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Abstract
Rationale The endocannabinoid system plays a crucial role in
the control of emotionality and recent clinical findings have
shown that heavy prenatal exposure to cannabis is signifi-
cantly associated with self-reported anxiety symptoms in
exposed children. However, the long-term neurobehavioral
consequences of in utero exposure to low–moderate doses of
cannabinoid compounds have never been investigated.
Objective The objective of this study was to investigate
whether perinatal exposure to moderate doses of the active
constituent of cannabis, the CB1 cannabinoid receptor
agonist delta-9-tetrahydrocannabinol (THC), influences the
emotional reactivity of rat offspring.
Methods Primiparous Wistar rats were treated during
pregnancy and lactation with doses of THC equivalent to
the current estimates of moderate cannabis consumption in

humans (2.5–5 mg kg−1, per os, from gestational day 15 to
postnatal day 9). The emotional reactivity of infant,
adolescent, and adult offspring was investigated using the
isolation-induced ultrasonic vocalization, social interaction,
and elevated plus-maze tests, respectively.
Results Perinatal THC treatment did not affect parameters
of reproduction; however, at the dose of 5 mg kg−1, it
increased the number of ultrasounds emitted by rat pups
removed from the nest, inhibited social interaction and play
behavior in the adolescent offspring, and induced an
anxiogenic-like profile in the adult offspring tested in the
elevated plus-maze test.
Conclusion These results suggest that the endocannabinoid
system is involved in the control of emotionality since early
developmental stages. Thus, even moderate doses of
cannabinoid compounds, when administered during the
perinatal period, can have profound consequences for brain
maturation, leading to long-lasting neurodevelopmental
alterations.
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Introduction

Several findings support the hypothesis of an important role
of the endocannabinoid system in the modulation of
emotional states (Millan 2003; Witkin et al. 2005). Firstly,
CB1 cannabinoid receptors are highly expressed in brain
areas involved in the modulation of emotionality (Ameri
1999; Davies et al. 2002). Secondly, endocannabinoids,
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produced by activated neurons, act presynaptically modu-
lating the release of several neurotransmitters and neuro-
peptides that play a key role in anxiety (Hermann et al.
2002; Katona et al. 2001; Schlicker and Kathmann 2001;
Tsou et al. 1998; Ameri 1999; Rodriguez de Fonseca et al.
1997). Thirdly, several studies in cannabis users have
shown that the consumption of marijuana produces a wide
range of subjective emotional effects (Tournier et al. 2003;
Wachtel et al. 2002). These observations have their
counterpart in animal studies, showing that cannabinoids
elicit dose-dependent and environment-dependent anxiolyt-
ic and/or anxiogenic effects in rodent models of anxiety
(Martin et al. 2002; Onaivi et al. 1990; Rodriguez de
Fonseca et al. 1997; Rodriguez de Fonseca et al. 1996).

The endocannabinoid system plays specific roles during
early developmental stages (Fernandez-Ruiz et al. 2000).
Several studies have described the presence of the CB1

receptor (Rodriguez de Fonseca et al. 1993) and its
endogenous ligands (Paria and Dey 2000; Berrendero et
al. 1999) in the developing brain. The atypical, transient
localization of CB1 receptors during the perinatal period
suggests a specific involvement of the endocannabinoid
system in brain development (Fernandez-Ruiz et al. 2000).
However, despite this evidence, the effects of cannabis
exposure during critical developmental periods are still
poorly understood. From a clinical point of view, this lack
of information is of particular concern because, among the
social problems related to marijuana abuse, the increasing
consumption of cannabis derivatives in pregnant women is
noteworthy (Fried and Smith 2001; Goldschmidt et al.
2000; Sloan et al. 1992). This increases the urgency to
understand the effects of cannabis exposure on the fetus.

Cannabinoids can be transferred from the mother to the
offspring through the placental blood during gestation and
through the maternal milk during lactation (Fernandez-Ruiz
et al. 2004; Hutchings et al. 1989; Jakubovic et al. 1977). In
this way, as CB1 receptors are already present during
development (Buckley et al. 1998), marijuana exposure
during pregnancy and/or lactation could interfere with the
sequence of events occurring during the ontogeny of the
central nervous system (CNS), thus, possibly, leading to
the onset of neurodevelopmental alterations.

Some clinical studies have investigated the effects of in
utero exposure to cannabis in humans (Fried 1980; 1989a,
b). Only few of them, however, focused on children past the
age of four or five (Fried 2002a, b; Fried et al. 2003). This
is due to the different confounding factors and many
socioeconomic variables that make follow-up studies of
children prenatally exposed to drugs of abuse until
adulthood particularly difficult.

In this scenario, animal models may provide a useful
tool for examining the potential long-term effects of in
utero exposure to cannabis derivates in the offspring.

Animal studies of prenatal exposure to cannabinoids have
revealed long-term effects on functional regulation of motor
behaviors, learning and memory processes, as well as
nociception (Antonelli et al. 2005; Fride and Mechoulam
1996; Mereu et al. 2003; Moreno et al. 2003; Navarro et al.
1995; Rubio et al. 1995). Furthermore, it has been shown
that prenatal exposure to a moderate dose of WIN55,212-2,
a synthetic cannabinoid agonist, alters emotional reactivity
in 10-day-old pups (Antonelli et al. 2005). However, the
long-term changes of emotionality induced by in utero
exposure to moderate doses of cannabinoids have not been
studied yet. This observation prompted us to investigate, in
a longitudinal behavioral study, the long-term consequences
of perinatal exposure to moderate doses of delta-9-tetrahy-
drocannabinol (THC) on the emotional reactivity of the
offspring. To this aim, primiparous Wistar rats were treated
during pregnancy (from day 15 of gestation) and lactation
(until day 9 after parturition) with doses of THC equivalent
to the current estimates of low to moderate cannabis
consumption in humans (Molina-Holgado et al. 1996). This
temporal window of THC exposure was chosen because in
terms of brain development this time period roughly
corresponds to the second half of pregnancy in humans
(Maier et al. 1999). The emotional reactivity of infant,
adolescent, and adult offspring was then investigated using
the isolation-induced ultrasonic vocalization (USV), social
interaction, and elevated plus-maze tests.

Materials and methods

Animals and exposure conditions

Experiments were performed in accordance with the
“principles of laboratory animal care” promulgated by the
Italian Ministry of Health (Decreto Legislativo 116/92 and
Decreto Legislativo 111/94-B), the Declaration of Helsinki,
and the Guide for the Care and Use of Laboratory Animals
as adopted by the National Institutes of Health (USA).

Primiparous pregnant female Wistar rats weighing 250–
280 g were purchased from Harlan (Milan, Italy) and were
individually housed in 42×27×14-cm Plexiglas boxes in
air-conditioned rooms (temperature 21±1°C, relative hu-
midity 60±10%; lights on from 8:00 a.m. to 8:00 p.m.).
Pellet food (Morini, San Polo D’Enza, Italy) and tap water
were available ad libitum.

Pregnant rats received a daily dose of THC (2.5–5 mg kg−1)
orally administered through a buccopharyngeal cannula
from gestational day (GD) 15 to postnatal day (PND) 9.
The highest dose administered is equivalent to the current
estimates of moderate exposure to THC in humans,
correcting for differences in route of administration and
body surface area (Molina-Holgado et al. 1996). THC
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(Sigma, Milan, Italy) was dissolved in sesame oil and
prepared as described before (Molina-Holgado et al. 1993).
Control pregnant rats received the same volume of vehicle.

Newborn litters found up to 5.00 p.m. were considered
to be born on that day (PND 0). On PND 1, all litters were
reduced to a standard size of eight pups per litter (six males
and two females). On PND 21, pups were weaned and
housed in groups of three in 42×27×14-cm Plexiglas boxes
in air-conditioned rooms (temperature 21±1°C, relative
humidity 60±10%; lights on from 8:00 a.m. to 8:00 p.m.).
One male pup per litter from different litters per treatment
group was used in each experiment. Each male rat was
tested only once.

Reproduction data

Body weights of the dams were taken daily throughout
pregnancy (from GD 0 to GD 20). The number of dams
giving birth and the length of pregnancy were determined.
Litter size at birth, body weights of male pups, and
postnatal mortality (the number of male pups that died
before weaning) were also measured.

Isolation-induced ultrasonic vocalizations

USVs are emitted by rodent pups when removed from the
nest and play an important communicative role in mother–
offspring interactions (Branchi et al. 2006). The rate of
USVs follows an ontogenetic profile. In rats, it increases
during the first days of life, reaching a peak around PND
10. It then starts to decrease, completely disappearing
around PND 17 to 20 (Branchi et al. 2006).

On PND 12, USVs of vehicle- and THC-treated pups
were recorded according to the procedure described by
Calamandrei et al. (1999) and Tattoli et al. (2001).

Apparatus Subjects were tested in a Plexiglas arena (30×
30×30 cm) placed inside a temperature-controlled room.
USVs were detected by an ultrasonic microphone fixed at
15 cm above the arena (SM2, Ultrasound Advice)
connected to a Bat Detector (US 30 Ultrasound Advice)
tuned to 30±10 kHz and connected to a high-speed tape
recorder (Racal Store).

Procedure One male per litter for each treatment group was
randomly removed from the nest and placed in the center of
the arena. The recording session lasted 3 min. Number of
USVs was manually and independently recorded by three
independent experimenters blind to the treatment, by
listening to the audible output of the tape recorder through
headphones (Philips HI-FI stereo SHP9000). Moreover,
crossings of square limits with both forepaws were
recorded for 3 min (Laviola et al. 1988). Axillary

temperature was measured at the end of the test by means
of a digital thermometer provided with a rat probe.

Social interaction

The social interaction test was carried out at PND 35 because
a high degree of social interactions characterizes adolescent
rodents (Vanderschuren et al. 1997). Briefly, 24 h prior to the
test, all subjects were weighed and individually housed in
cages identical to the home cage, containing some of their
own sawdust. At the time of test, each unfamiliar pair
(perinatal THC-treated experimental rat and same sex, age,
and strain naïve unfamiliar partner) was placed in a test cage
identical to the home cage, with new sawdust as bedding,
and allowed to interact for 15 min. The behaviors of the
animals were videotaped using a video camera, videotape
recorder, and television monitor. Analysis from the videotape
recordings was performed afterwards by the same observer,
who was unaware of animal treatment, using the Observer
3.0 software (Noldus Information Technology B.V., Wage-
ningen, The Netherlands). The following behavioral ele-
ments were scored per 15 min:

– Play-related behaviors: pouncing (i.e., when one animal
attempts to nose or rub the nape of the neck of the play
partner), which is the clearest index of play solicitation;
boxing–wrestling (a group of playful activities includ-
ing boxing, wrestling, and charging); pinning (i.e., the
most common terminal component of a play bout, in
which one animal stands over a supine partner), which
is the consummatory measure of play;

– Social behaviors unrelated to play: social exploration
(sniffing any part of the body of the test partner, including
the anogenital area); social grooming (chewing and
licking the fur of the partner, during which the animal
that grooms mostly places its forepaws on the back of the
neck of the partner); crawling over and under the test
partner.

Elevated plus maze

The elevated plus-maze apparatus comprised two open arms
(50×10×0 cm) and two closed arms (50×10×40 cm) that
extended from a common central platform (10×10 cm). The
apparatus, made of Plexiglas (gray floor, clear walls), was
elevated to a height of 60 cm above the floor level. A video
camera above the maze was connected to a television monitor
connected to a video recorder.

The elevated plus-maze test was performed following
the procedure described by Pellow and File (1986) and
modified by Bortolato et al. (2006). Briefly, on PND 80, rats
were individually placed on the central platform facing a
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closed arm and a 5-min test period was recorded on videotape
for subsequent analysis. Immediately after each session, the
apparatus was thoroughly cleaned with cotton pads wetted
with 70% ethanol–water solution and dried. Behavioral
analyses were carried out by the same observer, who was
unaware of animal treatment, using the Observer 3.0 software
(Noldus Information Technology B.V., Wageningen, The
Netherlands). The following parameters were analyzed:

(a) % Time spent on the open arms (% TO), calculated as the
amount of time spent on the open arms of the maze per
5min. Time on the open armswas timed from themoment
that all four paws of the rat were placed on an open arm;

(b) % Open entries (% OE), calculated as the number of
entries into the open arms of the maze per number of
entries into open + closed arms;

(c) Number of total arm entries (open + closed arm entries);
(d) Number of exploratory head dippings (HDIPS) made

over the edge of the open arms;
(e) Number of stretched-attend postures (SAP) made from

the exit of a closed towards an open arm. This
exploratory posture can be described as a forward
elongation of the body, with static hindquarters,
followed by a retraction to the original position.

Statistical analysis

All data are presented as mean±SEM (n=20–26 for vehicle
group; n=12 for THC 2.5 group; n=12 for THC 5 group).
Reproduction data and all parameters measured in the
isolation-induced ultrasonic vocalization, social interaction,
and elevated plus-maze tests were analyzed using one-way
analysis of variance (Anova), followed by Tukey’s post hoc
test where appropriate.

Results

Reproduction data

No differences were observed in the body weight gains of
THC-treated dams during gestation as compared to the

control-treated animals (Table 1). Moreover, perinatal
exposure to THC did not affect pregnancy length, litter
size at birth, pup weight gain, and postnatal mortality
(Table 1).

Isolation-induced ultrasonic vocalizations

One-way Anova revealed that 12-day-old pups exposed to
THC during pregnancy and lactation displayed increased
anxiety in the isolation-induced ultrasonic vocalization test
(F(2, 47)=4.43, p<0.05). Tukey’s post hoc comparison
revealed that perinatal exposure to THC (5 mg kg−1)
significantly increased the number of ultrasounds emitted
by rat pups removed from the nest (Fig. 1a). This effect was
not due to changes in body temperature, as one-way Anova
for axillary’s temperature revealed no significant differences
among groups. Moreover, the increased rate of ultrasonic
emission in 12-day-old offspring was not accompanied by
any changes in locomotor activity, as one-way Anova for the
number of arena crossings showed no significant differences
between the treatment groups (Fig. 1b).

Social interaction

Exposure to THC during pregnancy and lactation altered
social play behavior in the adolescent offspring. Adolescent
rats exposed to THC during pregnancy and lactation were
significantly less engaged in play behavior than controls, as
pinning (F(2, 41)=3.70, p<0.05; p<0.05 for post hoc
comparisons between vehicle and THC 5 mg kg−1;
Fig. 2a), pouncing (F(2, 41)=11.55, p<0.001; p<0.01 for
post hoc comparisons between vehicle and THC 5 mg kg−1;
Fig. 2b), and boxing–wrestling (F(2, 41)=6.24, p<0.01; p<
0.01 for post hoc comparisons between vehicle and THC
5 mg kg−1; Fig. 2c) frequencies were significantly reduced
in animals treated with THC 5 mg kg−1. Perinatal THC
exposure did not affect frequency (Fig. 2d) of social
behaviors unrelated to play.

Overall, the total time spent in social activity, calculated as
the sum of social behaviors both related and unrelated to play,
was reduced in adolescent rats treated with THC 5 mg kg−1

(F(2, 41)=7.59, p<0.01; data not shown).

Table 1 Reproduction data

Group Dam weight gaina, % Pregnancy length,
days

Litter size at
birth

Pup weight Postnatal
mortality

PND 1 PND 12 PND 21

Vehicle 50.2±2.3 21.4±0.2 10±0.6 6.3±0.2 30.1±0.6 72±0.7 0
THC 2.5 mg kg−1 50.6±7.1 21.8±0.3 11±0.6 6.4±0.6 30.8±0.5 70.3±0.7 0
THC 5 mg kg−1 52.9±1.3 21.4±0.2 9.2±0.4 6.6±0.2 30.2±0.6 72.9±0.3 0

Data represent mean values±SEM.
a From GD 0 to GD 20.
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Elevated plus maze

The increased emotionality found in the infant and
adolescent offspring perinatally exposed to THC was long
lasting. In fact, THC perinatal treatment affected the
performance of adult rats in the elevated plus-maze test
(Fig. 3), with THC 5 mgkg−1 decreasing the percentage of
time spent on the open arms (% TO, F(2, 38)=6.35, p<0.01;
p<0.01 for post hoc comparisons between vehicle and THC
5 mg kg−1; Fig. 3a) and the percentage of entries in the
open arms (% OE, F(2, 38)=6.47, p<0.01; p<0.01 for post
hoc comparisons between vehicle and THC 5 mg kg−1;
Fig. 3b). Moreover, perinatal treatment with THC 5 mg
kg−1 decreased the number of HDIPS (F(2, 38)=5.5, p<0.01;
p<0.01 for post hoc comparisons between vehicle and THC
5 mg kg−1; Fig. 3c) and increased the number of SAP
(F(2, 38)=11.78, p<0.001; p<0.01 for post hoc comparisons
between vehicle and THC 5 mg kg−1; Fig. 3d). The
increased emotional reactivity displayed by THC-exposed
adult offspring was not secondary to changes in locomotor
activity, as the number of total entries was unaffected
(Fig. 3e).

Discussion

The present study provides new evidence that perinatal
exposure to THC, at a dose (5 mg kg−1) that is not
associated with overt signs of toxicity, produces subtle and
enduring neurobehavioral changes in the emotional behav-
ior of the rat offspring. An increased emotionality has been
found, indeed, at neonatal, adolescent, and adult ages in rats
exposed to THC.

Concerning the neonatal age, we found that 12-day-old
pups exposed to THC during the perinatal period display an

increased rate of USVs compared to the control group. The
USV test has been extensively validated and widely used to
investigate the ontogeny of emotionality (Insel et al. 1986).
Furthermore, it is considered a useful test, among the few
available, in detecting subtle effects of adverse treatment
during development (Cuomo et al. 1987; Branchi et al.
2006). USVs are emitted by rodent pups in response to
separation from the mother and the nest and play an
important communicative role in mother–offspring interac-
tion. They are, indeed, a potent stimulus for maternal
retrieval and elicit caregiving behaviors in the dam (Farrell
and Alberts 2002; Noirot 1972). As high rates of USVs are
generally indicative of an anxiety-like state, the present
results show that perinatal exposure to THC induces an
increased emotional reactivity of the offspring. Whether
this could be due to an effect of the drug on the
development of brain areas controlling emotionality, or to
a possible direct pharmacological effect of circulating THC
in the pup blood remains to be clarified. Anyway, the
persistence of increased emotionality up to 80 days of age
(71 days after the end of THC exposure) supports the first
hypothesis.

The increased USV emission displayed by THC-exposed
pups could also be the consequence of an altered maternal
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significantly increased the number of ultrasounds emitted by 12-day-
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responsiveness, which is one of the factors tuning the rate
of USV emission of the offspring (D’Amato et al. 2005). It
has been suggested that THC disrupts all components of
maternal behavior in the postpartum rat (Bromley et al.
1978). Conversely, other authors failed to detect changes in
maternal care in rhesus monkeys exposed to THC during
pregnancy and lactation (Golub et al. 1981). Furthermore,
we should take into account that alterations in the USVs

emitted by rat pups influence maternal behavior which, in
turn, might affect the behavior of the offspring. Thus,
whether the altered emotionality found in THC-exposed
rats could be due to a direct effect of the drug on brain areas
involved in emotional behavior and/or to an indirect effect
of the drug on maternal behavior is an interesting issue
which deserves more investigation.

Interestingly, our previous findings (Antonelli et al.
2005) showed a reduction of USVs in rat pups prenatally
exposed to the synthetic cannabinoid agonist WIN55,212-2,
thus highlighting how different time windows of exposure
to a psychotropic agent can induce even opposite neuro-
functional effects (Costa et al. 2004). However, differences
in cannabinoid agonist used, tested dose (cannabinoids can
induce either anxiolytic- or anxiogenic-like behaviors
depending on the dose, Millan 2003), and treatment
schedule (acute vs. chronic treatment) could also account
for the apparent discrepancies between the present study
and previous reports (Antonelli et al. 2005; McGregor et al.
1996).

It has been suggested that ultrasonic emission in rodent
pups may be related to human infant crying (Elsner et al.
1990) and that particular changes in the acoustic features of
the neonatal cry may be an indicator of long-term neuro-
behavioral alterations caused by adverse pre and postnatal
events (Lester 1987; Michelsson et al. 1977).

The alterations observed in the emotional reactivity of
THC-exposed pups seem to be long lasting. In fact, in our
study, an anxiogenic-like behavior was detected also in the
adolescent offspring (PND 35). At this time point, as the
pharmacological treatment was stopped more than 20 days
before testing, a direct effect of the drug on behavior could
be excluded. THC-exposed rats displayed lower social
activity than controls in the social interaction test. In
particular, all aspects of social play behavior were
affected, with a decrease of pinning, pouncing, and
boxing–wrestling, without any alteration of other social
behaviors unrelated to play. Our results are in agreement
with the finding that the synthetic cannabinoid agonist CP
55,940, repeatedly administered during the postnatal
period, reduced social interaction in 60-day-old rats
(O’Shea et al. 2006).

It has been proven that play deprivation in juvenile rats
causes abnormal patterns of social, sexual, and aggressive
behaviors in adulthood (Van den Berg et al. 1999). Social
play might function to establish social organization, to
develop the ability to express and understand intraspecific
communicative signals, and to cope with social conflicts.
As a consequence, the disturbances of adolescent social
play behavior induced by perinatal THC treatment may
have profound effects on the development of communica-
tive skills and appropriate behavioral patterns later in life
(Vanderschuren et al. 1997).
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It has been suggested that three forms of behaviors are
associated with the transition from reptiles to mammals:
nursing, audiovocal communication necessary to maintain
mother–offspring contact and play (MacLean 1990). Nursing,
vocalization, and play all share a common motivation for
social interaction and, under appropriate circumstances, may
lead to social attachment (Insel 2003). Taken together, then,
the increased emotional distress displayed by THC-treated
pups during acute periods of separation from the nest and the
reduced play behavior displayed by THC-treated adolescent
offspring highlight how perinatal THC treatment can disrupt
affiliative behavior and social attachment in the exposed
offspring.

From these results, however, it is not possible to assess
whether the altered behavioral profile observed in THC-
exposed offspring reflects only a disruption of affiliative
behavior and social attachment or whether it is, at the same
time, the consequence of increased emotionality caused by
perinatal THC exposure. To further address this issue, we
tested the offspring in the elevated plus-maze test at
adulthood. This test is one of the most popular animal tests
of anxiety currently in use. Although it has been frequently
used as a tool to screen anxioselective effects of drugs
(Handley and Mithani 1984; Pellow et al. 1985; Pellow and
File 1986), nowadays its usefulness has spread towards the
understanding of the biological basis of emotionality
(Adamec et al. 1998; Carobrez et al. 2001; Lamprea et al.
2000; Rasmussen et al. 2001). It has been suggested that
the social interaction and the elevated plus-maze tests
measure distinct facets of anxiety (i.e., social anxiety in the
social interaction test and generalized anxiety in the
elevated plus-maze test) that may be differentially suscep-
tible to drug treatments (File and Hyde 1978). In the present
study, THC-exposed adult rats showed increased anxiety-
like behaviors in the elevated plus-maze test, with respect to
control rats. They spent, indeed, more time in the closed
arms of the maze, exhibited a significantly lower number of
head dippings, and a higher number of SAP than vehicle-
exposed rats. The number of total entries, however, was not
affected by perinatal treatment, thus confirming that the
locomotor activity of the offspring was not compromised
by THC exposure. The altered emotional reactivity dis-
played by THC-exposed adult offspring in the elevated
plus-maze test shows that the deleterious neurobehavioral
effects of perinatal THC exposure seem to be irreversible.

In the rodent CNS, CB1 receptors have been detected as
early as GD 11, where they mediate endocannabinoid
regulation of proliferation, migration, specification, and
survival of neural progenitors, dictate the phenotypic
differentiation of neurons, and control the establishment
of synaptic communication (Harkany et al. 2007). The
long-term alterations found in the brain of rats perinatally
exposed to THC likely reflect alterations at these sites,

although other possible molecular targets cannot be
excluded.

On the whole, the findings from this longitudinal
behavioral study are in accordance with the hypothesis that
the endocannabinoid system might be involved in the
control of emotional states since early developmental stages
and are in line with clinical evidence showing that prenatal
exposure to cannabis is associated with child’s self-reported
anxiety symptoms (Goldschmidt et al. 2004; Gray et al.
2005; Leech et al. 2006).
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