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Abstract Rationale: The neurosteroids pregnenolone sul-
fate (PREGS), dehydroepiandrosterone sulfate (DHEAS)
and allopregnanolone (3α,5α THPROG) have been im-
plicated as powerful modulators of memory processes and
sleep states in young and aged subjects with memory
impairment. As these processes depend on the integrity of
cholinergic systems, a specific effect of neurosteroids on
these systems may account for their effects on sleep and
memory. Objective: To review the evidence for a specific
and differential effect of neurosteroids on cholinergic
systems. Methods: We carried out keyword searches in
“Medline” to identify articles concerning (1) the effects of
neurosteroids on cholinergic systems, sleep and memory
processes, and (2) changes in neurosteroid concentrations
during aging. Few results are available for humans. Most
data concerned rodents. Results: Peripheral and central
administrations of PREGS, DHEAS, and 3α,5α THPROG
modulate the basal forebrain and brainstem projection
cholinergic neurons but not striatal cholinergic interneu-
rons. Local administration of neurosteroids to the basal
forebrain and brainstem cholinergic neurons alters sleep
and memory in rodents. There are a few conflicting re-
ports concerning the effects of aging on neurosteroid
concentrations in normal and pathological conditions.
Conclusions: The specific modulation of basal forebrain
and brainstem cholinergic systems by neurosteroids may
account for the effects of these compounds on sleep and
memory processes. To improve our understanding of the
role of neurosteroids in cholinergic systems during normal
and pathological aging, we need to determine whether
there is specific regionalization of neurosteroids, and we
need to investigate the relationship between neurosteroid

concentrations in cholinergic nuclei and age-related sleep
and memory impairments.
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Introduction

Several studies have suggested that the neurosteroids
pregnenolone sulfate (3β-hydroxy-5-pregnen-20-one-3 sul-
fate; PREGS), dehydroepiandrosterone sulfate (5-andro-
stene-3β-ol-17-one sulfate; DHEAS) and allopregnanolone
(3α,5α tetrahydroxyprogesterone; 3α,5α THPROG) may
play a critical role in age-related neuropsychiatric disorders
in humans and animals, and in the disruption of sleep and
memory processes in particular (Vallée et al. 1997, 2001;
Maurice 2001; Racchi et al. 2001; Weill-Engerer et al.
2002a; Mayo et al. 2003; Schumacher et al. 2003). There is
little direct evidence of a pathophysiological relationship
between neurosteroid concentrations in specific cerebral
structures and age-related sleep and memory impairments
(Vallée et al. 1997; Weill-Engerer et al. 2002b), but many
studies have demonstrated that these neurosteroids affect
sleep and memory processes in young subjects. Indeed, the
peripheral or central administration of PREGS, DHEAS and
3α,5α THPROG induces robust changes in memory
performances and sleep states (Flood et al. 1992; Frye
1995; Isaacson et al. 1995; Meziane et al. 1996; Lancel et al.
1997; Darnaudery et al. 1999a,b; Ladurelle et al. 2000;
Damianisch et al. 2001; Matthews et al. 2002; Johansson et
al. 2002; Turkmen et al. 2004). There are several lines of
evidence suggesting that cholinergic systems may mediate
these effects. Firstly, the integrity of cholinergic systems is
critical for sleep and memory processes (Everitt and Robbins
1997), and these systems are known to degenerate during
aging (Bartus et al. 1982; Perry et al. 1999; Sarter and Bruno
2004). Secondly, although little is known about the anatomic
distribution of neurosteroid enzymes in discrete cerebral
structures in adults, the key regulator of neurosteroid
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synthesis, the steroidogenic acute regulatory protein (StAR)
(King et al. 2002; Sierra et al. 2003) and neurosteroid
synthesis enzymes are produced in cholinergic systems
(Rajkowski et al. 1997; Mellon et al. 2001). Thirdly,
cholinergic neurons receive numerous γ-aminobutyric acid
(GABA)ergic and glutamatergic modulatory afferences, and
it is known that the neurosteroids PREGS, DHEAS and
3α,5α THPROG exert their pharmacological effects by
modulating GABA receptors (GABAA) and glutamate re-
ceptors [-amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid (AMPA), kainate and N-methyl-D-aspartate (NMDA)].

In this review, we will consider anatomical and func-
tional aspects of cholinergic systems and analyze the effects
of administering PREGS, DHEAS and 3α,5α THPROG
(mainly in rodents) on cholinergic neurotransmission. We
will then describe how specific effects of neurosteroids on
cholinergic systems may account for the modulation of
sleep and memory processes. Finally, we will discuss the
potential pathophysiological implications for age-related
sleep and memory impairments and suggest future lines of
research to confirm the existence of interactions between
neurosteroids and cholinergic systems.

Cholinergic systems

Definitions

Two main neuronal systems have been identified—the basal
forebrain cholinergic system (BFCS) and the brainstem
cholinergic system (BCS)—based on the nomenclature of
central cholinergic pathways proposed by Mesulam et al.

1983a,b for rats and primates (Mesulam et al. 1983a)
(Fig. 1). The BFCS includes the medial septal nucleus (MS
or Ch1), the vertical (vdB or Ch2) and horizontal (hdB or
Ch3) limb nuclei of the diagonal band of Broca and the
nucleus basalis magnocellularis (NBM or Ch4), the rodent
equivalent of the nucleus basalis of Meynert in primates.
The BCS, located in the brainstem and part of the reticular
formation, encompasses the pedunculopontine tegmental
(PPT) nucleus and the laterodorsal tegmental (LDT) nucle-
us, corresponding to the Ch5 and Ch6 groups described by
Mesulam et al. 1983a,b. In addition to these cholinergic
projection neurons, several interneurons have been identi-
fied in the striatum and nucleus accumbens, olfactory
tubercle and islands of Calleja complex (Woolf and Butcher
1981; Houser et al. 1983; Satoh et al. 1983).

Basal forebrain cholinergic system

Anatomical organization

In rat, BFCS cholinergic neurons form a constellation of
neurons ranging from the anterior medial septal nucleus
rostrally to the lateral hypothalamus caudally (Butcher et al.
1992; Oh et al. 1992). Most, if not all, of these cholinergic
cells are projection neurons. The medial septum-vertical
limb of the diagonal band of Broca (Ch1 and Ch2) inner-
vates the hippocampus, dentate gyrus, entorhinal, perirhinal
and retrosplenial cortex and interpeduncular nucleus (Woolf
1991). These neurons receive excitatory/inhibitory afferents
from the hippocampus and enthorinal cortex (Dutar et al.
1985; Jakab and Leranth 2005). They are also innervated by

Fig. 1 Schematic diagram of cholinergic systems in a rodent brain,
adapted from Woolf (1991). The two major cholinergic systems
composed of projection neurons are represented, the basal forebrain
cholinergic system (BFCS) and the brainstem cholinergic system

(BCS), together with the cholinergic interneurons of the striatum.
The BFCS and the BCS encompass the Ch1-4 and Ch5–6 groups,
respectively
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afferents from the hypothalamus, ventral tegmental area,
LDT, dorsal and median raphe and locus coeruleus (Woolf
1991). The horizontal limb of the diagonal band of Broca
(Ch3) is responsible for cholinergic innervation of the
olfactory bulb.

The nucleus basalis cholinergic projection (Ch4) is the
single most substantial regulatory afferent system of
the cerebral cortex in rat (Mesulam 1995). These cortical
projections are topographically organized (Mesulam et al.
1983a; Rye et al. 1984; Saper and Chelimsky 1984; Saper
1984; Woolf et al. 1984). NBM neurons also send pro-
jections to the basolateral nucleus of the amygdala (Carlsen
et al. 1985), the thalamus and the hypothalamus (Mesulam
et al. 1983a). Cholinergic neurons of the NBM are inter-
spersed with other non-cholinergic magnocellular corti-
copetal neurons, mainly GABAergic (Brashear et al.
1986; Zaborszky et al. 1986; Fisher et al. 1988). These
GABAergic neurons are twice as numerous as the cho-
linergic cells (Gritti et al. 1993). Major afferences to the
NBM include projections from the amygdala, nucleus
accumbens, hypothalamus, ventral tegmentum, PPT,
locus coeruleus and raphe nucleus. Terminals containing
GABA (Perez et al. 1981), serotonin (Steinbusch and
Nieuwenhuys 1981), glutamate (Davies et al. 1984),
aspartate (Fuller et al. 1987) and substance P (Haber and
Elde 1981) have been described among these afferences.

Functional role

The functional role of the BFCS has been extensively
investigated over the last 20 years because this system is
profoundly modified in neurodegenerative diseases classi-
cally associated with cognitive and sleep disorders (for
review, see Everitt and Robbins 1997; Perry et al. 1999).
As the main projection of medial septal neurons is the
hippocampus, we would expect the functions of these
neurons to be closely related to those of the hippocampus
(Everitt and Robbins 1997). Hippocampal lesions are
known to induce spatial learning and memory defects, and
excitotoxic or electrolytic lesions of the medial septum
have been reported to induce severe deficits in spatial
memory tasks in rats (Hagan et al. 1988; Marston et al.
1993; Kelsey and Vargas 1993). Indeed, the cholinergic
projection from the medial septum to the hippocampus may
be involved in short-term memory, as suggested by
reported deficits in contextual stimulus trace conditioning
(McAlonan et al. 1995). Discrete excitotoxic lesions of the
vertical limb of the diagonal band of Broca have been
reported to lead to small but significant cholinergic
depletions in the cingulate cortex and to impair the delayed
retention of conditional discrimination performance in
rats (Muir et al. 1996). Many experiments on excitotoxic/
electrolytic lesions in rodents carried out from the 1980s
onwards revealed that the NBM was involved in the reg-
ulation of cognitive processes, including attention, learning
and memory, in particular, and in the regulation of sleep

states (for review, see Everitt and Robbins 1997; Wenk
1997).

The precise role of cholinergic neurons remains a matter
of debate. Cholinergic neurons are intermingled with a
significant population of GABAergic neurons, and the lack
of a selective toxin targeting cholinergic neurons was a
recurrent problem in studies. Experiments involving the
use of a specific cholinergic toxin (192 immunoglobulin G
(IgG)–saporin) for lesioning basal forebrain cholinergic
neurons have suggested that even if cholinergic neurons are
involved in some memory processes, they seem to play a
more important role in attentional processes (Muir et al.
1992, 1995; Berger-Sweeney et al. 1994; Torres et al. 1994;
Baxter et al. 1995; Sarter and Bruno 1997). These results
suggest that cholinergic projections from the BFCS (MS,
vdB and NBM) are primarily involved in the modulation of
attentional and memory processes.

The NBM may also be seen as a ventral extrathalamic
relay from the brainstem reticular activating system to the
cerebral cortex for the modulation of sleep/wake states
(Shute and Lewis 1963; Krnjevic and Silver 1965; Moruzzi
and Magoun 1995). Briefly, sleep/wake states include (1)
wakefulness, characterized by a low-amplitude desynchro-
nized electroencephalogram (EEG) and high muscular tone;
(2) non-rapid eye movement (non-REM) sleep, character-
ized by a high-amplitude synchronized EEG mainly in the
delta (0–4 Hz) and spindle (12–15 Hz) bands; and (3) REM
sleep, characterized by a low-amplitude desynchronized
EEG without muscular tone. More acetylcholine (ACh) is
released in the neocortex during waking and REM sleep
than during non-REM sleep (Phillis 1968; Jasper and Tessier
1971). Consistent with this finding, the discharge rates of
NBM neurons have been shown to be maximal during
waking and REM sleep in cats (Detari et al. 1984), and the
basal forebrain has been shown to be deactivated during
non-REM sleep in humans (Maquet 2000). Furthermore,
lesioning of the NBM abolishes both REM and non-REM
sleep (Szymusiak and McGinty 1986) and alters EEG
synchronization (Buzsaki et al. 1988; Riekkinen et al. 1991).
The state-dependent pattern of activity of NBM neurons
may be partly regulated by changes in GABA-mediated
inhibition. Indeed, cholinergic NBM neurons receive sub-
stantial GABAergic inputs, including local interneurons
(Zaborszky et al. 1986; Ingham et al. 1988), and the infusion
of GABA agonists or antagonists into the NBM alters the
sleep-/wakefulness-related pattern of discharge of these
neurons (Szymusiak et al. 2000). Interestingly, some authors
have suggested that much of the variation in discharge
of NBM neurons during waking and sleep may reflect
changes in the activity of brainstem afferents (Szymusiak
et al. 2000).

The BFCS therefore (1) modulates sleep/wake states,
favoring arousal, via its projections to the neocortex
and (2) enhances memory consolidation during wakeful-
ness and/or sleep via projections to the amygdala and
hippocampus.
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Brainstem cholinergic system

Anatomical organization

The BCS comprises mostly large cholinergic neurons and,
as for the cholinergic groups of the basal forebrain,
brainstem cholinergic neurons form an integral part of the
BCS (Armstrong et al. 1983; Rye et al. 1987; Jones 1990;
Steininger et al. 1997) and are intermingled with a variety of
other neurons such as GABAergic (Ford et al. 1995; Bevan
and Bolam 1995; Torterolo et al. 2001) and glutamatergic
neurons (Clements and Grant 1990; Charara et al. 1996).
The BCS receives numerous projections from the surround-
ing area, including the ventral tegmental area, substantia
nigra, raphe nucleus and locus coeruleus, and from other
distal structures such as the hypothalamus, subthalamic
nucleus and amygdala (Rye et al. 1987; Steininger et al.
1997). The main ascending projections from the BCS are
the thalamic nuclei, basal forebrain, and brainstem nuclei
(ventral tegmental area, raphe nucleus and locus coeruleus)
(Fig. 1; Rye et al. 1987; Steininger et al. 1997). There are
also some descending projections to the deep cerebellar
nuclei, medioventral medulla and pontomedullary reticular
nuclei (Fig. 1). BCS neurons are regulated primarily by
serotonergic, noradrenergic, GABAergic and glutamatergic
inputs originating from the pontomesen cephalic reticular
formation and the PPT itself (Steckler et al. 1994; Rye
1997). These cholinergic neurons are also regulated by the
autocrine/paracrine release of nitric oxide (NO) (Datta et al.
1997; Leonard and Lydic 1997).

Functional role

Several studies have demonstrated that the electrical
activity of BCS neurons depends on sleep–wake state
(Saito et al. 1977; el Mansari et al. 1989; Steriade et al.
1990; Kayama et al. 1992; Datta and Siwek 2002). It has
been shown that the BCS contains at least two classes of
neurons in animals: the REM-ON neurons, which display
preferential discharge activity during REM sleep, and the
wake/REM-ON neurons, which show preferential dis-
charge activity during wakefulness and REM sleep. Wake/
REM-ON neuronal activity increases the release of ACh
into the pons and thalamus, leading to the electroenceph-
alographic desynchronization seen in the wake and REM
sleep states (Dingledine and Kelly 1977; Steriade et al.
1990; Datta 1997; Datta and Siwek 1997). As some BCS
neurons are also strictly involved in the initiation of REM
sleep, the BCS is now considered to be a key structure in
the control of REM–nonREM sleep transitions (Hobson
and Pace-Schott 2002; Pace-Schott and Hobson 2002).

Although the role of the BCS in sleep regulation has
been extensively investigated, the role of this system in
cognitive processes, and particularly in memory, has
received little attention. However, the data reported suggest
that the BCS may be involved in memory processes. In
rodents, excitotoxic/electrolytic lesions of the BCS have
been shown to impair contextual memory acquisition in

numerous tasks (Fujimoto et al. 1989, 1992; Dellu et al.
1991; Satorra-Marin et al. 2001; Keating et al. 2002;
Mitchell et al. 2002; Taylor et al. 2004). However, it is
impossible to conclude that cholinergic neurons of the BCS
are entirely responsible for these memory effects due to the
lack of specific cholinergic-targeted toxins for the induc-
tion of lesions in the BCS.

Sleep and memory processes may be seen as independent
functions, but recent studies suggest that these two functions
may be linked, with the BCS underlying both. Indeed, the
cholinergic activation of phasic pontine-wave generator cells
in the brainstem improves memory consolidation and pre-
vents REM sleep-deprivation-induced memory impairment
in the active avoidance task (Mavanji and Datta 2003; Datta
et al. 2004), suggesting that the BCS may play a key role in
sleep-dependent memory consolidation.

Modulation of cholinergic transmission by PREGS,
DHEAS and THPROG

Septo-hippocampal projection neurons

Several studies based on microdialysis coupled with high-
performance liquid chromatography (HPLC) have shown
that neurosteroids modulate the release of ACh in freely
moving rats. The intraperitoneal (i.p.) administration of
various doses of DHEAS (25–250 μmol/kg) increases ACh
release in the hippocampus (Rhodes et al. 1996). The
highest dose was found to increase ACh release by a factor
of more than 4 with respect to treatment with saline.
Similarly, the intracerebroventricular (i.c.v.) administration
(12–192 nmol/5 μl) of PREGS induces a dose-dependent
increase in ACh release into the hippocampus (Vallée et al.
1997; Darnaudery et al. 2000). The administration of 12 or
48 nmol of PREGS induces a transient (20 min) increase in
the release of ACh, with a maximum around 120% above
baseline. The administration of 96- and 192-nmol doses
induced a longer-lasting (80 min) increase that peaked
around 300% above baseline. This DHEAS-/PREGS-in-
duced hippocampal ACh release was also observed
indirectly, following daily i.p. administration of the non-
steroidal steroid sulfatase inhibitor (p-O-sulfamoyl)-N-
tetradecanoyl tyramine (DU-14) for 15 days (Rhodes
et al. 1997), at a dose sufficient to increase plasma sul-
fated steroid concentrations by up to 88%. Consistent with
these results, local infusion of PREGS (12 pmol/0.5 μl)
into the MS induces a transient (30 min) 50% increase
in ACh release in the hippocampus over baseline levels
(Darnaudery et al. 2002). This result, obtained following
local infusion into the MS, is similar to that obtained
after i.c.v. administration of 12 and 48 nmol of PREGS,
suggesting that the PREGS-induced release of ACh in
the hippocampus depends primarily on a specific effect
on the MS (Fig. 2). In contrast to the increase in ACh
release observed after the administration of DHEAS and
PREGS, the i.c.v. administration of 3α,5α THPROG
(15–45 nmol/5 μl) decreases basal ACh release in the
hippocampus in a dose-dependent manner (Dazzi et al.
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1996). Doses of 30 and 45 nmol decrease ACh release
by 20 and 55%, respectively, with respect to baseline
(Fig. 4a). At a dose of 30 nmol, 3α,5α THPROG com-
pletely prevented the increase in ACh release induced by
footshock stress, suggesting that the neurosteroid mod-
ulation of cholinergic systems could be of physiological
importance. Thus, the i.p. or i.c.v. infusion of neuroster-
oids can modulate hippocampal ACh release, probably
through a specific effect on MS cholinergic neurons.
However, the regional specificity of neurosteroids re-
mains to be clearly demonstrated using control infusions
in other afferent structures to the hippocampus and the
hippocampus itself. These results also highlight the op-
posite effects of DHEAS/PREGS and 3α,5α THPROG
on ACh release in the hippocampus (Fig. 4a).

Basalo-cortical and basalo-amygdalar
projection neurons

Most of the cholinergic sources of the frontal cortex and
amygdala come from the BFCS and the NBM. The release
of ACh in the frontal cortex induced by i.c.v. administration
of PREGS (0, 12, 48, 96 and 192 nmol/5 μl) was in-
vestigated by Darnaudery et al. (1998) using intracerebral
microdialysis in freely moving rats. Extracellular ACh levels
in the cortex were found to increase in a dose-dependent
manner. The highest doses (96 and 192 nmol) tripled ACh
release, the intermediate dose of 48 nmol doubled ACh
release, and 12 nmol PREGS had no effect on extracellular
levels of ACh. The increase in cortical ACh concentration
was maximal 30min after administration for all active doses.
These data suggest that the cholinergic projections of the
NBM require higher concentrations of PREGS (48 nmol)
than the cholinergic projections of the MS (12 nmol) to
increase ACh release in the corresponding terminals.
Pallares et al. (1998) confirmed the effect of PREGS on

the cholinergic projection neurons of the NBM (Fig. 3).
They showed that the infusion of PREGS (12 pmol/0.5 μl)
directly into the NBM induces a long-lasting release
(130 min) of ACh in the frontal cortex and amygdala. In
contrast, i.c.v. administrations (30–45 nmol/5 μl) of 3α,5α
THPROG decrease ACh release in the frontal cortex of rats
(Dazzi et al. 1996) (Fig. 4b). Thus, as for septo-hippocampal
projection neurons, PREGS and 3α,5α THPROG act in
opposite manners on basalo-cortical and basalo-amygdalar
projection neurons, suggesting that basal cholinergic release
may be controlled by a balance between these two steroids.
Similarly, as for septo-hippocampal projection neurons, the
regional specificity of neurosteroids remains to be clearly
demonstrated using control infusions in other afferent
structures to the cortex and amygdala.

Striatal interneurons

Cholinergic interneurons of the striatum account for only
1–3% of all neurons in the striatum, but their extensive
axonal/dendritic arborization in the striatum is critical for
the integration of information in the striatum. Neuroster-
oids seem to have no effect on striatal cholinergic
interneurons in rat. Indeed, the i.c.v. administration of
PREGS at the doses (0, 12, 48, 96 and 192 nmol/5 μl)
active in other cholinergic systems has absolutely no effect
on striatal ACh release as measured by microdialysis in
freely moving rats (Darnaudery et al. 1998) (Fig. 4c).
Similarly, i.c.v. administration (15–45 nmol/5 μl) of 3α,5α
THPROG (Dazzi et al. 1996) has no effect on striatal
cholinergic transmission (Fig. 4c). Thus, either striatal
cholinergic interneurons require higher concentrations of
neurosteroids for changes in ACh release or neurosteroids
are not involved in the physiological regulation of cholin-
ergic release in the striatum.

Fig. 2 Effects of intracerebroventricular (icv; 48 nmol) and intra-
medial septum (intra-MS; 12 pmol) PREGS infusions on the release
of acetylcholine in the hippocampus, as assessed by microdialysis
coupled to HPLC in freely moving rats. Note that the enhancement
of cholinergic release in the hippocampus observed after icv in-
fusion is reproduced following local infusion into the MS. Data
represent the mean expressed as fold changes vs baseline. Adapted
from Vallée et al. (1997) and Darnaudery et al. (2002)

Fig. 3 Effects of intracerebroventricular (icv; 48 nmol) and intra-
nucleus basalis magnocellular (intra-NBM; 12 pmol) PREGS
infusions on the release of acetylcholine in the frontal cortex, as
assessed by microdialysis coupled to HPLC in freely moving rats.
Note that the enhancement of cholinergic release in the frontal
cortex observed after icv infusion is reproduced following local
infusion into the NBM. Data represent the mean expressed as fold
changes vs baseline. Adapted from Darnaudery et al. (1998) and
Pallares et al. (1998)
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The results described above demonstrate that neuroster-
oids have a strong influence on cholinergic transmission.
The modulation of this transmission is specific to cholin-
ergic projections (MS, NBM and PPT) because neuroster-
oids have no effect on striatal cholinergic interneurons. The
differential effects of neurosteroids on the BFCS, BCS and
on striatal cholinergic systems may result from differences
in the composition of GABAA receptor subunits in these
systems, as the effects of neurosteroids on GABAA re-
ceptors depend on subunit composition. In particular, the
presence of the δ subunit has been shown to increase the
sensitivity of GABAA receptors to neurosteroids (Lambert
et al. 2003). In line with this, neurons in the BFCS and BCS
produce mostly the α1, β2, γ1, γ3, ɛ, δ and α3, γ3, δ
subunits, respectively, whereas those in the striatum pro-
duce mostly the α3, α5, β1 and β2 subunits, but these are
devoid of δ subunits (Moragues et al. 2000, 2002; Pirker et
al. 2000). For a full evaluation of the effects of neuro-
steroids on cholinergic systems, further studies are required
to demonstrate the effects of neurosteroids on cholinergic
transmission from the BCS.

Modulation of cholinergic-related functions by PREGS,
DHEAS and THPROG

Memory processes

Many studies have investigated the pharmacological effects
of peripheral and central administrations of PREGS,
DHEAS and 3α,5α THPROG on memory processes in
rats. PREGS and DHEAS have been shown to improve
memory, whereas 3α,5α THPROG has been shown to
impair memory. These effects have been observed for sev-
eral memory-related tasks such as the active and passive
avoidance task (Flood et al. 1992; Isaacson et al. 1995),
appetitively reinforced go–no go visual discrimination task
(Meziane et al. 1996), the Y-maze (Ladurelle et al. 2000), a
spatial version of the water-maze task (Frye and Lacey 1999;
Matthews et al. 2002; Johansson et al. 2002; Turkmen et al.
2004) and a spatial recognition task (Darnaudery et al.

1999b, 2000). The memory-enhancing effect of i.c.v. ad-
ministration of PREGS is correlated with a parallel increase
in ACh release in the hippocampus (Darnaudery et al. 2000),
suggesting that PREGS acts on the BFCS. These findings
were confirmed after local infusions of PREGS into the
BFCS. Local infusion into the MS (12 pmol/0.5 μl) and the
NBM (12 pmol/0.5 μl) improves spatial memory and
increases ACh release in the corresponding projection struc-
tures: hippocampus, amygdala and frontal cortex (Pallares
et al. 1998; Darnaudery et al. 2002). Consistent with the
opposite actions of PREGS and 3α,5α THPROG on cho-
linergic transmission from the BFCS, these two neuroster-
oids have opposite effects on spatial memory performance.
Mayo et al. (1993) found that PREGS (12 pmol/0.5 μl)
infusion in the NBM enhanced spatial performance in the Y-
maze recognition task, whereas the infusion of 3α,5α
THPROG (0.6–6 pmol/0.5 μl) in the NBM impaired per-
formance in this task (Fig. 5). PREGS and DHEAS have
been shown to enhance memory in physiological conditions
in young subjects, and PREGS and DHEAS have been
shown to reverse memory impairments in various rodent
models of amnesia (Mathis et al. 1994, 1996; Meziane et al.
1996; Urani et al. 1998; Zou et al. 2000), suggesting that
these neurosteroids may be of therapeutic value for the
memory impairments observed during aging.

Sleep states

Few studies have investigated the effects of peripheral
administration of PREGS, DHEAS and 3α,5α THPROG
on sleep/wake states (Mendelson et al. 1987; Lancel et al.
1997; Darnaudery et al. 1999a; Schiffelholz et al. 2000).
The peripheral administration of 3α,5α THPROG leads to
robust changes in sleep architecture and cortical activities
during sleep in rodents. The i.p. administration of 3α,5α
THPROG (24–48 μmol/kg) decreases non-REM sleep
latency and EEG power in the delta band (0–4Hz), whereas
it increases EEG power in the spindles band (12–15Hz).
The peripheral administration of 3α,5α THPROG there-
fore tends to have a benzodiazepine-like effect, increasing

Fig. 4 Summary of the changes in cholinergic transmission
observed following icv infusions of PREGS and THPROG, as
assessed by microdialysis coupled to HPLC in freely moving rats.
Note that PREGS (black) and THPROG (gray) exert opposite effects
on the release of ACh in the hippocampus (a) and frontal cortex (b)

but have no effect on striatal cholinergic release (c). Data represent
the mean expressed as fold changes vs baseline against time after
injection. Adapted from Dazzi et al. (1996), Vallée et al. (1997) and
Darnaudery et al. (1998)
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the tendency to fall asleep and promoting non-REM sleep
at the expense of REM sleep, which may be transiently
abolished at the highest doses (Mendelson et al. 1987;
Lancel et al. 1997; Schiffelholz et al. 2000; Damianisch et
al. 2001). In contrast, the i.p. administration of PREGS
(113 μmol/kg) increases the amount of REM sleep without
affecting non-REM sleep in rats (Darnaudery et al. 1999a;
Schiffelholz et al. 2000). The opposite effects of PREGS
and 3α,5α THPROG on REM sleep are consistent with
those obtained following local infusions into the NBM.
The infusion of PREGS (12 pmol/0.5 μl) in this structure
induces a long-lasting (8 h) increase (+30%) in the amount
of REM sleep, whereas the infusion of 3α,5α THPROG
(6 pmol/0.5 μl) induces a long-lasting decrease (−25%) in
the amount of REM sleep (Darnaudery et al. 1999b).

We have also shown that PREGS administration in the
PPT affects sleep–wakefulness states in a dose-dependent
manner (Darbra et al. 2004). The infusion in the PPT of a
low concentration (12 pmol/0.5 μl) of PREGS, similar to
that known to induce a slight increase in REM sleep fol-
lowing infusion into the NBM, produces a robust, transient
(90 min) increase in the amount of REM sleep (+200%),
with no change in non-REM sleep and wakefulness,
suggesting that PPT cholinergic neurons are a primary
target of PREGS. Moreover, increasing the dose of PREGS
(24–48 pmol/0.5 μl) increases REM sleep and non-REM
sleep, and also increases delta power and decreases theta
power during wakefulness. Thus, depending on the dose
used, PREGS can promote REM sleep alone or the global
propensity to fall asleep, impairing the quality of wakeful-
ness. The regulation and the functional role of neuroster-
oids appear to be radically different in the NBM and the
PPT, and the effects of 3α,5α THPROG on these two
systems differ: 3α,5α THPROG infusion in the NBM

decreases the amount of REM sleep, whereas the same
infusion in the PPT induces no change (Fig. 6).

The data described here provide strong evidence for the
differential regulation of the BFCS and BCS by neuroster-
oids. The effects of PREGS and 3α,5α THPROG on these
two systems suggest that (1) cholinergic projection neurons
of the NBM are controlled by a physiological balance
between PREGS and 3α,5α THPROG because in the
NBM, these two neurosteroids affect sleep states, memory
and cholinergic transmission in opposite manners; (2)
cholinergic projection neurons of the PPT are controlled by
strong 3α,5α THPROG tonic inhibition that is reversed by
exogenous PREGS because 3α,5α THPROG administra-
tion has no effect on sleep state. Given that REM sleep is
controlled by the BCS, it could be suggested that the
infusion of PREGS (but not of 3α,5α THPROG) into the
BCS should enhance cholinergic transmission in the thal-
amus and pons. Confirmation of the hypothesized local and
differential actions of these neurosteroids in the BFCS and
BCS will require measurements of the concentration of
neurosteroids in these regions and analysis of the various
mechanisms of neurosteroidogenesis regulation in these
two systems.

Pathophysiological implications for age-related sleep
and memory disorders

Neurosteroid–cholinergic system interactions are thought
to be involved in age-related sleep and memory disorders
primarily because a marked change in cholinergic systems

Fig. 6 Summary of REM sleep results obtained after local infusions
of PREGS and THPROG into the BFCS (BMN) and BCS (PPT).
REM sleep is assessed by chronic sleep recording and expressed as a
percentage of the control in each experiment (maximum SEM of
control animals indicated by the striped area). Note that in the
BMN, the two neurosteroids have opposite effects, whereas in the
PPT, only PREGS has an effect, inducing a robust increase in REM
sleep. Adapted from Darnaudery et al. (1999a,b) and Darbra et al.
(2004)

Fig. 5 Memory-enhancing and memory-impairing effects in the Y-
maze after local infusion of PREGS and THPROG into the BMN.
Data are expressed as variation of the recognition index as a
percentage of the value for control animals (maximum SEM of
control animals indicated by the striped area). Adapted from Mayo
et al. (1993)

408



is observed during aging (Muir 1997; Mesulam 1998).
Such changes take place in both the BFCS and BCS, in
which decreases in numbers of ACh neurons and in ACh
transmission have been described in aged rodents, pri-
mates and humans (Fischer et al. 1992; Kobayashi et al.
1994; Lolova et al. 1996, 1997; Martinez-Serrano and
Bjorklund 1998; Ransmayr et al. 2000) and in demented
patients (Perry et al. 1995; Arendt et al. 1995a,b, 1997;
Herholz et al. 2004). Age-related changes in cholinergic-
related functions have been also demonstrated. Although
human aging is associated with numerous neuropsychiatric
changes that affect daily life, a hallmark of these changes
is the higher prevalence of memory and sleep disorders in
the elderly population. The dysfunctions of episodic and
working memories (Grady and Craik 2000; Nyberg et al.
2002) and the decrease in amplitude of the sleep–wake
circadian rhythm associated with a fragmentation of non-
REM sleep have critical health outcomes (Rosenberg et al.
1979; Ingram et al. 1982; Stone 1989; Myers and Badia
1995; Van Someren 2000; Dagan 2002;Mignot et al. 2002).
For instance, a lack of restful sleep at night results in
excessive daytime sleepiness, attention and memory prob-
lems, depressed mood, falls, and poor quality of life (Young
2004; Foley et al. 2004). The mechanisms underlying age-
related sleep and memory disorders are poorly understood,
but numerous correlations have been demonstrated between
cholinergic dysfunctions and memory impairments in aged
subjects. Published results suggest that changes in neuro-
steroid concentrations in the BFCS and BCS may mediate
these dysfunctions.

Extensive but controversial studies have shown that
plasma steroid levels change with age and may be
associated with memory deficits in aged humans and
demented patients (see for review Vallée et al. 2001, 2004).
However, there have been few experimental reports of
changes in brain neurosteroids during aging or relation-
ships between brain neurosteroid levels and age-related
dysfunctions. Overall decreases in PREGS and 3α,5α
THPROG levels in the hippocampus and cerebral cortex,
respectively, have been reported in aged rats, with young
rats used as the reference group (Vallée et al. 1997;
Bernardi et al. 1998), whereas 3α,5α THPROG levels in
the hypothalamus have been reported to increase with age
(Bernardi et al. 1998). However, Barbaccia et al. (1998)
reported no change in 3α,5α THPROG concentration in
the cortex during aging (Barbaccia et al. 1998). Interest-
ingly, hippocampal PREGS concentrations have been
shown to be negatively correlated with memory impair-
ments in aged rats (Vallée et al. 1997), strongly suggesting
that hippocampal PREGS is important for memory pro-
cessing in aged animals. In humans, changes in brain neu-
rosteroid concentrations have been described in demented
patients [Alzheimer’s disease (AD)], with age-matched
controls used as the reference group (Weill-Engerer et al.
2002a; Kim et al. 2003; Brown et al. 2003). Weill-Engerer
et al. (2002a,b) reported decreases in the concentrations
of PREGS and DHEAS in the striatum, hypothalamus
(DHEAS only) and cerebellum of demented patients, con-
sistent with the decrease in cerebrospinal fluid (CSF)

DHEAS levels observed in patients with AD and vascular
dementia (Kim et al. 2003). Moreover, DHEA levels have
been shown to be high in the hippocampus, hypothalamus,
frontal cortex and CSF in AD patients (Brown et al. 2003).
Given the small number and conflicting nature of the
results obtained to date, further studies are required to
determine the involvement of neurosteroids in age-related
sleep and memory dysfunctions in normal aging and
pathological aging, as in neurodegenerative disorders.

Conclusions

This review deals with the modulation of cholinergic
transmission and cholinergic-related function by neuroster-
oids. We suggest that neurosteroids play a critical role in
sleep and memory processes by selectively modulating the
BFCS and BCS, and that the dysregulation of neurosteroid
synthesis in these regions may play a key role in sleep and
memory disorders during aging. Improvements in our
understanding of the role of neurosteroids in these processes
in young subjects and in pathological conditions during
aging will require a demonstration that neurosteroidogenesis
is particularly important in cholinergic systems. Further
studies are required (1) to demonstrate the specific cerebral
regionalization, particularly in cholinergic structures, of
neurosteroids and their associated proteins (steroidogenic
enzymes, StaR), (2) to determine whether this cerebral
regionalization changes during the subject’s lifetime and (3)
to study the relationship between neurosteroid concentra-
tions in cholinergic systems and the sleep/memory impair-
ments observed in some subjects during aging.
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