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Abstract
Aim The purpose of this study was to determine if acute
nicotine attenuated ketamine-induced regional cerebral
blood flow (rCBF).
Method Following 2–4 h of nicotine abstinence, healthy
chronic smokers participated in four sets of rCBF studies,
H2

15O positron emission tomography, during a simple
sensory motor control task. The four drug conditions
studied were placebo, ketamine alone, nicotine alone, and
ketamine+nicotine.
Results Intravenous ketamine increased rCBF in frontal,
orbital–frontal, and anterior cingulate areas. Nicotine alone
induced marked rCBF elevations in the lateral occipital
cortex and rCBF suppressions in the basal ganglia and
anterior cingulate cortex. Nicotine added to ketamine
attenuated the ketamine-induced elevated rCBF in the
anterior cingulate cortex but caused a marked rCBF
increase in the orbital frontal region.

Conclusion This study illustrates the interactive effects of
ketamine, an NMDA receptor antagonist, and nicotine in
multiple brain regions. Nicotine substantially ameliorated
the effects of ketamine on anterior cingulate rCBF and,
when given alone, markedly suppressed anterior cingulate
rCBF. The enhanced, synergistic orbitofrontal effects
observed with ketamine and nicotine together suggest a
marked increase in excitatory neurotransmission in a brain
region often linked to psychosis, reward, and addictive
behaviors.
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Introduction

Accumulating evidence indicates that hypofunction of the
glutamate N-methyl-D-aspartate receptor (NMDAR) is
involved in the pathophysiology of schizophrenia (Coyle
et al. 2002; Krystal et al. 2003;Olney et al. 1999;
Tamminga and Holcomb 2005). NMDAR antagonists, such
as phencyclidine (PCP) and ketamine, induce positive,
negative, and cognitive symptoms in healthy adult humans
similar to that observed in schizophrenia (Krystal et al.
1994; Newcomer et al. 1999; Rowland et al. 2005a,b;
Rowland 2005). Ketamine exacerbates existing or dormant
symptoms in patients with schizophrenia (Lahti et al.
1995a,b; Malhotra et al. 1997). In nonhuman animal
research, NMDAR antagonists induce behavioral altera-
tions (Jentsch et al. 1997) and neurochemical changes
(Adams et al. 2002; Gao et al. 1993) that translate well to
features of schizophrenia. Hence, NMDAR antagonism
appears to be a good model of schizophrenia and provides a
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framework to test novel drug agents for the treatment of
schizophrenia.

Glutamatergic and cholinergic systems, specifically the
NMDA and nicotinic receptors, interact in a complex
manner (Deutsch et al. 2003; McGehee et al. 1995; Toth
et al. 1992). Nicotine has been shown to increase frontal
extracellular glutamate concentrations through the stimulation
of α4β2 nicotinic receptors (Gioanni et al. 1999). Animal
studies show that nicotine ameliorates some behavioral and
electrophysiological (Cromwell and Woodward 2007) effects
of NMDAR antagonism (Levin et al. 1996; Tizabi et al.
1998). As such, drugs that target the nicotinic system may be
good candidates to test with the NMDAR hypofunction
model (Buccafusco and Terry 2009). This is supported by
the implication that the nicotinic system is involved in the
pathophysiology of schizophrenia. Patients exhibit a higher
smoking rate, heavier smoking patterns, and extract more
nicotine when smoking than the general population (Dalack
et al. 1998; Strassnig et al. 2006). Postmortem studies have
revealed decreased nicotinic receptor number in brains of
patients with schizophrenia (Ripoll et al. 2004). Acute
nicotine administration has been shown to improve negative
symptoms (Smith et al. 2002) and various cognitive impair-
ments (Depatie et al. 2002; Harris et al. 2004; Murphy and
Glanzman 1999; Smith et al. 2002) in patients with
schizophrenia. In another study of non-psychiatric subjects,
chronic smokers and nonsmokers exhibited markedly differ-
ent electrophysiological responses to intravenous ketamine
(Knott et al. 2006). These studies point toward important
relationships between nicotine and glutamate interactions,
especially as they relate to negative symptoms and cognition.

Nicotine’s action on local cerebral blood flow in human
studies has demonstrated consistent results (Domino et al.
2000; London 1990; Stapleton et al. 2003; Zubieta et al.
2005). Its administration to chronic smokers reliably enhan-
ces blood flow in visual cortex and suppresses flow to the
anterior cingulate cortex. In marked contrast, intravenous
ketamine, which elicits robust glutamate release, promotes
blood flow elevations in anterior cingulate, orbital frontal,
and dorsal frontal regions (Breier et al. 1997; Holcomb et al.
2005; Rowland 2005; Vollenweider et al. 1997).

The purpose of this study was to determine if nicotine
attenuated the ketamine-induced regional cerebral blood
flow (rCBF) alterations in healthy humans (Holcomb et al.
2001). We hypothesized that acute nicotine would normal-
ize the frontal rCBF elevations and diminish psychomi-
metic behaviors associated with NMDAR antagonism.
Nicotine alone was expected to induce those patterns
described above. But because nicotine’s actions are diverse,
we also expected to observe nicotine’s indirect actions
through its stimulation of dopamine release in the basal
ganglia. Whereas ketamine is expected to precipitate
glutamate release by blocking NMDA receptors on inhib-

itory GABA interneurons, dopamine released secondary to
nicotine action is expected to inhibit glutamate release. This
dynamic interaction, one drug-promoting glutamate release
and the other suppressing it, was the focus of this study.

This study is unique in providing brain activity infor-
mation arising from the interaction between glutamatergic
and cholinergic systems, which are especially important to
schizophrenia and drug abuse research.

Methods

The University of Maryland School of Medicine Human
Institutional Review Board and the Johns Hopkins Joint
Committee on Clinical Investigation approved this study.

Subjects

Nine healthy subjects (five female and four male; mean age,
30.8; right-handed; chronic smokers for 10 years or longer,
five cigarettes per day or more) participated in this study.
Inclusion/exclusion criteria were as follows: (1) no past or
present psychiatric disorder as determined with the Struc-
tured Clinical Interview for Diagnostic and Statistical
Manual of Mental Disorders, fourth edition, Non-Patient
Version (Spitzer et al. 1992); (2) no first-degree relatives
with a diagnosis of a psychotic disorder; (3) no current
medical illnesses as determined with a physical exam and
laboratory tests; and (4) no previous exposure to ketamine
or PCP. All subjects gave written informed consent prior to
the study and were paid for their participation.

Task description

A simple visual task, with low cognitive demand, was
employed (Fig. 1). Pilot testing showed that ketamine did
not disrupt accuracy or response time on this task. We
expected the low demand task to provide a common
behavioral state among subjects. The potential confound of
performance-related rCBF activity differing across the drug
conditions was minimized. For this task, subjects indicated
by right- or left-hand button press the displacement side of a
rectangular block on the computer screen when the “test

Fig. 1 Subjects were required to press a button in the right or left
hand to indicate the displacement side of the rectangle
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image” was presented following a cueing image. The hand
used to press the button was congruent with the direction of
the displaced object’s location. The number of right and left
trials were balanced within a given scan. Accuracy and
reaction time were recorded for each trial.

Ketamine screening

Prior to scanning, all subjects underwent a ketamine test
infusion to ensure drug tolerability. Subjects performed
variations of the visual task during placebo and ketamine
conditions. A test dose of nicotine spray (0.5 mg in each
nostril) was administered 20 min after the ketamine
infusion was stopped. This helped to demonstrate the
subject’s tolerance of the intranasal nicotine. Blood pressure
and heart rate were monitored throughout the session.

PET scanning

Positron emission tomography (PET) procedures were
conducted at the Johns Hopkins University Cyclotron
Facility. We studied participants on two separate days
and used radiolabeled water (H2

15O) to measure rCBF
(Herscovitch et al. 1983; Raichle et al. 1983). Subjects
fasted overnight and refrained from smoking for at least 2 h
(2–4 h) before the study. Tobacco withdrawal symptoms
were not assessed prior to the PET scans. Subjects also
abstained from alcohol, caffeine, and medications overnight
prior to the study. PET procedures were performed on a GE
Advance Tomograph (Waukesha, WI, USA) in 3D acqui-
sition mode. Catheters were placed in the antecubital veins
of both arms: one for isotope injection and drug level blood
sampling and one for i.v. ketamine/saline infusions.
Transmission scans were obtained prior to tracer infusions

to provide attenuation correction information; 12 mCi of
H2

15O were injected per scan. Task performance began 20 s
before isotope infusion and continued throughout each
scan, which lasted 90 s. Scans were separated by 7 to 8 min
except when nicotine was given. On those occasions, the
interscan interval was approximately 12 min.

Placebo (saline), nicotine, ketamine, and ketamine+
nicotine conditions were assessed (Fig. 2). Four PET blood
flow scans were obtained in association with each drug
condition. In the analyses discussed here, only two scans
from each drug condition are considered. This is due to the
fact that only two of the four drug condition scans were
associated with a control behavior. The other two scans
were associated with a match-to-sample task that required
working memory and are not presented.

During one session subjects received placebo infusion
followed by intranasal nicotine administration. During the
other session, subjects received ketamine infusion followed
by intranasal nicotine spray. Session order, placebo-first, or
ketamine-first session was pseudo-randomized and counter-
balanced across subjects. Ketamine was administered in a
double-blinded fashion. Ketamine was administered with a
computerized infusion pump starting with a loading dose of
0.2 mg/kg over 10 min followed by a maintenance dose of
0.4 mg kg−1h−1. After four ketamine scans were obtained,
subjects were removed from the scanner and given nicotine
intranasal spray (0.5 mg/nostril=1.0 mg total); scanning
resumed immediately afterward. Psychiatric assessment
was completed at baseline, after the ketamine loading dose,
during ketamine steady-state infusion, post nicotine, and
during recovery. The rating scale consisted of the Brief
Psychiatric Rating Scale (Overall and Gorham 1962).
Blood samples for ketamine level determination were
collected at the same time as the ratings. A second

Fig. 2 The number of subjects
first given PET session 1 was
balanced with those given ses-
sion 2 initially. The entire PET
session lasted about 80 min
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transmission PET scan was acquired at the end of each
day’s session to provide additional attenuation information
for image reconstruction.

Behavioral assessment

To determine if participants experienced schizophrenia-like
features associated with ketamine administration, a 2 (drug
group: ketamine and placebo)×5 (time: baseline, loading,
steady-state, post-nicotine, and recovery) repeated measures
analysis of variance (ANOVA) was performed for the
BPRS total rating scores and positive and negative subscale
scores. When appropriate, significant findings were inves-
tigated with follow-up tests (Table 1).

PET data analysis

All scans were realigned and spatially normalized into the
stereotactic space of Talairach and Tournoux (1988).
Images were smoothed with a full width at half maximum
of 10×10×10 mm in the x, y, and z planes. Pixel rCBF
values were scaled using the ratio adjustment method. The
image data were analyzed using Statistical Parametric
Mapping (SPM99; Welcome Department of Cognitive
Neurology, London, England), where voxel by voxel
comparisons determined significant changes in rCBF
between the drug conditions (p≤0.01, corrected at the
cluster level). The significance of each cluster of activated
voxels was based on the magnitude of activation (z=2.36)
and spatial extent (corrected, p≤0.05, or uncorrected at
0.005; Friston et al. 1994, 1996; Poline et al. 1997).

Results

Behavioral and psychiatric rating scales

Three 2 (drug group: ketamine, placebo)×5(time: baseline,
loading, steady state, post-nicotine, and recovery) repeated
measures ANOVAs were performed for the BPRS total rating
scores and positive and negative symptom subscale scores.

Results revealed significant interactions for the total score
[F (1, 8)=7.0, p<0.05] and negative subscale [F (1, 8)=11.7,
p<0.05] and a trend interaction for the positive subscale
[F(1, 8)=3.8, p<0.06]. These scores increased during the
ketamine loading dose and steady-state time points and
decreased following nicotine administration, but these scores
did not change in the placebo condition. Follow-up tests
revealed a significant difference between ketamine and
placebo conditions during the loading dose time point [total,
t (8)=3.1, p<0.05; negative symptoms, t (8)=3.6, p<0.05].
Measurements taken at the steady-state time points
approached trend significance [total, t(8)=1.8, p=0.1; nega-
tive, t(8)=2.3, p=0.051]. There were no significant differ-
ences on psychiatric ratings between the ketamine+nicotine
and placebo+nicotine conditions. This suggests that nicotine
may attenuate the psychotomimetic reaction associated with
ketamine administration. Means and standard deviations
(SD) are presented in Table 2. No subject reported adverse
effects or recreational ketamine-like substance use during
follow-up phone contact.

The visual task elicited similar accuracy and response
times across all four conditions. The accuracy ranged from
97.5% to 100%, and the reaction times ranged from 731 to
748 ms.

Ketamine and nicotine blood levels

Ketamine plasma levels were not detectable at baseline but
rose to 65±24 ng/ml (mean±SD) following the loading dose.
At the mid-point of the study, immediately prior to nicotine
administration, the level averaged 88±22 ng/ml, and at the
completion of the nicotine+ketamine phase, the blood level
averaged 110±29 ng/ml. Nicotine blood levels did not change
significantly across conditions. In the four conditions, the
blood levels ranged from 5.2 to 6.5, ±0.5 ng/ml.

PET data

Regional activations are described in terms of Brodmann
areas from the Talairach atlas (Talairach and Tournoux
1988). Detailed activation results are shown in Table 2 and

Group/rating Baseline Post-loading Steady state Post-nicotine Recovery

Placebo/nicotine

BPRS positive 5 (0) 5 (0) 5 (0) 5 (0) 5 (0)

BPRS negative 4 (0) 4 (0) 4 (0) 4 (0) 4 (0)

BPRS total 20.1(0.4) 20.1 (0.4) 20.1(0.4) 20 (0) 20 (0)

Ketamine/nicotine

BPRS positive 5.1 (0.3) 5.7 (1.1) 5.1 (0.3) 5 (0) 5 (0)

BPRS negative 4 (0) 6.1 (1.8) 4.6 (0.7) 4.2 (0.67) 4 (0)

BPRS total 20.2(0.45) 23.8 (3.7) 21.3 (2.4) 20.2 (0.67) 20 (0)

Table 1 The main effect of
drug group [F(1, 8)=8.7, p<
0.05] was evident with ketamine
administration compared to
placebo

A main effect of time [F(4, 32)=
6.8, p<0.05] was also evident.
BPRS scores increased during
ketamine loading dose and
steady-state time points and
decreased following nicotine
administration
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Table 2 Image contrast statistics are based on a minimum cluster size of 100 voxels, above a threshold of T=2.36, p=0.01 (voxel size=2×2×
2 mm, one resel=164 voxels)

Region Name BA Cluster Size
(Voxel Number)

P_corrected P_uncorrected Voxel Z max x y z

Nicotine−placebo
Increase

Lateral occipital gyrus (L) 18 284 0.283 0.005 3.9 −26 −76 −8
Lateral occipital gyrus (R) 18 220 0.53 0.012 4 36 −78 −6

Decrease

Dentate nucleus (cerebellum) (R) * 413 0.073 0.001 5 20 −42 −26
Ventral striatum and putamen (L) * 2,269 0.0001 0.0001 4.8 −16 6 −8
Globus pallidus and putamen * 747 0.003 0.0001 4.6 26 −2 −4
Anterior cingulate (midline) 32 & 8 341 0.155 0.003 3.6 −2 32 36

Posterior cingulate and precuneus 31 & 7 708 0.004 0.0001 3.5 0 −26 46

Superior frontal cortex (R) 9 437 0.057 0.001 3.4 20 54 30

Ketamine−placebo
Increase

Orbital frontal cortex (R) 11 and 25 521 0.024 0.0001 5.2 20 14 −22
Insula (L) * 1,282 0.0001 0.0001 4.4 −38 16 10

Gyrus rectus (R) 11 1,685 0.0001 0.0001 4 8 48 −24
Orbital frontal cortex (R) 11 984 0.0001 0.0001 3.9 44 40 −18
Middle frontal cortex (L) 9 544 0.019 0.0001 3.7 −30 48 36

Decrease

Hippocampus/parahippocampus (L) 36 1,228 0.0001 0.0001 5.1 −34 −38 −10
Dentate nucleus (cerebellum) (R) * 5,583 0.0001 0.0001 5 24 −50 −24

(Ketamine+nicotine)−placebo
Increase

Orbital frontal cortex (midline) 11 and 25 7,195 0.0001 0.0001 6.8 −4 30 −24
Precuneus (L) 7 and 19 327 0.18 0.003 3.9 −14 −56 34

Decrease

Dentate nucleus (cerebellum) (R) * 12,427 0.0001 0.0001 5 22 −48 −26
Anterior cingulate cortex (midline) 32 and 6 1,309 0.0001 0.0001 5 6 6 46

Precentral gyrus 4 636 0.008 0.0001 4.5 −40 −16 40

Amygdala (R) * 437 0.057 0.001 4.3 12 −10 −24
(Ketamine+nicotine)−nicotine
Increase

Orbital frontal cortex (midline) 11 and 25 11,103 0.0001 0.0001 5.5 −4 32 −22
Superior Frontal Cortex (R) 9 413 0.073 0.001 4.3 18 52 28

Decrease

Dentate nucleus (cerebellum) (L) * 10,596 0.0001 0.0001 5.3 −24 −70 −20
Superior temporal gyrus (R) 22 298 0.245 0.004 5.1 46 −24 14

Superior temporal gyrus (L) 22 631 0.008 0.0001 3.9 −50 −26 0

Lateral occipital gyrus (L) 18 398 0.085 0.001 4.7 −32 −92 22

(Ketamine+nicotine)−ketamine

Increase

Orbital frontal cortex (midline) 11 and 25 1,469 0.0001 0.0001 6.3 4 30 −30
Precuneus (L) 7 and 19 509 0.027 0.0001 4.1 −18 −62 42

Decrease

Dentate Nucleus (Cerebellum) (L) * 1,646 0.0001 0.0001 5.1 −22 −56 −32
Dentate Nucleus (Cerebellum) (R) * 505 0.028 0.0001 4.2 18 −46 −26
Superior Temporal Gyrus (L) 38 1,932 0.0001 0.0001 4.8 −42 8 −16
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Fig. 3. Increased activity associated with ketamine, relative
to placebo, was observed primarily in ventral frontal brain
regions. Ketamine caused bilateral rCBF activation in the
superior (BA 8/10/11/21), middle (BA 11), and inferior
frontal (BA 47) regions as well as the insula. In the right
hemisphere, orbitofrontal (BA 11) and anterior cingulate
(BA 32) regions were increased. In the left hemisphere,
middle temporal (BA 21) regions were increased. De-
creased activity with ketamine, relative to placebo, was
observed in bilateral cerebellum and hippocampal/para-
hippocampal systems.

Nicotine, relative to placebo, evoked increased rCBF
activity bilaterally in the inferior occipital region (BA 18).
Decreased rCBF activity was observed in the right medial
frontal (BA 8/32), right anterior cingulate (BA 24), left

inferior frontal (BA 47), ventral striatum, left caudate/
putamen, and left cerebellum.

Ketamine+nicotine, relative to placebo, resulted in
increased activity in the bilateral orbitofrontal (BA 11),
right superior frontal (BA 9/10), bilateral superior temporal
(BA 22/38), and right inferior temporal (BA 20). Decreased
activity was observed in bilateral cerebellum, amygdala,
precentral gyrus, and anterior cingulate.

Discussion

The purpose of this study was to determine whether acute
nicotine administration diminishes the neural and behav-
ioral effects of intravenous ketamine. Because ketamine

Fig. 3 Regional cerebral blood
flow maps were generated by
various pharmacological
contrasts. Whereas nicotine’s
actions are predominantly
suppressive and ketamine’s
predominantly enhancing, the
two drugs together caused a
marked elevation in OFC rCBF
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induces psychomimetic, “schizophrenia” symptoms, by
eliciting asynchronous and elevated glutamatergic output,
(Krystal et al. 2003; Moghaddam 2003), and because
subjects with schizophrenia are disproportionately addicted
to cigarettes, we asked whether nicotine might ameliorate
some of ketamine’s actions. The results show that nicotine
affects ketamine’s neural actions in two disparate ways.
First, it reverses and normalizes the neural hyperactivity of
the rostral and dorsal anterior cingulate cortex. Second, it
enhances excitatory activity in the orbital frontal cortex.
The study does not, however, permit a clear assessment of
nicotine’s effect on ketamine-induced behavioral changes.
Although BPRS total and subscale scores diminished after
nicotine was added during the ketamine infusion, this may
have occurred coincidentally due to the time it was given.
Psychomimetic symptoms tend to resolve with time even
when ketamine elicited blood flow changes are still present
and ketamine blood levels are still high (Newcomer et al.
1999). Nonetheless, this study is noteworthy in showing
robust nicotine–ketamine interactions in the orbital frontal
cortex (OFC) and the anterior cingulate cortex, two regions
that are extensively implicated in addiction and psychiatric
illness.

When given alone, intranasal nicotine administration
induced marked rCBF suppression throughout the rostral
and dorsal anterior cingulate cortex, the ventral striatum
and the globus pallidus. The only area that showed
enhanced activity with nicotine was the lateral occipital
cortex. In marked contrast with the suppressant actions of
nicotine, ketamine elicited widespread rCBF elevations,
especially in the orbital frontal and anterior cingulate
cortices. Although noteworthy, these individual changes
have been described by investigators previously (Breier et
al. 1997; Holcomb et al. 2001; Vollenweider et al. 1997).
The interactions between nicotine and ketamine, however,
have only been studied in experimental animal models
(Fu et al. 2000; Rodvelt et al. 2008), not in human subjects

Ketamine+nicotine induces greater rCBF elevations in
the OFC than ketamine alone. The following discussion
briefly considers how nicotine, ketamine and the two drugs
combined might alter glutamate release, the crucial deter-
minant of local blood flow in the brain (Patel et al. 2003;
Rothman et al. 1999; Shulman et al. 2002). The OFC,
anterior cingulate, and striatum are emphasized due to their
well-documented roles in addiction, reward, psychiatric
illness, and planning behaviors.

Replicated by multiple investigators, nicotine’s suppres-
sant action on local brain blood flow has been documented
over the last 10 years (Domino et al. 2000; Ghatan et al.
1998; Rose et al. 2003; Stapleton et al. 2003; Zubieta et al.
2005). Nicotine lowered rCBF in the anterior cingulate,
orbital frontal cortex, and ventral striatum/nucleus accumbens.
Although an extensive body of work has demonstrated

nicotine’s pharmacological actions on dopamine and gluta-
mate release (Fu et al. 2000; Jones and Wonnacott 2004;
Lambe et al. 2003; Mansvelder and McGehee 2000; Reid et
al. 2000), neuroimaging studies with nicotine have not
offered mechanistic models to suggest how and why nicotine
would suppress rCBF in OFC, cingulate, and striatal regions.
There is now overwhelming evidence for glutamate’s
primary role in local vascular regulation and neuroimaging
signal generation (Patel et al. 2003; Rothman et al. 1999;
Shulman et al. 2002). This consensus prompts us to
hypothesize how nicotine and ketamine interact to modify
glutamate release.

Nicotinic stimulation of presynaptic cholinergic recep-
tors located on glutamatergic afferents in the ventral
tegmental area elicits robust dopamine release in the ventral
striatum and frontal cortex (Jones and Wonnacott 2004;
Mansvelder and McGehee 2000). Dopaminergic modula-
tion of glutamatergic networks in forebrain regions may
inhibit (Seamans and Yang 2004) excitatory transmission.
This may occur by direct inhibitory dopaminergic action on
pyramidal neurons (Bandyopadhyay and Hablitz 2007;
Mair and Kauer 2007) or by dopamine’s activation of
GABA interneurons, which subsequently inhibit pyramidal
neurons (Tseng and O’Donnell 2007).

Ketamine, an NMDAR antagonist, promotes elevated
blood flow and glucose metabolism secondary to enhanced
glutamate release throughout the human frontal cortex
(Breier et al. 1997; Holcomb et al. 2005; Vollenweider et
al. 1997). For unknown reasons, ketamine-induced gluta-
mate release is particularly robust in the OFC and ventral
cingulate cortices. NMDAR antagonism has a potent effect
on GABA inhibitory control of glutamatergic pyramidal
neurons. By antagonizing the NMDARs on inhibitory
neurons ketamine indirectly promotes excitatory neuro-
transmission (Farber 2003; Moghaddam 2003). The result-
ing elevated, asynchronous glutamatergic activity is
apparently associated with diminished cognitive abilities
and a worsening of psychotic symptoms in subjects with
schizophrenia and induced psychotic and cognitive symp-
toms in healthy volunteers (Krystal et al. 1994; Lahti et al.
1995a,b; Newcomer et al. 1999).

Our study measured changes in local cerebral blood flow
in subjects treated with ketamine who were given nicotine
40 min after starting the ketamine infusion. Nicotine,
therefore, acted on the central nervous systems of subjects
with altered glutamatergic activity. Nicotine administration
may have further enhanced dopaminergic and glutamatergic
release in the OFC. In this “activated” state, dopamine may
have contributed to greater glutamatergic transmission. It
may have amplified the state initially created by ketamine.
These mixed neurotransmitter actions may have contributed
to an intensely active glutamatergic state in the OFC. A
previous, unpublished ketamine continuous infusion study
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of three healthy volunteers, by our group, followed rCBF
responses out to 55 min. That pilot study did not find
elevations in the OFC beyond the first 30 min of the
infusion. It is, therefore, extremely unlikely that the OFC’s
response to ketamine–nicotine together is a “late” response
to ketamine alone.

The rostral and dorsal anterior cingulate response to
nicotine, during ketamine infusion, did not reflect greater
glutamate transmission. Instead, the anterior cingulate had a
reduction in rCBF. This suggests that nicotine may be
especially potent in its inhibitory action in the anterior
cingulate cortex. It also suggests that nicotine may be
particularly helpful in reversing some of the attentional
and memory deficits induced by NMDAR antagonism
(Buccafusco and Terry 2009).

Nicotine’s suppression of glutamate release in the
anterior cingulate occurs in conjunction with robust
glutamate suppression in the basal ganglia. This dual
suppression pattern may be an important indicator of what
the person addicted to nicotine is “seeking” from her
smoking habit. To the extent that cortico-striate glutamate
neurotransmission is controlled by nicotine, it may provide
the smoker with a way to modulate her mood and anxiety
state, and this may be an important reason why those with
schizophrenia are especially heavy nicotine users. Exces-
sive glutamate release may sustain schizophrenic symp-
toms, and nicotine acquired from cigarettes may help
modulate those symptoms by inhibiting glutamate trans-
mission in limbic cortex. In kind, the effectiveness of
antipsychotic medication may depend, in part, on suppres-
sion of glutamate release in the anterior cingulate cortex
(Holcomb et al. 1996; Lahti et al. 2009).

NMDAR antagonism may promote greater dopamine
release in some brain regions than in others (Kosowski and
Liljequist 2004; Lorrain et al. 2003). If ketamine enhances
dopamine and glutamate release in the OFC more than in
the anterior cingulate, then nicotine’s addition may sub-
stantially facilitate dopamine’s excitatory actions in the
OFC. Clarity on this question will only come through
animal and neuroimaging studies specifically designed to
assess metabolite changes in this region under multiple
drug treatment combinations created across a range of
temporal epochs.

The shortcomings of this study are important. First, the
results are preliminary. Data must be acquired on more
subjects to substantiate these findings. Second, because
subjects were given the ketamine–nicotine only when in the
PET scanning apparatus, it was difficult to evaluate their
subjective drug response. Furthermore, nicotine was given
after ketamine’s most robust behavioral actions (evident
during the first 20 min) had subsided. This makes it
impossible to know to what extent nicotine might directly
antagonize ketamine’s psychomimetic actions. The ran-

domization was incomplete. Ketamine was not given
following a placebo scan, but nicotine was. This may make
the comparison between placebo and nicotine more
accurate than the comparison between ketamine and
placebo.

The study does, however, draw attention to a fundamen-
tally important interaction between dopamine, glutamate,
and nicotine in the OFC and cingulate cortices. In light of
the extensive body of work associated with these structures
in the behavioral/psychiatric literature, it is reasonable to
pursue additional studies that control for time of adminis-
tration and the environment of the intervention.
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