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Abstract Rationale: Previous research investigating the
effects of stimulants, such as methylphenidate (MPH), on
children with attention deficit/hyperactivity disorder (AD/
HD) has rarely included autonomic measures of arousal.
Objective: Our aim was to clarify the effects of MPH on
central and autonomic measures in AD/HD children dur-
ing a continuous performance task (CPT) using a natu-
ralistic open-label study. Method: Thirty-six boys (18 AD/
HD and 18 control) participated in a CPT over two trial
periods, allowing a more valid estimate of the effects of
medication, rather than assuming that retesting per se has
no substantial impact. MPH was administered to the AD/
HD group 1 h prior to the second trial. Errors and reaction
time (RT) were recorded as measures of performance, elec-
trodermal activity as an autonomic nervous systemmeasure
and event-related potentials (ERPs) as an index of central
nervous system activity. Results: AD/HD children made
more errors than controls in the first session, but no group
differences were found after medication. No significant dif-
ferences were observed for RT. Skin conductance level
was found to be lower in AD/HD children than controls,
but this difference was also ameliorated after medication.
Conversely, mean skin conductance response to target stim-
uli was found not to differ between groups during the ini-
tial test phase but became significantly different in phase 2.
ERP data showed topographic differences between groups
in N1, P2, N2 and P3 at the initial test phase, which were
reduced at the second test. Conclusion: Stimulant med-

ication ameliorated some of the dysfunctions in AD/HD
children, which are reflected in behavioural and ERP mea-
sures. These results, in combination with general differ-
ences in electrodermal activity, support a hypoarousal
model of AD/HD, which can explain the action of MPH in
these children.
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Introduction

Attention deficit/hyperactivity disorder (AD/HD) is a
prevalent and persistent developmental syndrome, esti-
mated to affect 7.5% of 6- to 17-year olds in Australia
(Graetz et al. 2001), c.f. 3–5% in the USA (American
Psychiatric Association 1994). For more than half a
century, AD/HD has been treated using stimulant medica-
tions, including methylphenidate (MPH) and dexampheta-
mine. While the effectiveness of this is well documented, it
is still not clear how these effects are achieved. Several
theories attribute the effectiveness of psychostimulants to
their ability to enhance levels of arousal in the central
nervous system (CNS) and autonomic nervous system
(ANS), assuming that children with AD/HD are typically
underaroused (see Satterfield and Cantwell 1974; Sergeant
et al. 1999). This model also accounts for the seemingly
paradoxical effect of stimulant medications on the behav-
iours of AD/HD children; in small doses, stimulants act
to increase their arousal to normal levels, which results in
reduction of the problem behaviours. In a recent review,
Oades (2005) reports biochemical support for the concept
of hypoarousal in AD/HD from measures of adrenaline
and phenylethylamine. Previous research has shown that
adrenaline levels tend to be low in urine samples from AD/
HD children, and accordingly, the adrenergic response to
stress is reduced (Hanna et al. 1996). Treatment with MPH
and other amphetamines has been shown to increase adren-
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aline levels (e.g. McCracken et al. 1990), supporting their
low levels of arousal becoming partially normalised through
treatment with stimulant medications.

Event-related potentials (ERPs) have been used to gain
insight into brain functioning in AD/HD by investigating
attentional, inhibitory and preparatory processing. ERPs
reliably discriminate between children with AD/HD and
controls (Klorman et al. 1979; Strandburg et al. 1996; see
review in Barry et al. 2003). Importantly, the electro-
physiological abnormalities associated with AD/HD are
concurrent with performance deficits on psychometric in-
struments such as the continuous performance task (CPT), a
group of paradigms for the evaluation of attention and re-
sponse inhibition. The basic paradigm for the CPT involves
selective attention or vigilance for an infrequently occur-
ring target and is characterised by the rapid presentation of
continuously changing stimuli with a designated target stim-
ulus or pattern (Riccio et al. 2001).

ERP studies investigating AD/HD and control children
using CPTs typically find reduced amplitudes in AD/HD
groups for the early negative components N1 and N2
(Prichep et al. 1976; Klorman et al. 1979; Holcomb et al.
1985, 1986; Satterfield et al. 1990; Strandburg et al. 1996;
Overtoom et al. 1998). Further, reduced P2 and P3 am-
plitudes have been reported for AD/HD children in studies
using the CPT-AX task (O’Toole et al. 1997; Overtoom
et al. 1998; Okazaki et al. 2002) and variations (Michael
et al. 1981; Strandburg et al. 1996; Sunohara et al. 1999;
Seifert et al. 2003). Findings for ERP latencies in CPTs are
less consistent, with delayed components reported for AD/
HD in some studies (Klorman et al. 1990; Strandburg et al.
1996; Sunohara et al. 1999) but not others (Klorman et al.
1979; Michael et al. 1981).

Electrophysiological and behavioural research suggests
that administration of psychostimulants to children with
AD/HD reduces differences from controls in terms of both
arousal and performance measures. Michael et al. (1981)
reported reduced errors and reaction time (RT) in a CPT
after MPH, a result replicated using variations of the CPT
(Klorman et al. 1979, 1983; O’Toole et al. 1997; Sunohara
et al. 1999; Okazaki et al. 2002). Conversely, Satterfield
et al. (1974) found that while overall performance im-
proved after psychostimulants, RT increased, suggesting
that stimulant medications result in slower responding
when it is more appropriate in terms of task demands.

MPH has been found to ameliorate electrophysiological
differences between AD/HD and control groups in atten-
tional tasks (Prichep et al. 1976; Klorman et al. 1979, 1990;
Jonkman et al. 2000) and specifically CPT paradigms
(Klorman et al. 1981, 1983; Zillesen et al. 2001; Okazaki
et al. 2002; Seifert et al. 2003), although several studies
report no effect of MPH on the P3 component in terms of
amplitude or latency (Jonkman et al. 1999, 2000), while
others have found amplitude but not latency effects
(Michael et al. 1981).

Surprisingly, there is a paucity of research concurrently
measuring effects of MPH on arousal and activation in the
ANS during tasks requiring performance despite its im-

mediate relevance. Electrodermal activity is commonly uti-
lised to illustrate arousal differences, with skin conductance
level (SCL) reflecting tonic arousal and the skin conduc-
tance response (SCR) indicating phasic changes associated
with task-related activation. We consider arousal as a state
variable reflecting current energetic factors and have shown
close connections between SCL and electroencephalogram
(EEG) measures (Barry et al. 2004). This approach is
generally compatible with Pribram and McGuiness (1975,
1992), who identified arousal and activation systems with
different neural substrates. Satterfield and Dawson (1971)
found lower levels of skin conductance in hyperkinetic
children than controls, interpreting these results to indicate
underarousal of the reticular activating system, but others
have reported no difference (Cohen and Douglas 1972;
Rapoport et al. 1980). Several studies have reported smaller
amplitude SCRs in AD/HD (Cohen and Douglas 1972;
Spring et al. 1974; Zahn et al. 1975; Shibigaki et al. 1993).
Satterfield and Dawson (1971), using SCL as a measure,
found psychostimulants elevated abnormally low arousal
levels in AD/HD. Cohen et al. (1971) reported a higher
resting SCL after medication but no change in SCRs.
Conversely, Spring et al. (1974) found increased SCRs but
no difference in SCL with medication. Similarly, Rapoport
et al. (1980) reported no variation in skin conductance after
stimulant medication—smaller SCRs were obtained in
some tasks. These contradictory results emphasise the need
for further investigation.

The current study aimed to investigate the effects of
psychostimulants in children with AD/HD during a CPT.
We examined behavioural and physiological indices of at-
tention (ERPs) in children with AD/HD and controls while
simultaneously investigating changes in arousal (SCL) and
activation (SCR), specifically after MPH administration
in children with AD/HD (the effects of psychostimulants
in control subjects cannot be tested due to ethical limita-
tions). As far as we know, such a combination of measures
has not been explored in relation to medication effects in
AD/HD.

We tested both groups in two phases, comparing AD/HD
children with controls in each session, rather than assuming
that retesting per se has no substantial impact. This ap-
proach has been rarely used previously, with most studies
assuming that test repetition has little effect (e.g. Jonkman
et al. 2000; Okazaki et al. 2002; Seifert et al. 2003). There
is no evidence to support this assumption; indeed, children
of this age range may quickly habituate to the laboratory
situation, resulting in substantial attentional and motiva-
tional shifts between sessions.

We expected that children with AD/HD would perform
more poorly than control children and show typical electro-
physiological indices of an attention deficit (e.g. generally
smaller ERP amplitudes, often associated with atypical
topography, such as a more anterior P3) and lower levels of
arousal (lower SCLs) in the initial test phase. It was further
expected that the administration of MPH to children with
AD/HD would reduce these differences between the groups
in the second test session.
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Method

Subjects

Participants were 18 male Caucasian children with AD/HD
of the combined type, aged between 8 years 3 months and
13 years 4 months (mean=11 years 4 months, SD=2 years 1
month), and 18 controls individually matched on sex and
age. The AD/HD group was recruited from a private
paediatric practice in Sydney and via a local newspaper
advertisement. Participants in the control group were also
recruited via the newspaper advertisement. Children with
AD/HD had been previously diagnosed by a paediatrician
and psychologist according to Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition criteria and
had not presented with any co-morbid disorders. Two of
the controls were medicated for asthma (combinations of
Ventolin, Pulmicort and Seretide), and all of the AD/HD
group were taking MPH for this disorder, with daily doses
ranging from 10 to 40 mg (mean=24.4, SD=9.2 mg). All
children abstained from their MPH for 24 h prior to testing.

In addition to a clinical interview, the AD/HD and
control groups were assessed using the Child Behaviour
Checklist (CBCL; Achenbach and Edelbrock 2001) com-
pleted by the parent, two subtests of the Stanford Binet
Intelligence Scale (Vocabulary and Quantitative), the South
Australian Spelling Test (SAST) and the Neale Analysis of
Reading–Revised (Neale 1999). Children in the control
group were screened to ensure that no symptoms of AD/
HD or other developmental delays/disorders were present.
For participants to be included, an IQ score ≥85 was re-
quired. Children consuming any stimulants (e.g. caffeine)
prior to the test session were excluded. All children re-
ported no vision or hearing problems, had English as their
first language and were currently attending school. For the
AD/HD group, 17 children were right-handed and 1 was
left-handed; all controls were right-handed.

Physiological recording

The continuous scalp EEG was recorded using electrodes
at 19 sites (Fp1, Fp2, F3, Fz, F4, F7, F8, C3, Cz, C4, T3,
T4, T5, T6, P3, Pz, P4, O1, O2) of the international 10–20
system. Electro-oculogram (EOG) was recorded using tin
cup electrodes situated 1 cm above and below the left eye
[vertical EOG (vEOG)] and on the outer canthi of the left
and right eyes (horizontal EOG). Cap electrodes were
referenced to linked ears, and ear and eye electrodes were
affixed with tape. Impedance levels were below 3 kΩ for
ear and eye electrodes and 5 kΩ for cap electrodes. Subjects
were grounded by an electrode located midway between
the Fpz and Fz sites. The EEG was amplified 19× with a
0.5-Hz high-pass filter, a 70-Hz low-pass filter, sampled
using a 22 bit A/D converter and recorded at 500 Hz by
Neuroscan software. The EEG data were later low-pass
filtered down 3 dB at 30 Hz.

Electrodermal activity was recorded from Ag/AgCl
electrodes secured on the distal volar surfaces of digits 2

and 3 of the non-dominant hand, using an electrolyte of
0.05 M NaCl in an inert viscous ointment base. Skin
conductance was sampled at 10 Hz using a constant voltage
device (UFI Bioderm model 2701) set at 0.5 V. This system
was used to separately record a tonic DC-coupled SCL
and AC-coupled (1-s time constant) fluctuations in skin
conductance (SCR), both measured in microSiemens (μS).

For each subject, mean SCL was taken as the average
from onset of the first stimulus to the end of the block in
each session. Mean phasic response to correct target stimuli
was obtained by averaging the SCRs at each point in the
data stream over 10-s epochs time-locked to target onset,
analogous to ERP averaging, following the procedure used
by Barry and O’Gorman (1989). In accordance with Barry
(1990), the mean SCR was identified as the amplitude of
this ERP-style response within this epoch commencing in a
1–3-s latency window after stimulus onset.

The ERP epoch was defined as 200 ms pre-stimulus to
800 ms post-stimulus onset. Epochs containing amplitudes
greater than ±150 μVat any non-frontal site were excluded
from averaging. Additionally, an ocular artefact reduction
procedure (Semlitsch et al. 1986) based on vEOG was
used. Averages were then calculated for the target ERPs at
each site. N1, P2, N2 and P3 peaks were quantified by
means of an automatic peak picking program based on slope
changes in defined latency ranges, with visual confirma-
tion, to determine individual amplitudes and latencies for
each component.

Procedure

Parents provided written consent for their child to partic-
ipate, and children provided assent. Children were then
fitted with an Electro-cap, ear, eye and skin conductance
electrodes and seated in an air-conditioned, sound-attenu-
ated booth. Each child performed two tasks: a CPT and an
auditory cued ‘go/no-go’ task, included as part of another
study (task order was rotated across subjects). The CPTwas
similar to the vigilance task of the Gordon Diagnostic
System (Gordon 1986). Stimuli were presented on a 15-in.
computer monitor positioned at eye level, 1 m from where
the participant was seated. The A–X version of the CPT
consisted of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The
numbers were white on a black background and 4 cm in
height. Stimuli remained on the screen for 200 ms with an
800-ms inter-stimulus interval.

The task included a practice block of 15 stimulus
presentations followed by two blocks of 180 sequentially
displayed stimuli (360 stimuli in total) for 6 min. Children
performed the task on two occasions, so two forms of the
task were used to avoid practice effects; the order was
counterbalanced between groups and trials.

In one version, the target sequence was a 1 followed by a
9. The alternative version used a 3 followed by a 5. Both
tasks included 15 randomly presented paired target stimuli
per 3-min block, with 30 paired targets presented during a
single task. Participants responded to target stimuli using a
button pressed with the index finger of their dominant
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hand. Responses to target stimuli which followed a cue (i.e.
1 then 9 or 3 then 5) within 1,000 ms of target onset were
deemed correct. Other responses, including those to target
stimuli not preceded by a cue, cues not followed by a target
and distractors, were considered incorrect but were
recorded to calculate number of errors, RT and for general
assessment of task performance.

AD/HD and control children participated in two sessions
separated by a 1-h interval. AD/HD children were admin-
istered their prescribed dosage of MPH immediately after
test session 1, allowing 1 h for the medication to take effect.
This time-frame was deemed adequate for MPH to metab-
olise and was compatible with the methodology of similar
studies (O’Toole et al. 1997; Clarke et al. 2002; Okazaki
et al. 2002; Seifert et al. 2003). During this interval,
children were taken to an adjacent room for a psychometric
assessment, lasting approximately 45 min. The time which
had elapsed during these tests ensured the absorption rate
of the medication for the AD/HD group and was unaffected
by food consumption. The children then completed the ‘go/
no-go’ and the alternative form of the CPT-AX task for test
session 2. This research protocol was approved by the joint
Illawarra Area Health Service/University of Wollongong
Human Research Ethics Committee.

Data analysis

Demographic and psychometric data were analysed using
analysis of variance. Electrodermal (SCL and SCR) and
behavioural (errors and RT) data were analysed with
multivariate analysis of variance (MANOVA) with group

as a between-subjects factor (AD/HD and control), and
separate analyses run for test periods 1 and 2.

While EEG was recorded from 19 sites, analyses of the
ERP data were restricted to nine sites (F3, Fz, F4, C3, Cz,
C4, P3, Pz, P4) to cover the major effects expected. N1, P2,
N2 and P3 amplitudes and latencies to target stimuli were
examined using separate MANOVAs for test period 1 and
2, with group (AD/HD and control) as a between-subjects
factor and lateral [left (F3, C3, P3), midline (Fz, Cz, Pz),
right (F4, C4, P4)] and sagittal [frontal (F3, Fz, F4), central
(C3, Cz, C4), posterior (P3, Pz, P4)] as within-subjects site
factors. Within site, contrasts compared the frontal region
with the posterior region, and their mean with the central
region; the left hemisphere was compared with the right
hemisphere, and their mean with the midline, allowing
optimal clarification of site effects within the regions
studied. As the contrasts were planned and there were no
more of them than the degrees of freedom for effect, no
Bonferroni-type adjustment toαwas necessary (Tabachnick
and Fidell 1989). Further, these single degree of freedom
contrasts preclude the problems of nonsphericity often
encountered with repeated measures analyses, thus avoid-
ing the need for their control using Greenhouse–Geisser
type epsilon adjustments. Degrees of freedom for all effects
are 1,34 unless otherwise stated.

Results

Group differences

Table 1 presents the means and statistical results for de-
mographic and behavioural variables. The AD/HD and

Table 1 Demographic,
diagnostic and behavioural
variables for the AD/HD
and control groups

SD Standard deviation shown
in brackets, AD/HD attention
deficit/hyperactivity disorder,
IQ intelligence quotient, CBCL
Child Behaviour Checklist

AD/HD (n=18) Control (n=18) F P

Age (years) 11.3 (1.7) 11.3 (2.1) 0.01 0.94
Full-scale IQ 111.6 (17.4) 115.7 (13.2) 0.65 0.42
Reading (years) 11.3 (2.2) 11.6 (1.5) 0.24 0.63
Spelling (years) 11.3 (2.6) 12.2 (2.4) 1.15 0.29
CBCL
Withdrawn 63.6 (10.7) 55.6 (7.9) 6.57 0.015
Somatic complaints 57.7 (9.4) 54.1 (5.3) 2.07 0.160
Anxious/depressed 61.7 (10.3) 55.3 (6.0) 5.28 0.028
Social problems 67.5 (11.9) 52.1 (2.8) 28.65 0.001
Thought problems 65.1 (10.7) 55.3 (6.0) 11.46 0.002
Attention problems 67.9 (18.8) 50.9 (1.7) 14.58 0.001
Rule-breaking behaviour 62.8 (10.0) 52.4 (5.0 15.29 0.001
Aggressive behaviour 67.1 (11.9) 52.6 (3.9) 24.23 0.001
Internalising problems 63.9 (8.8) 50.2 (12.4) 14.71 0.001
Externalising problems 63.2 (13.0) 46.0 (9.7) 20.16 0.001
Total problems 67.7 (10.3) 45.2 (10.9) 45.51 0.001
Errors
Time 1 2.5 (0.9) 1.8 (1.0) 4.83 0.04
Time 2 1.6 (1.1) 1.6 (0.7) 0.00 0.96
Reaction time (ms)
Time 1 352.9 (62.3) 352.1 (71.0) 0.00 0.97
Time 2 355.8 (45.4) 357.1 (73.9) 0.00 0.95
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control groups did not differ on age, IQ, reading or spelling
ability. Children with AD/HD had higher scores than con-
trols on all subscales of the CBCL, and this difference was
significant on most subscales.

Performance data

Total errors were subject to a square-root transformation
to reduce the skew commonly associated with the small
numbers of errors during simple RT tasks. This reduced the
skew over all data points and subjects from 2.02 to 0.20. At
time 1, the AD/HD group committed more errors than the
control group (2.50>1.81, F=4.83, p<0.05), a difference
not present at time 2 (1.55∼1.56, F<1; see Table 1).

No significant group differences were found for RTs to
target stimuli in either test session (Table 1).

Electrodermal activity

Skin conductance level

During the initial session, children in the AD/HD group
had lower SCL than controls (AD/HD 9.63 μS<control
12.83 μS, F=7.41, p<0.05). This difference was no longer
present in the second session, where AD/HD children
showed an increased SCL (AD/HD 10.51 μS∼control
12.24 μS, F<1).

Fig. 1 Grand mean event-related potentials to target stimuli. Times 1 (A) and 2 (B) data. Solid=AD/HD, dotted=control. Calibration is
relative to 200 ms pre-stimulus baseline, each tick mark represents 200 ms and y-axes represent ±10 μV
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Skin conductance response

Following Barry and Sokolov (1993), SCRs were sub-
jected to a square-root transformation to reduce the skew
commonly associated with small responses in the electro-
dermal field. This reduced the skew over all data points and
subjects from 1.44 to 0.21. At time 1, no significant dif-
ferences were observed in SCRs (AD/HD 0.26 √μS vs
controls 0.27 √μS,F<1). At time 2, AD/HD children showed
reduced SCRs relative to control children (0.20 √μS vs
0.26 √μS, F=5.19, p<0.05).

Event-related potentials

Waveform morphology

Figure 1 illustrates the major components (N1, P2, N2 and
P3) for AD/HD and control groups at all sites for the grand
mean ERPs to target stimuli.

N1 amplitude

As shown in Fig. 2A, the N1 component (largest negativity
in the 100–190 ms range) for the initial test phase showed a
strong frontalmaximum (frontal>parietalF=20.68, p<0.001;
frontal/parietal>central F=9.96, p<0.005). In the lateral
dimension, a larger N1 was found in the right than left
hemisphere (F=16.25, p<0.001) and in the hemispheres
than the midline (F=5.60, p<0.001). The latter effect was
less at frontal than posterior sites (F=4.55, p<0.05). This
Lateral × Sagittal interaction differed between the groups,
with the lateral difference being similar at frontal and pos-
terior sites in the AD/HD group compared with the large
posterior difference in the control group (F=3.59, p=0.066).
Figure 2A indicates the existence of an atypical frontal
midline reduction of N1 in the AD/HD group.

In the second phase, Fig. 2B shows that the frontal max-
imum was maintained (frontal>parietal F=33.19, p<0.001;

frontal/parietal>central F=15.80, p<0.001). Laterally, great-
er N1 persisted in the right hemisphere than left (F=23.61,
p<0.001), and N1 was larger in the hemispheres than the
midline (F=38.95, p<0.001). A Lateral × Sagittal interac-
tion was also observed, with enhancement of frontal N1
relative to posterior sites greater in the right than left
hemisphere (F=5.72, p<0.05). The previous Group ×
Lateral × Sagittal interaction shown in Fig. 2A did not re-
main significant.

P2 amplitude

During the first test period, the P2 component (largest
positivity in the 190–250 ms range) showed a centro-pa-
rietal maximum (parietal>frontal F=13.63, p<0.001; cen-
tral>frontal/parietal F=64.22, p<0.001). In the lateral
dimension, P2 was larger in the left hemisphere than the
right (F=15.70, p<0.001) and larger along the midline than
the hemispheres (F=46.57, p<0.001). Additionally, there
was a Lateral × Sagittal interaction with a greater midline
enhancement of P2 at parietal than frontal sites (F=15.93,
p<0.001). A Group × Sagittal interaction was found for this
component, with a smaller increase in P2 at parietal than
frontal sites in AD/HD children compared to controls
(F=5.95, p<0.05). Figure 3A illustrates the reduced parietal
P2 in the AD/HD group. There was also a Group × Lateral
× Sagittal interaction which approached significance—the
central enhancement of P2 was greater in the midline than
the hemispheres for both AD/HD and control groups, but
the extent of this difference was smaller for AD/HD
children than control children (F=3.69, p=0.063).

At time 2, P2 sustained its centro-parietal maximum
(parietal>frontal F=28.63, p<0.001; central>frontal/pari-
etal F=40.63, p<0.001). In the lateral dimension, P2
remained larger in the left than right hemisphere (F=17.30,
p<0.001) and along the midline relative to the hemispheres
(F=56.95, p<0.001; see Fig. 3B). The Lateral × Sagittal
interaction persisted, with an enhancement of midline P2
greater at parietal than frontal sites (F=25.10, p<0.001).

Fig. 2 N1 topography for AD/HD and control groups. Sagittal plane at times 1 (A) and 2 (B) (F Frontal, C central, P parietal, H the average
of left and right hemispheres, M midline). Note the abnormal frontal midline reduction in AD/HD at time 1, which is not apparent at time 2
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Further, there was a Group × Lateral interaction—a smaller
elevation in midline P2 relative to the hemispheres for chil-
dren with AD/HD compared to the control group (F=6.63,
p<0.05). There was also a Group × Lateral × Sagittal in-
teraction which approached significance—midline en-
hancement of P2 was greater parietally than frontally, but
the extent of this parietal elevation was smaller for the AD/
HD than control group (F=3.61, p=0.066). Overall, the
pattern of topographic difference between the groups was
similar to the initial test period, although differences were
less significant.

N2 amplitude

At time 1, the N2 component (largest negativity between
200 and 300 ms) was maximal frontally (frontal>parietal
F=9.93, p<0.005; frontal/parietal>central F=74.75, p<
0.001). Laterally, N2 was larger in the right hemisphere

than the left (F=10.77, p<0.005) and in the hemispheres
than the midline (F=27.23, p<0.001). There was also a
Lateral × Sagittal interaction with the midline N2 reduction
greater at parietal than frontal sites (F=22.07, p<0.001). In
terms of group differences, Fig. 4A demonstrates a Group ×
Sagittal interaction, with the AD/HD group showing a
diminished frontal N2 relative to the control group (F=6.63,
p<0.05). Further, there was a Group × Sagittal × Lateral
interaction, in that the central decrease in N2 was greater in
the left hemisphere than the right for the AD/HD group,
with this reversed in the control group (F=7.45, p<0.01).

For time 2, N2 again showed a frontal maximum
(frontal>parietal F=11.33, p<0.005; frontal/parietal>cen-
tral F=57.64, p<0.001). In the lateral dimension, N2
remained greater in the right than left hemisphere (F=6.59,
p<0.05) and in the hemispheres than the midline (F=28.14,
p<0.001). There was also a Lateral × Sagittal interaction in
the second test period with midline N2 enhanced in the
frontal region and reduced in the parietal region (F=45.18,
p<0.001). As shown in Fig. 4B, the Group × Sagittal

Fig. 4 N2 topography for AD/HD and control groups. Sagittal plane at time 1 (A) and time 2 (B) (F Frontal, C central, P parietal). Note that
the abnormal reduction in frontal negativity present in the AD/HD group at time 1 has been attenuated at time 2 to more closely resemble the
control group

Fig. 3 P2 topography for AD/HD and control groups. Sagittal plane at Times 1 (A) and 2 (B) (F Frontal, C central, P parietal). At time 1,
the AD/HD group shows a reduction at fronto-parietal regions; this is smaller at time 2, and the topography of the groups is more similar
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interaction present at time 1 was no longer significant at
time 2. The Group × Lateral × Sagittal interaction present
in the initial test period—a greater decrease in central N2 in
the left than right hemisphere for the AD/HD group and the
reverse of this in the control group—was somewhat weaker
at the second test (F=5.39, p<0.05).

P3

P3 amplitude At time 1, the P3 component (greatest
positivity between 300 and 450 ms) showed a centro-
parietal maximum (parietal>frontal F=11.04, p<0.005;
central>frontal/parietal F=14.97, p<0.001). In the lateral
dimension, P3 was greater in the left than right hemisphere
(F=8.21, p<0.01) and greater in the midline than the hemi-
spheres (F=14.9, p<0.001). The parietal enhancement was
larger in the midline than the hemispheres (F=32.77,
p<0.001). There was a significant Group × Sagittal inter-
action, with the AD/HD group demonstrating a reduced
posterior P3 compared to controls (F=10.90, p<0.005; see
Fig. 5A). Further, a Group × Sagittal × Lateral interaction
was observed, with little effect in the AD/HD group and a
central enhancement of the midline P3 relative to the
hemispheres apparent in the control group (F=4.33,
p<0.05); this is primarily due to reduced parietal P3 in
the hemispheres in AD/HD.

At time 2, the centro-parietal maximum was maintained
(parietal>frontal F=15.18, p<0.001; central>frontal/pari-
etal F=25.95, p<0.001). Laterally, the difference between
left and right hemispheres was no longer present, although
greater P3 was still apparent in the midline relative to the
hemispheres (F=15.15, p<0.001). The pattern of parietal
enhancement was also maintained, with greater P3 at the
midline than the hemispheres (F=47.90, p<0.001). A sig-
nificant difference was observed between groups, with the
AD/HD group showing a smaller P3 than controls across
the scalp (F=16.06, p<0.001). There was also a Group ×

Sagittal interaction which approached significance. Figure 5B
shows that the AD/HD group’s reduced posterior P3 relative
to the control group was somewhat normalised in this period
(F=4.03, p=0.053). The Group × Sagittal × Lateral interac-
tion observed at time 1 was not present at time 2.

Latencies for P3 and other components For the P3 latency
at time 1, there was a Group × Sagittal interaction, with AD/
HD children showing shorter latencies frontally than par-
ietally and control children, the opposite (AD/HD, frontal
421.0ms<parietal 426.0ms; control, parietal 381.6ms<frontal
402.8 ms, F=5.54, p<0.05). Further, there was a Group ×
Sagittal × Lateral interaction—for the AD/HD group,
shorter latencies were seen frontally in both hemispheres,
although the parietal increase in latency was greater in the
right hemisphere than the left (left: frontal 422.1ms<parietal
427.0 ms; right: frontal 419.3 ms<parietal 427.8 ms); for
the control group, shorter latencies were observed at frontal
than parietal sites in the left hemisphere, with the opposite
pattern observed in the right hemisphere (left: frontal
393.7ms<parietal 396.9ms; right: frontal 404.0ms>parietal
364.3 ms, F=5.18, p<0.05). No latency differences between
the groups were found for any other components.

At time 2, no group differences were found for P3
latency or the latencies of any other component.

Discussion

Task performance data indicated that boys in the AD/HD
group initially committed more errors than controls, but
after medication, this difference was no longer present. We
consider that these findings, and others here, can be readily
generalised to children of both genders, and thus, we refer
to “children” rather than “boys” in the following. Previous
literature supports the notion that behavioural data obtained
using CPTs indicate poorer performance in children with
AD/HD (e.g. Klorman et al. 1979; Michael et al. 1981;

Fig. 5 P3 topography for AD/HD and control groups. Sagittal plane at time 1 (A) and time 2 (B) (F Frontal, C central, P parietal). It is
apparent that the topographic distribution for the AD/HD group shows an atypical anteriorisation at time 1, which becomes more normal at
time 2 due to a parietal shift
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Overtoom et al. 1998; Jonkman et al. 2000; Okazaki et al.
2002) and that stimulant medication reduces these per-
formance deficits (e.g. Klorman et al. 1979, 1983; Michael
et al. 1981; Okazaki et al. 2002). No significant group dif-
ferences were found for RT to target stimuli, consistent with
several previous studies (Jonkman et al. 1999, 2000;
Karayanidis et al. 2000; Okazaki et al. 2002). Specifically,
no change was observed for the AD/HD group afterMPH—
a finding not without precedent (e.g. Jonkman et al. 1999,
2000; Sunohara et al. 1999; Okazaki et al. 2002). These
findings suggest MPH may not necessarily improve re-
sponse speed but rather demonstrates efficacy by enhanc-
ing attention and concentration, illustrated by improved
accuracy and task performance of AD/HD children in the
second session.

Children with AD/HD were found to have a lower
SCL than controls, consistent with several studies (e.g.
Satterfield and Dawson 1971; Cohen and Douglas 1972;
Satterfield and Cantwell 1974; Satterfield et al. 1974;
Shibigaki and Yamanaka 1990) and compatible with mod-
els of underarousal (Sergeant et al. 1999; Satterfield and
Dawson 1971). Several studies have reported MPH to in-
crease SCL in children with AD/HD, ameliorating the dif-
ference between AD/HD and control groups (Cohen et al.
1971; Satterfield and Cantwell 1974; Satterfield et al. 1974).
Consistent with this, AD/HD children showed an increased
SCL here after MPH administration, resulting in no sig-
nificant group differences.

While no significant group differences were found for
SCR in the initial test period, in the second test session, the
difference between the groups became significant due to a
reduction in the SCRs of children in the AD/HD group.
This decrease may be indicative of the action of stimulants.
Rapoport et al. (1980) reported that hyperactive children
showed decreased SCRs after psychostimulant admin-
istration. Satterfield and Dawson (1971) suggested that
stimulants result in slower responding when it is more ap-
propriate to do so in terms of the demands of a task. Thus,
it is possible that the decreased amplitudes of SCRs post
MPH are indicative of maintenance of arousal at a level
most effective for accurate decision making based on task
demands or, alternatively, that children with AD/HD find
it easier to respond adequately to task demands when
medicated.

For the current study, negative ERP components (N1 and
N2) were found to have significantly different topographic
distributions for the AD/HD group relative to controls. For
both components, diminished amplitudes were found fron-
tally in the AD/HD group, compatible with previous re-
search investigating negativities across several attentional
paradigms (e.g. Prichep et al. 1976; Klorman et al. 1979;
Holcomb et al. 1985, 1986; Satterfield et al. 1990; Oades
et al. 1996; Strandburg et al. 1996; Overtoom et al. 1998;
Johnstone et al. 2001). Importantly, a change in these
topographies was observed in the second test period—the
differences between AD/HD and control groups were
reduced. In particular, N1 amplitude differences between
groups were not significant in the second test session,

indicating that the action of MPH had normalised the am-
plitudes of the AD/HD group, in keeping with the findings
of previous medication studies (e.g. Klorman et al. 1990).

For P2, AD/HD children were observed to have de-
creased amplitudes parietally, a pattern which remained in
the second test period, although slight increases in am-
plitude were observed which may be attributed to MPH.
Similarly, P3 amplitudes were found to be decreased in the
AD/HD group during the initial test session. Reduced P3
amplitudes have been reported in numerous visual CPT
paradigms (e.g. Klorman et al. 1979; Overtoom et al. 1998)
and have been suggested to indicate attentional problems
(Overtoom et al. 1998; Karayanidis et al. 2000), dimin-
ished evaluation and processing capacities (Klorman 1991;
Frank et al. 1994) and deficient central resource allocation
(Holcomb et al. 1986; Humphreys and Kramer 1994; Kok
2001). For the second test period, the P3 amplitudes were
somewhat normalised for the AD/HD group. Notably, this
normalisation coincided with MPH administration, a find-
ing reported in other research utilising CPTs (Klorman
et al. 1979; Zillesen et al. 2001; Seifert et al. 2003) and
other paradigms (e.g. Prichep et al. 1976; Klorman et al.
1990; Jonkman et al. 2000).

For P3 latency, a significant difference was observed
between groups in terms of topography, although these
differences were not significant in the second test session
due to changes in the AD/HD group, again, indicating an
ameliorating affect of MPH. These findings correspond
with most other studies of AD/HD children (e.g. Taylor
et al. 1993; Oades et al. 1996) and some which have inves-
tigated the effects of stimulant medication (e.g. Holcomb
et al. 1985; Winsberg et al. 1997).

In summary, MPH ameliorated some group differences
between AD/HD children and controls, as reflected by ERP
and behavioural measures. In combination with general dif-
ferences in electrodermal activity, these data lend support
to models of hypoarousal (e.g. Satterfield and Cantwell
1974), explaining the action of MPH in children with AD/
HD and the effectiveness of stimulant medications in
treating the performance deficits associated with this dis-
order. Future research may attempt to clarify these findings
through the use of a balanced double-blind medication
design with the AD/HD children, although ethical limits
preclude stimulant medication testing with the controls. It
may also be useful to employ methodologies which ac-
count for attentional fluctuation during tasks (such as re-
cent CPT variants, e.g. Teicher et al. 2004) to maximise
potential differences existing between AD/HD and control
groups. In this study, we tested both experimental and con-
trol children on two occasions rather than making the com-
mon experimental assumption that repeated testing itself
has no substantial effect. Thus, the effects reported here
strengthen previous findings. This relatively novel approach,
together with adding electrodermal measures to ERPs and
behavioural indices, has demonstrated its value in clari-
fying the effects of medication in AD/HD children. The
results argue for the value of this approach in future work.
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