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Abstract
Rationale The dorsal raphé nucleus (DRN), the origin for
serotonin (5-HT) in forebrain areas, has been implicated in
the neural control of escalated aggression. Gamma amino-
butyric acid type-A (GABAA) and type-B (GABAB)
receptors are expressed in the DRN and modulate 5-HT
neuronal activity, and both play a role in the behavioral
effect of alcohol.
Objective The purpose of this study is to examine the
interaction between drugs acting on GABA receptors in the
DRN and alcohol in their effects on aggressive behaviors.
Method Male CFW mice, housed with a female, were
trained to self-administer ethanol (1.0 g/kg) or water via an
operant conditioning panel in their home cage. Immediately
after they drank either ethanol or water, the animals were
microinfused with a GABAergic drug into the DRN, and
their aggressive behaviors were assessed 10 min later.
Muscimol (0.006 nmol), a GABAA receptor agonist,
escalated alcohol-heightened aggression but had no effect
in the absence of ethanol. This effect of muscimol was
prominent in the animals that showed alcohol-heightened
aggression, but not the animals that reduced or did not
change aggressive behavior after ethanol infusion compared
to water. On the other hand, the GABAB agonist baclofen
(0.06 nmol) increased aggressive behavior similarly in both
water and ethanol conditions. Antagonists of the GABAA

and GABAB receptors, bicuculline (0.006 nmol) and

phaclofen (0.3 nmol) respectively, did not suppress
heightened-aggressive behavior induced by ethanol self-
administration.
Conclusion GABAA receptors in the DRN are one of the
neurobiological targets of alcohol-heightened aggression.
Activation of the GABAB receptors in the DRN also
produced escalated aggression, but that is independent of
the effect of alcohol.
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Introduction

More than any other drug, alcohol has been linked to
violence and aggression (Miczek et al. 2002, 2004b). Not
every individual increases aggressive behavior after alcohol
intake, but only a subset of individuals is prone to escalate
aggressive behaviors under the influence of alcohol.
Preclinical studies using rodents have shown that approx-
imately 30% of individuals escalated aggressive behaviors
under the influence of a moderate dose of ethanol (1.0 g/kg)
relative to their base level of fighting in the absence of
ethanol (Miczek et al. 1992, 1998). This individual
difference on alcohol-heightened aggression has been
reported in several species including humans, non-human
primates, rats, and mice (Fulwiler et al. 2005; Higley et al.
1996; Miczek et al. 1998, 2004b; Virkkunen et al. 1996).
The neurobiological basis for the vulnerability for alcohol-
heightened aggression has begun to be investigated with a
focus on ionotropic receptors.

Most prominently, g-aminobutyric acid A (GABAA)
receptors have been studied extensively as one of the major
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targets of alcohol (for review, see Kumar et al. 2009). Acute
alcohol increases the conductance of Cl− flux through the
GABAA receptors (Aguayo 1990; Allan and Harris 1987;
Palmer and Hoffer 1990; Suzdak et al. 1986), and chronic
exposure to alcohol changes the composition of receptor
subunits in the synaptic membrane (Devaud et al. 1995;
Liang et al. 2007; Matthews et al. 1998; Papadeas et al.
2001). Prototypical GABAA receptor positive modulators
(e.g., benzodiazepines, barbiturates, and neurosteroids) can
induce behavioral effects that are similar to those of alcohol
including anxiolytic, anticonvulsant, sedative, hypnotic,
and pro- and anti-aggressive effects (Barnard et al. 1998;
Dar and Wooles 1985; Korpi et al. 2002; Liljequist and
Engel 1982; Olsen 1982; Rabow et al. 1995; Sieghart
1995). Low to moderate doses of benzodiazepines and
some neurosteroids increase aggressive behaviors in a
receptor-selective manner in humans and other species;
whereas, higher doses have anti-aggressive effects (Arnone
and Dantzer 1980; Bond et al. 1995; Christmas and Maxwell
1970; Cole and Wolf 1970; DiMascio 1973; Ferrari et al.
1997; Fish et al. 2001; Miczek 1974; Olivier et al. 1985;
Weerts and Miczek 1996; Weisman et al. 1998). This pattern
of effects implicates the GABAA receptor complex as a
target for aggression-heightening effects of alcohol. An
anatomically discrete analysis is required to identify which
brain pathways are regulated by the GABAA receptors to
promote alcohol-heightened aggression.

Although there is no clear structural interaction with
alcohol, GABAB receptors also appear to play a role in
some of the behavioral effects of alcohol. Preclinical and
clinical data have shown that the GABAB receptor agonists
and positive modulators reduce alcohol withdrawal symp-
toms (Addolorato et al. 2006; Colombo et al. 2000; File et
al. 1991) and also change self-administration of alcohol
(Besheer et al. 2004; Colombo et al. 2003; Daoust et al.
1987; Flannery et al. 2004; Maccioni et al. 2008; Moore et
al. 2007; Orru et al. 2005; Walker and Koob 2007). Alcohol
can modulate the GABAB receptor expression in the rat
cerebral cortex (Li et al. 2005), and electrophysiological
studies have shown that the GABAB receptor modulates
alcohol effects (Ariwodola and Weiner 2004; Wu et al.
2005). GABAB receptor activation can escalate aggressive
behaviors when baclofen was systemically administered or
microinjected into the dorsal raphé nucleus (DRN) in mice
(Takahashi et al. 2010). Thus, it is possible that GABAB

receptors are also involved in the alcohol-heightened
aggression.

The serotonin (5-HT) system has long been implicated in
neurobiological mechanisms of escalated aggression or
violence (de Boer and Koolhaas 2005; Miczek et al.
2004a; Olivier 2004), and much evidence suggests the
5-HT system as a major target of alcohol-heightened
aggression (Cloninger et al. 1989; Virkkunen et al. 1996;

Virkkunen and Linnoila 1993). Gene expression analysis
found reduced 5-HT receptor mRNA expressions in several
forebrain areas in the male mice that engaged in alcohol-
heightened aggression relative to the animals that did not
change their aggressive behavior (Chiavegatto et al. 2010).
Chronic treatment with an SSRI inhibited the heightened
aggression induced by the alcohol without changing the
species-typical aggression in mice (Caldwell and Miczek
2008). Therefore, differential activation of the 5-HT system
by alcohol may contribute to the individual vulnerability for
alcohol-heightened aggression. Forebrain 5-HT is mainly
derived from the DRN (Azmitia and Segal 1978; Dahlstrom
and Fuxe 1964; Michelsen et al. 2007).In addition to 5-HT
cells, a large number of GABA neurons can be found in the
DRN, and they modulate the activity of 5-HT neurons
(Belin et al. 1983; Gervasoni et al. 2000; Nanopoulos et al.
1982; Wang et al. 1992). Both GABAA and GABAB

receptors are expressed on the 5-HT neurons in the DRN
and inhibit 5-HT cell firing (Bowery et al. 1987). Due to its
role in the behavioral action of alcohol, GABA receptors
may modulate the DRN 5-HT system after alcohol
consumption and thus, change aggressive behaviors. In this
study, we modulated the GABAA or GABAB receptors in
the DRN pharmacologically and examined the resulting
changes in alcohol-heightened aggression in male mice.

Methods

Subjects

Male CFW mice (Charles River Laboratories, Wilmington,
MA), weighed 21–23 g upon arrival. Resident males were
housed in pairs with females in a clear polycarbonate cage
(28×17×14 cm) with pine shavings as bedding material.
Intruder males were group housed seven to ten per large
cage (48×26×14 cm) with corn cob bedding. All animals
were maintained in our vivarium with controlled humidity
and temperature (35–40%, 21±1°C) on a reversed 12-h-
light/dark cycle (lights off at 7:00 AM). Food (Purina, St.
Louis, MO) was freely available, whereas availability of
water was limited to 3 h per day. All procedures were
approved by the Institutional Animal Care and Use
Committee of Tufts University. The animals were cared
for according to the “Guide for the Care and Use of
Laboratory Animals” (National Research Council 1996).

Ethanol self-administration

After 21 h of water restriction, the female and offspring
were removed to a holding cage during the experimental
session, and a custom designed aluminum panel (16.5×
15.9 cm) was inserted into the resident’s home cage
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(Miczek and de Almeida 2001). The panel has two nose-
poke operanda with drinking troughs (3×5 cm) on the right
and left sides of the panel with cue lights positioned above
each operandum and one house light at the center top (Med
Associates, Georgia, VT). The fluid receptacle was
connected to a syringe containing either water or ethanol
(6% w/v), operated by a syringe pump (Med Associates).
The panel and syringe pump were controlled by MED-PC
software running on a PC (MED-PC for Windows, v. 4.1;
Med Associates). During the session, a house light and a
cue light over the active operandum (right or left side,
counterbalanced across the animals) were illuminated. A
nose-poke response was detected by the photobeam sensor
in the operanda, and every fifth response into the active
operandum was reinforced by the delivery of 50 μl of fluid
into the trough (schedule of reinforcement, fixed ratio five).
The animals self-administered water or ethanol 5 days per
week between 12:00 and 17:00, with ethanol (1.0 g/kg)
being available every third experimental session and water
on the intervening days.

Resident-intruder test and alcohol-heightened aggressive
behavior

After 3 weeks of being housed with a female, the residents
were studied for their aggression toward the same intruder
male (Miczek and O’Donnell 1978). The female and the
pups were removed, and an intruder was introduced into the
home cage of the resident male. Their behaviors were
recorded for 5 min after the first attack bite or the intruder
was removed after 5 min if no attack occurred. This
encounter occurred every other day until the animals
showed a stable number of attack bites.

Once aggressive behavior had stabilized (<20% varia-
tion), the residents were assessed for alcohol-heightened
aggression. Fifteen minutes before the resident-intruder
encounter, the residents self-administered water or 1.0 g/kg
of ethanol (in an equal volume, 16.9 ml fluid/kg).
Aggressive behavior was examined three times per week
separated by 48 h, alternatively after consuming either
water or ethanol for a total of three times for each
condition. These encounters were videotaped and analyzed
with the aid of software described later. Animals were
categorized as alcohol-heightened aggressors (AHA) if the
rate of attack bites after ethanol consumption exceeded that
after water consumption by at least two standard deviations.
The remaining mice were designated as alcohol non-
heightened aggressors (ANA).

Surgery and cannulation

After the stabilization of attack bites, residents were
anesthetized by i.p. injection of a mixture of 100 mg/kg

of ketamine HCl and 10 mg/kg of xylazine, and stereotax-
ically implanted with a 26-gauge guide cannula (Plastics
One Inc., Roanoke, VA) aimed at the DRN (AP, −4.2 mm;
ML, +1.5 mm; DV, −1.9 mm from bregma; angled 26°
from vertical) as calculated from a mouse brain atlas
(Paxinos and Franklin 2001). A 33-gauge obturator
(Plastics One Inc.) that extended 0.5 mm beneath the tip
of the guide cannula was inserted after surgery. The
obturator was moved daily to prevent blockage and also
for habituating the animals to handling. The animals were
housed individually for 5 days to recover and then pair-
housed with the same female. To prevent gnawing by the
female, the obturator and head mount were covered with a
quinine polish (Bite it©). One week after the surgery, the
residents were assessed for self-administration of ethanol or
water again and for fighting before starting microinjection
tests.

Microinjection and aggression test

On the test day, the resident mice self-administered water or
1.0 g/kg of ethanol immediately before the microinjection.
The obturator was removed and a 33-gauge microinjector
(Plastics One Inc, Roanoke, VA) attached to a PE-50 tubing
was inserted into the guide cannula. The microinjector
extended 2 mm below the end of the guide to reach the
DRN. The other end of the tubing was connected to a
Hamilton syringe placed into an infusion pump (CMA
Microdialysis, North Chelmsford, MA). The drug was
infused in a volume of 0.2 μl over 2 min. The microinjector
was left in place for 1 min after the infusion to allow the
drug to diffuse completely. Ten minutes after the microin-
jection, an intruder was introduced, which prompted attacks
by the resident mouse. The animal’s behaviors were
videotaped for detailed behavioral analysis at a later time.
An animal received a total of six microinjections, following
three drug conditions under both ethanol and water treat-
ments: experiment 1, muscimol (0.006 nmol), bicuculline
(0.006 nmol), and saline vehicle; experiment 2, baclofen
(0.06 nmol), phaclofen (0.3 nmol), and saline vehicle. All
drugs, purchased from Sigma-Aldrich (St. Louis, MO,
USA), were dissolved in saline (0.9%). The drug treatments
were administered in irregular sequence. The drug doses of
muscimol and baclofen were selected based on previous
work (Takahashi et al. 2010). The dose of phaclofen was
chosen because it inhibited the effect of the 0.06 nmol of
baclofen on aggressive behaviors. The dose of bicuculline
was chosen on the basis of pilot studies. The selected dose
of 0.006 nmol of bicuculline did not have any apparent
effects on motor activity; whereas, higher doses of bicucul-
line (0.01 and 0.06 nmol) produced turning behavior or
inhibited motor activity. Previous studies have estimated
that the diffusion range of 1 μl muscimol (1 μg/μl) is about
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1.7 mm from the injection site (Arikan et al. 2002; Edeline
et al. 2002), but another study found that even 0.05 μl of
muscimol can diffuse up to 1.4–1.7 mm from the injection
site within 15 min (Martin 1991). In the present study, we
used low concentrations of drugs with a 0.2 μl-injection
volume and slower infusion rate. The animals that received
infusions outside of the DRN did not show behavioral
effects (Supplementary Table 1). Therefore, the effects of
drugs are considered due to its action in the DRN.

Histology

At the end of the experiment, the mice were deeply
anesthetized (ketamine and xylazine mixture) and intracar-
dially perfused with 0.9% saline followed by 4% parafor-
maldehyde (PFA) in phosphate-buffered saline. After
post-fixation in the 4% PFA for at least 24 h, the brains
were placed into 15% sucrose solution. A microtome was
used to slice the brains (60 μm thickness), and the sections
were stained with cresyl violet to verify the placement of
the cannula. Table 1 summarizes the number of animals
used in this study, and Fig. 1 shows the injection site in
each animal. Four out of 22 animals in experiment 1 and
two out of 16 animals in experiment 2 had infusions, which
missed the DRN, and their data were analyzed separately.

Blood ethanol concentration (BEC) measurement

For the analysis of the BECs, we used a new set of animals
(n=7). Because we found an interaction between muscimol
and alcohol-heightened aggression, we examined the effect
of muscimol on BEC after 1.0 g/kg of ethanol consumption.
Once stable self-administration of water and ethanol was
established, the animals were subjected to cannulation
surgery under anesthesia. After 1 week of recovery, water
and ethanol self-administration was reestablished. On the
test day, the animals received muscimol (0.006 nmol) or
vehicle microinjection into the DRN immediately after they
had consumed ethanol or water. Ten minutes later blood
samples were collected from their submandibular vein
(250 μl) using animal lancets (MEDIpoint, Inc., NY,
USA). Blood was collected in 1.5-ml-centrifuge tubes
containing 50 μl of heparin (100 U/ml) on ice. Samples
were centrifuged to separate plasma, and supernatants were

stored at −80°C. Plasma ethanol concentrations were
measured by using an Ethanol Assay Kit (BioVision, CA,
USA) with high sensitivity (ranging from 0.4 to 40 ppm of
ethanol).

Behavior analysis and statistics

Detailed behavioral analysis of the videotape record was
performed by an observer whose reliability was established
using the Observer software (Observer XT 8.0, Noldus,
Wageningen, The Netherlands). The frequency of aggres-
sive behaviors (attack bites, sideway threats, tail rattles, and
pursuits) and the duration of non-aggressive behaviors
(walking, rearing, grooming, and contact) were quantified
as operationally defined and illustrated previously (Grant
and Mackintosh 1963; Miczek and O’Donnell 1978).
Repeated measures one-way ANOVA was performed to
examine the effect of ethanol on aggressive and non-
aggressive behaviors relative to water using vehicle
microinjection data. The effect of drugs on the alcohol-
heightened aggression was examined by using repeated
measures of two-way ANOVA. In case of significant F
values, Holm–Sidak t-tests were conducted as a post hoc
analysis to determine which doses of the drug had
significant effects compared to the vehicle (α=0.05). In
this analysis, the effect of the receptor agonist and
antagonist were analyzed separately. Three animals in
experiment 1 and one animal in experiment 2 could not
complete all the injections due to cannula blockage, and
those animals were used for analysis of either agonist or
antagonist injections which they did complete.

Results

Alcohol-heightened aggression

Table 2 shows the effects of ethanol on aggressive behavior
after vehicle microinjection. Self-administration sessions
during the microinjection experiments took an average of
3.3 min for water and 3.0 min for 1.0 g/kg of ethanol. Self-
administration of ethanol increased attack bites and sideway
threats, and significantly reduced tail rattles relative to the
measurements after water consumption. Repeated measures

Table 1 Number of animals used in this study

Target Drugs Total animals
used for analysis

Misplacement Excludeda

Experiment 1 GABAA receptor Muscimol (0.006 nmol), Bicuculline (0.006 nmol) 18 4 9

Experiment 2 GABAB receptor Baclofen (0.06 nmol), Phaclofen (0.3 nmol) 16 2 10

a Animals were excluded if they died, became sick or stopped fighting after surgery
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ANOVA showed significant main effects of ethanol on
attack bites [F(1, 34)=4.659, p=0.038], sideway threats
[F(1, 34)=4.457, p=0.042], and tail rattles [F(1, 34)=8.544,
p=0.006]. There was no significant difference between the
effects of ethanol and water self-administration on non-
aggressive behaviors.

Before surgery, we characterized the animals for alcohol-
heightened aggression and confirmed that some of the
animals showed alcohol-heightened aggression, but not
others (Miczek et al. 1998). However, not all animals that
met our initial criterion for AHA did so after surgery.
Therefore, we analyzed the data from all animals together
to examine the interaction between ethanol and the GABA
receptors in the DRN. Only when we found an interaction
between the drug and ethanol, further analysis was
performed in AHA and ANA individuals (see muscimol
section).

GABAA receptors in the DRN and alcohol-heightened
aggression

Agonist (muscimol, 0.006 nmol)

Muscimol significantly increased attack bites after ethanol
consumption, but had no effect in the absence of ethanol
(Fig. 2a). Two-way ANOVA showed a significant interac-
tion between muscimol and ethanol [F(1, 16)=4.537,
p=0.049] and the significant main effect of muscimol
[F(1, 16)=6.341, p=0.023] on attack bites. On the other
hand, muscimol slightly reduced walking compared to the
vehicle [F(1, 16)=4.756, p=0.044] (Table 3). A significant
main effect of ethanol was observed only for the measure of
rearing [F(1, 16)=8.901, p=0.009].

Fig. 1 Injection sites in the
DRN. a Representative mouse
coronal brain section (20×) that
was stained with cresyl violet. b
Schematic representation of
injection sites for experiment 1
(GABAA) and experiment 2
(GABAB) in mouse coronal
brain section (Paxinos and
Franklin 2001). Circles indicate
injection sites within the DRN
and triangles represent injection
sites outside the DRN

Table 2 Effects of 1.0 g/kg of alcohol on aggressive and non-
aggressive behaviors in vehicle microinjection data

H2O EtOH

Aggressive behaviors

Pursuits 0.7±0.2 1.3±0.3 *

Sideway threats 21.0±2.4 23.6±3.6

Attack bites 17.7±1.6 21.7±1.8 *

Tail rattles 22.4±3.6 12.4±2.0 *

Non-aggressive behaviors

Grooming 28.7±4.6 32.1±4.3

Rearing 30.1±4.6 25.1±4.1

Walking 55.6±4.1 57.2±3.2

Contacts 14.3±3.4 11.9±2.8

*p<0.5
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Fig. 2 GABAA receptor modulation in the DRN and alcohol-
heightened aggression. a The effect of intra-DRN microinjection of
GABAA receptor agonist muscimol (Mus) on the frequency of attack
bites after water or 1.0 g/kg of alcohol (EtOH) consumption. Asterisk
indicates significant difference from the vehicle within the same
condition (p<.05). b The effect of intra-DRN microinjection of the
GABAA receptor antagonist, bicuculline (Bic), on the frequency of
attack bites after water or EtOH consumption. Asterisk indicates
significant main effect of alcohol
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To examine the interaction between muscimol and
ethanol in AHA and ANA individuals, we selected animals
that consistently engaged in alcohol-heightened aggression
between pre- and post-surgery. Out of 17 animals, four
individuals that were categorized as AHA before the
surgery also showed increased attack bites (increase>5)
after ethanol consumption when given vehicle (Fig. 3a),
and four individuals that were designated as ANA before
surgery consistently showed no change or reduced attack
bites after ethanol consumption (Fig. 3b). Muscimol
increased aggressive behaviors after both water and ethanol
self-administration in AHA animals (Fig. 3c). Even though
the sample size was very small (AHA, n=4), repeated
measures two-way ANOVA found a significant main effect
of the drug [F(1, 3)=16.963, p=0.026] on the composed
aggression scores (attack bites+sideway threats) within this
subset of mice. In contrast, muscimol did not produce any
effect in the ANA animals (Fig. 3d).

Antagonist (bicuculline, 0.006 nmol)

There was no significant interaction between bicuculline
and ethanol in terms of changes in any behaviors (Fig. 2b,
Table 3). Only a significant main effect of the drug was
detected on the duration of contacts [F(1, 15)=4.909, p=
0.043], and bicuculline reduced the duration of contacts
relative to the vehicle. A significant effect of ethanol was
observed on attack bites [F(1, 15)=16.547, p=0.001],

sideway threats [F(1, 15)=6.265, p=0.0242] and walking
[F(1, 15)=8.373, p=0.011]. There was no difference in the
effect of bicuculline between the AHA and ANA individuals
(data not shown).

Blood ethanol concentration

Because there was an interactive effect between ethanol and
muscimol, we examined the effect of muscimol on BACs
using a separate group of animals (n=7). After the animals
self-administered 1.0 g/kg of ethanol, they received either
saline or 0.006 nmol of muscimol into the DRN. Blood
samples were collected 10 min after the microinjection,
which corresponds to the time when animals were tested for
their aggressive behaviors. There was no significant
difference between BAC after muscimol microinjection
(70.7±4.5 mg/dL) and BAC after saline (73.4±3.9 mg/dL).

GABAB receptors in the DRN and alcohol-heightened
aggression

Agonist (baclofen, 0.06 nmol)

Baclofen significantly increased attack bites and sideway
threats after both water and ethanol self-administration
(Fig. 4a, Table 4). However, there was no significant
interaction between the effects of baclofen and ethanol was
observed on any behaviors. Repeated measure two-way

Agonist

H2O EtOH

Control Muscimol Control Muscimol

Pursuit 0.7+0.2 1.3+0.4 1.2+0.4 1.4+0.6

Sideways threat 15.9+2.4 16.4+2.0 14.7+1.9 16.8+1.9

Attack bite 16.4+2.5 17.8+2.5 20.3+2.8 27.6+4.7 *

Tail-rattle 13.3+3.0 12.2+2.3 10.7+3.4 12.6+2.8

Grooming 29.4+5.7 38.4+12.2 32.6+4.8 40.1+7.1

Rearinga 37.3+6.7 42.7+7.6 29.3+5.3 25.6+4.6

Walkingb 49.3+5.4 44.9+4.6 49.4+4.3 45.5+4.2

Contact 18.1+5.6 14.2+3.2 15.3+5.1 11.9+4.1

Antagonist

H2O EtOH

Control Bicuculline Control Bicuculline

Pursuit 0.6+0.2 0.7+0.3 1.3+0.8 0.8+0.3

Sideway threatsa 15.2+2.4 10.2+2.0 16.5+2.0 18.8+2.5

Attack bitea 14.9+2.5 9.8+2.9 20.2+2.8 20.6+2.5

Tail-rattle 13.5+3.0 13.8+2.4 11.1+3.5 14.0+2.1

Grooming 29.5+5.5 24.1+7.0 35.5+5.0 24.1+5.0

Rearing 35.2+5.9 30.3+6.6 28.2+5.7 23.4+7.6

Walkinga 48.0+5.9 33.3+3.7 49.0+4.5 48.3+4.7

Contactb 18.1+6.1 10.8+2.7 14.7+5.3 6.4+2.4

Table 3 Effects of intra-DRN
microinjection of GABAA

receptor agonist (muscimol) and
antagonist (bicuculline) on
aggressive and non-aggressive
behaviors after water or 1.0 g/kg
of alcohol (EtOH) consumption

a significant main effect of
alcohol (p<.05)
b significant main effect of
drug (p<0.05)

*p<0.05, in post hoc test after
significant alcohol×drug
interaction
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ANOVA showed a significant main effect of the drug on
attack bites [F(1, 14)=11.591, p=0.004] and sideway
threats [F(1, 14)=5.094, p=0.041]. Both ethanol and
baclofen reduced the frequency of tail rattles. Significant
main effects of the drug [F(1, 14)=9.674, p=0.008] and
ethanol [F(1, 14)=5.191, p=0.039] were observed on tail
rattles. There was no significant effect of baclofen on non-
aggressive behaviors (Table 4).

Antagonist (phaclofen, 0.3 nmol)

There was no significant interaction or main effect of
phaclofen on any behaviors (Fig. 4b, Table 4). Only the
main effects of ethanol were significant on the frequency
of tail rattles [F(1, 15)=7.642, p=0.014] and grooming
[F(1, 15)=5.544, p=0.033].

Discussion

A moderate dose of alcohol can promote heightened
aggressive behaviors in a certain proportion of the
population, and this phenomenon is observed in several
species including humans, monkeys, rats, and mice
(Fulwiler et al. 2005; Higley et al. 1996; Miczek et al.
1998, 2004b; Virkkunen et al. 1996; Winslow and Miczek
1985). The present results support a role of GABAA

receptors in the DRN in the aggression-heightening effect
of alcohol in mice. Previously, Fish et al. (2001) showed
that systemic administration of the neurosteroid, allopreg-
nanolone, which acts as a positive allosteric modulator at
GABAA receptors, enhanced the pro-aggressive effect of
alcohol in mice. A low dose of ethanol (0.6 g/kg) enhanced
the pro-aggressive effect of allopregnanolone in the animals
who engaged at higher levels of aggressive behavior after
ethanol consumption compared to their basal fighting in the
absence of ethanol (alcohol-heightened aggressors, AHA),
whereas this interactive effect was not observed in alcohol-
non-heightened aggressors (ANA). The current data pro-
vide evidence that the GABAA receptors in the DRN may
be critical for the individual vulnerability to alcohol-
heightened aggression. The GABAA agonist, muscimol,
when microinjected into the DRN, escalated the frequency
of attack bites only after ethanol consumption, but not in
the absence of ethanol. Therefore, the strong activation of
GABAA receptors in the DRN by ethanol plus muscimol
can induce higher vulnerability to alcohol-heightened
aggression. Interestingly, when AHA and ANA individuals
were separately analyzed, intra-DRN muscimol escalated
attack bites only in AHA animals, but not in ANA mice.
One implication of these results appears to be that AHA
animals may be characterized by higher GABAA receptor
activation due to ethanol relative to ANA animals. It is
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possible that AHA animals have a higher GABAA receptor
expression in the DRN compared to ANA. This hypothesis
can be addressed in future studies by comparing GABAA

receptor expression in the DRN between AHA and ANA
animals. In this study, we used previously determined
optimally effective doses of ethanol (1.0 g/kg) and
muscimol (0.006 nmol). Future studies will address the
dose-effect functions for alcohol and muscimol in order to
investigate whether the alcohol-muscimol interaction is
specific to the AHA individuals or whether ANA individuals
can also show heightened aggression with different dose
combinations.

In contrast, the GABAA antagonist bicuculline, at a
subconvulsant dose, did not inhibit alcohol-heightened
aggression. It is possible that bicuculline did not block the
site of action for ethanol on GABAA receptors and that
1.0 g/kg of ethanol was sufficiently effective to promote
heightened aggression even in the presence of a low dose of
bicuculline (0.006 nmol). Interestingly, bicuculline inhibited
several behavioral acts in the absence of ethanol (e.g., attack
bites and walking), but those effects of bicuculline were
rescued by ethanol consumption.

Low doses of alcohol act preferentially via selected
GABAA subtype compositions including extrasynaptic
GABAA receptors that contain α4β2/3δ and α6β2/3δ
subunits (Hanchar et al. 2005; Liang et al. 2007;
Sundstrom-Poromaa et al. 2002; Wallner et al. 2006; Wei
et al. 2004); however, considerable debate continues about

the selectivity of the subunit requirement for specific
alcohol actions (Korpi et al. 2007). Also, chronic alcohol
treatments reduced the expression of α1 subunits of
GABAA receptors and increased or decreased the expres-
sion of α4 subunits in the amygdala and cerebral cortex,
respectively (Devaud et al. 1995; Matthews et al. 1998;
Papadeas et al. 2001). It is possible that GABAA receptor
subunit compositions in the DRN differ between AHA and
ANA mice, and this difference contributes to the sensitivity
to the pro-aggressive property of alcohol. Systemic admin-
istration of GABAA-α1 subunit preferring antagonist β-CCt
inhibited alcohol-heightened aggression, suggesting the α1

subunit as a functional target (de Almeida et al. 2004).
However, β-CCt also reduced species-typical aggression,
and the α1 subunit-preferring agonist zolpidem failed to
potentiate pro-aggressive effects of ethanol. Further explo-
ration with more selectively acting compounds will be
required to identify the subtypes of GABAA receptor that
specifically modulate alcohol-heightened aggression.

GABAB receptors have also attracted considerable
interest, primarily because agonists and positive modulators
of this receptor suppress the intake of alcohol and other
drugs (Besheer et al. 2004; Brebner et al. 2002; Colombo et
al. 2004; Flannery et al. 2004; Maccioni et al. 2005, 2008;
Orru et al. 2005; Walker and Koob 2007). Therefore, we
examined the interaction between ethanol and the GABAB

receptors in the DRN. We found that the local administra-
tion of the GABAB receptor agonist into the DRN did not

Agonist

H2O EtOH

Control Baclofen Control Baclofen

Pursuit 0.7+0.2 0.9+0.3 0.9+0.3 1.7+0.6

Sideway threatsa 27.7+4.4 41.7+7.1 32.0+7.6 32.9+4.3

Attack bitea 20.1+2.2 32.5+3.8 23.9+3.3 33.7+4.8

Tail rattleb,a 31.1+7.3 10.0+3.4 14.4+2.6 5.8+1.6

Grooming 27.3+8.4 18.7+4.8 32.4+8.0 17.9+3.0

Rearing 17.4+4.6 16.6+4.8 18.2+4.1 10.3+3.0

Walking 60.0+5.7 71.3+6.6 62.8+4.9 71.5+7.4

Contact 17.9+7.0 15.4+5.1 12.9+4.1 21.5+11.1

Antagonist

H2O EtOH

Control Phaclofen Control Phaclofen

Pursuit 0.6+0.2 0.9+0.3 0.8+0.3 1.6+0.6

Sideway threats 27.0+4.6 28.1+4.4 31.7+7.2 29.6+5.1

Attack bite 19.4+2.4 21.8+3.6 23.5+3.1 26.6+3.1

Tail rattleb 31.3+7.6 26.0+6.3 13.6+2.5 15.4+4.0

Groomingb 27.4+8.7 22.4+5.0 34.9+7.9 43.7+6.7

Rearing 18.3+4.9 20.3+5.6 17.6+3.9 17.5+4.9

Walking 61.1+6.0 65.3+6.9 62.5+4.6 66.9+6.4

Contact 16.9+7.4 11.9+4.4 14.6+4.2 9.7+3.7

Table 4 Effects of intra-DRN
microinjection of GABAB

receptor agonist (baclofen) and
antagonist (phaclofen) on
aggressive and non-aggressive
behaviors after water or 1.0 g/kg
alcohol (EtOH) consumption

a significant main effect of
drug (p<0.05)
b significant main effect of
alcohol (p<.05)
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enhance the aggression-heightening effects of ethanol, but
escalated aggressive behavior independent of whether the
animal consumed ethanol or water. This finding is
consistent with our previous study without any self-
administration of ethanol or water (Takahashi et al. 2010).
It appears that different neurobiological mechanisms un-
derlie alcohol-heightened aggression (GABAA dependent)
and baclofen-escalated aggression (GABAB dependent).
Further investigation will be required to address how
GABAA and GABAB receptors in the DRN promote
different types of aggressive behaviors. GABAB receptors
are localized on presynaptic terminals of afferent neurons
(e.g., GABAergic and glutamatergic) in addition to post-
synaptic 5-HT neurons (Bowery et al. 2002; Cryan and
Kaupmann 2005), and we have shown that GABAB

receptors on presynaptic terminals may be the critical target
for the pro-aggressive effect of baclofen (Takahashi et al.
2010). In contrast, GABAA receptors seem to modulate
mainly postsynaptic serotonergic activity in the DRN;
microinfusion of the GABAA receptor agonists into the
DRN consistently inhibited 5-HT neuronal activity (Colmers
andWilliams 1988; Gallager and Aghajanian 1976; Innis and
Aghajanian 1987; Judge et al. 2004). Thus, GABAA and
GABAB receptors may modulate either pre- or post-synaptic
neurons or different subsets of 5-HT neurons in the DRN.

Acknowledgements This research was supported by NIAAA grant
AA13983.

References

Addolorato G, Leggio L, Abenavoli L, Agabio R, Caputo F, Capristo
E, Colombo G, Gessa GL, Gasbarrini G (2006) Baclofen in the
treatment of alcohol withdrawal syndrome: a comparative study
vs diazepam. Am J Med 119:276–278

Aguayo LG (1990) Ethanol potentiates the GABAA-activated Cl−

current in mouse hippocampal and cortical neurons. Eur J
Pharmacol 187:127–130

Allan AM, Harris RA (1987) Involvement of neuronal chloride
channels in ethanol intoxication, tolerance, and dependence.
Recent Dev Alcohol 5:313–325

Arikan R, Blake NM, Erinjeri JP, Woolsey TA, Giraud L, Highstein
SM (2002) A method to measure the effective spread of focally
injected muscimol into the central nervous system with electro-
physiology and light microscopy. J Neurosci Methods 118:51–
57

Ariwodola OJ, Weiner JL (2004) Ethanol potentiation of GABAergic
synaptic transmission may be self-limiting: role of presynaptic
GABAB receptors. J Neurosci 24:10679–10686

Arnone M, Dantzer R (1980) Effects of diazepam on extinction
induced aggression in pigs. Pharmacol Biochem Behav 13:27–30

Azmitia EC, Segal M (1978) An autoradiographic analysis of the
differential ascending projections of the dorsal and median raphe
nuclei in the rat. J Comp Neurol 179:641–668

Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G,
Braestrup C, Bateson AN, Langer SZ (1998) International union
of pharmacology. XV. Subtypes of g-aminobutyric acidA

receptors: classification on the basis of subunit structure and
receptor function. Pharmacol Rev 50:291–313

Belin MF, Nanopoulos D, Didier M, Aguera M, Steinbusch H,
Verhofstad A, Maitre M, Pujol JF (1983) Immunohistochemical
evidence for the presence of g-aminobutyric acid and serotonin in
one nerve cell. A study on the raphe nuclei of the rat using
antibodies to glutamate decarboxylase and serotonin. Brain Res
275:329–339

Besheer J, Lepoutre V, Hodge CW (2004) GABAB receptor agonists
reduce operant ethanol self-administration and enhance ethanol
sedation in C57BL/6 J mice. Psychopharmacology 174:358–366

Bond AJ, Curran HV, Bruce MS, O’Sullivan G, Shine P (1995)
Behavioural aggression in panic disorder after 8 weeks’ treatment
with alprazolam. J Affect Disord 35:117–123

Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB

receptor site distribution in the rat central nervous system.
Neuroscience 20:365–383

Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Bonner
RM, TI ESJ (2002) International union of pharmacology.
XXXIII. Mammalian γ-aminobutyric acidB receptors: structure
and function. Pharmacol Rev 54:247–264

Brebner K, Childress AR, Roberts DC (2002) A potential role for
GABAB agonists in the treatment of psychostimulant addiction.
Alcohol Alcohol 37:478–484

Caldwell EE, Miczek KA (2008) Long-term citalopram maintenance
in mice: selective reduction of alcohol-heightened aggression.
Psychopharmacology 196:407–416

Chiavegatto S, Quadros IMH, Ambar G, Miczek KA (2010)
Individual vulnerability to escalated aggressive behavior by a
low dose of alcohol: decreased serotonin receptor mRNA in the
prefrontal cortex of male mice. Genes Brain Behav 9:110–119

Christmas AJ, Maxwell DR (1970) A comparison of the effects of
some benzodiazepines and other drugs on aggressive and
exploratory behaviour in mice and rats. Neuropharmacology
9:17–29

Cloninger CR, Sigvardsson S, Gilligan SB, Von Knorring AL, Reich
T, Bohman M (1989) Genetic heterogeneity and the classification
of alcoholism. In: Gordis E (ed) Alcohol Research from Bench to
Bedside. Haworth Press, Binghampton, NY, pp 3–16

Cole HF, Wolf HH (1970) Laboratory evaluation of aggressive
behavior of the grasshopper mouse (Onychomys). J Pharm Sci
59:969–971

Colmers WF, Williams JT (1988) Pertussis toxin pretreatment
discriminates between pre- and postsynaptic actions of baclofen
in rat dorsal raphe nucleus in vitro. Neurosci Lett 93:300–306

Colombo G, Agabio R, Carai MA, Lobina C, Pani M, Reali R,
Addolorato G, Gessa GL (2000) Ability of baclofen in reducing
alcohol intake and withdrawal severity: I. Preclinical evidence.
Alcohol Clin Exp Res 24:58–66

Colombo G, Vacca G, Serra S, Brunetti G, Carai MA, Gessa GL
(2003) Baclofen suppresses motivation to consume alcohol in
rats. Psychopharmacology 167:221–224

Colombo G, Addolorato G, Agabio R, Carai MA, Pibiri F, Serra S,
Vacca G, Gessa GL (2004) Role of GABAB receptor in alcohol
dependence: reducing effect of baclofen on alcohol intake and
alcohol motivational properties in rats and amelioration of alcohol
withdrawal syndrome and alcohol craving in human alcoholics.
Neurotox Res 6:403–414

Cryan JF, Kaupmann K (2005) Don’t worry ‘B’ happy!: a role for
GABAB receptors in anxiety and depression. Trends Pharmacol
Sci 26:36–43

Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower
brain stem. Experientia 20:398–399

Daoust M, Saligaut C, Lhuintre JP, Moore N, Flipo JL, Boismare F
(1987) GABA transmission, but not benzodiazepine receptor
stimulation, modulates ethanol intake by rats. Alcohol 4:469–472

Psychopharmacology (2010) 211:467–477 475



Dar MS, Wooles WR (1985) GABA mediation of the central effects of
acute and chronic ethanol in mice. Pharmacol Biochem Behav
22:77–84

de Almeida RMM, Rowlett JK, Cook JM, Yin W, Miczek KA (2004)
GABAA/α1 receptor agonists and antagonists: effects on species-
typical and heightened aggressive behavior after alcohol self-
administration in mice. Psychopharmacology 172:255–263

de Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor
agonists and aggression: A pharmacological challenge of the
serotonin deficiency hypothesis. Eur J Pharmacol 526:125–139

Devaud LL, Smith FD, Grayson DR, Morrow AL (1995) Chronic
ethanol consumption differentially alters the expression of g-
aminobutyric acidA receptor subunit mRNAs in rat cerebral
cortex: competitive, quantitative reverse transcriptase-polymerase
chain reaction analysis. Mol Pharmacol 48:861–868

DiMascio A (1973) The effects of benzodiazepines on aggression:
reduced or increased? Psychopharmacologia 30:95–102

Edeline JM, Hars B, Hennevin E, Cotillon N (2002) Muscimol
diffusion after intracerebral microinjections: a reevaluation based
on electrophysiological and autoradiographic quantifications.
Neurobiol Learn Mem 78:100–124

Ferrari PF, Parmigiani S, Rodgers RJ, Palanza P (1997) Differential
effects of chlordiazepoxide on aggressive behavior in male mice:
the influence of social factors. Psychopharmacology 134:258–
265

File SE, Zharkovsky A, Gulati K (1991) Effects of baclofen and
nitrendipine on ethanol withdrawal responses in the rat. Neuro-
pharmacology 30:183–190

Fish EW, Faccidomo S, DeBold JF, Miczek KA (2001) Alcohol,
allopregnanolone and aggression in mice. Psychopharmacology
153:473–483

Flannery BA, Garbutt JC, Cody MW, Renn W, Grace K, Osborne M,
Crosby K, Morreale M, Trivette A (2004) Baclofen for alcohol
dependence: a preliminary open-label study. Alcohol Clin Exp Res
28:1517–1523

Fulwiler C, Eckstine J, Kalsy S (2005) Impulsive-aggressive traits,
serotonin function, and alcohol-enhanced aggression. J Clin
Pharmacol 45:94–100

Gallager DW, Aghajanian GK (1976) Effect of antipsychotic drugs on
the firing of dorsal raphe cells. II. Reversal by picrotoxin. Eur J
Pharmacol 39:357–364

Gervasoni D, Peyron C, Rampon C, Barbagli B, Chouvet G, Urbain
N, Fort P, Luppi PH (2000) Role and origin of the GABAergic
innervation of dorsal raphe serotonergic neurons. J Neurosci
20:4217–4225

Grant EC, Mackintosh JH (1963) A comparison of the social postures
of some common laboratory rodents. Behaviour 21:246–295

Hanchar HJ, Dodson PD, Olsen RW, Otis TS, Wallner M (2005)
Alcohol-induced motor impairment caused by increased extra-
synaptic GABAA receptor activity. Nat Neurosci 8:339–345

Higley JD, Mehlman PT, Poland RE, Taub DM, Vickers J, Suomi SJ,
Linnoila M (1996) CSF testosterone and 5-HIAA correlate with
different types of aggressive behaviors. Biol Psychiatry 40:1067–
1082

Innis RB, Aghajanian GK (1987) Pertussis toxin blocks 5-HT1A and
GABAB receptor-mediated inhibition of serotonergic neurons.
Eur J Pharmacol 143:195–204

Judge SJ, Ingram CD, Gartside SE (2004) GABA receptor modulation
of 5-HT neuronal firing: characterization and effect of moderate
in vivo variations in glucocorticoid levels. Neurochem Int
45:1057–1065

Korpi ER, Grunder G, Luddens H (2002) Drug interactions at GABAA

receptors. Prog Neurobiol 67:113–159
Korpi ER, Debus F, Linden AM, Malecot C, Leppa E, Vekovischeva

O, Rabe H, Bohme I, Aller MI, Wisden W, Luddens H (2007)
Does ethanol act preferentially via selected brain GABAA

receptor subtypes? the current evidence is ambiguous. Alcohol
41:163–176

Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL,
Helfand RS, Morrow AL (2009) The role of GABAA receptors in
the acute and chronic effects of ethanol: a decade of progress.
Psychopharmacology 205:529–564

Li SP, Park MS, Jin GZ, Kim JH, Lee HL, Lee YL, Kim JH, Bahk JY,
Park TJ, Koh PO, Chung BC, Kim MO (2005) Ethanol
modulates GABAB receptor expression in cortex and hippocam-
pus of the adult rat brain. Brain Res 1061:27–35

Liang J, Suryanarayanan A, Abriam A, Snyder B, Olsen RW,
Spigelman I (2007) Mechanisms of reversible GABAA receptor
plasticity after ethanol intoxication. J Neurosci 27:12367–12377

Liljequist S, Engel J (1982) Effects of GABAergic agonists and
antagonists on various ethanol-induced behavioral changes.
Psychopharmacology 78:71–75

Maccioni P, Serra S, Vacca G, Orru A, Pes D, Agabio R, Addolorato
G, Carai MA, Gessa GL, Colombo G (2005) Baclofen-induced
reduction of alcohol reinforcement in alcohol-preferring rats.
Alcohol 36:161–168

Maccioni P, Fantini N, Froestl W, Carai MA, Gessa GL, Colombo G
(2008) Specific reduction of alcohol’s motivational properties by
the positive allosteric modulator of the GABAB receptor,
GS39783—comparison with the effect of the GABAB receptor
direct agonist, baclofen. Alcohol Clin Exp Res 32:1558–1564

Martin JH (1991) Autoradiographic estimation of the extent of
reversible inactivation produced by microinjection of lidocaine
and muscimol in the rat. Neurosci Lett 127:160–164

Matthews DB, Devaud LL, Fritschy JM, Sieghart W, Morrow AL
(1998) Differential regulation of GABAA receptor gene expres-
sion by ethanol in the rat hippocampus versus cerebral cortex. J
Neurochem 70:1160–1166

Michelsen KA, Schmitz C, Steinbusch HW (2007) The dorsal raphe
nucleus—from silver stainings to a role in depression. Brain Res
Rev 55:329–342

Miczek KA (1974) Intraspecies aggression in rats: effects of d-
amphetamine and chlordiazepoxide. Psychopharmacologia
39:275–301

Miczek KA, de Almeida RMM (2001) Oral drug self-administration
in the home cage of mice: alcohol-heightened aggression and
inhibition by the 5-HT1B agonist anpirtoline. Psychopharmacol-
ogy 157:421–429

Miczek KA, O’Donnell JM (1978) Intruder-evoked aggression in
isolated and nonisolated mice: Effects of psychomotor stimulants
and l-dopa. Psychopharmacology 57:47–55

Miczek KA, Weerts EM, Tornatzky W, DeBold JF, Vatne TM (1992)
Alcohol and “bursts” of aggressive behavior: Ethological analysis of
individual differences in rats. Psychopharmacology 107:551–563

Miczek KA, Barros HM, Sakoda L, Weerts EM (1998) Alcohol and
heightened aggression in individual mice. Alcohol Clin Exp Res
22:1698–1705

Miczek KA, Fish EW, DeBold JF, de Almeida RMM (2002) Social
and neural determinants of aggressive behavior: pharmacother-
apeutic targets at serotonin, dopamine and g-aminobutyric acid
systems. Psychopharmacology 163:434–458

Miczek KA, Faccidomo S, de Almeida RMM, Bannai M, Fish EW,
DeBold JF (2004a) Escalated aggressive behavior: new pharma-
cotherapeutic approaches and opportunities. Ann N Y Acad Sci
1036:336–355

Miczek KA, Fish EW, de Almeida RMM, Faccidomo S, DeBold JF
(2004b) Role of alcohol consumption in escalation to violence.
Ann N Y Acad Sci 1036:278–289

Moore EM, Serio KM, Goldfarb KJ, Stepanovska S, Linsenbardt DN,
Boehm SL (2007) GABAergic modulation of binge-like ethanol
intake in C57BL/6 J mice. Pharmacol Biochem Behav 88:105–
113

476 Psychopharmacology (2010) 211:467–477



Nanopoulos D, Belin MF, Maitre M, Vincendon G, Pujol JF (1982)
Immunocytochemical evidence for the existence of GABAergic
neurons in the nucleus raphe dorsalis. Possible existence of
neurons containing serotonin and GABA. Brain Res 232:375–
389

National Research Council (1996) Guide for the Care and Use of
Laboratory Animals. National Academy Press, Washington DC

Olivier B (2004) Serotonin and aggression. Ann N Y Acad Sci
1036:382–392

Olivier B, Mos J, Van Oorschot R (1985) Maternal aggression in rats:
effects of chlordiazepoxide and fluprazine. Psychopharmacology
86:68–76

Olsen RW (1982) Drug interactions at the GABA receptor-ionophore
complex. Annu Rev Pharmacol Toxicol 22:245–277

Orru A, Lai P, Lobina C, Maccioni P, Piras P, Scanu L, Froestl W,
Gessa GL, Carai MA, Colombo G (2005) Reducing effect of the
positive allosteric modulators of the GABAB receptor, CGP7930
and GS39783, on alcohol intake in alcohol-preferring rats. Eur J
Pharmacol 525:105–111

Palmer MR, Hoffer BJ (1990) GABAergic mechanisms in the
electrophysiological actions of ethanol on cerebellar neurons.
Neurochem Res 15:145–151

Papadeas S, Grobin AC, Morrow AL (2001) Chronic ethanol
consumption differentially alters GABAA receptor α1 and α4
subunit peptide expression and GABAA receptor-mediated 36Cl−

uptake in mesocorticolimbic regions of rat brain. Alcohol Clin
Exp Res 25:1270–1275

Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic
coordinates, 2nd edn. Academic, San Diego

Rabow LE, Russek SJ, Farb DH (1995) From ion currents to genomic
analysis: recent advances in GABAA receptor research. Synapse
21:189–274

Sieghart W (1995) Structure and pharmacology of g-aminobutyric
acidA receptor subtypes. Pharmacol Rev 47:181–234

Sundstrom-Poromaa I, Smith DH, Gong QH, Sabado TN, Li X, Light
A, Wiedmann M, Williams K, Smith SS (2002) Hormonally
regulated α4β2δ GABAA receptors are a target for alcohol. Nat
Neurosci 5:721–722

Suzdak PD, Schwartz RD, Skolnick P, Paul SM (1986) Ethanol
stimulates g-aminobutyric acid receptor-mediated chloride trans-
port in rat brain synaptoneurosomes. Proc Natl Acad Sci U S A
83:4071–4075

Takahashi A, Shimamoto A, Boyson CO, DeBold JF, Miczek KA
(2010) GABAB receptor modulation of serotonin neurons in the
dorsal raphé nucleus and escalation of aggression in mice. J
Neurosci (in press)

Virkkunen M, Linnoila M (1993) Brain serotonin, type II alcoholism
and impulsive violence. J Stud Alcohol Suppl 11:163–169

Virkkunen M, Eggert M, Rawlings R, Linnoila M (1996) A
prospective follow-up study of alcoholic violent offenders and
fire setters. Arch Gen Psychiatry 53:523–529

Walker BM, Koob GF (2007) The g-aminobutyric acidB receptor
agonist baclofen attenuates responding for ethanol in ethanol-
dependent rats. Alcohol Clin Exp Res 31:11–18

Wallner M, Hanchar HJ, Olsen RW (2006) Low dose acute alcohol effects
on GABAA receptor subtypes. Pharmacol Ther 112:513–528

Wang QP, Ochiai H, Nakai Y (1992) GABAergic innervation of
serotonergic neurons in the dorsal raphe nucleus of the rat studied
by electron microscopy double immunostaining. Brain Res Bull
29:943–948

Weerts EM, Miczek KA (1996) Primate vocalizations during social
separation and aggression: effects of alcohol and benzodiazepines.
Psychopharmacology 127:255–264

Wei W, Faria LC, Mody I (2004) Low ethanol concentrations
selectively augment the tonic inhibition mediated by delta
subunit-containing GABAA receptors in hippocampal neurons. J
Neurosci 24:8379–8382

Weisman AM, Berman ME, Taylor SP (1998) Effects of clorazepate,
diazepam, and oxazepam on a laboratory measurement of
aggression in men. Int Clin Psychopharmacol 13:183–188

Winslow JT, Miczek KA (1985) Social status as determinant of
alcohol effects on aggressive behavior in squirrel monkeys
(Saimiri sciureus). Psychopharmacology 85:167–172

Wu PH, Poelchen W, Proctor WR (2005) Differential GABAB receptor
modulation of ethanol effects on GABAA synaptic activity in
hippocampal CA1 neurons. J Pharmacol Exp Ther 312:1082–1089

Psychopharmacology (2010) 211:467–477 477


	GABAA receptors in the dorsal raphé nucleus of mice: escalation of aggression after alcohol consumption
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods
	Subjects
	Ethanol self-administration
	Resident-intruder test and alcohol-heightened aggressive behavior
	Surgery and cannulation
	Microinjection and aggression test
	Histology
	Blood ethanol concentration (BEC) measurement
	Behavior analysis and statistics

	Results
	Alcohol-heightened aggression
	GABAA receptors in the DRN and alcohol-heightened aggression
	Agonist (muscimol, 0.006&newnbsp;nmol)
	Antagonist (bicuculline, 0.006&newnbsp;nmol)

	Blood ethanol concentration
	GABAB receptors in the DRN and alcohol-heightened aggression
	Agonist (baclofen, 0.06&newnbsp;nmol)
	Antagonist (phaclofen, 0.3&newnbsp;nmol)


	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


