
ORIGINAL INVESTIGATION

A novel method for automatic quantification
of psychostimulant-evoked route-tracing stereotypy:
application to Mus musculus

Stephen J. Bonasera & A. Katrin Schenk &

Evan J. Luxenberg & Laurence H. Tecott

Received: 23 April 2007 /Accepted: 17 October 2007 /Published online: 21 December 2007
# Springer-Verlag 2007

Abstract
Rationale Route-tracing stereotypy is a powerful behavior-
al correlate of striatal function that is difficult to quantify.
Measurements of route-tracing stereotypy in an automated,
high throughput, easily quantified, and replicable manner
would facilitate functional studies of this central nervous
system region.
Objective We examined how t-pattern sequential analysis
(Magnusson Behav Res Meth Instrum Comput 32:93–110,
2000) can be used to quantify mouse route-tracing
stereotypies. This method reveals patterns by testing
whether particular sequences of defined states occur within
a specific time interval at a probability greater than chance.

Results Mouse home-cage locomotor patterns were re-
corded after psychostimulant administration (GBR 12909,
0, 3, 10, and 30 mg/kg; d-amphetamine, 0, 2.5, 5, and
10 mg/kg). After treatment with GBR 12909, dose-
dependent increases in the number of found patterns and
overall pattern length and depth were observed. Similar
findings were seen after treatment with d-amphetamine up
to the dosage where focused stereotypies dominated
behavioral response. For both psychostimulants, detected
patterns displayed similar morphological features. Pattern
sets containing a few frequently repeated patterns of greater
length/depth accounted for a greater percentage of overall
trial duration in a dose-dependant manner. This finding led
to the development of a t-pattern-derived route-tracing
stereotypy score. Compared to scores derived by manual
observation, these t-pattern-derived route-tracing stereotypy
scores yielded similar results with less within-group
variability. These findings remained similar after reanalysis
with removal of patterns unmatched after human scoring
and after normalization of locomotor speeds at low and
high ranges.
Conclusions T-pattern analysis is a versatile and robust
pattern detection and quantification algorithm that comple-
ments currently available observational phenotyping methods.

Keywords Behavioral pattern detection . Sequential
analysis . Behavioral pattern differentiation . T-pattern .
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Introduction

Stereotypies are a form of abnormal repetitive behavior
defined as motor actions of unknown functional purpose
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that are repeatedly performed in a near-identical manner
(Garner 2005; Garner and Mason 2002). Although stereo-
typies can be evoked by diverse environmental and
pharmacological interventions (Fowler et al. 2003, 2007;
Powell et al. 2000; Presti et al. 2004; Turner et al. 2003)
and are associated with perturbations in multiple neuro-
transmitter systems (e.g., Barwick et al. 2000; Larson et al.
1996; Pogorelov et al. 2005; Presti et al. 2004; Toyota et al.
2002), stereotypical behaviors appear to reflect aberrant
function within the striatum (Joyce and Iversen 1984; Saka
et al. 2004; Szostak et al. 1989). Examples of these
stereotypical behaviors include syntactic grooming in
rodents (Aldridge and Berridge 1998; Cromwell et al.
1998) and repetitive head movements in both rats (Rebec et
al. 1997) and rhesus monkeys (Saka et al. 2004).

Repeated forays along a defined path are a form of motor
sequence response often observed after psychostimulant
administration. Frequent repetition of these forays within a
defined arena are termed route-tracing stereotypies (Cooper
and Nicol 1991). However, precisely quantifying route-
tracing stereotypy is difficult (e.g., Randrup and Munkvad
1967). Intensity-based stereotypy scales (e.g., Canales and
Graybiel 2000; Chartoff et al. 2001; Costall et al. 1972;
Creese and Iversen 1973; Ellinwood and Balster 1974,
Yates et al. 2007), while commonly employed, do not
quantify important aspects of route-tracing stereotypy, such
as path morphology and repetitions. Stereotypy scoring and
quantification are also difficult to standardize, and both
intra- and inter-rater score reliabilities are problematic
(Bakeman and Gottman 1997; Rebec and Bashore 1984).

Ideally, route-tracing stereotypy measures should be
agnostic about pattern morphology and organization, reflect
pattern temporal structure, be amenable to simple statistical
tests, and be easily implemented and automated. Prior
studies quantifying route-tracing stereotypies emphasized
path shape and statistical properties. Route-tracing behav-
ior, defined as repetitive sequences of motor activity
occurring along well-defined routes, was first demonstrated
in rats receiving amphetamine (Schiørring 1971, 1979) and
first quantified using a simple four-state Markov model to
produce maximum likelihood estimates of animal path
repetitions within a single behavioral trial (Mueller et al.
1989). This approach, however, was not applied to
locomotor patterns of arbitrary morphology and did not
address pattern temporal structure, a fundamental limitation
of simple Markov models. Algorithms that identify indi-
vidual bouts of locomotor activity have also been reported
(Drai et al. 2000; Drai and Golani 2001; Golani et al. 1999;
Kafkafi et al. 2003), but these techniques are not readily
adaptable to the quantification of route-tracing stereotypies.
Finally, in a novel use of ergodic theory, Paulus and
colleagues demonstrated that both metric and topological
entropy parameters could describe increased home-cage

stereotypical locomotor behavior after psychostimulant
treatment (Paulus et al. 1990, 1999; Paulus and Geyer
1991). Although these entropy measures are useful metrics
for quantifying the degree of randomness present in an
observed behavior, it would be useful to have assessments
of the existence and characteristics of locomotor patterns
that may be present.

One mathematical approach that may be particularly
suitable for identifying episodes of route-tracing stereotypy
in behavioral data is t-pattern sequential analysis. T-pattern
analysis (for detailed exposition of technique, see Magnusson
2000) focuses on determining whether arbitrary events x1
and x2 in a symbolic string of {xi} events sequentially occur
within a specified time interval at a rate greater than that
expected by chance. This type of data is commonly acquired
during observational behavioral studies, traditionally by
manual inspection of animal activities. T-pattern analysis
has been used in a wide variety of observational studies,
including serum testosterone concentration in prospective
fathers (Hirschenhauser et al. 2002), stereotypic decision
behavior in schizophrenic patients (Lyon et al. 1994), mitral
cell firing patterns in rat olfactory bulb after presentation of
test odors (Nicol et al. 2005), cooperative behavior between
humans and dogs when constructing an object (Kerepesi et
al. 2005), and analysis of soccer team play (Borrie et al.
2002). The common feature uniting all of the above
problems is the need to identify repeated behavior patterns
that may irregularly occur within a period of observation.
This same approach may thus be particularly well suited for
identifying behavioral stereotypies.

We discuss the use of this automated pattern analysis
approach to identify episodes of mouse route-tracing
behavior within a home-cage environment. We demonstrate
that t-pattern analysis can detect, in a sensitive manner,
route-tracing stereotypies evoked by systemic treatment
with psychostimulant drugs. We show that a t-pattern-
derived route-tracing stereotypy score has less within-group
variability compared to a manual observation-derived
stereotypy score and that the patterns detected using this
analytic technique are concordant with those that would be
noted with visual observation. Finally, we show that the
overall route-tracing stereotypy score is insensitive to the
locomotor distance traveled within the test arenas.

Materials and methods

Drugs 1-[2-[bis(4-Fluorophenyl)methoxy]ethyl]-4-[3-phenyl-
propyl]piperazine dihydrochloride (GBR 12909; RBI/Sigma)
was dissolved in normal saline vehicle with heating and
vortexing. d-Amphetamine (RBI/Sigma) was dissolved in
normal saline vehicle. Drugs were administered via intra-
peritoneal (i.p.) route in a 10 μl/g injection volume. Doses
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used were 3, 10, and 30 mg/kg (GBR 12909) or 2.5, 5, and
10 mg/kg (d-amphetamine).

Route-tracing stereotypy studies Male C57BL/6J mice
(Jackson Laboratories, Bar Harbor, ME, USA), 2–3 months
of age, were weighed and individually housed in standard
polypropylene low-profile cages (18.5×29×13 cm) 1 week
before study. Cages contained standard wood-chip mouse
bedding; mice had free access to water and chow at all times
except during filming. Animals were maintained on a 12-h
light/dark cycle; average light intensity 550 lx. The rooms
received no human traffic except during experimental testing,
approximately 2 h per day. All testing was performed
approximately 4–6 h before the onset of the dark cycle. A
white-noise generator maintained an ambient background
noise of 70 dB. Both institutional and federal regulations
regarding animal care and welfare were followed (National
Research Council 1996; Office of Laboratory Animal Welfare
2002, UCSF Institutional Animal Care and Use Committee).

For 6 days preceding testing, all mice received an i.p.
injection of vehicle to acclimate them to handling and
injection. On the day of testing, one cohort received
i.p. injections of 0, 3, 10, and 30 mg/kg GBR 12909 (n=
8 per dosage). We were unable to obtain a full data set for
two mice receiving GBR 12909 3 mg/kg and one mouse
receiving GBR 12909 10 mg/kg. A second cohort of mice
received i.p. injections of 0, 2.5, 5, and 10 mg/kg d-
amphetamine (n=8 per dosage). After injection, mice were
returned to their home cage. Approximately 5 (mice treated
with d-amphetamine) or 90 (mice treated with GBR 12909)
min after injection, home cages were removed from the rack,
placed on a white surface, and videotaped from 125 cm
overhead. Locomotor paths were tracked at a 30 Hz
sampling rate using EthoVision (Noldus, Leesburg, VA,
USA), a commercially available video tracking system.
Locomotor distances traveled within the testing arenas were
determined using EthoVision. Individual trials from the GBR
12909-treated cohort also were observer-scored in a blinded
fashion using a modified Creese–Iverson stereotypy scale
(Creese and Iversen 1973) ranging from 0 (mouse either
sleeping or inactive) to 6 (mouse engaged in continuous and
nonstop route-tracing stereotypic behaviors). Behaviors were
coded every 10 s for the total trial duration.

Data binning The first step in the automated evaluation of
the stereotypic properties of locomotor paths was to divide
the mouse home cage into a discrete number of regions
(bins). Binning converted movement into a symbolic string
of bin identity as a function of time. We calculated equal
weight (maximum entropy) bins, where bin area was
allowed to vary while containing similar numbers of data
points per bin. To simplify calculations, we imposed a “box
constraint” such that bins were set as rectangles sharing a

common row but not column [i.e., bins on the same row
shared a common upper and lower boundary, but bins along
the same column (with the exception of the physical arena
boundaries) did not share a common boundary; Fig. 1].
Study results were similar regardless of whether a 9- (3×3)
or 16-rectangle (4×4) binning scheme was used (data not
shown). Raw locomotor (x,y) coordinate data from the
video tracking system were imported into MATLAB
(MathWorks Inc, Natick, MA, USA) for binning.

Pattern detection Once locomotor data were binned and
converted to event form, we used a commercially available
program (Theme, Noldus) to implement the t-pattern
method for evaluating pattern structure. Individual t-
patterns are detected in a hierarchical fashion. For example,
assume event {b} occurs after event {a} three times. This
process gives rise to three time intervals starting with {a}
and ending with {b}. The algorithm calculates the
maximum and minimum durations of these intervals. One
then tests the null hypothesis that these durations are similar
to those that would arise from a random distribution of
events {a} and {b}. If the null hypothesis is rejected, {a,b}
forms a pattern. Now suppose that event {c} follows the
newly found pattern {a,b} more than once. The durations
between the start of {a,b} and {c} are tested for significance
in an identical manner. If {a,b,c} is found to be significant, it
also constitutes a pattern. Events that occur after pattern {a,b,
c} are tested for significance and added to the list of patterns
in the same way. This process is repeated as long as events
can be added to the pattern. We wrote MATLAB code that
checked and validated this program’s key algorithms. As
discussed in “Results,” all two-state patterns were excluded
from study. A number of secondary parameters guide the
algorithm during pattern identification; the specific settings
for these parameters are provided in the supplemental
methods (also see Supplemental Figure 1).

Pattern composition Pattern detection, as described above,
detects all possible patterns present within a given trial of
observational data. Each pattern consists of a set of
sequentially occurring symbols (each symbol represents a
bin) and a start and end time for the pattern. For instance, a
detected pattern (P1) that starts at Ti, consists of the symbols
{a,c,e,d}, and ends at Tf means that at Ti, the mouse entered
bin ‘a’, stayed there for some time ΔTa, then moved to bin
‘c’ for ΔTc, then to bin ‘e’ for ΔTe, then to bin ‘d’ for ΔTd.
At the end of ΔTd, the mouse exits bin ‘d’ (at time Tf), and
the pattern is over. Many of the patterns detected by the t-
pattern algorithm will be overlapping in time. For instance,
using the example pattern above, if the algorithm also finds a
pattern (P2) that starts at Ti+ΔTa, consists of the symbols {c,
e,d,f,g}, and ends at some time T>Tf, then the patterns P1
and P2 are overlapping. To determine the amount of
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stereotyped behavior within a given trial, it is equivalent to
ask what percentage of the total trial time is the animal
engaging in patterned behavior. To answer this, we must use
only nonoverlapping sets of patterns occurring within the
trial. We will call any set of nonoverlapping, sequentially
occurring patterns a pattern “composition.” For each
composition, we can define the fraction of time spent in
patterned behavior as the sum of all the time spent in the
patterns in the composition divided by the total trial time.
For each trial, there are many (depending on the number of
detected patterns) possible sets of nonoverlapping patterns
and thus a large number of possible compositions. To define
our measure of route-tracing stereotypy, we find, for each
trial, the composition that has the highest fraction of
patterned behavior. This procedure gives the “maximal
composition” for this trial. The maximal composition will
thus be the largest group of nonoverlapping, sequentially
occurring patterns that cover the most time within the trial.

Pattern composition as implemented by Theme employs
a combinatorial algorithm and thus identifies maximal
compositions in an unambiguous manner. For most of our
observational trials, we had no difficulty rapidly obtaining a
maximal pattern composition. However, for seven individ-

ual trials (six from mice receiving either 10 or 30 mg/kg
GBR 12909, one from a mouse receiving d-amphetamine
5 mg/kg), the detection algorithm found more than 1,200
distinct patterns; all of these cases required either extended
computational time to produce a maximal composition (six
cases) or would not converge to a final answer. Data from
this single, nonconverging trial were subsequently excluded
from the following analyses. The final GBR 12909 data set
thus contained a total of 28 trials: eight vehicle, six 3 mg/
kg, seven 10 mg/kg, and seven 30 mg/kg. The final d-
amphetamine data set contained 32 trials balanced across
vehicle, 2.5, 5, and 10 mg/kg dosages.

Determination of route-tracing stereotypy measures Route-
tracing stereotypies can be mathematically modeled by
evaluating the pattern composition for a given trial. Greater
percentages of time spent in specific pattern(s) suggest
greater time performing stereotyped locomotion. Thus,
comparing maximal pattern compositions may provide a
quantitative, easily automated means to measure route-
tracing stereotypies in a variety of different conditions. A t-
pattern-derived route-tracing stereotypy score was simply
calculated by taking the total duration of each pattern

c

a

c

b

d

Fig. 1 Maximum entropy bin-
ning of locomotor paths using
box constraints. This algorithm
converts locomotor data from
position as a function of time to
bin as a function of time.
a Representative locomotor path
and bin structure for mouse
receiving vehicle injection.
b 3 mg/kg GBR 12909.
c 10 mg/kg GBR 12909.
d 30 mg/kg GBR 12909. Note
that increasing doses of GBR
12909 organized locomotor
behavior along the arena
boundaries, a characteristic of
route-tracing stereotypy
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within the maximal composition, summing these durations,
and dividing this result by the total trial duration. Thus, a
behavioral trial where no patterns were identified would
have a score of 0; a behavioral trial where the total duration
of all patterns in the maximal composition was half the trial
duration would have a score of 0.5, etc.

Pattern validation It is important that patterns identified in
this automated manner have face validity when compared
to patterns that may be identified by an experienced human

observer. This means that patterns identified by the
automatic algorithm as the same pattern should all look
similar to a human observer. Scoring sheets showing the
locomotor paths traced by all patterns included in the
maximal composition of an individual behavioral trial were
produced for all GBR 12909 trials (see Supplemental
Figure 2 for examples of instances of locomotor paths used
in scoring). Start and stop points for each locomotor path
were highlighted. Scoring sheets were produced for all
mouse trials. Three investigators (who were blind to both

a

b

c

d

Fig. 2 Determination of indi-
vidual t-patterns from locomo-
tor paths. a Locomotor path
(from Fig. 1a) with superim-
posed maximum entropy bin-
ning. b T-pattern testing for
sequence of {h,e,b,c,f,i}. The
diagram at the right depicts
transitions from these states over
the trial duration (transitions
from the three states not includ-
ed in the pattern are not shown).
Note that the pattern of {h,e,b,c,
f,i} is formed by combining t-
patterns of {h,e,b} and {c,f,i}.
Full elaborations of the pattern
are depicted in red in the tran-
sition diagram; partial elabora-
tions are depicted in black. c
Locomotor path corresponding
to second occurrence of {h,e,b,c,
f,i} pattern (note asterisk). Other
occurrences of this pattern trace
similar paths. d Dendrogram
plot of {h,e,b,c,f,i} pattern vs
time. This plot depicts the tem-
poral occurrence of the pattern,
as well as an idealized repre-
sentation of its length and depth.
Note that this relatively long/
deep pattern is repeated only
four times throughout the trial,
and accounts for a relatively
small percentage of total trial
duration
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the mouse treatment status and how the patterns for each
behavioral trial were classified within the composition) then
reviewed the scoring sheets in the following manner.
Locomotor paths were examined within a trial as if they
were characters in a foreign alphabet, with the goal being to
match the same characters (despite small differences that
may be attributable to different “handwriting styles”; e.g.,
grouping ‘A’ with ‘A’) while avoiding false matches (e.g.,
not grouping a ‘u’ with a ‘v’). Patterns identified as false
matches were excluded from analysis. Route-tracing ste-
reotypy scores were then recalculated.

Compensation for locomotor differences Over the 12-min
trial duration, mice receiving 10 and 30 mg/kg GBR 12909
treatment had, on average, twice as much locomotion
(measured by distance) within their home cages as
compared to vehicle and 3 mg/kg GBR 12909-treated mice
(Supplemental Figure 3). To assess how sensitive the t-
pattern derived route-tracing stereotypy scores were to
locomotor distance, two different locomotor compensations
were performed: one to normalize the high-dose group to
low-dose locomotor distances, and the other to normalize
the low-dose group to high-dose locomotor distances. Each
trial from mice receiving 10 and 30 mg/kg GBR 12909 was
split into two 6-min trials. Each of the resulting 6-min trials
had approximately the same amount of locomotion as a
complete, 12-min vehicle or 3 mg/kg GBR 12909 trial.
These 6-min trials were then “re-expanded” to 12-min
durations by interpolating a new position between every
two position points in the trial. Route-tracing stereotypy
scores were then recalculated for each of these “expanded”
trials. The route-tracing stereotypy scores from the two 6-
min trials that came from a single 12-min trial were then
averaged to determine a score normalized for less locomo-
tion. Similarly, two 12-min long trials from mice receiving
vehicle (or 3 mg/kg GBR 12909) were “spliced” together,
forming a 24-min trial. This 24-min trial thus had
approximately the same amount of locomotion as the 10-
or 30-mg/kg trials. These 24-min trials were then “con-
tracted” to 12-min durations by removing every other data
point. Route-tracing stereotypy scores were then recalcu-
lated for these “contracted” trials to determine a score
normalized for greater locomotion.

Results

T-pattern analysis detects large scale stereotypic move-
ments throughout the arena Representative locomotor
paths within the testing arena are shown in Fig. 1a–d
corresponding to GBR 12909 dosages of vehicle, 3, 10, and

30 mg/kg, respectively. The locomotor traces within Fig. 1c
and d have been shortened to display the same approximate
locomotor distance as observed in Fig. 1a and b. It is clear
from visual inspection of these locomotor paths that mouse
arena behavior is increasingly organized into circular forays
around the arena perimeter with progressively increasing
dosages of GBR 12909. Similar results were obtained in a
second mouse cohort after d-amphetamine treatment.

The process of deriving an individual pattern from the
locomotor pathways is depicted in Fig. 2. Figure 2a shows
the locomotor trace with superimposed maximum entropy
bins for one animal from the vehicle treatment group (this
example comes from the same animal shown in Fig. 1a).
Figure 2b depicts a schematic dendrogram for one pattern
detected with the algorithm: {h,e,b,c,f,i}. The algorithm
also identified 18 other three-state or longer significant
patterns that are not shown. This dendrogram is a simplified
way of describing the sequence of bins traversed by the
mouse within a given pattern. The transition diagram of
Fig. 2b further reveals that the specific pattern occurs four
times. This transition diagram also shows that parts of the
pattern forming the most distal regions of the dendrogram
(e.g., {h,e,b} and {c,f,i}) share the strongest temporal
relationships. The locomotor path corresponding to the
second repetition of this identified pattern is highlighted in
red in Fig. 2c (asterisk); the other repetitions of this pattern
produce similar locomotor paths in the arena (data not
shown). The dendrogram vs time plot for this particular
pattern (Fig. 2d) is a shorthand way of depicting both
pattern morphology and temporal sequence within a
behavioral trial. Subsequent data will often be depicted in
this format. All of these patterns were detected at p<0.001.
Furthermore, comparison of these detected patterns with
patterns formed from the same data set after randomization
shows that three state or longer/deeper patterns are not
formed by chance (data not shown).

Several metrics can be defined to describe the set of
detected patterns: total number of patterns, pattern length
(number of states in each pattern), and pattern depth
(number of levels in each pattern dendrogram). The average
number of detected patterns (Supplemental Figure 4a)
clearly increases with increasing doses of GBR 12909 and
increases to the point where focused stereotypies dominate
the behavioral response after d-amphetamine administration
(Supplemental Figure 4c). Histograms of pattern length and
depth for all trials (Supplemental Figure 4b and d for GBR
12909 and d-amphetamine, respectively) reveal similar
dose-dependant increases in pattern length and depth. The
simplest patterns are two states long (or one level deep) and
uninformative; separate analysis (data not shown) demon-
strates that these simple, two-state patterns often arise by
chance alone. Accordingly, all further analyses will exclude
any contributions from simple, two-state patterns.

596 Psychopharmacology (2008) 196:591–602



Repetition of a small number of long/deep patterns best
models the increased route-tracing stereotypy evoked by
GBR 12909 and d-amphetamine The above results demon-
strate a dose-dependant increase in the total number of
detected patterns and pattern length/depth with increasing
psychostimulant dosage. However, a more useful measure
of route-tracing behavior would involve choosing from the
total group of identified patterns a subset of nonoverlapping
patterns that maximized the percentage of trial duration
spent within patterned locomotion. In other words, the
behavioral time line would be “tiled” with the largest set of
nonoverlapping patterns. One would thus predict that in a
trial characterized by little route-tracing locomotion (such
as after vehicle injection), many short, shallow patterns will
be identified and, when placed in a nonoverlapping manner
across the trial duration, account for a relatively small
percentage of overall trial duration. By contrast, one would
predict that in a trial characterized by frequent route-tracing

stereotypies (such as after psychostimulant injection), time
spent in a small number of long/deep but frequently
repeating (and nonoverlapping) patterns will account for a
significant percentage of trial duration.

Figure 3a–d depicts the best (maximal composition) sets
of nonoverlapping patterns for representative mice receiv-
ing vehicle, 3, 10, and 30 mg/kg GBR 12909 treatment
(depicted locomotor paths within this figure are cartoons of
the identified patterns). As this figure clearly demonstrates,
patterns cover greater periods of the overall observation
with increased dosages of GBR 12909. Furthermore, this
figure also suggests that the increased pattern coverage is
accompanied by a decrease in the total number of patterns
within the maximal composition. Similar findings are
observed after d-amphetamine treatment. At the highest
psychostimulant doses, mouse paths frequently repeated a
small number of relatively long patterns. These mice spent
more time performing a smaller range of observed behaviors.
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Fig. 3 Pattern composition: selecting the subset of nonoverlapping,
detected patterns to cover the greatest fraction of trial duration.
Representative examples for vehicle (a), GBR 12909 3 mg/kg (b),
10 mg/kg (c), 30 mg/kg (d). Note trend of increasing pattern coverage
of overall trial using fewer patterns as GBR 12909 dosage increased.
Drawings depict each pattern included in the maximal composition;

color of the patterns in these drawings corresponds to dendrogram
color in the dendrogram vs time plot (time in seconds). Dotted lines
represent patterns where a state within the dendrogram was equally
likely to transition into one of two immediately adjacent bins. Pie
chart depicts fraction of total trial duration accounted for by patterns
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Thus, higher route-tracing stereotypy scores reflect a greater
predictability of mouse behavior. High route-tracing ste-
reotypy scores also reflect a psychostimulant-induced
simplification of locomotor behavior.

Figures 4 and 5 demonstrate that these findings extend to
the analysis of both tested cohorts. One-way analysis of
variance (ANOVA) demonstrated a highly significant effect
of increased GBR 12909 dosage on pattern coverage of the
observational trial timeline (Fig. 4, light grey bars). One-way
ANOVA also shows that the locomotor behavior observed
after increasing doses of GBR 12909 is characterized by
smaller pattern sets (Supplemental Figure 5). Furthermore,
results from the pattern composition analysis were concordant
with results obtained by manual scoring of the video data
(Fig. 4, dark grey bars). Note that while the route-tracing
stereotypy trends determined by both t-pattern analysis and
manual observation both suggest increasing route-tracing
behavior with increasing GBR 12909 dosage, within-group
variability of the data when analyzed by t-pattern methods is
far less than within-group variability when analyzed by
manual observation. This suggests that even an experienced
observer is able to score these locomotor data with less
precision compared to the t-pattern approach. Finally, one-
way ANOVA demonstrated a highly significant effect of
increased d-amphetamine dosage on pattern coverage of the
observational trial timeline (Fig. 5). T-pattern-derived stereo-
typy scores thus reflect the increasing route-tracing stereotypy
observed after treatment with two common psychostimulants:
GBR 12909 and d-amphetamine.

Fig. 5 T-pattern-derived route-tracing stereotypy scores increase with
greater doses of d-amphetamine. Individual route-tracing stereotypy
score values for each dosage overlaid on respective bar. Error bars
are ±1 standard error. One-way ANOVA on dosage effect for t-pattern
derived route-tracing stereotypy score F3,28=9.91 (p<0.0001, r2=
0.51, pairwise comparisons between vehicle and 2.5 mg/kg and
vehicle and 5 mg/kg, significant by Duncan’s multiple range test).
Decreased route-tracing stereotypy score observed in group receiving
d-amphetamine 10 mg/kg reflects the development of the amphet-
amine response stationary phase (Schiørring 1971; also referred to as
focused stereotypy, Canales and Graybiel 2000) as the trial progressed

Fig. 4 Comparison of t-pattern-derived route-tracing stereotypy score
(light grey bars) with manual observation-derived stereotypy score
(dark grey bars). T-pattern-derived route-tracing stereotypy scores
increase with greater doses of GBR 12909. Individual route-tracing
stereotypy score values for each dosage overlaid on respective bar.
Error bars are ±1 standard error. Note significantly less within-group
variability when analysis performed using t-patterns. One-way

ANOVA on dosage effect for t-pattern derived route-tracing stereotypy
score F3,24=48.53 (p<0.00001, r2=0.78, all pairwise comparisons
significant by Duncan’s multiple range test); for human observer-
derived (Creese–Iverson) stereotypy score F3,27=9.65 (p<0.0002, r2=
0.21, pairwise comparisons between vehicle and 10 mg/kg, vehicle
and 30 mg/kg, 3 and 10 mg/kg, 3 and 30 mg/kg groups significant by
Duncan’s multiple range test)
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Locomotor patterns identified by t-pattern analysis have
face validity It is reasonable to question whether the
locomotor patterns identified above actually correspond to
what a trained observer might characterize as a stereotypic
pattern. Supplemental Figure 2 depicts representative
pattern scoring (as described in methods) for trials
involving a mouse treated with vehicle (a) or GBR 12909
30 mg/kg (b). Supplemental Figure 6 depicts analogous
representative patterns involving a mouse treated with
vehicle (a) or d-amphetamine 10 mg/kg (b). As these
figures demonstrate, sets of locomotor paths representing
different instances of the same identified pattern show
similar overall morphologies. Paths “crossed off” with a
grey ‘×’ designate patterns whose morphologies did not
match other paths in the pattern group. These were
determined by consensus of three raters. The process of
rejecting these patterns had approximately equal effects
across all doses, removing 30 of 108 patterns in the vehicle
group (28%), 49 of 137 patterns in the GBR 12909 3 mg/kg
group (36%), 51 of 187 patterns in the GBR 12909 10 mg/
kg group (27%), 46 of 260 patterns in the GBR 12909
30 mg/kg group (18%), and 176 of 692 patterns overall
(25%). More importantly, the process of rejecting uncon-
firmed patterns had a relatively minor effect on the overall
analysis (Supplemental Figure 2d). While this process
decreased the time spent in stereotypic behavior between
30 and 50%, this decrease was evenly distributed across all
treatment groups. Of note, after pattern rejection, the
difference in route-tracing stereotypy scores between
vehicle and 3 mg/kg treatment groups lost statistical
significance; however, these two groups were not found to
be statistically different by manual scoring (Fig. 4).

Route-tracing stereotypy scores are not correlated with
overall locomotor activity An important issue that would
limit the utility of the preceding t-pattern approach would
be if increased locomotor activity itself (and the concom-
itant increase in overall detected patterns) led to a larger
route-tracing stereotypy score. Investigating this is particu-
larly challenging, as there are no pharmacological treatments
known to fully dissociate changes in overall locomotor speed
from the development of route-tracing stereotypies (e.g.,
Griebel et al. 2000; Kliethermes and Crabbe 2006; Ohl et al.
2001). As per the rationale described in “Materials and
methods,” we chose to mathematically transform home-
cage data to normalize locomotor speeds without altering
mouse locomotor paths. The results of these analyses are
shown in Supplemental Figure 7. No significant effect of
greater locomotor distances on route-tracing stereotypy
scores was found. Thus, t-pattern-derived route-tracing
stereotypy scores are insensitive to overall mouse locomo-
tion within the home cage over a broad range of potential
total locomotor distances.

Discussion

Our findings suggest that t-pattern sequential analysis
quantifies route-tracing stereotypies in a reliable, replicable,
and automated manner. This mathematical approach
detected increases in overall locomotor pattern length/depth
and total number of patterns in mice treated with the
psychostimulants GBR 12909 and d-amphetamine, drugs
both known to evoke route-tracing stereotypies. Further-
more, this approach also detected dose-dependent increases
in mouse route-tracing stereotypy after treatment with both
drugs. Notably, the increased route-tracing stereotypy
evoked by larger psychostimulant doses was described by
the frequent occurrence of a few long/deep locomotor
patterns that accounted for a significant fraction of the
overall observed locomotor behavior. By contrast, mouse
activity after treatment with saline vehicle was better
described by the infrequent occurrence of a greater number
of short and shallow locomotor patterns accounting for a
smaller fraction of the overall observed locomotor behavior.
At high doses of both GBR 12909 and d-amphetamine, the
organization of locomotor behavior into relatively few,
frequently repeated patterns mirrors the loss of behavioral
complexity seen after psychostimulant administration. T-
pattern-derived route-tracing stereotypy scores showed less
variance than manual observation-derived scores at all
doses. T-pattern analysis also identified locomotor patterns
qualitatively similar to what a human observer might
identify in a manner insensitive to the overall locomotor
distance traveled during the trials.

Precise quantification of route-tracing stereotypy allows
us to better visualize subtle differences in the locomotor
paths evoked by GBR 12909 and d-amphetamine. For
example, the increase in route-tracing stereotypy score
evoked by d-amphetamine usually results from the frequent
repetition of a single detected pattern. By contrast, GBR
12909-evoked increases in route-tracing stereotypy score
usually result from repetition of two to four detected
patterns. In all cases, our findings remain consistent with
the Lyon–Robbins hypothesis regarding the behavioral
effects of psychostimulants. Treatment with either agent
leads to an increase in total patterns initiated, as well as a
concomitant decrease in the variety of patterns observed.

Descriptions of route-tracing stereotypy ideally would
quantify several features of this behavior, such as the
identification of the locomotor paths repetitively traveled
(i.e., the behavioral unit of repetition) and path temporal
structure. In this study, the set of patterns chosen to partition
each individual behavioral trial is the set of stereotypic
locomotor paths taken by the mouse. Other than limits
imposed by the chosen binning strategy, this approach detects
paths of anymorphology in a hypothesis-independent manner.
Thus, this method is not limited to specific, predetermined,
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and potentially arbitrary behavioral sequences. For any trial, it
is straightforward to determine how many times a specific
pattern occurred and what percentage of overall trial duration
is contributed by each pattern. Thus, t-pattern analysis
appropriately quantifies important aspects of route-tracing
stereotypy. Of note, while this approach fully quantifies the
locomotor patterns for individual mice during bouts of route-
tracing stereotypy, we produce no measures of path similarity
across/within different treatment classes. One way of address-
ing this issue would be to compare path topologies (which are
independent of binning) using appropriately adapted machine
learning/computer vision algorithms designed for character
recognition.

While this analytical approach is a promising method of
automating the measurement of route-tracing stereotypies,
several issues influence the interpretation of these results
and future implementations. As mentioned earlier, the t-
pattern algorithm uses the null hypothesis that temporal events
are distributed under a Poisson distribution. Statistics calcu-
lated from this distribution imply that event probabilities
remain constant throughout time. For short behavioral
observations (such as those employed in this study), this
condition is likely true. Thus, our study did not reject the null
hypothesis simply due to time variation within the data.
However, event transition probabilities have been demon-
strated to change as a function of circadian time (Poirel and
Larouche 1989; Richardson et al. 1985). If event transition
probabilities are not stationary with time, then one needs
some method of windowing the data into stationary epochs
that can be analyzed individually. Many methods for
choosing these stationary epochs exist (Hofer et al. 2007).
This process would permit one to calculate the time course
of the route-tracing stereotypy score.

Another factor that may influence pattern detection is the
binning of the test arena. In our analysis, the manner in
which we divide the test arena leads to the emergence of
“prohibited transitions” where it may be impossible to
directly move from one state to another. The effect of
prohibited transitions (overdispersion) on the overall result
varies as the mouse moves through the arena, being at a
minimum when the mouse is in the arena center and most
prominent when the mouse is in one of the arena corners. The
effect of overdispersion is that certain transitions may be
overrepresented simply as an artifact of the binning
resolution. Overdispersion may thus result in false pattern
detection. To compensate for this issue, we set the algorithm
to only identify highly significant patterns (occurring at p of
0.001 or less).

Before this approach can be ported to large-scale
applications, a few computational issues must be addressed.
The algorithm for pattern detection is computationally
robust and fast and can be rapidly applied to a large data
set. However, the currently implemented algorithm for

pattern composition is inefficient due to its combinatorial
underpinnings. Methodologies such as genetic algorithms,
evolutionary programming, and evolutionary strategies
have been successfully applied to highly complex problems
(e.g., Bäck 1996 for a broad review of the topic) and may
prove useful in developing a more computationally efficient
algorithm for pattern composition. Obtaining pattern com-
positions through means other than combinatorial “brute
force” also requires addressing the nontrivial (and beyond
the scope of this paper) problem of proving that the final
composition truly is optimal.

In conclusion, we describe a novel method of employing
t-pattern sequential analysis to accurately quantify the
extent to which mouse locomotor behavior within an arena
is expressed in repetitive patterns. The advantages of this
algorithm include its ability to detect repeating patterns
present within the data without a priori assumptions about
specific pattern features, appropriate face validity of
algorithm-identified locomotor patterns, and insensitivity
of pattern identification and composition to total locomotor
activity levels. Algorithm limitations that should be
addressed in future studies include further refinement of
critical interval calculation to account for prohibited state
transitions, improved and automated identification and
clustering of pattern morphologies, the addition of window-
ing capabilities to deal with violations of data stationarity,
and improved implementation of composition algorithms’
ability to analyze larger and longer data sets. With these
sorts of improvements, this approach may serve as a widely
applied tool for providing rapid and reliable analyses of
mouse behavior.
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