, de-
fined as increased home cage locomotion and excessive
scratching and grooming, confirming previous findings
(Delanoy et al. 1979; Meisenberg and Simmons 1982). This
behavioral hyperactivity likely reflects the apparent de-
crease in fear expression and facilitation of fear extinction
caused by the higher OXT dose in mice as such behaviors
would mask any underlying fear-related behaviors. Howev-
er, the lower OXT dose, which did not alter home cage
locomotion, actually impaired fear extinction in mice. This

is in agreement with the rat studies and strongly implies that
OXT administered prior to extinction training has a detri-
mental outcome on fear extinction.

In summary, we have shown that icv OXT decreases fear
expression and facilitates fear extinction when administered
before fear conditioning, which might have a beneficial
effect during traumatic events. In contrast, when applied
before fear extinction training, which would be the compa-
rable timepoint for psychotherapy in PTSD patients, OXT
delays fear extinction. Considering that a more specific and
local administration of OXT is not possible in patients,
caution is needed before recommending OXT for the treat-
ment of PTSD.
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