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Abstract Rationale: Activation of “co-agonist” N-meth-
yl-D-aspartate (NMDA) and GlycineB sites is mandatory
for the operation of NMDA receptors, which play an im-
portant role in the control of mood, cognition and motor
function. Objectives: This article outlines the complex reg-
ulation of activity at GlycineB/NMDA receptors bymultiple
classes of endogenous ligand. It also summarizes the evi-
dence that a hypoactivity of GlycineB/NMDA receptors
contributes to the pathogenesis of psychotic states, and that
drugs which enhance activity at these sites may possess an-
tipsychotic properties. Results: Polymorphisms in several
genes known to interact with NMDA receptors are related
to an altered risk for schizophrenia, and psychotic patients
display changes in levels of mRNA encoding NMDA recep-
tors, including the NR1 subunit on which GlycineB sites are
located. Schizophrenia is also associated with an overall
decrease in activity of endogenous agonists at GlycineB/
NMDA sites, whereas levels of endogenous antagonists
are elevated. NMDA receptor “open channel blockers,”
such as phencyclidine, are psychotomimetic in man and
in rodents, and antipsychotic agents attenuate certain of
their effects. Moreover, mice with genetically invalidated
GlycineB/NMDA receptors reveal similar changes in be-
haviour. Finally, in initial clinical studies, GlycineB ago-
nists and inhibitors of glycine reuptake have been found
to potentiate the ability of “conventional” antipsychotics
to improve negative and, albeit modestly, cognitive and
positive symptoms. In contrast, therapeutic effects of cloza-
pine are not reinforced, likely since clozapine itself en-
hances activity at NMDA receptors. Conclusions: Reduced
activity at NMDA receptors is implicated in the aetiology
of schizophrenia. Correspondingly, drugs that (directly or
indirectly) increase activity at GlycineB sites may be of use

as adjuncts to other classes of antipsychotic agent. How-
ever, there is an urgent need for broader clinical evaluation
of this possibility, and, to date, there is no evidence that
stimulation of GlycineB sites alone improves psychotic
states.
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Introduction: glutamatergic transmission and
schizophrenia

Though monoaminergic theories of the treatment of schizo-
phrenia have dominated research and drug development for
decades, there is increasing interest in non-monoaminergic
strategies. Glutamatergic mechanisms are of special per-
tinence in view of the following: (1) their reciprocal in-
teractions with monoaminergic networks (Schmidt and
Kretschmer 1997; Marino and Conn 2002; Trudeau 2004);
(2) their crucial role in the control of cognition, mood
and motor function, which are disturbed in schizophrenia
(Schmidt and Kretschmer 1997; Danysz and Parsons 1998;
Paul and Skolnick 2003); (3) evidence that a dysfunction of
glutamatergic transmission is implicated in psychotic states
(Meador-Woodruff and Healy 2000; Breese et al. 2002;
Pralong et al. 2002; Schiffer 2002; Konradi and Heckers
2003); and (4) the rich palette of ionotropic and meta-
botropic glutamatergic receptors available for therapeutic
intervention.
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The present article is principally devoted to NMDA re-
ceptors or, more precisely, their GlycineB co-agonist site—
also referred to as the “NR1 subunit glycine binding site.”
This site can be distinguished from GlycineA receptors
which mediate a major mode of inhibitory transmission in
the CNS. Detailed reviews of the significance of NMDA
receptors to the etiology of schizophrenia have appeared in
recent years (Marino andConn 2002;Millan 2002;Heresco-
Levy 2003; Van Berckel 2003). The present paper empha-
sizes recent findings supporting the notion that a functional
deficit at NMDA receptors participates in the induction of
psychotic states. It also focuses upon novel concepts for
clinical compensation of this hypoactivity. For an under-
standing of such issues, it is indispensable to outline the
complex nature of NMDA receptors and their regulation by
endogenous ligands.

NMDA receptors: structure and modulatory sites

CNS-localized NMDA receptors are heteromers comprised
of various assemblies of (probably two) NR1 subunits to-
gether with two or three NR2 subunits (Fig. 1) (Danysz
and Parsons 1998; Dingledineet al. 1999; Yamakura and
Shimoh 1999; Cull-Candy et al. 2001; Madden 2002;
Millan 2002). At least four classes of NR2 subunit are
known: A, B, C and D. The contribution of specific NR2
subunits to NMDA receptors is important in determining
their functional profiles, desensitisation kinetics, modula-
tion and both the affinity and efficacy of agonists at Gly-
cineB sites (Vicini et al. 1998; Cull-Candy et al. 2001;
Sheinin et al. 2001; Madden 2002; Liu et al. 2004). Certain
NMDA receptors contain several types of NR2 subunits or
various isoforms of NR1 subunit. Both NR1 and NR2A
subunits are distributed throughout the CNS, being concen-
trated in the hippocampus, thalamus, frontal cortex and
other structures implicated in psychotic states and their

control (Danysz and Parsons 1998; Goebel and Poosch
1999; Cull-Candy et al. 2001; Millan 2002). These regions
are also rich in NR2B subunits, whereas, despite their pres-
ence in forebrain structures, NR2C and NR2D subunits are
preferentially found in the cerebellum and brainstem/spinal
cord, respectively (Goebel and Poosch 1999; Yamakura and
Shimoh 1999; Cull-Candy et al. 2001). Integration of de-
velopmentally regulated NR3 subunits into NMDA (NR1/
NR2) receptors attenuates their activity, while construction
of NR3/NR1 subunits only yield glycine-sensitive—but
glutamate-refractory—receptors of low Ca2+ permeability
(Chatterton et al. 2002). Though such sites may be relevant
to abnormal processes in the developing schizophrenic brain
(Deutsch et al. 2001; Millan 2002; Lipska 2004), it is not
clear whether they exist in the adult. Further, NR3/NR1
heteromers are resistant to psychotomimetic open channel
blockers (OCBs) (see below) questioning their relevance to
the genesis of psychotic states in adults.

NMDA and GlycineB recognition sites are located in
homologous regions of NR2 and NR1 subunits, respec-
tively (Fig. 1) (Yamakura and Shimoh 1999; Cull-Candy
et al. 2001; Moretti et al. 2004). Despite their physical sepa-
ration, glutamate and GlycineB binding sites functionally
interact (Danysz and Parsons 1998). For example, glycine
enhances the affinity and efficacy of glutamate, an action
contributing to its ability to delay desensitisation and to
increase the duration and frequency of the open state of the
channel (Dingledine et al. 1999). Irrespective of subunit
composition, all (NR1/NR2) species of NMDA receptor
reveal voltage-dependent blockade by Mg2+ which binds to
(multiple) sites in the ion channel, restricting the flux of
Ca2+ (Dingledine et al. 1999; Cull-Candy et al. 2001).
Neuronal depolarisation relieves the depolarisation block
of NMDA receptor-coupled ion channels. A further com-
mon feature of NMDA receptors is a binding site recog-
nized by OCBs, such as the pro-psychotic agents, ketamine
and phencyclidine (PCP) (Dingledine et al. 1999).
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Fig. 1 Schematic illustration of
central NMDA receptors bear-
ing co-agonist glutamate and
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channel blocker, P phosphory-
lation site(s). Numerous modu-
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haloperidol and polyamines,
are not indicated for the
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NMDA receptors are primarily neuronal but may also
be found on astrocytes (Nedergaard et al. 2002; Bezzi
et al. 2004). They bear a variety of modulatory sites ac-
cessible to intracellular and extracellular mediators such
as polyamines, protons, ifenprodil, zinc, glutathione, neu-
rosteroids, ATP and even the antipsychotic haloperidol
(Brimecomb et al. 1998; Dingledine et al. 1999; Jang et al.
2004; Kloda et al. 2004; Turecek et al. 2004). Despite their
localization on NR2 subunits, modulatory sites can modify
the functional status of GlycineB receptors on NR1 subunits
(Yamakura and Shimoh 1999; Cull-Candy et al. 2001).
Functional characteristics of NMDA and GlycineB bind-
ing sites can also be modified upon phosphorylation of
NR1 or NR2 subunits by protein kinases (Dingledine et al.
1999; Yamakura and Shimoh 1999; Cull-Candy et al.
2001). NMDA receptors interact with diverse postsynaptic
proteins incorporated into a “postsynaptic density” (Fig. 1).
These proteins regulate the clustering of NMDA receptors
in the plasma membrane, modify channel activity and in-
fluence their interaction with phosphorylating kinases (Husi
et al. 2000; Madden 2002; Iwamoto et al. 2004).

NMDA receptors: multiple endogenous
ligands—agonists and antagonists

Perhaps the most surprising feature of NMDA receptors is
their responsiveness to a diversity of endogenous ligands,
several of which behave as antagonists (Figs. 2, 3).

Glycine

Though some glycine may be available to NMDA re-
ceptors following “spillover” from glycinergic neurones
(Ahmadi et al. 2003), the majority is derived from glial
cells (Millan 2002; Miller 2004). Therein, glycine is gen-
erated from L-serine via the reversible enzyme, serine
hydroxymethyltransferase. Non-released (and recaptured)
glycine may be converted back into L-serine, or catabo-
lised (in mitochondria) into inactive metabolites via the
poorly characterised multi-enzyme “glycine cleavage sys-
tem” (Sakata et al. 2001; Millan 2002; Ichinohe et al.
2004). Liberation of glycine from astrocytes is primarily
non-vesicular and Ca2+-independent, presumably effected
via reversal of glycine transporters upon changes in extra-
cellular levels of glycine and alterations in ion flux (Gadea
and Lopez-Colome 2001). Indeed, glial cells possess a
high density of glycine-1 transporters (GlyT-1), of which
the cerebral distribution tracks the localization of synapses
bearing NMDA receptors (Gadea and Lopez-Colome 2001;
Chen et al. 2003). These transporters (of which three iso-
forms have been identified) rapidly take up glycine in a
Na+- and Cl−-dependent fashion and are principally re-
sponsible for clearing glycine from the synaptic cleft. In
addition, some glycine may be taken up (and released) by
small neutral amino acid transporters (SNAT), System A:
SNAT 5 on astrocytes and SNAT 1 on neurones (Javitt
2002; MacKenzie and Erickson 2004; Cubelos et al. 2005).
A little may also be removed by spatially remote GlyT-2

Fig. 2 Generation and synaptic clearance of major endogenous
agonists (glutamate, aspartate, glycine, D-serine) at NMDA and
GlycineB recognition sites on NMDA receptors. GlyT Glycine trans-
porter, EAAT excitatory amino acid transporter, asc alanine–serine–
cysteine transporter, SNAT specific neutral amino acid transporter,
vGluT vesicular glutamate transporter, CAC citric acid cycle, D-AAO
D-amino acid oxidase, α-KG α-keto-glutarate. As discussed in the
text, the precise role of multiple glial and neuronal transporters of

D-serine remains unclear. Neuronal SNAT1 also clears glycine.Mech-
anisms of glutamine efflux are unclear but likely involve reversal of
several classes of transporter. Note that the elements illustrated are
not necessarily all enriched and co-localized throughout the CNS. For
example, the concentration of D-AAO is high in the cerebellum yet
low in the forebrain, whereas the GlyT-2 transporter is principally
found in the hindbrain and spinal cord
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transporters on glycinergic neurones. Despite the original
assumption that glycine fully occupies GlycineB sites,
GlyT-1 and SNAT transporters are efficient in maintaining
locally low and non-saturating levels of glycine (Danysz
and Parsons 1998; Haradahira et al. 2003). Accordingly,
GlycineB agonists and drugs blocking GlyT-1—glycine
reuptake inhibitors (GRIs)—increase activity at NMDA
receptors, providing a basis for potential antipsychotic
properties.

D-Serine

L-Serine can be transformed into D-serine by D-serine
racemase (Wolosker et al. 1999; Miller 2004; Xia et al.
2004). Though present in the liver and kidneys, D-serine
racemase is enriched in the hippocampus, cortex and other
cerebral structures which possess high levels of NMDA
receptors (Schell et al. 1995; Wolosker et al. 1999; De
Miranda et al. 2000). D-Serine is a high efficacy agonist at
GlycineB sites and, dependent upon subunit composition,
may be more efficacious than glycine itself (Danysz and
Parsons 1998; Wolosker et al. 1999; Mothet et al. 2000).
Like D-serine racemase, D-serine is predominantly found in

astrocytes enveloping glutamatergic terminals in forebrain
regions (Wolosker et al. 1999; Mothet et al. 2000; Miller
2004; Xia et al. 2004). In fact, levels of D-serine appear to
be inversely correlated with those of the glial enzyme,
D-amino acid oxidase (D-AAO), which cleaves (deami-
nates) D-serine into hydroxypyruvate (Wolosker et al. 1999;
Urai et al. 2002; Miller 2004). The localization of D-AAO
in glial cells implies that they participate in elimination of
D-serine from the synaptic cleft. Though the identity of
these glial D-serine transporters (which may be Na+-de-
pendent) is unclear, they are certainly different from GlyT-1
transporters (Ribeiro et al. 2002). Neurones can also take up
D-serine (and L-serine) via a Na+-independent, alanine–
serine–cysteine (asc) transporter termed asc-1 found in
pyramidal cells of the cortex and hippocampus: it is local-
ized postsynaptically on soma and dendrites, as well as
presynaptically on terminals (Nakauchi et al. 2000; Helboe
et al. 2003; Matsuo et al. 2004). A further (alanine-insen-
sitive) D-serine transporter has been reported in rat brain,
though its nature remains unclear (Javitt et al. 2002; Helboe
et al. 2003). Reversal of the glial D-serine transporter may
lead to liberation of D-serine (Ribeiro et al. 2002; Miller
2004), but release is principally accomplished (in contrast
to glycine) in a vesicular and Ca2+-dependent fashion

Fig. 3 Generation and synaptic clearance of various endogenous
ligands at NMDA and GlycineB recognition sites on NMDA re-
ceptors. 5-HT Serotonin, NAAG N-acetyl-aspartate-glutamate, NAA
N-acetyl-aspartate, GCP glutamate carboxypeptidase, KAT kynu-
renate amino transferase; K-3H kynurenate-3-hydroxylase. Quinolate
possesses agonist properties at GlycineB and NMDA sites. At high
concentrations, kynurenate antagonizes AMPA and kainate recep-
tors. It is also a potent antagonist at α7 nicotinic receptors. Note
alternative pathways for transformation of tryptophan into 5-HT/
melatonin. Mechanisms for release and clearance of kynurenate are

unknown. Several subclasses of inhibitory (Group II and III) me-
tabotropic mGluR receptor are localized on glutamatergic terminals.
At high concentrations, the κ-opioid agonist, dynorphin, interacts with
NMDA receptors, for example, in hippocampus (Caudle and Dubner
1998; Wollemann and Benyhe 2004), but it is unclear whether its
inhibitory effects are relevant to psychotic states. Further, in schizo-
phrenic patients, conflicting data have been documented concerning
levels of dynorphin (Heikkilä et al. 1990), and linkage studies have
not clearly related the dynorphin gene to schizophrenia (Ventriglia et
al. 2002)
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(Mothet et al. 2000, in press; Cook et al. 2002; Bezzi et al.
2004; Parpura et al. 2004).

Glutamate

In neurones, glutamate is loaded by vesicular glutamate
transporters (vGluT) into vesicles, then released onto post-
synaptic NMDA receptors (Danysz and Parsons 1998;
Madden 2002; Trudeau 2004). Several classes of Na+-
dependent, excitatory amino acid transporter (EAAT) have
been identified. They are localized on postsynaptic neu-
rones, on presynaptic glutamatergic terminals and, most
importantly, on glial cells (Danbolt 2001; Nedergaard et al.
2002). The principal circuit for regeneration of glutamate
is, then, its recapture by astrocytes and subsequent con-
version by glutamine synthase into glutamine, which is also
generated from glutamate derived from the citric acid cycle
(Marcaggi and Attwell 2004). Glutamine is liberated from
astrocytes by multiple Na+-dependent and Na+-indepen-
dent mechanisms, including reversal of the transporters
“ASCT2” and a System N subtype of SNAT (Fig. 3)
(Deitmer et al. 2003; Dolinska et al. 2004; Kanamori and
Ross 2004). The latter differs to the “A” class of SNAT on
neurones (SNAT 1) which takes up glutamine in a Na+-
dependent fashion (Kanamori and Ross 2004; MacKenzie
and Erickson 2004). Completing the cycle, glutamine is
transformed by glutaminase into glutamate in neurones. An
additional pool of glutamate is provided by glial cells,
partly via reversal of EAAT1 (GLAST) and/or EAAT2
(GLT-1). Glutamate is also liberated from astrocytes via gap
junction hemichannels (Ye et al. 2003). In addition, astro-
cytes possess vGluT1 and vGluT2, permitting its release by
Ca2+-dependent and exocytotic mechanisms (Nedergaard
et al. 2002; Bezzi et al. 2004; Montana et al. 2004; Parpura
et al. 2004).

N-Acetyl-aspartate-glutamate

A final source of extracellular glutamate is provided by ex-
tracellular cleavage ofN-acetyl-aspartate-glutamate (NAAG)
(Neale et al. 2000; Barinka et al. 2004) via two forms of
glutamate carboxypeptidase (GCP) II and III localized
on plasma membranes of astrocytes (Berger et al. 1999;
Speno et al. 1999; Bacich et al. 2002; Bzdega et al. 2004;
Vieira and Devlin 2004). GCP II/III simultaneously gen-
erate a further agonist, aspartate, which is also derived
from glutamatergic—as well as GABAergic—terminals
(Gundersen et al. 2004). Extracellular aspartate is, in fact,
generated from NAAG via N-acetyl-asparate (Fig. 5), a
weak agonist at the NMDA recognition site and an agonist
at excitatory metabotropic receptors (Rubin et al. 1995;
Yan et al. 2003). Transformation of NAAG into glutamate,
N-aspartyl-aspartate and asparate shifts the balance to post-
synaptic excitation since NAAG has low intrinsic activity
at NMDA receptors sites and behaves as an antagonist
relative to glycine and D-serine, for example, in the CA1

region of the hippocampus (Grunze et al. 1996; Coyle
1997; Bergeron et al. 2005). Moreover, NAAG is an ago-
nist at presynaptic metabotropic (mGluR)3 receptors in-
hibitory to glutamate release (Neale et al. 2000; Garrido
Sanabria et al. 2004; Olszewski et al. 2004). Thus, a dis-
equilibrium in conversion of NAAG may modify activity
at NMDA receptors—and this occurs in psychotic states.
Astrocytes do not only cleave NAAG: they also take it
up via a proton-coupled di/tripeptide transporter termed
“PEPT2” (Fujita et al. 2004; Terada and Inui 2004).

Kynurenate

Kynurenate behaves as an antagonist at the glutamate rec-
ognition site and, with greater potency, at GlycineB sites
(Schwarcz and Pellicciari 2002). The ultimate source of
kynurenate is tryptophan, and the glial pathway, which
results in formation of kynurenate, is an alternative to neu-
ronal generation of serotonin and melatonin (Stone and
Darlington 2002). Interestingly, kynurenine also behaves
as a weak antagonist at AMPA and kainate sites (Stone
and Darlington 2002) and possesses antagonist properties
at α7-nicotinic receptors (Alkondon et al. 2004). Despite
these additional actions, blockade of GlycineB and NMDA
sites by kynurenate likely contributes to its influence upon
mood, monoaminergic transmission and motor function,
including its perturbation of sensory auditory gating, an
effect common to many pro-psychotic agents (Erhardt and
Engberg 2002; Stone and Darlington 2002; Erhardt et al.
2004). Currently, little is known concerning glial release
and recapture of kynurenate. Interestingly, L-kynurenine can
be transformed into quinolinate, a weak agonist at GlycineB
and NMDA receptors—which possesses neurotoxic proper-
ties (Schwarcz and Pellicciari 2002; Stone and Darlington
2002). Thus, alternative enzymatic conversion of L-kynure-
nine can alter the balance between endogenous agonists and
antagonists at NMDA receptors.

Evidence that a deficit in transmission at NMDA sites is
involved in schizophrenia

Pro-psychotic actions of open channel blockers

The OCBs, PCP and ketamine, trigger re-emergence of
symptoms in remitted schizophrenia patients and elicit hal-
lucinations and other psychotomimetic effects in normal
subjects (Steinpreis 1996; Adler et al. 1999; Millan 2002;
Coyle and Tsai 2004). Though their effects are not identical
to deficits seen in schizophrenia, they more closely resem-
ble psychotic disorders than those of monoaminergic psy-
chostimulants such as amphetamine, notably as regards
cognitive disruption and the induction of thought disorders
and negative symptoms (Lahti et al. 2001; Abel et al. 2003;
Van Berckel 2003; Morgan et al. 2004). Their actions are
variably attenuated by antipsychotics such as haloperidol
and clozapine (Malhotra et al. 1997; Lahti et al. 2001;
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Oranje et al. 2002, Van Berckel 2003). Neuronal mecha-
nisms underlying the effects of OCBs are many, of which
the following should be briefly evoked:

1) Sensitisation of subcortical and cortical dopaminergic
pathways (Kegeles et al. 2000, 2002; Balla et al. 2003;
Laruelle et al. 2003)

2) Activation of mesolimbic serotonergic pathways and
consequent recruitment of corticolimbic populations
of 5-HT2A receptors, effected independents of NMDA
receptors (Millan et al. 1999; Aghajanian and Marek
2000)

3) Disruption of striatothalamic filtering of sensory input
into the cortex (Carlsson et al. 2001)

4) A generalized perturbation of hippocampal function
(Tamminga et al. 2003)

5) Disinhibition of cortico-cortical glutamatergic loops
(Moghaddam and Jackson 2003)

6) A generalized disruption of cortical activity via desyn-
chronization and reduced efficiency of neural transmis-
sion (Jackson et al. 2004)

7) Excessive cholinergic transmission in cortex (Farber
2003)

8) Excitotoxic damage elicited via non-NMDA receptors
(Deutsch et al. 2001; Lewis and Levitt 2002; Farber
2003)

One common mechanism underlying these changes may
be interruption of a NMDA receptor-mediated, tonic ex-
citation of GABAergic interneurones inhibitory to projec-
tion neurones (Carlsson et al. 2001; Farber 2003; Schiffer
et al. 2003; Shi and Zhang 2003; de Lima et al. 2004).

Underpinning a role of NMDA receptors in the psy-
chotomimetic effects of PCP and ketamine in man and ro-
dents, they are at least partially mimicked by antagonists at
the NMDA recognition site (Lowe et al. 1994; Muir and
Lees 1995; Bakshi et al. 1999; Dyker et al. 1999). How-
ever, it would be unwise to automatically attribute the full
complement of pro-psychotic properties of OCBs to inter-
ruption of transmission at NMDA receptors. Thus, selec-
tive blockade of NR2B or NR2A subunits alone may not
elicit psychosis (Higgins et al. 2003; Spooren et al. 2004).
Further, GlycineB antagonists do not mimic behavioural
effects of OCBs in rodents and, at least at modest doses, do
not appear to be psychotomimetic in man (Danysz and
Parsons 1998; Lees et al. 2001; Beardsley et al. 2002;
Millan 2002). It is also worth pointing out that memantine,
an “atypical,” low affinity OCB with distinctively rapid
kinetics, does not elicit psychotic symptoms in man at
doses exerting clinically relevant benefit in Alzheimer’s
disease (Reisberg et al. 2003). Finally, direct interactions of
PCP and ketamine with sites other than NMDA receptors
(including monoaminergic receptors and transporters, sigma
binding sites and ion channels) contribute to their functional
and, possibly, pro-psychotic properties (see point 2 above)
(Steinpreis 1996; Millan et al. 1999; Kapur and Seeman
2002; Millan 2002; Yu et al. 2002; Van Berckel 2003).

Psychotic-like phenotype of mice possessing
genetically modified NMDA receptors

In rodents, PCP, ketamine and other more selective OCBs
elicit bizarre behaviours, hyperactivity and cognitive defi-
cits, certain of which are attenuated by antipsychotic agents
(Steinpreis 1996; Schmidt and Kretschmer 1997; Millan
2002). Notably, mice in which the functional status of
NMDA receptors has been genetically modified show phe-
notypes bearing comparison to the effects of OCBs. First,
“compound” heterozygotic mice bred from two lines pos-
sessing point mutations in the NR1 subunit showed a sus-
tained (antipsychotic-resistant) hyperactivity. They also
revealed a suppression of hippocampal long-term poten-
tiation which could be rescued by D-serine (Ballard et al.
2002). Second, mice in which the NR1 subunit was sub-
stantially “knocked-down” (by 95%) showed motor hyper-
activity and stereotypies which were specifically abrogated
by clozapine (Mohn et al. 1999). Dopaminergic transmis-
sion was not accelerated, but these mice also manifest defi-
cits in sexual and social behaviour, as well as compromised
sensory filtering (prepulse inhibition) underpinning a psy-
chosis-like phenotype (Mohn et al. 1999; Duncan et al.
2004b, Miyamoto et al. 2004). Third, homozygotic mice in
which the NR2A subunit was deleted revealed learning
deficits and a hyperlocomotion which was attenuated by
antipsychotics. This increase in locomotor behaviour was
possibly related to an overactivity of ascending dopami-
nergic and serotonergic pathways (Miyamoto et al. 2001).
However, this interpretation must be made cautiously since
elimination of activity at both NR2A and NR2B receptors
is requisite for the induction of hyperlocomotion and a
psychotic-like phenotype (Kadotani et al. 1996; Higgins
et al. 2003; Spooren et al. 2004). Finally, though of less
obvious pertinence to schizophrenia, mice overexpressing
NR2B receptors revealed enhanced hippocampal long-term
potentiation and improved cognitive performance (Tang
et al. 1999).

Alterations in NMDA receptors in schizophrenia

Neurochemical studies of glutamatergic neurotransmis-
sion in psychotic patients support the hypothesis that the
functional activity of NMDA receptors is perturbed. How-
ever, observations have proven surprisingly inconsistent
(Table 1) (Millan 2002; Schiffer 2002; Van Berckel 2003;
Coyle and Tsai 2004). Reasons underlying disparate data
include the following: (1) the influence of treatment with
antipsychotics or other drugs—very few studies have con-
trolled for this; (2) disease status at the time of measurement;
(3) contrasting findings for measures of mRNA encoding
NMDA receptor subunits as compared to radioligand bind-
ing studies; (4) age; and (5) differences between cerebral
structures. Decreases in NMDA receptor density may reflect
reduced function. On the other hand, increases in NMDA
receptor density have also been construed as “compensat-
ing” (upregulation) for reduced stimulation by endoge-
nous ligands. Though there are data supporting the latter
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notion, one must be cautious in adopting such interpre-
tations. Indeed, changes in levels of mRNA encoding
NMDA receptor subunits are difficult to interpret in the
absence of information on levels of the corresponding
protein.

Notwithstanding the above caveats, schizophrenia is ac-
companied by a broad pattern of alterations in NMDA
receptor-related subunits in the thalamus, a structure dys-
functional in schizophrenia (Clinton and Meador-Woodruff
2004a,b). Thus, robust decreases in levels of mRNA encod-
ing NR1 subunits have been reported, together with reduced
binding of the GlycineB radioligand, [3H]MDL105,519
(Ibrahim et al. 2000; Meador-Woodruff et al. 2003; though
see Popken and Leggio 2002). The diminished expression
of NR1 subunits may be specific to the exon 22 containing
isoform, a region of the NR1 subunit which interacts with
the postsynaptic density; correspondingly, expression of
genes encoding several of these proteins was also modified
in the thalamus of schizophrenic patients (Clinton et al.
2003; Meador-Woodruff et al. 2003; Clinton and Meador-
Woodruff 2004a,b). Though NR2A and NR2D subunits
were unaffected, NR2B and NR2C subunits were dimin-
ished, changes paralleled by a reduction in binding of the
NR2B subunit radioligand, [3H]ifenprodil; in contrast, bind-
ing to NMDA recognition sites and to ion channels was
unaffected. Consistent with enhanced glutamate clearance,
expression of glial EAAT1/2 was elevated (Ibrahim et al.
2000, but see Clinton and Meador-Woodruff 2004a). Com-
pleting the picture of alterations in glutamatergic function,
expression of vGluT2 and glutamatinase increased, though
these changes suggest enhanced glutamate availability (Smith
and Haroutunian 2001a,b; Meador-Woodruff et al. 2003).

The thalamus provides a major afferent pathway to the
cortex. This projection appears to be overactive in schizo-
phrenia reflecting compromised filtering of sensory infor-
mation (Carlsson et al. 2001; Clinton and Meador-Woodruff
2004a,b). In fact, findings in the cortex are more variable
than for the thalamus. Decreases in NR1 subunits were
found in entorhinal and temporal cortex, yet inconsistent
decreases, a lack of change or even increases were seen in
subterritories of frontal cortex (Meador-Woodruff and Healy
2000; Millan 2002; Van Berckel 2003). Interestingly, in the
study of Humphries et al. (1996), the reduced level of
mRNA encoding NR1 subunits in temporal cortex was

correlated with cognitive decline. Underpinning a relation-
ship of alterations in NR1 subunit expression to cognitive
status, reductions have likewise been seen in the frontal and
occipital cortex of Alzheimer’s patients (Dracheva et al.
2001; Hynd et al. 2004). As compared to NR1 and other
subunits, a relative increase of NR2A subunits was seen in
frontal and occipital cortex (mRNA), of NR2B subunits in
temporal cortex (binding) and of NR2D subunits (mRNA)
in prefrontal cortex (Akbarian et al. 1996; Grimwood et al.
1999; Dracheva et al. 2001; Woo et al. 2004). Despite
these changes, binding of radioligands to GlycineB sites
was increased in several cortical areas; further, no con-
sistent pattern of changes has been seen with radioligands
at recognition sites for glutamate (Ishimaru et al. 1994;
Grimwood et al. 1999; Millan 2002; Zavitsanou et al.
2002; Van Berckel 2003). Thus, while cortical NMDA
receptors are affected in schizophrenia, there is no clear
evidence for a reduction in their activity.

Nevertheless, in the hippocampus, which is dysfunc-
tional in schizophrenia (Medoff et al. 2001), decreases in
NR1 subunit mRNA were asymmetrically localized to the
left half of the brain; this laterality resembles other func-
tional deficits characterising schizophrenia (Gao et al. 2000;
Law and Deakin 2001; Crow 2004). A relative increase in
NR2B mRNA but no change in NR2A subunits was noted
(Harrison et al. 2003). Paralleling decreases in NR1 sub-
units, a reduction in mRNA encoding vGluT1 was seen:
this suggests a reduction in glutamate loading into synapses
and in glutamate release (Harrison et al. 2003).

In the striatum, neither studies of NMDA receptor sub-
unit expression nor of radioligand binding have revealed
marked changes (Meador-Woodruff and Healy 2000; Millan
2002; van Berckel 2003). Cortical glutamatergic pathways
provide a major input to the striatum. They also (together
with the bed nucleus of the stria terminalis, subthalamic
nucleus and lateral dorsal tegmentum) send glutamatergic
afferents to the substantia nigra and ventrotegmental area
(Meltzer et al. 1997; Stefensen et al. 1998; Georges and
Aston-Jones 2002; Laruelle et al. 2003; Sesack et al. 2003).
These glutamatergic inputs, which act via both NMDA
and non-NMDA (AMPA) receptors (Mathé et al. 1998;
Adell and Artigas 2004), target dopaminergic perikarya
and GABAergic neurones (Fig. 4) (Carlsson et al. 2001;
Chen et al. 2001; Sesack et al. 2003; Takahata and
Moghaddam 2003). Thus, an interesting finding was an
increase in levels of NR1 subunits in the substantia nigra
in schizophrenia (Mueller et al. 2004), coinciding with the
argument that excessive activity at NMDA receptors on
subcortical dopaminergic cell bodies may contribute to
their hypersensitivity/hyperactivity in schizophrenia. Hence,
antagonist properties at these populations might be favour-
able to its management (Fig. 4) (Carlsson et al. 2001; Millan
2002; Moghaddam 2003).

Thus, alterations in NR2 subunits in schizophrenic brains
vary in an isoform and structure-dependent fashion and re-
quire further characterisation. However, observations in the
thalamus, hippocampus and cortex coincide with the notion
of reduced function at NR1 subunits bearing GlycineB sites.

Table 1 Summary of major alterations in expression (mRNA
levels) of NMDA receptor subunits in schizophrenia

NR1 NR2A NR2B NR2C NR2D

Structure mRNA Binding mRNA mRNA mRNA mRNA
Thalamus ↓ ↓ – ↓ ↓ –
Cortexa ↓/–/↑ ↑ ↑ ↑ – ↑
Hippocampus ↓ ? – ↑ – –
Substantia Nigra ↑ ? – – – –

↓ = Decrease, ↑ = increase and – = no significant change. “Binding”
refers to radioligand studies of GlycineB sites on the NR1 subunit
aData for cortex are variable and depend on the region investigated
(see text)
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Despite the need for confirmatory data on levels of protein
rather than mRNA, this contention is underpinned by
studies of their endogenous ligands.

Alterations in endogenous ligands of NMDA receptors
in schizophrenia

In certain investigations, evidence for reduced levels of
glutamate (and aspartate) was reported in the cortex and
hippocampus of schizophrenics, and, in one study, the

magnitude of this decrease correlated with the intensity of
positive symptoms (Fig. 5) (Tsai et al. 1995; Faustman et al.
1999; see Millan 2002; Théberge et al. 2003). Interestingly,
synaptosomal liberation of glutamatewas reduced in schizo-
phrenic brain (Sherman et al. 1991). An additional mech-
anistic basis for a reduction in extracellular glutamate levels
was recently provided by an elegant study of Matute et al.
(2005). They showed that levels of both the mRNA and the
protein for glial EAAT1 are elevated in the frontal cortex
of schizophrenics and also that these transporters display
a marked (fourfold) increase in functional activity. This
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change appears to be specific inasmuch as levels of glial
EAAT2 are reduced (Ohnuma et al. 2000). In the hippo-
campus, lower levels of glutamate may, on the other hand,
be attributable to reduced numbers of glutamatergic ter-
minals or to a decreased density of glial vGluT1 (Harrison
et al. 2003). However, several studies have not found evi-
dence for reduced glutamate levels in schizophrenia (see
Millan 2002; Van der Heijden et al. 2004). Further, studies
of the glutamate–glutamine cycle have revealed a complex
pattern of changes not invariably consistent with reduced
generation of glutamate. Thus, glutamine levels have been
found (by the same group) to be either increased or de-
creased in cingulate cortex (Théberge et al. 2002, 2003),
whereas both glutamine and glutamate were elevated in
prodromic adolescents (Tibbo et al. 2004). Levels of gluta-
mine synthase were reduced (consistent with elevated gluta-
mate levels). On the other hand, higher levels of glutamate
dehydrogenase suggest more rapid cleavage of glutamate to
α-keto-glutarate, whereas elevated levels of glutamate acid
decarboxylase indicate more rapid conversion to GABA
(Gluck et al. 2002; Burbaeva et al. 2003). From these
findings, it cannot be asserted with confidence that there is
a generalized reduction in glutamate availability to cortical
NMDA receptors in schizophrenia. Moreover, in the thala-
mus, increases in levels of glutamine, glutaminase, vGluT2
and EAAT1/2 might reflect greater rather than lesser avail-
ability of glutamate (Théberge et al. 2002, 2003; Meador-
Woodruff et al. 2003). In any case, there is an interpretational
challenge inasmuch as the relationship between changes in
glutamate levels and specific populations of glutamatergic
receptor—NMDA or other—remains unknown. Accord-
ingly, changes in levels of other endogenous ligands may
afford more direct information concerning the functional
status of NMDA receptors.

As pointed out above, NAAG is cleaved by an astro-
cyte-localized GCP II/III into glutamate and aspartate. Tsai
et al. (1995) reported higher levels of NAAG in frontal
cortex and hippocampus, together with a decrease in the
enzymatic activity of GCP II, that is, a shift in equilibrium
from higher efficacy ligands (glutamate/aspartate) to a low
efficacy ligand (NAAG) at NMDA receptors. However,
contrary to expectations, levels of mRNA for GCP II were
increased in the CA3 region of the hippocampus—though
preliminary data indicate a reduction of mRNA for GLP II
in frontal cortex (Hakak et al. 2001; Ghose et al. 2004).

Though it has long been accepted that glycine–serine
metabolism is perturbed in schizophrenia, data showing re-
duced availability of glycine and D-serine to central NMDA
receptors have proven difficult to obtain (Kumashiro et al.
1995; Millan 2002; Hashimoto et al. 2003; Sumiyoshi et al.
2004). However, Hashimoto et al. (2003) recently found
that concentrations of D-serine in plasma are markedly re-
duced in psychotic patients. Levels of L-serine and of total
serine were actually higher, an observation corroborated
by Sumiyoshi et al. (2004). These (and other) authors also
reported a decrease in circulating levels of glycine which
was correlated with the severity of negative symptoms
(Ermilov et al. 2004). These data likely reflect decreases in
central availability of D-serine and glycine, but it would

obviously be desirable to reproduce such findings at the
cerebral level. In this light, it is of note that elevations in
levels of the endogenous antagonist, kynurenate, were ob-
served in the cortex and cerebrospinal fluid (Erhardt et al.
2001; Schwarcz et al. 2001).

Finally, the positive modulator of NMDA receptors,
glutathione, interacts with an allosteric site—probably the
same one as zinc—and decreases in its levels in schizo-
phrenia were interpreted as contributing to reduced activ-
ity at these sites (Do et al. 2000).

To summarize (Fig. 5), these findings are globally in
line with reduced stimulation of NMDA receptors in
schizophrenia. However, data for glutamate are ambivalent.
Further, the extent to which changes in plasma and cere-
brospinal fluid levels of ligands for GlycineB and NMDA
recognition sites reflect changes at the synaptic level re-
mains unclear since local concentrations are tightly con-
trolled by neuronal and astrocytic mechanisms of uptake
and degradation (Figs. 2, 3).

Susceptibility genes for proteins which interact with
NMDA receptors

Despite the high heritability of schizophrenia, the exis-
tence of multiple susceptibility genes of modest effect has
hindered their identification (Collier 2003; Fukumaki and
Shibata 2003; Harrison and Owen 2003; Elkin et al. 2004).
Indeed, with the possible exception of NR2B subunits
(Ohtsuki et al. 2001; Di Maria et al. 2004), no associations
between genes expressing NMDA receptor subunits and
schizophrenia have been found—despite positive reports
for mGluR receptors and AMPA subunits (Schiffer 2002;
Williams et al. 2002; Fukumaki and Shibata 2003). Nev-
ertheless, polymorphisms in the promoter regions of NR1,
NR2A and NR2B subunits may be associated with reduced
NMDA receptor function and increased risk of schizophre-
nia (Miyatake et al. 2002; Itokawa et al. 2003; Lipsky and
Goldman 2003). Further, several studies have pinpointed
polymorphisms in genes which interact with NMDA re-
ceptors (Schiffer 2002; Harrison and Owen 2003).

Thus, linkage has been found between chromosome 8p
and schizophrenia, and several markers in the neuroregu-
lin (NRL1) gene located in this region comprise a hap-
lotype associated with increased risk for schizophrenia
(Stefansson et al. 2002, 2004; Williams et al. 2003; Yang
et al. 2003). Further, “subtle” changes in expression patterns
of three NRL1 isoforms were seen in schizophrenic brains
(Hashimoto et al. 2004; Law et al. 2004). NRL1 is localized
to vesicles in neuronal terminals containing glutamate. Fol-
lowing release, the NRL1 “ectodomain” binds to the re-
ceptor ErbB4 which co-localizes with NMDA receptors
within the common postsynaptic density (Garcia et al. 2000;
Dracheva et al. 2001; Moghaddam 2003; Stefansson et al.
2004). Accordingly, NRL1 enhances expression of NMDA
receptors and increases their activity by promoting ty-
rosine kinase-mediated phosphorylation (Buonnano and
Fischbach 2001). Support for functional interrelationships
between NRL1 and NMDA receptors relevant to schizo-
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phrenia was acquired in mice with mutant NRL1 genes.
These animals displayed a reduced density of NMDA re-
ceptors and a motor hyperactivity reduced by clozapine
(Gerlai et al. 2000; Stefansson et al. 2002, 2004). Further,
mice lacking the gene for ErbB4 displayed cognitive deficits
(Golub et al. 2004). In another region of the 8p chromosome
close to the NRL1 gene, a further polymorphism associated
with schizophrenia was found by Gerber et al. (2003). The
gene encodes the catalytic unit of calcineurin which controls
both activity at NMDA receptors and synaptic plasticity
(Krupp et al. 2002; Hedou and Mansuy 2003). By analogy
to NRL1, mice lacking calcineurin display behavioural
abnormalities resembling schizophrenia (Miyakawa et al.
2003). Dysbindin may also be located in the postsynaptic
density of NMDA receptors, and linkage to schizophre-
nia was reported in several studies (Vaillend et al. 1999;
Schiffer 2002; Straub et al. 2002; Schwab et al. 2003). In-
terestingly, its levels are reduced in the cortex of schizo-
phrenics (Weickert et al. 2004).

An association of the gene encoding D-AAOwith schizo-
phrenia was demonstrated by Chumakov et al. (2002), to-
gether with a polymorphism for a primate-specific gene,
G72, which interacts with, and possible activates, D-AAO.
These findings were recently corroborated by Korostishevsky
et al. (2004). Collectively, the data are consistent with an
overactivity of D-AAO in schizophrenia and, correspond-
ingly, lower levels of D-serine.

Finally, the gene encoding GCP II was detected near a
translocation breakpoint region related to increased risk for
schizophrenia (Semple et al. 2001).

The above findings have been enthusiastically embraced
by many commentators. However, it remains to be shown
that such polymorphisms (alone or collectively) are asso-
ciated with changes in the functional status of NMDA
receptors likely to precipitate psychotic states.

Antipsychotic properties of drugs increasing activity at NMDA
receptors

Agonists, partial agonists, GRIs: interpretational
challenges

Numerous, chemically diverse antagonists at GlycineB sites
have been synthetized, including the kynurenate analogue,
5,7-dichlorokynurenic acid, and the selective agent, L701,324
(Fig. 6). In contrast, reflecting limited scope for modifica-
tion of the structure of glycine, it has proven difficult to design
novel agonists at GlycineB sites (Bräuner-Osborne et al. 2000;
Millan 2002). Despite extensive metabolism both periph-
erally and centrally, and its poor penetration of the blood–
brain barrier, systemic administration of glycine increases
brain levels of glycine in rodents and man (D’Souza et al.
2000; Javitt et al. 2004a). D-Serine is also highly metabo-
lised but shows superior penetration into the CNS, allowing
for the use of lower doses (Hashimoto and Chiba 2004). A
further advantage vs glycine is low affinity for GlycineA
receptors, though nephrotoxicity limits its utility in rats. As
regards synthetic ligands, all selectiveGlycineB agonists pos-
sess lower efficacy than glycine and D-serine at GlycineB sites,
for example, the cyclic agents, S18841 and D-cycloserine
(DCS) (Fig. 6) (Danysz and Parsons 1998; Cordi et al. 1999;
Millan 2002).

Knowledge of the precise degree of “resting” GlycineB
receptor stimulation by endogenous ligands is critical for
interpretation of the effects of exogenous ligands. Indeed,
DCS and other partial agonists can, in principle, either
activate or block GlycineB sites. Unfortunately, few studies
have attempted to resolve this issue in showing that their
actions are either blocked (if due to agonist properties) by
selective antagonists or mimicked (if due to antagonist
properties) (Millan 2002). Further compounding interpre-
tation of the effects of partial agonists, their actions are less
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pronounced at high vs low doses (Danysz and Parsons
1998). It is difficult to attribute biphasic dose–response
curves to partial agonist properties since agonist effects
should, on the contrary, be apparent at high low doses. Al-
ternative explanations include the following: (1) high potency
agonist actions at NMDA receptor subtypes differing to
subtypes blocked at higher concentrations; (2) high dose
interactions with “allosteric” sites or postsynaptic proteins
negatively coupled to NMDA receptors; and (3) induction
of NMDA receptor internalisation at high concentrations
(Nong et al. 2003). Finally, DCS may exert actions inde-
pendently of NMDA receptors (Rouaud and Billard 2003).

The amino acid and GRI, sarcosine, have been clinically
evaluated in schizophrenia (see below; Tsai et al. 2004a,b),
and several novel GRIs have been described, including
ORG 24598 (Harsing et al. 2003), NFPS (Kinney et al.
2003) and SSR 504,374 (Depoortere et al. 2004) (Fig. 6).
The major difficulty in interpreting their actions is a lack
of knowledge concerning the significance of glycine vs
D-serine at GlycineB sites implicated in psychotic states.

Actions of GlycineB receptor ligands and GRIs in
models of antipsychotic properties

Glycine displays little effect in classical models of anti-
psychotic activity, such as blockade of the actions of hal-
lucinogens and of psychostimulants (Table 2) (Javitt et al.
1997; Javitt 2002; Millan 2002). The awkward question
arises of whether this poor activity suggests a lack of
clinical antipsychotic properties. Alternatively, such mod-
els may be inappropriate to studies of GlycineB receptor
ligands lacking, in contrast to conventional antipsychotics,
antagonist properties at dopaminergic and serotonergic
receptors. The latter position is underpinned by positive
effects of glycine in two other models of schizophrenia.
The first is neonatal lesions of the ventral hippocampus in
rats. This developmental model is characterised by “psy-
chosis-like” behaviours in adults and reduced release of
glutamate in the hippocampus and frontal cortex (Schroeder
et al. 1999; Lipska 2004). The second is chronic treatment
with PCP which enhances the responsiveness of cortical
and subcortical dopaminergic pathways to amphetamine.

This phenomenon is seen both in rodents and in man and
resembles psychotic states (Breier et al. 1997; Kegeles et al.
2000; Balla et al. 2001a,b; Javitt et al. 2004a). In the former
model, glycine blocked increases in locomotor behaviour
elicited by novelty and amphetamine (Kato et al. 2001).
Further, it normalized the disruption of sensory motor gat-
ing—decreased prepulse inhibition—displayed by these
animals (Le Pen et al. 2003). In the model of chronic PCP
administration, long-term administration of glycine atten-
uated the enhanced ability of amphetamine to provoke
central release of dopamine (Javitt et al. 2004a). The effects
of glycine in these procedures presumably reflect its ability
to normalize sustained deficits in activity at NMDA re-
ceptors. However, observations that glycine reduces the
locomotor hyperactivity and subcortical dopamine release
evoked by acute administration of OCBs are less easy to
explain (Toth and Lajtha 1986; Javitt et al. 1997, 1999,
2000; Millan et al. 1999; Millan 2002).

Central administration of D-serine likewise blocked acute
motor actions of PCP, an action expressed stereospecifically
inasmuch as L-serine was ineffective. Further, the action of
D-serine was prevented by 7-chlorokynurenate (Tanii et al.
1994). D-Serine also prevented disruption of learning by PCP
(Campbell et al. 1999). When administered during the vul-
nerable postnatal period, PCP profoundly disrupts synapto-
genesis leading to cognitive deficits in adult rats: chronic
treatment with D-serine reversed the compromised spatial
working memory shown by rats exposed to PCP (Andersen
and Pouzet 2004). This neurodevelopmental model resem-
bles neonatal hippocampal lesions (vide supra) and may
relate to the disruption of declarative memory seen in psy-
chotic patients (Perry et al. 2000).

Though DCS does not itself enhance prepulse inhibi-
tion in adult rats, it reversed its disruption by microinjec-
tion of GlycineB antagonists into the nucleus accumbens
(Kretschmer and Koch 1998; Geyer et al. 2001). This sug-
gests, in line with a broad pattern of procognitive properties
in rodents (Andersen et al. 2002; Jones et al. 2004; Stouffer
et al. 2004), that partial agonists might improve deficits in
cognitive-attentional function shown by psychotic patients.
Unfortunately, actions of partial agonists have not as yet
been described in protocols of chronic PCP administration
and neonatal hippocampal lesions. By analogy to glycine
and D-serine, DCS reduces the induction of hyperloco-
motion and limbic release of dopamine by PCP. However,
it remains to be proven that such effects reflect agonist
actions at GlycineB sites since they were mimicked by
GlycineB antagonists (Millan 2002) which actually show
antipsychotic actions in certain models (see Millan et al.
2000). Though at first sight paradoxical, these findings are
compatible with a model depicted in Fig. 4 which permits
both a direct excitatory and an indirect (GABA-mediated)
inhibitory influence of NMDA receptors on dopaminergic
perikarya (Carlsson et al. 2001; Moghaddam 2003). By
analogy to glycine, DCS exerts little influence upon the
actions of amphetamine and hallucinogens (Przegalinski et
al. 1999; Javitt 2002; see Millan 2002). Finally, of direct
relevance to adjunctive use in man, co-administration of
DCS with other partial agonists enhances actions of

Table 2 Actions of GlycineB agonists and glycine reuptake in-
hibitors (GRIs) in experimental models of antipsychotic properties

Ventral
hippocampal
lesion

Chronic
PCP

Acute
PCP

Acute
Amph

↑ Amph
LA

↓ PPI Amph. ↑
DA rel

↑ LA ↑ DA
rel

↑ LA ↑ DA
rel

Glycine/
D-serine

Yes Yes Yes Yes Yes IA IA

GRI ? Yes Yes Yes ? IA IA

Yes = attenuated, ? = unknown and IA = inactive
LA Locomotor activity, PPI prepulse inhibition, DA rel DA release,
PCP phencyclidine. See text for details
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haloperidol against both amphetamine and PCP in rodents
(Millan et al. 2000, unpublished observations).

There is a striking concordance in the actions of GRIs as
compared to those of glycine in several experimental models
(Table 2). Thus, NFPS mimicked glycine in preventing the
sensitisation of amphetamine-induced dopamine release elic-
ited by chronic administration of PCP (Javitt et al. 2004a). In
a separate study, a further GRI, ORG 24598, mimicked
glycine in preventing sensory motor (gating) deficits in rats
sustaining neonatal lesions of the hippocampus (Le Pen
2003). Further, several GRIs abrogated acute PCP-induced
hyperlocomotion with potencies correlating to their affin-
ities at GlyT-1 sites (Javitt and Frusciante 1997; Javitt et al.
1999; Harsing et al. 2003). GRIs also reversed PCP-
elicited changes in EEG power spectra in conscious rats
(Harsing et al. 2003) and elicited cerebral patterns of c-fos
expression similar to those seen with clozapine (Kinney
et al. 2003). By contrast, GRIs show little activity in
psychostimulant (amphetamine) models of antipsychotic
activity, mimicking the weak activity of glycine. Indicative
of improved cognitive function, GRIs enhanced hippo-
campal long-term potentiation and enhanced prepulse
inhibition (Kinney et al. 2003). Finally, in line with these
findings, in heterozygous mice with genetically inactivated
GlyT-1 transporters, mnesic performance was improved
and sensory motor gating was less perturbed by exposure
to amphetamine (Tsai et al. 2004b).

Glycine and DCS were recently shown to suppress the
vacuous oral movements provoked by long-term admin-
istration of haloperidol to rats (Shoham et al. 2004). This
effect may reflect agonist actions at NMDA receptor sites
incorporatingNR2Asubunits (Blanchet et al. 1999).Though
surprising (Schmidt and Kretschmer 1997; Kretschmer
1998; Andreassen et al. 2003), this finding is paralleled by
clinical findings outlined below.

To summarize, GlycineB agonists and GRIs present a
coherent pattern of data overall consistent with antipsy-
chotic properties in rodent models. However, such actions
are generally seen alone. By contrast, as discussed below,
their effects alone in schizophrenia have not been eval-
uated, rather their facilitatory influence upon the actions of
antipsychotic drugs. In distinction to agonists, data in-
dicating antipsychotic effects of the partial agonist, DCS,
in rodents are not compelling, and it is unclear whether its
potentiation of the actions of conventional antipsychotics
reflects an increase in activity at NMDA sites.

Actions of GlycineB receptor ligands and GRIs in
schizophrenic patients

Doses of glycine of up to 0.8 g/kg/day (generally 40–60 g)
safely achieve increases in cerebrospinal fluid levels of
glycine, and about a dozen studies of nearly 200 patients
have described the effects of glycine as an adjunct to anti-
psychotic treatment (Heresco-Levy 2000, 2003; Millan
2002; Heresco-Levy and Javitt 2004; Tuominen et al.
2005). Several trials (usually over 6 weeks) were placebo-
controlled and double blind, and glycine was shown not to

influence serum levels of antipsychotics (Leiderman et al.
1996; Javitt et al. 2001). As summarized in Table 3 and
discussed in the above citations, addition of glycine to
haloperidol and other conventional neuroleptics achieves a
dose-dependent decrease in primary negative symptoms
and more modest but significant improvements of cogni-
tive and positive symptoms. Notably, these effects were
seen in otherwise treatment-resistant patients, and the ef-
fectiveness of glycine was inversely proportional to pre-
treatment levels of glycine in serum. Moreover, there was
no exacerbation of the extrapyramidal side effects of anti-
psychotics, rather a tendency for improvement (Rosse et al.
1989; Heresco-Levy et al. 1999). Importantly, similar find-
ings were documented for the newer antipsychotics, olan-
zapine and risperidone: adjunctive glycine (0.8 mg/kg/day)
improved negative and, less markedly, cognitive and pos-
itive symptoms in treatment-refractory subjects, while also
ameliorating tardive dyskinesia (Heresco-Levy et al. 2004).
Intriguingly, glycine is not generally effective in patients
receiving clozapine (Potkin et al. 1999; Evins et al. 2000;
Millan 2002; Heresco-Levy 2003; though see Heresco-
Levy and Javitt 2004). One simple explanation would be
that clozapine is uniquely effective against negative symp-
toms (“ceiling effect”). However, a more likely explanation
is that clozapine itself enhances activity at NMDA receptor
sites (see below).

Underpinning the above findings, in a 6-week study,
association of D-serine (30 mg/kg/day, ca. 2 g in total) with
conventional neuroleptics improved negative and, less mark-
edly, positive and cognitive symptoms, without worsening
side effects (Tsai et al. 1998). Likewise, by analogy to glycine,
D-serine did not enhance the efficacy of clozapine (Tsai et al.
1999).

Mimicking its less robust effects (alone) than glycine in
experimental models, the partial agonist, DCS, shows less
marked improvements when given in association with an-
tipsychotic agents to patients. Dose–response studies in
subjects receiving conventional antipsychotics have shown
that low doses (ca. 30 mg/day) are ineffective, high doses
aggravate positive symptoms and only an intermediate dose
of ca. 50 mg/day provides a reduction in negative symp-
toms in otherwise treatment-resistant patients without a

Table 3 Antipsychotic actions of drugs activating GlycineB sites in
association with haloperidol and other antipsychotic agents

Agonist PAG GRI

Drug Glycine D-serine DCS Sarcosine
Dose/day 40–80 g 2 g 50 mg 2 g
Positive symptoms –/↓ ↓ –/↓ ↓
Deficit symptoms ↓↓ ↓↓ ↓ ↓↓
Cognitive symptoms ↓ ↓ ↓ ↓
Extrapyramidal side effects ↓ – – –

↓ = Improvement, – = no clear change. The table summarizes data
obtained with “conventional” antipsychotics such as haloperidol, as
well as the newer agents, risperidone and olanzapine
PAG Partial agonist, GRI glycine reuptake inhibitor, DCSD-
cycloserine
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significant improvement in positive or cognitive symptoms
(Goff et al. 1999; Van Berckel 2003; Javitt 2002; see Millan
2002; Heresco-Levy 2003). As with glycine treatment,
low levels of serum glycine were predictive of a good re-
sponse to DCS (Heresco-Levy et al. 1998). Comparable
findings of a modest improvement in negative symptoms
were obtained with patients on risperidone or olanzapine
(Evins et al. 2002; Heresco-Levy et al. 2002). DCS actually
worsened negative symptoms when given in association
with clozapine (Goff et al. 1996; Goff et al. 1999; Javitt
2002). Recently, in a retrospective analysis of a 5-year
period of parallel investigations, Heresco-Levy and Javitt
(2004) underpinned this impression of less robust effects
of DCS as compared to those of glycine. In a meta-analysis,
Tuominen et al. (2005) came to a similar conclusion, and
Duncan et al. (2004a) recently obtained negative results
with adjunctive DCS in patients showing mainly negative
symptoms. The lack of a clear improvement in cognitive
symptoms with DCS is, perhaps, surprising in view of the
procognitive actions of partial agonists in rodents. On the
other hand, it may be relevant that the influence of DCS
upon mnemonic function in patients with dementia was
not sufficiently robust to justify pursuing clinical trials
(Johannesen and Myhrer 2002; Jones et al. 2004).

Despite essentially anecdotal reports of pro and/or anti-
psychotic effects of very high (tuberculostatic) doses of
DCS (up to 3,000 mg/day) in non-psychotic subjects (see
Millan 2002; Heresco-Levy 2003), no controlled trials of
its effects alone in schizophrenia have been undertaken.
Similarly, effects of glycine and D-serine alone remain to be
elucidated. Results of such studies would be important for
several reasons: (1) according to the NMDA receptor hy-
poactivity hypothesis, they should be effective alone; (2)
most studies of antipsychotic actions in rodents have been
undertaken with GlycineB agonists alone; and (3) should
GlycineB agonists display clinically relevant antipsychotic
effect alone, this would vastly improve perspectives for the
development of novel therapeutic agents of this class (see
below).

By analogy to GlycineB receptor ligands, potential anti-
psychotic actions of GRIs alone remain to be examined.
However, sarcosine exerted clinical effects remarkably simi-
lar to those of glycine and D-serine in a 6-week double-blind
study of patients under treatment with conventional anti-
psychotics including, principally, risperidone (Tsai et al.
2004a). That is, sarcosine,whichwaswell tolerated, achieved
improvement in negative and, less markedly, positive and
cognitive symptoms. Though sarcosine dehydrogenase can
demethylate sarcosine to glycine, it is unlikely to be acting
as a “prodrug” since active doses of sarcosine (2 g/day) are
far lower than those of glycine (40–80 g) needed for efficacy.

Influence of antipsychotics upon NMDA receptors:
possible role in their actions

Administration (generally chronic) of antipsychotics elicits
a complex, drug, time, receptor-subunit and tissue-depen-
dent influence upon glutamatergic pathways and NMDA

receptors (Bardgett et al. 1993; Fitzgerald et al. 1995;
Ossowska et al. 1999; Millan 2002; Gemperle et al. 2003;
Heresco-Levy 2003; Tarazi et al. 2003). Interesting differ-
ences have emerged between clozapine and haloperidol.
These agents preferentially enhance glutamate levels and
activity at NMDA receptors in cortex vs striatum, respec-
tively (Yamamoto et al. 1994; Arvanov et al. 1997; Hayashi
et al. 1999; Rodriguez and Pickel 1999).

Clozapine-induced increases in NMDA receptor activity
in cortex involve several mechanisms depicted in Fig. 7.
Clozapine reduces uptake of glutamate in cortex by de-
creasing glial expression of EAAT1 and neuronal expres-
sion of EAAT3 (See and Lynch 1996; Chen and Yang 2002;
Millan 2002; Melone et al. 2003; Schmidt et al. 2003).
Extracellular levels of glutamate may also be raised by
inhibition of GABAergic interneurones and, upon chronic
administration, by a diminution in the activity of GCP II
(Squires and Saederup 1998; Michel and Trudeau 2000;
Flores and Coyle 2003). Interestingly, patients receiving
clozapine—and olanzapine—show higher plasma levels of
glutamate (Evins et al. 1997; Goff et al. 2002), and a recent
imaging study suggested that clozapine increases occu-
pation of thalamic NMDA receptors by glutamate (Bressan
et al. 2003). Elevations in glutamate levels will directly
recruit NMDA receptors and indirectly enhance their ac-
tivity via activation of AMPA receptors, though clozapine
does not affect AMPA sites per se (Gemperle et al. 2003).
AMPA receptor recruitment of astrocytes will also induce
release of D-serine. In parallel, clozapine may enhance gly-
cine levels by inhibiting SNAT 1 sites for neuronal uptake
of glycine (Javitt et al. 2004b; Schwieler et al. 2004) and
GlyT-1 sites for glial reuptake of glycine (Williams et al.
2004). Direct agonist actions of clozapine at GlycineB sites
were speculated to attenuate actions of kynurenate, but
there is no direct evidence for this (Schwieler and Erhardt
2003; Schwieler et al. 2004). Independently of glutamate
and glycine, clozapine enhances the functional activity of
NMDA receptors via their phosphorylation by protein ki-
nase A (possibly dopamine and D1 receptor mediated)
(Leveque et al. 2000; Chen and Yang 2002; Tseng and
O’Donnell 2004), protein kinase C and calmodulin II
(Hayashi et al. 1999; Seamans et al. 2000; Jardemark et al.
2003; Ninan et al. 2003a; Gonzalez and Robinson 2004;
Naudon et al. 2004). Finally, N-desmethylclozapine, a
major metabolite of clozapine, is an agonist at M1 receptors
which allosterically facilitate activity at NMDA receptors
(Sur et al. 2003; Weiner et al. 2004). The preferential en-
hancement by clozapine of NMDA receptor-mediated
transmission in frontal cortex is associated with enhanced
long-term potentiation and may be related to its beneficial
influence upon negative symptoms (Gemperle et al. 2003;
Serretti et al. 2004). It may also explain the inability of
GlycineB agonists to improve clinical effects of clozapine.

Haloperidol more markedly increases striatal levels of
glutamate than clozapine (Bardgett et al. 1993; Yamamoto
et al. 1994; see Millan 2002). Its actions are exerted by
several mechanisms including blockade of D2 and, perhaps,
D4 receptors inhibitory to glutamate release (Berger et al.
2001; Cepeda et al. 2001; Rivera et al. 2002; Centonze et al.
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2004; Gan et al. 2004) and reduced striatal expression of
EAAT2 (De Souza et al. 1999; Schneider et al. 1998;
Schmidt et al. 2003). Haloperidol may also enhance NMDA
receptor function by inducing striatal expression of NR1
subunits (Fitzgerald et al. 1995). In vitro, it enhances ac-
tivity at NMDA receptors by increasing protein kinase
A-mediated phosphorylation of NR1 subunits: this action
may reflect both blockade of D2 receptors (inhibitory to
protein kinase A) and increased DA release leading to activa-
tion of co-localized D1 sites (facilitatory to protein kinase A)
(Leveque et al. 2000; Liu et al. 2004). Though haloperidol
interacts with NR2B and GlyT-1 sites, its potency is prob-
ably too low to be of relevance in vivo (Ilyin et al. 1996;
Brimecombe et al. 1998; Lee and Rajakumar 2003;Williams
et al. 2004, Yanahashi et al. 2004). Sustained reinforcement
of glutamatergic transmission in the striatum may be ex-
citotoxic (Leveque et al. 2000; Millan 2002) and contribute
to the long-term onset of tardive dyskinesia with haloperidol.
Nevertheless, long-term administration of glycine attenuated
extrapyramidal motor effect of haloperidol in man and in
rodents countering this possibility (Heresco-Levy 2003;
Shoham et al. 2004).

Certain studies suggest that the influence of antipsy-
chotics upon NMDA receptors is even more complex and
may also involve inhibitory effects (Levine et al. 2003;
Ninan et al. 2003b). Nevertheless, the general pattern of
data clearly supports the above-described facilitatory influ-
ence of clozapine in the cortex and of haloperidol in stria-
tum. In future work, it will be important to further analyse
the functional consequences of their actions in additional
brain regions and at specific constellations of NMDA re-

ceptor subunits. It will also be interesting to characterise the
influence of other, mechanistically novel, antipsychotics
upon activity at NMDA receptors.

Open questions and future perspectives

Multiple targets for antipsychotic modulation of
activity at NMDA receptors

The above discussion highlights many potential strategies
for modulating the functional status of NMDA receptors.
First, it may be possible to develop more effective direct
agonists at GlycineB sites. In this regard, efforts should be
made to target specific subpopulations of NMDA recep-
tors implicated in the induction of psychotic states, for
example, those on GABAergic interneurones inhibitory to
cortical glutamatergic pathways and to dopaminergic cell
bodies. This may be feasible if such populations in-
corporate specific isoforms of NR1 subunits or specific
assemblies of NR2 subunits modulating the ligand-binding
profile of GlycineB sites on NR1 subunits. Supporting this
possibility, several drugs have been developed which in-
teract with discrete classes of NR2 subunit (Danysz and
Parsons 1998; Dingledine et al. 1999; Yamakura and
Shimoh 1999; Madden 2002, Feng et al. 2004). Second,
alternative targets on NMDA receptors would be modu-
latory sites recognizing, for example, neurosteroids, poly-
amines or glutathione (Dingledine et al. 1999). Third, it may
ultimately be possible to alter the function of NMDA sites
via actions at NRL1, dysbindin or other postsynaptic pro-
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Fig. 7 Overview of multiple mechanisms implicated in the facil-
itatory influence of clozapine at NMDA receptors in cortex. DA
Dopamine, GCP glutamate carboxypeptidase, AC adenylyl cyclase,
EAAT excitatory amino acid transporter, GlyT glycine transporter,
Musc muscarinic receptor, PKA protein kinase A, PKC protein kinase
C, CaMII calmodulin II. It is unclear how clozapine recruits PKC and
CaMII. Its influence upon EAAT2 and GCPII is only seen upon long-

term administration in vivo. The suggestion that clozapine may
directly (and allosterically) engage GlycineB site remains speculative.
Note that (1) many of these potential mechanisms would benefit from
confirmation; (2) they have been documented under a variety of con-
ditions using a diversity of techniques; and (3) mechanisms shown are
expressed in the cortex or other specific brain regions but not nec-
essarily throughout the CNS
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teins. Fourth, a novel possibility for indirect modulation of
NMDA sites would be to target receptors which control the
release of D-serine, glycine and glutamate from astrocytes
(Bezzi and Volterra 2001). Fifth, drugs which affect re-
uptake, synthesis and/or degradation of D-serine, kynurenate
and NAAG are an intriguing possibility. However, several
questions remain. For example, inasmuch as D-serine and
glycine are interconverted in glial cells, modification of the
availability of one will inevitably affect the other. There
would be little point in enhancing levels of D-serine if this
indirectly results in a compensatory reduction in levels of
glycine. Further, modification of the availability of kynur-
enate may indirectly influence serotonergic and cholinergic
transmission with uncertain consequences for psychotic
states (Stone and Darlington 2002; Alkondon et al. 2004).

Which endogenous ligands control activity
at NMDA receptors?

A major question is whether GlycineB sites are tonically
saturated. There is now a consensus that they are not—and
functional actions of glycine, D-serine and GRIs in animals
and man bear testimony to this (Danysz and Parsons 1998;
Javitt 2002; Millan 2002; Haradahira et al. 2003). How-
ever, many therapeutically relevant uncertainties remain,
notably, the degree of occupation of specific populations:
in defined brain regions, in psychotic patients exposed or
not to antipsychotics and in normal subjects exposed to
stress or illicit drugs. Irrespective of the overall degree of
occupation of GlycineB sites, a fundamental and related
question is the participation of various endogenous ligands.
For example, what is the relative importance of glycine as
compared to D-serine in psychotic patients, and what is the
contribution of these endogenous agonists as compared to
the antagonist kynurenate? This issue is of far more than
academic interest. Indeed, it underpins all current efforts to
develop novel drugs for treating schizophrenia via GlycineB
sites. For example, GRIs and/or D-AAO inhibitors will only
display antipsychotic activity if glycine and/or D-serine, re-
spectively, are genuinely ligands of NMDA receptors in-
volved in the induction and control of psychotic states.
Analogous arguments apply to agents which reduce the
synthesis of kynurenate.

Significance of NMDA receptors in relation to AMPA
and metabotropic receptors

The significance of glutamatergic mechanisms to schizo-
phrenia and its treatment is not limited to NMDA recep-
tors and extends to their AMPA, kainate and metabotropic
counterparts. The interrelationship between these sites is
beyond the scope of the present review. However, two in-
triguing aspects of contrasting implications should be brief-
ly mentioned. First, AMPA and kainate receptors rapidly
enhance activity at NMDA receptors by neuronal depo-
larisation, which relieves their Mg2+ block. In addition,
AMPA receptors enhance release of D-serine from astro-

cytes, thereby indirectly enhancing activity of NMDA sites
in a slower and more sustained fashion (Schell et al. 1995;
Nedergaard et al. 2002).Whether such actions are relevant to
the proposed use of AMPAkines for the improvement of
cognitive dysfunction in schizophrenia would be of interest
to determine (Johnson et al. 1999; Goff et al. 2001;Marenco
et al. 2002). Second, the paradox of why PCP and other
OCBs act psychotomimetically yet enhance glutamate re-
leasemay be explicable by glutamatergic loops separated by
intervening GABAergic interneurones (see above) (Fig. 4).
PCP may then mimic schizophrenia by blocking NMDA
input onto GABAergic neurones. This leads to an increase
in downstream glutamate release onto AMPA and other
classes of glutamatergic receptor mediating pro-psychotic
effects. One implication of this hypothesis is that drugs
reducing glutamate release, such as lamotrigine (Anand
et al. 2000; Hosak and Libiger 2002; Tiihonen et al. 2003)
or presynaptic metabotropic receptor agonists (Moghaddam
2002; Schoepp andMarek 2002;Winter et al. 2003), may be
useful antipsychotic agents—though they might exacerbate
hypoactivity at certain populations of NMDA sites. Alter-
natively, antagonists at AMPA receptors may be of interest
as antipsychotic agents (Mathé et al. 1998; Johnson et al.
1999; Sebban et al. 2002; Takahata andMoghaddam 2003),
though this notion is diametrically opposed to the above-
mentioned use of AMPAkines as cognitive enhancers.

Clinical efficacy of NMDA receptor modulators alone

There is currently no evidence that enhancing activity at
GlycineB sites is itself sufficient for antipsychotic activity.
Results of clinical trials addressing this issue will be critical
since a lack of therapeutic efficacy alone implies the need
for adjunctive utilization of GlycineB agonists, GRIs and
other classes of agent. This is hard to envisage on a broad
scale and would complicate development of novel agents.
One alternative strategy would be to combine within a sin-
gle molecule (direct or indirect) modulatory activity at
GlycineB sites and D2/D3 dopamine receptor antagonism.
Such a “multitarget” approach would fit well with the mul-
tifactorial origins of schizophrenia. For both selective and
multitarget agents at GlycineB sites, it would be desirable to
focus on the influence upon cognitive symptoms in view
of their importance to the overall outcome of treatment and
the major role of NMDA receptors in mnemonic processes
(Kane et al. 2003).

Confirmation of the role of GlycineB sites in the
actions of GlycineB agonists and GRIs

The convergent effects of glycine, D-serine and GRIs in
experimental models of antipsychotic activity and in psy-
chotic patients support the notion of a common mode of
action: enhanced activity at GlycineB sites on NMDA re-
ceptors. Nevertheless, no formal proof is available from
clinical investigations, and there have been few rigorous
tests of this assumption in rodent studies. In principle, their
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actions should be prevented by selective GlycineB receptor
antagonists. Further, assuming actions at common sites, in
the presence of GlycineB agonists at doses sufficient to
saturate GlycineB sites, GRIs should exert no further effect.
Reciprocally, assuming that glycine is a critical endogenous
ligand, in the presence of GRIs, direct GlycineB agonists
should exert no further actions. Such studies remain to be
performed. This is important since it is difficult to exclude
additional central actions of these agents. For example, a
dose of glycine sufficient to evoke substantial elevations in
its levels in the brain is likely to influence cerebral con-
centrations of interrelated modulators—including D-serine.
Thus, in future work, it will be necessary to more rigor-
ously underpin the GlycineB hypothesis of antipsychotic
activity with appropriate pharmacological controls.

Conclusions

In conclusion, there is a compelling body of experimental
and clinical data implicating NMDA receptors in the patho-
genesis and, potentially, treatment of schizophrenia. Fur-
ther, several mechanisms are available for countering the
hypoactivity of NMDA receptors which is thought to
participate in psychotic states. However, two fundamental
questions remain. First, which is the most appropriate ther-
apeutic strategy (for example, direct agonists, modulators
of glycine reuptake and/or modulators of D-serine avail-
ability)? Second, will drugs, which selectively modulate
activity at GlycineB sites, be therapeutically effective alone?
If so, this would transform the landscape of drug discovery
in schizophrenia. On the other hand, they may only be use-
ful as adjunctive agents. Rather than selective drugs,
multitarget drugs interacting with GlycineB receptors as
well as D2/D3 receptors (or other complementary sites) may
represent novel and improved antipsychotics. This remains
to be seen. In any case, in view of evidence that AMPA,
kainate and metabotropic receptors are also involved in the
etiology of schizophrenia, onemay be reasonably optimistic
as regards the future utility of glutamatergic strategies for
the control of this devastating disorder.
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