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Abstract
Rationale The midbrain periaqueductal gray (PAG) is part
of the brain system involved in active defense reactions to
threatening stimuli. Glutamate N-methyl-D-aspartate
(NMDA) receptor activation within the dorsal column of
the PAG (dPAG) leads to autonomic and behavioral
responses characterized as the fear reaction. Nitric oxide
(NO) has been proposed to be a mediator of the aversive
action of glutamate, since the activation of NMDA
receptors in the brain increases NO synthesis.
Objectives We investigated the effects of intra-dPAG
infusions of NMDA on defensive behaviors in mice
pretreated with a neuronal nitric oxide synthase (nNOS)
inhibitor [Nω-propyl-L-arginine (NPLA)], in the same
midbrain site, during a confrontation with a predator in
the rat exposure test (RET).

Materials and methods Male Swiss mice received intra-
dPAG injections of NPLA (0.1 or 0.4 nmol/0.1 μl), and
10 min later, they were infused with NMDA (0.04 nmol/
0.1 μl) into the dPAG. After 10 min, each mouse was
placed in the RET.
Results NMDA treatment enhanced avoidance behavior
from the predator and markedly increased freezing behav-
ior. These proaversive effects of NMDA were prevented by
prior injection of NPLA. Furthermore, defensive behaviors
(e.g., avoidance, risk assessment, freezing) were consistent-
ly reduced by the highest dose of NPLA alone, suggesting
an intrinsic effect of nitric oxide on defensive behavior in
mice exposed to the RET.
Conclusions These findings suggest a potential role of
glutamate NMDA receptors and NO in the dPAG in the
regulation of defensive behaviors in mice during a
confrontation with a predator in the RET.
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Introduction

The periaqueductal gray (PAG) is a midbrain structure
proposed to be involved in the modulation of several brain
functions, such as nociception, sexual, and defensive
behaviors (for review, see Bandler and Depaulis 1991;
Behbehani 1995). Anatomical and functional data suggest
four longitudinal columns within the PAG, namely, the
dorsomedial, dorsolateral, lateral, and ventrolateral (Bandler
et al. 1991; Carrive 1993). The dorsal columns (dPAG) have
been referred as a site of integration and modulation of the
behavioral and autonomic expression of defensive reactions
(for reviews, see Bandler and Shipley 1994; Graeff 1981,
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1994). Electrical and chemical (by excitatory amino acids)
stimulation of this site induces fight/flight reactions, which
are similar to unconditioned fear responses to proximal
threat (Bandler and Carrive 1988; Schenberg et al. 2001;
Carvalho-Netto et al. 2006; Martinez et al. 2007). In
addition, many lines of evidence have indicated that aside
from the modulation of these fear-like responses (for
review, see Graeff 2004), the dPAG mediates more subtle
defensive responses related to anxiety such as threat
avoidance and risk assessment (Teixeira and Carobrez
1999; McNaughton and Corr 2004; Mendes-Gomes and
Nunes-De-Souza 2005; Bertoglio and Zangrossi 2006;
Carvalho-Netto et al. 2007).

Recent studies have focused on the relationship between
glutamate N-methyl-D-aspartate (NMDA) receptors and
anxiety-like responses elicited by the stimulation of the
dPAG (for review, see Carobrez et al. 2001; De Oliveira et
al. 2001; Bergink et al. 2004). For example, intra-dPAG
microinjections of low doses of glutamate, NMDA receptor
agonist, or NMDA/glycine receptor agonist facilitate threat
avoidance and risk assessment in rats exposed in the
elevated plus-maze (EPM) or elevated T-maze (Schmitt et
al. 1995; Carobrez et al. 2001; Bertoglio and Zangrossi,
2006; Santos et al. 2006).

It has been proposed that the anxiogenic-like effects
following activation of NMDA receptors into the dPAG are
mainly mediated by the gas neurotransmitter nitric oxide
(NO) (for review, see De Oliveira et al. 2001; Guimarães et
al. 2005). Indeed, glutamate NMDA receptor activation
leads to cellular calcium influx which triggers a cascade of
intracellular events including activation of neuronal nitric
oxide synthase (nNOS), an enzyme that produces NO
(Garthwaite et al. 1989; Garthwaite 1991; Lohse et al.
1998). In accordance with this, a recent study from our
laboratory (Miguel and Nunes-De-Souza 2006) has dem-
onstrated that pretreatment with the selective and potent
nNOS inhibitor, Nω-propyl-L-arginine (NPLA), into the
mouse dPAG, completely blocked defensive-like behaviors
(e.g., jumping, running, and freezing) induced by NMDA
receptor agonist injection into the same site.

Preclinical animal models have been widely used to
provide behavioral measures related to fear and anxiety
states (Markham et al. 2004; Litvin et al. 2008). The rat
exposure test (RET) is an animal model of anxiety based
on the predator–prey interaction (rat and mouse; Yang et
al. 2004). Rats have been shown as actual mice predators
both in nature and in the laboratory (O’Boyle 1974, 1975;
Calvo-Torrent et al. 1999). When confronted by rats, both
wild and laboratory mice show clear innate defensive
behaviors (Blanchard et al. 1998). Regarding the RET,
recent studies have attempted to identify possible intrace-
rebral neurotransmitter systems involved in the modula-
tion of behavioral defensive responses of mice exposed to

this type of prey–predator interaction (Carvalho-Netto et
al. 2007; Litvin et al. 2007; Martinez et al. 2008). In line
with this view, the present study was designed to
investigate the effects of intra-dPAG NMDA infusions
on defensive behaviors of mice pretreated with local
injection of NPLA and confronted by a predator in the
RET.

Materials and methods

Animals

Subjects were male Swiss adults mice weighing 25–35 g
(São Paulo State University/UNESP, SP, Brazil), housed in
groups of ten per cage (cage size, 41×34×16 cm). They
were maintained under a normal 12-h light cycle (lights on
7:00 a.m.) in a temperature (23±1°C) and humidity (55±
5%)-controlled environment. Food and drinking water were
freely available except during the brief test periods. All
mice were experimentally naïve and used only once. A total
of five male Long–Evans rats were used as predator stimuli
during the course of the study.

Drugs

The drugs used were NPLA (Tocris Cookson, Ballwin,
MO, USA), a highly selective and potent inhibitor of
nNOS (Ki=57 nM), and N-methyl-D-aspartic acid
(NMDA; Sigma, USA). The doses used were based on
previous studies: NMDA 0.04 nmol/0.1 μl and NPLA 0.1
and 0.4 nmol/0.1 μl (Miguel and Nunes-De-Souza 2006,
2008). The drugs were dissolved in physiological saline
(NaCl 0.9%).

D-Amphetamine sulfate (Research Biochemicals, MA,
USA) was dissolved in physiological saline and adminis-
tered i.p. to Long–Evans rats at a single dose of 5.0 mg/kg
15 min prior to placement into the rat exposure chamber.
This procedure was used to keep the stimulus rats
uniformly active during and across test sessions.

Surgery

Mice were implanted unilaterally with an 8-mm stainless-
steel guide cannula (26-gauge) under sodium pentobarbital
(90 mg/kg, i.p.) anesthesia. The guide cannula was fixed to
the skull using dental cement and jewelers’ screw. Stereo-
taxic coordinates for the dorsal PAG were 4.16 mm
posterior to the bregma, 1.32 mm lateral to the midline,
and 2.23 mm ventral to the skull surface, with the guide
cannula angled 26° to the vertical axis. A dummy cannula
inserted into the guide cannula at the time of surgery,
served to reduce the incidence of occlusion. Upon removal
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from stereotaxic apparatus, mice were administered 1 ml
0.9% saline s.c. in order to prevent dehydration. Postoper-
ative analgesia was provided for 3 days by adding
acetaminophen (200 mg/ml) to the drinking water in a
ratio of 0.2 ml acetaminophen:250 ml water (i.e., final
concentration=0.16 mg/ml).

Intracerebral drug administration

Six to 7 days after the surgery, mice were transferred from
the main holding area to the laboratory and left undisturbed
for 1 h prior to drug administration. Each mouse was lightly
restrained and a 32-gauge injection cannula (1.0 mm longer
than the guide cannula) was inserted into the guide cannula,
and the injector was connected via PE-10 polyethylene
tubing to a 5-μl Hamilton microsyringe. The administration
of each compound was controlled by an infusion pump, (BI
2000, Insight Equipamentos Científicos, Brazil)
programmed to deliver a volume of 0.1 μl over a period
of 30 s. The injector remained in place for an additional
30 s (before slow removal) to ensure complete diffusion of
the drug. Confirmation of successful infusion was obtained
by monitoring the movement of a small air bubble in the
PE-10 tubing. Ten minutes later, the same procedure was
repeated for the second injection. Immediately following
drugs infusion, each animal was returned to its home cage
and left undisturbed for 10 min prior to behavioral
evaluation in the RET.

Apparatus (RET)

The RET was developed and validated by Yang et al.
(2004) to facilitate measurement of avoidance and risk
assessment behaviors in mice. Testing procedures were
conducted in a 46×24×21 cm clear polycarbonate cage
(exposure chamber) covered with a black polycarbonate lid.
The exposure chamber was divided into two equal-sized
compartments by a wire mesh screen (surface and predator
compartment). The home cage was a 7×7×12 cm box
made of black Plexiglas on three sides and clear Plexiglas
on the fourth side to facilitate videotaping. The home
chamber was connected to the exposure cage by a clear
Plexiglas tube tunnel (4.4 cm in diameter, 13 cm in length,
1.5 cm elevated the floor of the two chamber).

Rat exposure test and behavioral analysis

All testing were conducted during the light phase of the
light/dark cycle under illumination of a 100-W red light
bulb. Each apparatus was cleaned with 20% alcohol and
dried with paper towels between trials. One vertically
mounted camera linked to a video monitor and DVD was
used to record the experiment.

Rat exposure test

Prior to the start of each trial, the individual home cage
bedding of each subject was poured into the home chamber
and the surface of the RET so as to cover the entire floor of
the apparatus.

Phase 1: Habituation

Each subject was allowed one daily habituation sessions
during three consecutive days in the apparatus. The mouse
was placed in the center of the surface and was allowed to
explore freely for 10 min with no rat present.

Phase 2: Exposure test

On test day, each animal received intracerebral pharmaco-
logical treatment (see below experiment 1 and 2) and was
placed in the center of the surface. An amphetamine-treated
male Long–Evans rat was then immediately placed behind
the wire mesh. Each trial lasted 10 min, and the following
behaviors were scored.

The behavioral parameters comprised both spatiotem-
poral and ethological measures. The spatiotemporal meas-
ures were frequency and time spent in the home chamber,
tunnel, and on the surface. Time spent in contact with the
wire screen barrier (including climbing) was taken as total
(barrier) contact time. The ethological measures included
duration of risk assessment behaviors (stretched attend
postures, an exploratory posture in which the body is
stretched forward but the animal’s hind paws remain in
position, and stretched approach, in which the body is
stretched while moving forward); freezing (complete
cessation of movement except breathing) and self-
grooming.

Procedure

Experiment 1. Effects intra-dPAG injections of NPLA
on the behavior mice in the RET

On test days, mice were microinjected with saline or NPLA
(0.1 and 0.4 nmol/0.1 μl), and 10 min later, they were
individually placed in the surface of the RET for recording
the behavioral (spatiotemporal and ethological) measures
(see above) during a period of 10 min.

Experiment 2. Effects of intra-PAG injection of NPLA
on the effect of local infusion of NMDA

Animals received intra-dPAG injections of saline, or NPLA
(0.1 or 0.4 nmol) followed 10 min later by saline or NMDA
(0.04 nmol/0.1 μl) into the same site. Ten minutes after the
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second injection, animals were submitted to the RET. A
total of four groups were formed: Saline + Saline, Saline +
NMDA, NPLA 0.1 + NMDA, NPLA 0.4 + NMDA.

Experiment 3. Effects of NMDA injection on locomotor
activity

In order to investigate an intrinsic effect of NMDA on
locomotor activity, mice were microinjected with saline or
NMDA (0.04 nmol/0.1 μl) into the dorsal PAG and 10 min
later were placed in the center of activity monitoring
chamber (Columbus Instruments, CA, USA). Photocell
counts accumulated in 1-min intervals were recorded during
a 10-min testing session.

Histology

Mice were sacrificed with an overdose of sodium pentobar-
bital and received an infusion of 1% Evans blue intra-dPAG
(according to the microinjection procedure described above).
The animals were perfused intracardially with 10 cc 0.9%
formalin, and their brain were removed from the cranial cavity
and stored in 10% formalin/30% sucrose solution for at least

24 h before histological analysis. Mouse brain were coronally
sectioned by a cryostat (40 μm) and microscopically verified
with reference to the atlas of Paxinos and Franklin (2001).
Data from animals with injection sites outside the dPAG
were excluded from analysis.

Statistical analyses

The behavioral data from the RETwere analyzed by one-way
analysis of variance (ANOVA) for parametrically distributed
data or Kruskall–Wallis for nonparametrically distributed data.
Post hoc tests [Duncan test (parametric) or Mann-Whitney U
test (nonparametric) were conducted for significant treatment
effects relative to control means]. Locomotor activity data
were analyzed by two-way ANOVAwith repeated measures.
A P value ≤0.05 was considered significant.

Ethics

The experiments carried out in this study comply with the
norms of Brazilian Neuroscience and Behavior Society
(SBNeC), based on the US National Institutes of Health
Guide for Care and Use of Laboratory Animals.

Fig. 1 a Schematic representation of microinfusion sites within (filled
circle) and outside (blank circle) the dorsal periaqueductal gray
(dPAG). b Photomicrograph of midbrain coronal section from a

representative subject showing an injection site into the dPAG. Section
correspond to −4.72 mm from bregma in the atlas of Paxinos and
Franklin (2001)
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Results

Histology

Histology confirmed that a total of 103 mice had cannula
placements in the PAG (Fig. 1). Thirty-seven mice were
used in experiment 1 [Saline (n=15), NPLA 0.1 nmol (n=
9), 0.4 nmol (n=13)], 53 mice were used in experiment 2
[Saline + Saline (n=16), Saline + NMDA (n=14), NPLA
0.1 + NMDA (n=10), and NPLA 0.4 + NMDA (n=13)],
while 13 mice were used in experiment 3 [saline (n=7) and
NMDA (n=6)].

Experiment 1. Effects of intra-dPAG injections of NPLA
on the behavior mice in the RET

Figure 2 shows that intra-dPAG injections of NPLA
(0.4 nmol) changed the spatiotemporal and ethological
measures in mice submitted to the RET. NPLA

increased surface duration [F(2,34)=4.26, Duncan test,
p<0.05] and mesh contact [H(2,37)=7.37, Mann–Whitney
test, P<0.05], while it reduced freezing [H(2,37)=6.85,
P<0.05] and risk assessment behaviors [F(2,34)=3. 69,
p<0.05].

Experiment 2. Effects of intra-PAG injection of NPLA
on the effect of local infusion of NMDA

Effects of combined microinfusions of NPLA and NMDA
into the dPAG on the frequency of entries in the RET
compartments are summarized in Table 1. One-way
ANOVA followed by Duncan test revealed that intra-
dPAG NMDA (saline + NMDA) significantly reduced
frequency of entries into the home chamber, tunnel, and
surface area. Table 1 also shows that these NMDA effects
were blocked by prior infusion of NPLA (0.1 and 0.4 nmol)
into the dPAG.

As shown in Fig. 3, intra-dPAG NMDA increased time
spent in home chamber [F(3,49)=2.80, Duncan test, P<
0.05] and decreased mesh contact duration [H(3,53)=9.47,
Mann–Whitney test, P<0.05] when compared to control
group (saline + saline). Prior injection of NPLA (0.4 nmol)
into the dPAG prevented the NMDA effects. Regarding the
ethological measures, Kruskal–Wallis ANOVA followed by
Mann–Whitney U comparisons revealed that NMDA
treatment enhanced freezing duration [H(3,53)=13.3, P<
0.05] when compared with control group. However, prior
local infusion of NPLA (0.1 and 0.4 nmol) completely
abolished NMDA effects on freezing.

Experiment 3. Effects of intra-dPAG NMDA injection
on locomotor activity

As illustrated in Fig. 4, intra-dPAG injection of NMDA did
not alter locomotor activity during the 10-min test session
in the activity-monitoring chamber. Two-way ANOVA
detected a significant effect for time factor (F(9,99)=3.79,
p<0.05) but no significant effects for drug treatment factor
(F(1,11)=0.15, p>0.05) or time×treatment interaction
(F(9,99)=0.32, p>0.05).

Fig. 2 Effects of NPLA microinjection (0.1 or 0.4 nmol/0.1 μl; n=9–
15) into the PAG on behaviors of mice in the RET. Each bar
represents the mean±SEM. *p<0.05 compared to control group

Table 1 Effect (mean±SEM) of intra dPAG drug injections on the frequency of crossing between RET compartments

Total entries Treatments

Saline + Saline Saline + NMDA NPLA 0.1 + NMDA NPLA 0.4 + NMDA F(3,49)

Home 10.5±1.32 5.3±1.21* 7.8±0.99 9.0±1.34 2.79

Tunnel 18.3±2.60 8.5±2.45* 13.4±1.67 15.0±2.74 2.80

Surface 9.63±1.27 4.4±1.37* 6.5±0.80 8.2±1.41 3.17

*p<0.05 vs saline + saline group condition by Duncan test
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Discussion

The present results are in concordance with several
pharmacological studies indicating that glutamate NMDA
receptors in the dPAG modulate fear and anxiety-related
behaviors (Guimarães et al. 1991; Matheus et al. 1994;
Schmitt et al. 1995; Teixeira and Carobrez 1999; Carobrez
et al. 2001; Molchanov and Guimarães 2002; Bertoglio and
Zangrossi 2006; Miguel and Nunes-De-Souza 2006; Santos
et al. 2006). Specifically, our results demonstrated that
microinfusion of NMDA receptor agonist into the mouse
dPAG consistently increased avoidance behavior to the
predator in the RET (i.e., increased home chamber time
while reducing contact with the wire mesh time). In
addition, the glutamate NMDA receptor agonist markedly
altered ethological measures as observed by the enhance-
ment of freezing duration when compared with the control
group (saline + saline).

Our findings corroborate a consistent literature demon-
strating that intra-PAG administration of glutamate, NMDA
receptor agonist, or NMDA/glycine receptor agonist enhance
avoidance and risk assessment behaviors in the elevated plus-
maze (EPM) and elevated T-maze (ETM) (Schmitt et al. 1995;
Carobrez et al. 2001; Bertoglio and Zangrossi 2006; Santos
et al. 2006). On the other hand, direct injections into this
structure of NMDA receptor antagonists (e.g., AP-7) or
NMDA/glycine receptor antagonists (e.g., HA-966, 7-Cl-
KY) induce opposite effects in these tasks (Guimarães et al.
1991; Matheus et al. 1994; Teixeira and Carobrez 1999;
Bertoglio and Zangrossi 2006).

Although many studies have previously emphasized the
role of glutamate NMDA receptor subtypes on fear/anxiety-
like responses, the present results do not preclude the
possibility that the effects of NMDAmay have been partially
induced by a motoric disruption. Indeed, our results showed
that intra-dPAG infusion of NMDA reduced the frequency of
crossing between the RET compartments (see Table 1).
However, the locomotion test in the activity-monitoring
chamber (see Fig. 4) was not significantly different in both
control and NMDA groups, suggesting that intra-dPAG
NMDA did not change the normal pattern of motoric
coordination in mice. Thus, it is likely that animals
microinjected with NMDA into the dPAG spent more time
expressing defensive behaviors such as freezing in the
home chamber instead of crossing the RET compartments.

Evidences from literature have emphasized that the
anxiogenic-like effects following activation of NMDA
receptors into the dPAG are mainly mediated by the gas
neurotransmitter NO (for review, see De Oliveira et al.
2001; Guimarães et al. 2005). In fact, the present results
corroborate these findings and indicate that NO displays a
fundamental role in the proaversive effects of intra-dPAG
NMDA infusion. For example, pretreatment with both
doses of the selective nNOS inhibitor, NPLA, into the
mouse dPAG, was able to prevent most of the anxiogenic-
like behaviors (e.g., avoidance and freezing) induced by
local NMDA treatment in the RET. These results are in
consonance with a recent study carried out in our laboratory
demonstrating that intra-dPAG NPLA blocks the
anxiogenic-like effects of NMDA infusion into the same
brain site in mice exposed to the EPM (Miguel and Nunes-
De-Souza 2008). Together, these findings corroborate the
hypothesis mentioned above in that the anxiogenic effects
induced by NMDA receptors activation in the brain are
dependent on endogenous NO.

In terms of the role of NO on defensive behaviors, many
pharmacological studies have shown that systemic injec-
tions of NOS inhibitors (Volke et al. 1995; Faria et al. 1997;
Volke et al. 2003; for review, see Guimarães et al. 2005) as
well as intracerebral (e.g., dPAG, dorsal hippocampus, and
medial amygdala) microinfusions of NOS inhibitors,
guanylate cyclase inhibitors, or NO scavenger elicit

Fig. 4 Effects of NMDA infusion (0.04 nmol/0.1 μl; n=6–7) into the
PAG on locomotor activity. P>0.05 compared to control group

Fig. 3 Effects of combined microinjections of NPLA (0.1 or 0.4 nmol/
0.1 μl) and NMDA (0.04 nmol/0.1 μl) into the dPAG on behaviors of
mice in the RET (n=10–16). Each bar represents the mean±SEM. *p<
0.05 compared to control group saline + saline (Sal + Sal)
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anxiolytic-like effects in several animal models of anxiety
such as the elevated plus-maze and light–dark compartment
test (Guimarães et al. 1994; De Oliveira and Guimarães
1999; Aguiar et al. 2004; for review, see Guimarães et al.
2005; Forestiero et al. 2006; Spolidório et al. 2007).

In line with these studies, the present results demonstrate
that NPLA treatment per se produced a dose–response
curve with the highest dose (0.4 nmol) increasing the time
in the surface and in contact with the wire screen barrier
between the subject and predator. In addition, intra-dPAG
NPLA (0.4 nmol) markedly reduced the freezing and risk
assessment behavior duration, indicating that this drug
significantly reduced the spatiotemporal (avoidance) and
ethological (freezing and risk assessment) measures in the
RET, reinforcing the suggestion of a potential role for nitric
oxide system in the dPAG in the regulation of anxiety.

Based on previous studies (for review, see De Oliveira et
al. 2001; Guimarães et al. 2005) as well as the present
findings, it could be assumed the effects of NPLA represent
an inhibition of the nitric oxide production that is mediated
by endogenous glutamatergic activation and acting via
NMDA receptors. Indeed, it has been established that
NMDA receptor activation is the main stimulus for NO
production in the central nervous system (for review, see
Esplugues 2002), and reciprocal regulatory mechanisms
between these two neuronal pathways (glutamatergic and
nitrergic) are likely to occur in the dPAG (Lin et al. 2000).
In this context, an elegant study reported by Beijamini and
Guimarães (2006) showed that cat exposure increases
activation of neurons containing NOS in the rat dPAG, an
effect that was attenuated by prior intracerebroventricular
microinjection of AP-7, a competitive NMDA receptor
antagonist.

However, the hypothesis that other neurotransmitter
systems (not associated with the glutamate-NMDA recep-
tor) are involved with the nitrergic modulation should not
be rejected. For instance, a number of studies have shown
that NO enhancement can also occur following other
glutamatergic receptor subtypes activation such as AMPA,
kainate, and metabotropic receptors (Southam et al. 1991;
Okada 1992). Furthermore, it has been suggested that a set
of neurotransmitters including serotonin, bradykinin, endo-
thelin, acetylcholine, noradrenaline and GABA might be
involved in the nitric oxide modulation (Reiser 1990a, b;
Lovick et al. 2000; Moreira and Guimarães 2004). In this
context, there are evidences emphasizing that NO produc-
tion following NMDA receptor activation plays a role over
some neurotransmitters release such as serotonin and
dopamine in different brain regions (e.g., hippocampus
and striatum; Whitton et al. 1994; Wegener et al. 2000).

In conclusion, the present data indicate that NO located
within the dPAG modulates anxiety like-behaviors in mice
confronted with a predator in the RET, and that this

response is mediated, at least in part, by NMDA glutamate
receptor activation. Moreover, our results strongly support
previous findings (Carobrez et al. 2001; McNaughton and
Corr 2004; Bertoglio and Zangrossi 2006; Carvalho-Netto
et al. 2007) that emphasize the importance of the dorsal
region of PAG in the modulation of more subtle defensive
behaviors related to anxiety, such as risk assessment and
threat avoidance.
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