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Abstract
Rationale Recent reports describe a restricted access
ethanol consumption paradigm where C57Bl/6J mice drink
until intoxicated. Termed “drinking in the dark” (DID), this
paradigm has been used as a model of binge drinking.
Although neuronal nicotinic acetylcholine receptors
(nAChRs) have been implicated in alcohol drinking in rats
pre-trained to self-administer ethanol, their role in binge-
like ethanol consumption is unknown.
Objectives To determine if nAChRs are involved in binge
drinking as measured by the DID assay in C57Bl/6J mice.
Materials and methods Adult male C57Bl/6J mice were
injected i.p. with nicotinic receptor antagonists including
mecamylamine, hexamethonium, dihydro-β-erythroidine,
and methyllycaconitine. Immediately following injection,
mice were presented with 20% ethanol for 2 h in the DID
assay to measure ethanol consumption. Nicotinic agonists
including cytisine and nicotine were also evaluated. The
effects of mecamylamine and nicotine on ethanol-induced
dopaminergic neuronal activation in the VTA were evalu-
ated via immunohistochemistry.

Results Mecamylamine dose dependently reduced ethanol
consumption; whereas, the peripheral antagonist hexame-
thonium had no significant effect. Nicotinic agonists,
cytisine and nicotine, reduced ethanol consumption. None
of the effective nicotinic receptor drugs reduced sucrose
drinking. Mecamylamine blocked ethanol activation of
dopaminergic neurons while nicotine alone activated them
without additional activation by ethanol.
Conclusions Neuronal nAChRs are involved in ethanol
consumption in the DID paradigm. The effects of meca-
mylamine, nicotine, and cytisine on ethanol intake appear
to be specific because they do not reduce sucrose drinking.
Mecamylamine reduces alcohol consumption by blocking
activation of dopaminergic neurons; whereas, nicotinic
agonists may activate the same reward pathway as alcohol.
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Introduction

Alcoholism is the third preventable cause of mortality in the
world and few therapeutic treatments are available high-
lighting the importance of understanding the underlying
molecular mechanisms of ethanol’s reinforcing properties
(Centers for Disease Control and Prevention 2004). Animal
models of voluntary alcohol drinking provide a unique tool
to study potential pharmacological means to reduce ethanol
intake, but few of these models yield intoxicating blood
alcohol levels. Recently, a straightforward voluntary drink-
ing paradigm whereby high-alcohol-preferring C57Bl/6J
mice are exposed to 20% ethanol for 2 or 4 h during the
dark cycle has been established. Termed “drinking in the
dark” (DID), this novel assay reliably produces pharmaco-
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logically relevant blood ethanol concentrations even upon
first exposure and has been utilized as a mouse model of
“binge drinking” (Rhodes et al. 2005, 2007).

A major goal of alcohol addiction research is to identify
molecules that may play a significant role in ethanol’s
euphoric effects that could promote persistent voluntary
drinking and acute intoxication. Achieving this goal has
proven problematic due to ethanol’s properties to interact
with multiple proteins expressed in the CNS (Harris 1999).
Neuronal nicotinic acetylcholine receptors (nAChRs) have
emerged as candidate molecules in at least partially
mediating the reinforcing properties of alcohol (Soderpalm
et al. 2000). Neuronal nAChRs are ligand-gated cation
channels that are activated by the endogenous neurotrans-
mitter, acetylcholine, as well as the addictive component of
tobacco smoke, nicotine. Currently, 12 mammalian neuro-
nal nicotinic acetylcholine receptor subunits have been
identified (α2-10 and β2-4). Most high affinity nAChRs
are heteromeric pentamers consisting of α and β subunits.
Thus, multiple receptor subtypes with varying subunit
compositions and electrophysiological properties exist
(Jones et al. 1999; Laviolette and van der Kooy 2004;
Lindstrom et al. 1996). Indeed, many neuronal nAChR
subtypes are expressed throughout the mesocorticolimbic
reward pathways especially in the ventral tegmental area
(VTA) in both dopaminergic neurons projecting to nucleus
accumbens and in local GABAergic interneurons (Klink et
al. 2001; Wooltorton et al. 2003). Systemic ethanol has
been shown to increase acetylcholine concentrations in the
VTA, presumably, activating nAChRs in this area (Ericson
et al. 2003). Ethanol can also potentiate nAChR activity
depending on the subtype of nicotinic receptor expressed
(Forman and Zhou 2000; Zhou et al. 2000; Zuo et al. 2002).
Because a variety of subtypes exist in these nuclei,
identification of the specific nicotinic receptor subtype(s)
that may underlie ethanol reward is paramount.

The nonspecific antagonist, mecamylamine, when
injected systemically or locally within the VTA, blocks
ethanol self-administration in high-ethanol-preferring rats
that have acquired robust ethanol drinking through increas-
ing concentration of ethanol exposure over a 2-week period
(Blomqvist et al. 1996; Ericson et al. 1998). Using a similar
paradigm in rats, studies have shown that dihdro-β-
erythroidine (DHβE) and methyllycaconitine (MLA),
antagonists selective for α4β2 and homomeric α7
nAChRs, respectively, fail to block ethanol consumption
(Le et al. 2000) and dopamine (DA) overflow in nucleus
accumbens (Ericson et al. 2003; Larsson et al. 2002). On
the other hand, it has been shown that the α3β2*, β3*, and
α6* subunit specific antagonist, α-conotoxin MII, does
inhibit ethanol consumption, activity, and DA release in
nucleus accumbens (Jerlhag et al. 2006; Larsson et al.

2004). More recently, varenicline, an α4β2 partial agonist
clinically approved as a smoking cessation therapeutic (Coe
et al. 2005; Gonzales et al. 2006; Steensland et al. 2007;
Tonstad et al. 2006), was found to reduce both ethanol
intake and seeking in rats (Steensland et al. 2007). To our
knowledge, the role of nAChRs in acute ethanol intake in
mice has not been examined.

The goal of the current study was to test the hypothesis
that nAChR signaling is involved in acute alcohol intake
(i.e., “binge drinking”) as measured using the DID assay in
C57Bl/6J mice. Toward this end, we exposed mice to a
panel of nAChR antagonists and agonists prior to the
presentation of ethanol and measured alcohol intake.

Materials and methods

Animals

Male C57BL/6J mice (Jackson Laboratory) used in the
experiments were between 8 and 14 weeks of age and were
housed three to four animals per cage up until the start of
each experiment. During acclimation, animals were kept on
a standard 12-h light/dark cycle with lights on at 7:00 AM
and off at 7:00 PM. The animals were given food and water
ad libitum, except when ethanol was substituted for water
for 2 h at night as described below. All experiments were
conducted in accordance with the guidelines for care and
use of laboratory animals provided by the National
Research Council (National Research Council 1996), as
well as with an approved animal protocol from the
Institutional Animal Care and Use Committee of the
University of Massachusetts Medical School.

Drugs and drinking solutions

Ethanol solutions were prepared from 190 proof absolute
anhydrous ethanol (Pharmco-Aaper brand, Brookfield, CT,
USA) diluted to 20% ethanol (v/v) using tap water. Sucrose
(EMD) was dissolved in tap water to make a 10% (w/v)
concentration. Mecamylamine hydrochloride, hexametho-
nium hydrochloride, MLA, DHβE, nicotine hydrogen
bitartrate, and cytisine (all purchashed from Sigma-
Aldrich, St. Louis, MO, USA) were dissolved in 0.9%
saline and were administered via intraperitoneal (i.p.)
injections at the indicated doses. Nicotine concentrations
are reported as nicotine base.

Drinking in the dark procedure

Animals were singly housed in experimental chambers for
1 week prior to the beginning of the DID sessions. The mice
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received a 15-ml graduated cylinder water bottle fitted with
a one-hole rubber stopper with a stainless steel double-ball-
bearing sipper tube which was sealed with parafilm to
prevent leakage. Our drinking assay is a modified 2-day
version of a limited access drinking procedure first
described in Rhodes et al. (2005). On the first night, 2 h
after the lights were turned off, half of the mice were
given an i.p. injection of saline and the other half were
i.p. injected with drug. Immediately after the injections,
the water bottle was removed and replaced with a single
bottle of 20% ethanol and left in place for 2 h. On the
second night, the injection groups were switched (i.e.,
mice that received saline on the first night received drug
on the second; whereas, mice that received drug on the
first night received saline on the second) and again given
a single 20% ethanol bottle for 2 h. The amount of
ethanol consumed was recorded immediately after each
2-h session and converted to grams per kilogram per each
animal’s ethanol consumption and body weight. For
control experiments, mice received 10% sucrose for 2 h
instead of ethanol.

Experimental design

Table 1 lists the experiment number, type, drug injected,
dose, and number of animals used. For DID experiments,
each mouse received two DID sessions with a low and high
dose of the same drug, except in experiments 1, 3, 4, 11, and
12 where the mice only received saline and one dose of drug.
Mice that received two doses of drug were given 7 days of
rest between 2-day DID experiments, and tested again in
the same 2-day DID procedure. Lower doses were used in
the initial 2-day DID round followed by higher doses in the
second DID round (see Table 1). In experiments 14 and 15,
DID procedure was exactly the same as described above
except that ethanol measurements were taken in 15-min
intervals throughout the 2-h drinking session.

Blood ethanol concentration

For experiment 5 (blood ethanol concentration measure-
ments), prior to ethanol drinking, one group of mice was
injected i.p. with saline and a separate group was i.p.

Table 1 DID experiments

Experiment # Type Number of mice used Drug injected Dose (mg/kg) Drinking solution utilized
in each DID experiment

1 DID 9 Mecamylamine 0.5 20% Ethanol

2a DID 7 Mecamylamine 1 20% Ethanol

2b DID Mecamylamine 3 20% Ethanol

3 DID 6 Mecamylamine 1 10% Sucrose

4 DID 6 Mecamylamine 6 10% Sucrose

5a BEC 5 Mecamylamine 1 20% Ethanol

5b BEC 6 Saline 20% Ethanol

6a DID 8 Hexamethonium 1 20% Ethanol

6b DID Hexamethonium 3 20% Ethanol

7a DID 8 DHβE 1 20% Ethanol

7b DID DHβE 3 20% Ethanol

8a DID 7 MLA 5 20% Ethanol

8b DID MLA 10 20% Ethanol

9a DID 7 Nicotine 0.25 20% Ethanol

9b DID Nicotine 0.5 20% Ethanol

10a DID 8 Nicotine 0.25 10% Sucrose

10b DID Nicotine 0.5 10% Sucrose

11 DID 9 Cytisine 1 20% Ethanol

12 DID 4 Cytisine 3 20% Ethanol

13a DID 8 Cytisine 1 10% Sucrose

13b DID Cytisine 3 10% Sucrose

14 DID pattern 6 Nicotine 0.5 20% Ethanol

15 DID pattern 7 Mecamylamine 3 20% Ethanol

Different letters (a and b) refer to the same group of mice used for that experiment number except for experiment 5 (BEC)

DID drinking in the dark, BEC blood ethanol concentration
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injected with 1 mg/kg mecamylamine. Trunk blood was
obtained from the mice after completion of the 2-h ethanol
drinking assay. Blood was collected in heparinized capillary
tubes, centrifuged at 1,500×g for 5 min and blood analyzed
using an alcohol oxidase-based assay. Blood ethanol
concentrations were measured on a GM7 Micro-Stat
Analyzer (Analox Instruments Ltd.).

Immunohistochemistry

Mice were i.p. injected with saline for 3 days prior to the
start of the experiment to habituate them to handling and to
reduce c-Fos activation due to stress. Two groups of nine
mice were used. Mice from the first group received two
injections: An i.p. injection of 3.0 mg/kg mecamylamine
followed by a 2.0 g/kg ethanol injection, or a saline
injection followed by a 2.0 g/kg ethanol injection, or a
saline injection followed by a second saline injection. The
time between the first and second injection was 45 min and
was estimated based on the delayed effect that mecamyl-
amine had on drinking pattern (Fig. 4). The second group
of mice received an i.p. injection of 0.5 mg/kg nicotine
followed by a saline injection, or a 0.5 mg/kg nicotine
injection followed by a 2.0 g/kg ethanol injection, or a
saline injection followed by a second saline injection. The
time between injections was 15 min based on nicotine’s
more rapid effect on drinking pattern.

Ninety minutes after the second injection, all mice were
deeply anesthetized with sodium pentobarbital (200 mg/kg,
i.p.) and perfused transcardially with 10 ml of 0.1 M
phosphate-buffered saline (PBS) followed by 10 ml of 4%
paraformaldehyde in 0.1 M sodium phosphate buffer
(pH 7.4). Brains were removed and post-fixed for 2 h with
the same fixative and cryoprotected in sodium phosphate
buffer containing 30% sucrose until brains sank. VTA serial
coronal sections (20 μm) were cut on a microtome (Leica SM
2000 R, Leica Microsystems Inc., Bannockburn, IL, USA)
and collected into a 24-well tissue culture plate containing
1× PBS. Slices containing VTA were collected between
−2.92 and −4.04 mm from bregma. After rinsing sections in
PBS twice for 5 min, they were treated with 0.4% Trition
X-100 PBS (PBST) twice for 2 min followed by incubation
in 2% BSA/PBS for 30 min. Sections were washed with
PBS once and then incubated in a cocktail of primary
antibodies for Tyrosine Hydroxylase (TH, monoclonal,
1:250, Santa Cruz Biotechnology, Santa Cruz, CA, USA)
and c-Fos (polyclonal, 1:400, Santa Cruz) in 2% BSA/PBS
overnight at 4°C. The sections were then washed with PBS
three times for 5 min followed by incubation in secondary
fluorescent-labeled antibodies (goat anti-rabbit Alexa
Fluor® 488 and goat anti-mouse Alexa Fluor ®594,
1:300, Molecular Probes, Inc., Eugene, USA) at room
temperature in dark for 30 min. After washing with PBS

five times for 5 min/wash, sections were mounted on slide
by using VECTASHIELD® Mounting Medium (Vector
laboratories, Inc., Burlingame, CA, USA). The number of
positive neurons was counted under a fluorescence micro-
scope (Zeiss, Carl Zeiss MicroImmaging Inc., NY, USA) at
a magnification of 400×. The intensity of fluorescence was
quantified by using a computer-associated image analyzer
(Axiovision Rel. 4.6). Neurons were counted as signal
positive if intensities were at least two times higher than
that of the average value of background (sections staining
without secondary antibodies).

Data analysis

The effect of preinjections of nicotinic agonists and
antagonists on ethanol intake was compared to saline
preinjections using one of two statistical tests. In experi-
ments where one group of mice received one dose of
drug, one-way ANOVAs followed by Tukey post hoc tests
were used. In experiments where one group of mice
received two doses of drug, a repeated measure ANOVA
followed by Tukey post hoc test was used. Data were
analyzed using Graphpad software (Graphpad software,
Inc.). Student t tests were used to analyze immunohisto-
chemistry data. Results were considered significant at p<
0.05. All data are expressed as means±standard errors of
means (SEM).

Results

Effects of mecamylamine on alcohol consumption in the
DID assay

To determine if mecamylamine can inhibit ethanol drinking
in the DID paradigm, mice were pre-injected, i.p. with 0.5,
1, or 3 mg/kg mecamylamine immediately prior to 20%
ethanol exposure. Mecamylamine dose dependently reduced
the volume of ethanol drinking (Fig. 1a). Mice receiving a
preinjection of 1 or 3 mg/kg mecamylamine consumed
significantly less ethanol compared to saline-injected
mice (Fig. 1b, 1.30+/−0.44 and 1.53+/−0.24 compared to
2.62+/−0.28 and 3.05+/−0.28 g/kg ethanol, respectively).
Repeated measure ANOVA indicated an overall significant
difference between saline and mecamylamine preinjection
on ethanol intake (F3,18=9.33, p<0.001). Tukey post hoc
analysis indicated a significant effect of mecamylamine
with a preinjection dose of 1 or 3 mg/kg compared to
respective saline values. The antagonist did not affect
sucrose intake in mice at the tested doses of 1 or even as
high as 6 mg/kg (Fig. 1c, for 1 mg/kg F1,12=0.54, p>0.05,
for 6 mg/kg F1,10=3.23, p>0.05). Preinjection of the
peripheral nAChR antagonist, hexamethonium, at a dose of
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either 1 or 3 mg/kg, also did not significantly reduce ethanol
intake (F3,21=0.20, p>0.05, data not shown).

To determine if the effect of mecamylamine ultimately
resulted in a lower blood ethanol concentration, we acquired
blood samples immediately following the 2-h DID assay in

mice that received either a saline or 1 mg/kg mecamylamine
preinjection (Fig. 1d). Mice that received mecamylamine
prior to their ethanol bottle exhibited significantly lower
blood ethanol levels compared to mice that received a
preinjection of saline (Fig. 1d, 13.5+/−3.9 mM compared to
25.8+/−2.8 mM ethanol, F1,9=6.2, p<0.05).

Effects of selective nAChR antagonists on ethanol
consumption

Preinjection of a low (1 mg/kg) or high (3 mg/kg) dose of
the nAChR competitive antagonist, DHβE, did not signif-
icantly affect ethanol intake in C57Bl/6J mice compared to
a preinjection of saline. Repeated measure ANOVA yielded
a non-significant effect of pretreatment: F3,21=0.67, p>0.05
(data not shown). Similarly, preinjection of a low (5 mg/kg)
or high (10 mg/kg) dose of the α7-selective antagonist,
MLA, did not significantly reduce ethanol intake (F3,18=
0.56, p>0.05, data not shown).

Effects of nAChR agonists on ethanol consumption in the
DID assay

To evaluate the effects of nAChR agonists on ethanol intake
in the DID assay, we pre-injected C57Bl/6J mice with
nicotine immediately prior to presentation of the 20%
ethanol bottle. Compared to a saline injection, both 0.25
and 0.5 mg/kg nicotine decreased the volume of ethanol
drinking (Fig. 2a). Repeated-measure ANOVA indicated an
overall effect of pretreatment on intake (F3,18=6.33, p<0.01,
Fig. 2b). Post hoc comparisons indicated that 0.5 mg/kg
nicotine significantly reduced ethanol intake compared
to saline (p<0.01+/−0.32 compared to 3.76+/−0.36 g/kg
ethanol). Preinjection of either dose did not significantly
reduce consumption of sucrose solution (Fig. 2c, F3,21=
0.24, p>0.05). The β4* nAChR full agonist, and α4β2-
selective partial agonist, cytisine also dose dependently
reduced the volume of ethanol drinking compared to saline
(Fig. 3a). There was a significant effect of 3 mg/kg cytisine

Fig. 1 Mecamylamine dose dependently reduces ethanol DID. a Total
ethanol drinking volume (milliliters ethanol solution) over the course
of 2 h starting 2 h after lights off. Immediately prior to introduction of
the ethanol solution into each individual cage, mice were injected i.p.
with either 0 (saline), 0.5, 1, or 3, mg/kg mecamylamine. One group
of animals was used for the 0.5 mg/kg dose; whereas, a second group
of animals was used for the 1 and 3 mg/kg doses (see “Materials and
methods”). b Bar graph representation of total ethanol intake over the
2-h DID assay (gram per kilogram) for the three mecamylamine doses.
c Total 10% sucrose volume intake (milliliter) after an i.p. injection of
0 (saline), 1, or 6 mg/kg mecamylamine. Mice had access to 10%
sucrose for 2 h during the dark cycle starting 2 h after lights out.
d Blood ethanol concentration (millimolar) in mice given an i.p.
preinjection of saline (n=5) or 1 mg/kg mecamylamine (n=6)
immediately prior to an alcohol bottle. Blood was isolated immedi-
ately after the 2-h drinking session. Data presented as mean+/−SEM.
*p<0.05, **p<0.01 compared to same group saline controls, one-way
or repeated measure ANOVA, Tukey post hoc test (see “Materials and
methods” and “Results” sections for details)

Fig. 2 Nicotine reduces ethanol DID. a The effect of a preinjection of
nicotine on ethanol drinking volume is shown. One group of mice
were used for both drug concentrations (n=7) b Ethanol intake (gram
per kilogram) from a. c Average effect of a preinjection of nicotine on

sucrose intake. Data are presented as mean+/−SEM. **p<0.01
compared to same group saline controls, repeated measures ANOVA,
Tukey post hoc test
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on ethanol intake (F1,6=29.8, p<0.05, Fig. 3b, 1.37+/−0.39
compared to 4.01+/−0.39 g/kg ethanol) but not with 1 mg/kg
(F1,16=0.15, p>0.05). Repeated measure ANOVA on the
effect of preinjection on sucrose drinking revealed a
significant interaction (F3,21=9.63, p<0.01). However, post
hoc analysis revealed no significant difference between mice
given 1 or 3 mg/kg cytisine compared to saline-injected
controls (Fig. 3c, p>0.05, NS).

Effects of mecamylamine and nicotine on ethanol drinking
patterns

To determine if mecamylamine, a nicotinic receptor antago-
nist, and nicotine, an agonist could affect ethanol intake
differently, we measured the pattern of alcohol drinking in
mice pre-injected with each drug. Ethanol intake was
measured in 15-min intervals over the course of 2 h.
Figure 4a illustrates ethanol intake in two separate groups
of mice that received either saline/nicotine or saline/
mecamylamine preinjections. Data from each group were
normalized to their average saline values per 15-min interval
so comparisons could be made between groups. Preinjection
of 0.5 mg/kg nicotine decreased ethanol intake during the
first hour of drinking (Fig. 4a). Conversely, 3 mg/kg
mecamylamine reduced ethanol intake predominantly during
the second hour of the DID assay. Figure 4b illustrates average
interval intake in the first hour compared to the second hour
of the DID assay. One-way ANOVA indicated a significant
effect of nicotine on average interval intake in the first hour
compared to saline (Fig. 4b). Actual values from the first
hour are 0.502 g/kg/interval after saline injection compared
to 0.159 g/kg/interval after nicotine (F1,46=14.5, p<0.001).
Mecamylamine significantly inhibited ethanol intake in the
second hour of the assay (0.688 g/kg/interval after saline
compared to 0.33 mg/kg/interval, F1,54=11.0, p<0.01).

Effects of mecamylamine and nicotine on ethanol-induced
VTA DAergic neuron c-Fos expression To gain mechanistic
insight into how nicotinic antagonists and agonists may

influence ethanol intake, we analyzed expression of the
immediate early gene, c-Fos, as a measure of neuronal
activation (Cole et al. 1989) in tyrosine hydroxylase (TH)
positive neurons of the VTA via immunohistochemistry. The
number of c-Fos, TH double positive cells in VTA, was
counted in mice that received mecamylamine or nicotine
prior to an i.p. injection of 2.0 g/kg ethanol (Fig. 5). A single
ethanol exposure significantly increased the number of double
positive cells in VTA compared to saline injection (Fig. 5a, c,
p<0.01, independent two-sample student t test). Preinjection
of 3 mg/kg mecamylamine 45 min prior to ethanol injection
significantly reduced the number of c-Fos/TH positive cells
compared to a saline preinjection (Fig. 5c, p<0.05).

To determine how nicotine may affect ethanol-induced c-
Fos expression, we injected mice with 0.5 mg/kg nicotine,
followed by either a saline or 2.0 g/kg ethanol injection. In
the absence of ethanol, nicotine significantly increased the
number of VTA c-Fos/TH double positive neurons compared
to saline-injected animals (Fig. 5b, d, p<0.01). Ethanol
exposure after the initial nicotine injection did not signif-
icantly increase or decrease the number of double positive
neurons compared to nicotine alone (Fig. 5d, p>0.05).

Fig. 3 Cytisine reduces ethanol DID. a Total volume of ethanol
intake after saline, 1, or 3 mg/kg cytisine preinjection. Separate groups
of animals were used for each dose. b Ethanol intake (gram per
kilogram) from a. Asterisk indicates significance compared to within

group intake after a saline preinjection. c Effect of saline, 1, or 3 mg/kg
cytisine on sucrose intake. *p<0.05 compared to same group saline
controls, one-way ANOVA, Tukey post hoc test

Fig. 4 Mecamylamine and nicotine differentially affect DID ethanol
drinking pattern. a Normalized drinking bouts in two separate groups
of mice that received saline/3 mg/kg mecamylamine or saline/0.5 mg/kg
nicotine. Dotted line represents the normalized saline value for each
group. b Average 15-min bout during the first and second hour of the
DID assay in the two groups of animals. **p<0.01, ***p<0.001
compared to same group saline controls, one-way ANOVA, Tukey post
hoc test
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Discussion

Previously, the nonspecific nicotinic receptor antagonist,
mecamylamine, has been shown to reduce ethanol intake in
rats that have learned to drink ethanol through at least 2-
week training with increasing concentration of free or
limited access ethanol (Blomqvist et al. 1996; Le et al.
2000)). In addition, mecamylamine has been reported to
reduce the subjective euphoria of ethanol in humans
(Blomqvist et al. 1996; Chi and de Wit 2003; Le et al.
2000). To our knowledge, this is the first report that nAChR
blockade reduces ethanol consumption in mice during the
DID paradigm, a model of binge drinking where C57BL/6J
mice consume alcohol until intoxicated. Mecamylamine
dose dependently reduced alcohol intake and this also leads
to a significant reduction in blood–ethanol concentration

suggesting that mecamylamine was not inhibiting the
metabolism of ethanol. Sucrose intake, however, was not
reduced indicating specificity for alcohol consumption and
not a general effect on reward signaling. Reduction of
ethanol intake by mecamylamine was mediated by block-
ade of neuronal nAChRs expressed in the CNS because the
non-specific nAChR antagonist, hexamethonium, did not
significantly alter alcohol consumption. Prior studies
indicate that mecamylamine delivered systemically or
directly into the VTA blocks elevation of ethanol-
mediated dopamine release in the nucleus accumbens
(Blomqvist et al. 1993, 1997). Thus, it is likely that
mecamylamine is reducing ethanol intake via a similar
mechanism in the DID assay. Although there have been
reports that high doses of mecamylamine can non-
competitively inhibit NMDA receptors (Fu et al. 2008;

Fig. 5 Mecamylamine and nicotine exhibit distinct effects on ethanol-
induced VTA DAergic neuron activation. a Representative images
depicting VTA slices from mice receiving two saline injections (left),
saline followed by a 2.0 g/kg ethanol injection (middle), or 3.0 mg/kg
mecamylamine followed by a 2.0 g/kg ethanol injection (right). Slices
are fluorescently double-labeled with anti-tyrosine hydroxylase (red)
and anti-c-Fos (green). b Representative images depicting VTA slices
from mice receiving saline injections (left), 0.5 mg/kg nicotine
followed by saline (middle), or 0.5 mg/kg nicotine followed by

2.0 g/kg ethanol (right). c Average number of c-Fos positive, TH
positive cells per slice from mice treated as in a. d Average number of
c-Fos positive, TH positive cells per slice from mice treated as in b.
Baseline c-Fos positive, TH positive cells from saline-injected control
mice were subtracted from each value. Cells were counted from 23 to
33 VTA slices per mouse. Three mice per treatment were used for
analysis. Asterisks directly above each bar indicate significance from
saline-treated control mice. *p<0.05, **p<0.01
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O’Dell and Christensen 1988), we observe a decrease in the
volume of ethanol consumption at doses as low as 0.5 mg/kg
suggesting that mecamylamine is acting via blockade of
neuronal nAChRs.

Because of the vast array of nAChR subtypes expressed
in the CNS, identifying the specific composition of
receptors involved in ethanol reinforcement is a difficult,
but important question. High affinity α4β2 and low affinity
α7 nAChRs are two of the most abundant nicotinic
receptors in the CNS and could represent potential
candidates for at least partially mediating ethanol reward,
α4β2 in particular since these receptors have been clearly
implicated in nicotine dependence (Picciotto et al. 1998;
Tapper et al. 2004). However, the α4β2-selective (DHβE)
and α7-selective (MLA) antagonists, both of which readily
cross the blood-brain barrier, failed to significantly reduce
ethanol intake. These data support prior studies that have
shown little effect of these compounds on both operant
responding, ethanol-mediated dopamine release in nucleus
accumbens, and ethanol self-administration in rats (Le et al.
2000; Soderpalm et al. 2000). The straightforward inter-
pretation of these data would be that α4β2 and α7 nAChRs
are not involved in alcohol self-administration. However,
caution in this interpretation is warranted especially in
regard to higher affinity heteromeric nicotinic receptors that
could contain α4β2 in addition to a third or even fourth
subunit that may render them relatively insensitive to DHβE
(Salminen et al. 2004).

Interestingly, acute exposure to nicotine dose dependent-
ly reduced alcohol intake in the DID paradigm. This is in
opposition to at least one previous study that indicates that
nicotine can enhance ethanol intake in rats in a restricted
access drinking assay (Smith et al. 1999). The most likely
difference between studies is that our DID assay utilized
mice from the C57BL/6J strain which are high-alcohol-
preferring animals; whereas the study of Smith et al.
utilized rats that needed to be given low doses of ethanol
for weeks before voluntary drinking was established.
Throughout the adaptation period, where rats learned to
drink increasing alcohol doses that produced robust blood
ethanol concentrations, they were exposed to nicotine daily.
Thus, chronic nicotine enhanced ethanol consumption,
while our study illustrates that acute nicotine in naïve mice
reduces ethanol intake. It will be interesting to determine
the effect of chronic nicotine exposure on consumption in
the DID assay.

Our results indicate that cytisine can also reduce ethanol
drinking. While nicotine is a full agonist, cytisine is known
to be a full agonist for β4* nAChRs and a partial α4β2
agonist (Mineur et al. 2007; Picciotto et al. 1995). The
α4β2-selective partial agonist, varenicline is a derivative of
cytisine and recently has been shown to inhibit alcohol
intake and seeking in rats (Coe et al. 2005; Steensland et al.

2007). Based on these observations, cytisine may also be a
candidate compound for alcohol cessation.

Mecamylamine and nicotine differentially modulate
alcohol drinking patterns. Mecamylamine reduced ethanol
intake predominantly in the second hour of the DID assay;
whereas nicotine reduced intake during the first hour,
perhaps indicating independent mechanisms of action for
each compound. Drinking patterns may be explained by
differences in the pharmacokinetics of each drug and how
readily they cross the blood brain barrier. For example,
nicotine is known to permeate the brain on the order of
seconds (Lockman et al. 2005), while mecamylamine likely
has a longer latency to reach effective concentrations in the
CNS (Young et al. 2001).

Because of the complexity of nAChR subunit composi-
tion, as well as the robust expression patterns of nAChRs
throughout the CNS, it is not so surprising that blocking
nAChRs (i.e., with mecamylamine) and activating them
with agonist can both reduce ethanol intake. However,
could both classes of compounds impact the same ethanol
reward circuit to modulate voluntary ethanol intake? Based
on multiple studies indicating that nAChRs rapidly desen-
sitize after a single nicotine exposure, often for prolonged
periods of time (Mansvelder et al. 2002; Pidoplichko et al.
1997), it is possible that an acute injection of nicotine or
cytisine prior to ethanol exposure desensitizes the relevant
nAChR subtype precluding activation of circuits involved in
voluntary drinking. Thus, blocking nAChRs with an antago-
nist or desensitizing nAChRs with pre-exposure to agonists
would both reduce alcohol consumption. Our c-Fos/TH
double labeling experiments support this idea. Preinjection
of mecamylamine significantly reduced the number of
DAergic neurons in the VTA that were activated by a sub-
sequent exposure to ethanol suggesting that mecamylamine
may block ethanol reward.

Alternatively, ethanol intake may be reduced by the
nAChR agonists because the agonists themselves elevate
nucleus accumbens DA release, thereby increasing DA
signaling prior to ethanol drinking (Marubio et al. 2003;
Picciotto et al. 1998). Indeed, preinjection of nicotine in-
creased c-Fos induction in DAergic neurons and a subse-
quent exposure to ethanol did not further increase c-Fos
compared to nicotine alone, suggesting that nicotine and
alcohol may activate similar reward pathways. The DA
reuptake blocker GBR 12909 has been shown to also
reduce ethanol intake in the DID paradigm, presumably via
a similar mechanism (Kamdar et al. 2007) but this
compound was also shown to decrease sugar water intake.
Our results argue against a common reward pathway
because nicotine and cytisine reduced ethanol intake
without reducing sucrose drinking suggesting that nicotinic
receptor activation is involved in alcohol/nicotine reward
specifically.
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In summary, our data indicate that nAChRs are involved
in acute ethanol drinking until intoxication. Identification of
the specific nAChR subtypes involved in this behavior
should lead to novel therapeutic targets that could be used
to prevent binge drinking.
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