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Abstract Rationale: A growing body of in vitro and in
vivo evidence indicates that a central endocannabinoid
system, consisting of CB1 receptors and endogenous
cannabinoids, modulates specific aspects of mnemonic
processes. Previous research has demonstrated that either
permanent or drug-induced disruption of CB1 receptor
signaling interferes with the extinction of a conditioned
fear response. Objectives: In the present study, we eval-
uated whether the endocannabinoid system also plays a
role in extinguishing learned escape behavior in a Morris
water maze task. Methods: CB1 (−/−) mice and mice
repeatedly treated with 3 mg/kg of the CB1 receptor an-
tagonist SR 141716 (Rimonabant) were trained to locate a
hidden platform in the Morris water maze. Following
acquisition, the platform was removed and subjects were
assigned to either a massed (i.e., five consecutive sessions
consisting of four 2-min trials/session) or a spaced (a
single, 1-min trial every 2–4 weeks) extinction protocol.
Results: Strikingly, both 3 mg/kg SR 141716-treated mice
and CB1 (−/−) mice continued to return to the target lo-
cation across all five trials in the spaced extinction pro-
cedure, while the control mice underwent extinction by the
third or fourth trial. In contrast, both the 3-mg/kg SR
141716-treated and CB1 (−/−) mice exhibited extinction in
the massed extinction trial procedure. Conclusions: These
findings indicate that disruption of CB1 receptor signal-
ing impairs extinction processes in the Morris water
maze, thus lending further support to the hypothesis that
the endocannabinoid system plays an integral role in the
suppression of non-reinforced learned behaviors.

Keywords Extinction . CB1 knockouts . SR 141716
(Rimonabant) . Morris water maze . Endocannabinoid .
Cannabinoid . Spatial memory

Introduction

The discovery that CB1 cannabinoid receptors are hetero-
geneously expressed throughout the CNS (Herkenham et
al. 1991; Matsuda et al. 1993), as well as the subsequent
identification of several endogenous ligands that act at
these receptors, including anandamide (Devane et al.
1992), 2-AG (Mechoulam et al. 1995; Sugiura et al. 1995),
noladin ether (Hanus et al. 2001), and virodhamin (Porter
et al. 2002), has sparked a great deal of interest in iden-
tifying the physiological roles of this endocannabinoid
system. Several functional roles have already been impli-
cated, including the modulation of pain (Calignano et al.
1998; Richardson et al. 1998; Walker et al. 1999), feeding
(Di Marzo et al. 2001), neuroexcitoxicity (Marsicano et al.
2003), and cognition (Lichtman 2000; Terranova et al.
1996). It should not be surprising that cognition would
be among those systems believed to be influenced by
the endocannabinoid system, given that CB1 receptors
(Herkenham et al. 1991) as well as the endocannabinoids
anandamide and 2-AG (Di Marzo et al. 2000) are present
at high concentrations in the hippocampus and other
forebrain areas associated with learning and memory.

A growing body of evidence suggests that the endo-
cannabinoid system modulates several forms of synaptic
plasticity that are believed to underlie learning and mem-
ory. Specifically, endocannabinoids have been proposed to
act as retrograde messengers in which they are released
postsynaptically, travel retrogradely across the synapse,
and bind to presynaptic CB1 receptors where they can
inhibit the release of inhibitory (e.g., GABA) or excitatory
(e.g., glutamate) neurotransmitters. Disruption of CB1 re-
ceptor signaling has been demonstrated to prevent the
occurrence of depolarization-induced suppression of inhi-
bition (DSI) in the hippocampus (Ohno-Shosaku et al.
2001; Wilson et al. 2001; Wilson and Nicoll 2001),
cerebellum (Diana et al. 2002; Kreitzer and Regehr 2001a;
Yoshida et al. 2002), and cortex (Trettel and Levine 2002,
2003). Conversely, endocannabinoids have also been pro-
posed to inhibit depolarization-induced suppression of ex-
citation (DSE) in cerebellum (Kreitzer and Regehr 2001b;
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Maejima et al. 2001), ventral tegmental area (Melis et al.
2004), and hippocampus, though DSE is far less prom-
inent in the hippocampus than in the cerebellum (Ohno-
Shosaku et al. 2002). Additionally, endocannabinoids may
also modulate long-term forms of synaptic plasticity, as in
the case of long-term potentiation (LTP) or long-term
depression (LTD). CB1 (−/−) mice have been previously
found to exhibit enhanced LTP compared to CB1 (+/+)
mice (Bohme et al. 2000). The aforementioned short-term
roles of endocannabinoids may also help explain some of
their effects on LTP. For example, the CB1 antagonist
AM251 given during DSI enabled a normally ineffective
train of excitatory post-synaptic currents to induce LTP in
that cell, but not in neighboring cells (Carlson et al. 2002).
These investigators hypothesized that this targeted LTP
could underlie some behavioral learning associated with
LTP as in the case of “place learning” in maze tasks. Other
research has demonstrated that endocannabinoids may also
mediate LTD in hippocampus (Chevaleyre and Castillo
2003). Given the extent to which the endocannabinoid
system appears to modulate short-term and long-term
forms of synaptic plasticity, it should not be surprising that
this system plays a tonic role in mnemonic processes.

Indeed, several reports have provided in vivo evidence
supporting the notion that the endocannabinoid system
modulates specific aspects of learning and memory. Spe-
cifically, the disruption of CB1 receptor signaling through
the use of either CB1 (−/−) mice or CB1 receptor antag-
onists has been found to enhance memory in several
models of animal cognition. Terranova et al. (1996) were
the first to report that SR 141716 dose-dependently im-
proved the social recognition memory of rats, as well as
attenuated the deficits displayed by aged mice and rats in
the same task. Consistent with these findings is that CB1

(−/−) mice exhibited better performance than CB1 (+/+)
mice in an object-recognition memory task (Reibaud et al.
1999). Also, rats trained in an extended delay eight-arm
radial maze task performed better when treated with SR
141716 than when treated with the vehicle (Lichtman
2000), a dose-related effect that appears to be related
to consolidation (Wolff and Leander 2003). However,
these apparent memory-enhancing effects of CB1 receptor
blockade are not observed in a variety of operant para-
digms that are heavily dependent on working or short-
term memory (Brodkin and Moerschbaecher 1997;
Hampson and Deadwyler 2000; Mallet and Beninger
1998; Mansbach et al. 1996).

Several recent papers have employed the Morris water
maze to investigate the effects of cannabinoids on both
acquisition (da Silva and Takahashi 2002; Ferrari et al.
1999) and memory (Varvel et al. 2001). Recently, we have
evaluated CB1 (−/−) and (+/+) mice in this task to elu-
cidate the role that endogenous cannabinoids may play
in learning and memory (Varvel and Lichtman 2002). Al-
though performance in the acquisition of a fixed hidden
platform task was unaffected by genotype, genotype dif-
ferences emerged during a reversal task in which the
platform was moved to the opposite side of the pool after
the mice acquired the task. Whereas the wild-type mice

gradually ceased returning to the previous platform location
and readily learned the new location, the CB1 (−/−) mice
not only continued to return to the previous location, but
also exhibited a significant deficit in learning the new
location (Varvel and Lichtman 2002). This perseverance
in behavior may have resulted from a resistance to either
a time-dependent decrement in performance (i.e., forget-
ting) or extinction, a process in which learned behaviors
are suppressed following non-reinforced trials. In support
of the latter possibility, Marsicano et al. (2002) demon-
strated that SR 141716-treated wild-type and CB1 (−/−)
mice exhibited extinction deficits in fear-related behavior
to a tone that was previously paired with electric foot shock.
Similarly, SR 141716 was recently reported to impair the
extinction of contextual fear-memory (Suzuki et al. 2004).

The original goals of the present study were to deter-
mine whether the endocannabinoid system plays specific
roles in extinction and memory duration of a learned
escape response in a Morris water maze task. A massed
extinction procedure was used in which the platform was
removed after acquisition and subjects were given four 2-
min trials/day in the maze for a total of 5 days. We initially
attempted to assess forgetting by using a within-subject
design in which subjects were given a post-acquisition
probe trial (i.e., 60 s test with the platform removed) every
2–4 weeks for a total of five tests. However, a control
group, which received only a single post-acquisition probe
trial that corresponded to the other subjects’ final post-
acquisition probe trial, demonstrated near-perfect perfor-
mance, indicating a long-enduring and robust memory of
the platform location and precluded our ability to assess
forgetting. Instead, the repeated probe trials represented
spaced extinction trials. Here, we report that CB1 (−/−)
mice and SR 141716-treated mice exhibit deficits in the
spaced extinction procedure, but not in the massed ex-
tinction procedure.

Materials and methods

Subjects

Male C57BL/6 mice (Jackson Laboratories, Bar Harbor,
ME) as well as CB1 (−/−) and CB1 (+/+) mice derived
from the Virginia Commonwealth University knockout
breeding colony (Varvel and Lichtman 2002) were housed
in a temperature-controlled (20–22°C) environment, with
a 12-h light/dark cycle. Food and water were available ad
libitum in the home cages. All experiments were approved
by the Institutional Animal Care and Use Committee at
Virginia Commonwealth University.

Apparatus

The water maze consisted of a large circular galvanized
steel pool (1.8 m diameter, 0.6 m height). Awhite platform
(10 cm diameter) was placed inside, and the tank was
filled with water (22°C) until the top of the platform was
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submerged 1 cm below the water’s surface. A sufficient
amount of white paint (Proline-Latex Flat) was added to
make the water opaque and render the platform virtually
invisible. An automated tracking system (Columbus In-
struments, Columbus, OH) analyzed the swim path of
each subject and calculated several corresponding de-
pendent measures—escape latencies (the time between
being placed in the water and finding the hidden plat-
form), total path lengths, average swim speeds, degree of
thigmotaxia (percentage of time spent in periphery of
the pool), and the number of entries into specified target
areas.

Drugs

SR 141716 was provided by the National Institute on Drug
Abuse (Bethesda, MD), and was dissolved in a 1:1 mixture
of absolute ethanol and alkamuls-620 (Rhone-Poulenc,
Princeton, NJ) and diluted with saline to a final ratio of
1:1:18 (ethanol/alkamuls/saline). Drug injections were
administered subcutaneously in an injection volume of
10 μl/g.

Procedure

Prior to acquisition training, each subject was given a
single 5-min acclimation session, in which it was placed in
the tank with no platform present. Mice then received
eight acquisition sessions in which the hidden platform
remained in a fixed location, with each session consisting
of four trials separated by ∼10 min (5 days/week). In
addition, a probe trial (60-s duration, no platform present)
was given before the first acquisition session and again
before the eighth acquisition session. The other training
procedures were identical to those previously reported
(Varvel et al. 2004; Varvel and Lichtman 2002).

Following acquisition, the hidden platform was re-
moved from the tank and each mouse was subjected to
either a massed or spaced extinction procedure. In the
massed trial extinction procedure, the mice received five
sessions, with each session consisting of four 120 s trials.
The initial goal of the spaced-trial experiment was to
evaluate whether SR 141716 increases memory duration
of the platform location compared to vehicle-treated mice.
In an effort to reduce the number of mice used, a within-
subject design was employed in which subjects were given
a post-acquisition probe trial (i.e., 60 s test with the
platform removed) every 2–4 weeks for a total of five
tests. The end points consisted of both latency to and path
length to where the platform had previously been located.
In order to control for the possibility that the repeated
probe tests may serve as extinction trials, we included an
additional group of control mice (N=6) that were given
identical acquisition training as the drug- and vehicle-
injected mice, but received only a single post-acquisition

probe trial that corresponded to the other two groups’ fifth
post-acquisition probe trial. In both protocols, one exper-
iment consisted of subjects that were given an injection of
either vehicle or SR 141716 (3 mg/kg) 30 min before each
acquisition and extinction trial, and second experiment
employed CB1 (+/+) and (−/−) mice. We have previously
found that 3 mg/kg was the lowest dose of SR 141716 that
significantly antagonized Δ9-THC-induced impairment in
the Morris water maze (Varvel et al. 2001). Sample sizes
of each group ranged between ten and 14 mice.

Subsequent experiments were conducted to determine
whether the increased swim speeds maintained in SR
141716-treated and CB1 knockout mice during the massed
trials procedure (see Fig. 3) were related to whether their
swimming behavior had been contingently associated
with escape from the pool. To this end, CB1 (−/−) and
CB1 (+/+) mice, as well as naïve mice treated daily with
3 mg/kg SR 141716 or vehicle (30 min pre-session; N=8)
were placed in the pool with no platform present and
allowed to swim for four 120-s trials each day until swim
speeds in the control groups began to decline.

Statistical analysis

Data were analyzed using two-factor ANOVAs, examining
the effects of session or trial (within-subject) and drug
treatment (between-subject). When significant main ef-
fects of drug treatment or significant interactions were
found, Dunnett’s test was used for post-hoc comparisons.
In addition, t-tests were used for planned comparisons to
examine the effects of drug treatment or genotype at each
session. Differences were considered significant at the
p<0.05 level.

Results

Acquisition

No significant differences in the rate of acquisition were
observed between vehicle- and SR 141716-treated mice,
or between CB1 (−/−) and CB1 (+/+) mice in the standard
fixed platform location Morris water maze task. Figures 1a
and b show SR 141716 and vehicle led to similar escape
latencies and path lengths. There were significant main
effects of session for both escape latency, F(7,211)=32.2,
p<0.001, and path length, F(7,211)=28.4, p<0.001, while
no main effect of drug treatment or interaction between
session and drug treatment for either measure was ob-
served. Similarly, the CB1 (−/−) and CB1 (+/+) mice ex-
hibited nearly identical performance for both measures
(Fig. 1c and d). Again, there were significant effects of
session [escape latency F(7,87)=11.8, p<0.001; path length
F(7,87)=5.8, p<0.001], but no main effect of genotype
or interaction between session and genotype for either mea-
sure was observed.
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Massed extinction

No differences in extinction rates were detected between
SR 141716- and vehicle-treated mice or between CB1 (−/−)
and CB1 (+/+) mice when the “massed extinction” protocol
was used, which consisted of four daily 120 s trials over
5 days, with no platform present. The time it took the
subjects to first return to the position where the platform
had previously been located (i.e., “latency to target”) and
the corresponding “path length to target” for SR 141716-
and vehicle-treated mice are shown in Fig. 2a and b.
Both latencies and path lengths to target significantly
increased across sessions, F(4,74)=9.8, p<0.001 and
F(4,74)=4.5, p<0.001, respectively, though there was no
main effect of drug treatment and no interaction between
drug treatment and session on either of these measures.
As shown in Fig. 2c and d, both CB1 (−/−) and (+/+)
mice exhibited increased latencies and path lengths to
target increased across sessions, F(4,94)=12.5, p<0.001
and F(4,93)=7.5, p<0.001, respectively (path length data
from one mouse on one session was lost due to a
technical problem). A significant effect of genotype was
observed for the latency to target measure, F(1,94)=7.7,
p=0.01, with the CB1 (−/−) mice continuing to return to
the target location more quickly than CB1 (+/+) mice.
However, this difference is likely an artifact of the in-
creased swim speeds exhibited by the knockout mice (see

Fig. 3), as the corresponding path lengths to target failed to
differ between the genotypes.

Contingent vs non-contingent swimming

While no effects of compromised CB1 function on the rate
of extinction of the learned spatial bias were apparent
when the massed extinction protocol was used, interesting
effects on swim speeds were observed. As represented in
Fig. 3a, a significant statistical interaction between drug
treatment and sessions, in which swim speeds of the
vehicle-treated mice decreased across extinction sessions,
while those of SR 141716-treated mice did not, F(4,74)=
4.1, p<0.001. Planned comparisons revealed that swim
speeds were significantly lower in the vehicle group than
in the drug-treated group during the third, fourth, and fifth
extinction sessions (p<0.05). A similar interaction between
genotype and session for swim speed was found, F(4,93)=
4.5, p<0.01 (Fig. 3c). Planned comparisons revealed that
swim speeds were significantly lower in CB1 (+/+) mice
compared to the CB1 (−/−) mice during the fourth and fifth
extinction sessions (p<0.05). These results raised the in-
triguing possibility that SR 141716-treated and CB1 (−/−)
mice may have been impaired in their ability to extinguish
the generalized conditioned swimming response, separate
from their extinction of the spatial bias. In order to test this

1 2 3 4 5 6 7 8
0

20

40

60

80

100
C
1 2 3 4 5 6 7 8

0

20

40

60

80

100
SR 141716
Vehicle

A

1 2 3 4 5 6 7 8
0

400

800

1200

1600

2000
CB1 (-/-)
CB1 (+/+)

D
1 2 3 4 5 6 7 8

0

400

800

1200

1600

2000
SR 141716
Vehicle

B

CB1 (-/-)
CB1 (+/+)

Acquisition Session

P
at

h
 L

en
g

th
 t

o
 T

ar
g

et
 (

cm
)

L
at

en
cy

 t
o

 T
ar

g
et

 (
s)

Fig. 1 Acquisition. No differences were found between vehicle-
treated and SR 141716-treated mice on either escape latencies (a) or
path lengths (b) during acquisition training in a standard reference
memory task. N=13 per group. Similarly, no differences were found
between CB1 (−/−), N=8, and CB1 (+/+), N=11, on escape latencies
(c) or path lengths (d) during acquisition. Session data represent the
average of four daily trials. All data are represented as mean ± SEM
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possibility, new groups of naïve mice were subjected to a
protocol identical to the massed extinction test, except that
these mice were never presented with a platform. As
shown in Fig. 3b, swim speeds of both vehicle- and SR
141716-treated mice decreased across sessions, F(7,98)=
6.3, p<0.001, but there was no significant effect of either
drug treatment or interaction between drug treatment and
session. The swim speeds of both treatment groups col-
lapsed were significantly lower on sessions 7 and 8 than
on session 1 (Dunnett’s test). A similar experiment com-
pared CB1 (−/−) and (+/+) mice under the same con-
ditions. Due to the limited numbers of available knockout
mice, both male and female mice were used in this
experiment. No significant differences of sex or interac-
tions with sex were found, thus their data were combined.
As shown in Fig. 3d, there was a significant interaction
between session and genotype, F(7,111)=4.5, p<0.001,
where swim speeds of CB1 (+/+) mice decreased across
sessions while CB1 (−/−) maintained high swim speeds
throughout the experiment. Planned comparisons showed

that swim speeds were lower in CB1 (+/+) mice than in
the CB1 (−/−) mice during the fourth, sixth, seventh, and
eighth sessions. Thus, SR 141716-treated mice exhibited
fast swim speeds compared with vehicle-treated mice only
when swimming had been contingently associated with
escape, while CB1 (−/−) mice maintained high swim
speeds under both conditions.

Spaced extinction trials experiment

Consistent with previous results, no significant differences
were found in the acquisition curves between SR 141716-
and vehicle-treated mice (data not shown). As shown in
Fig. 4a and b, the performance of the control group which
was not given a probe trial until 9 weeks after acquisition
was indistinguishable from their performance on the last
day of acquisition. This remarkable resilience to time-de-
pendent decrements in performance in these mice pre-
cluded the assessment of drug-related effects on forgetting
with this protocol (our original intent). In contrast, further
inspection of Fig. 4 shows that performance of the vehicle-
treated mice worsened across the five probe trials, in-
dicating that the use of repeated probe trials constituted a
“spaced trials” extinction procedure.

A two-way ANOVA conducted on the post-acquisition
probe trial data revealed a significant main effect of drug
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Fig. 4 Spaced extinction in SR 141716- and vehicle-treated mice.
Latencies to target (a) and path lengths to target (b) during probe
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other two groups. *p<0.05, **p<0.01 for drug vs vehicle conditions
at a given probe trial (planned comparisons). Stars denote significant
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867



treatment for the latency to target data, F(1,125)=9.2,
p<0.01 (Fig. 4a), indicating that SR 141716 disrupted
extinction. Planned comparisons conducted at each probe
trial revealed that SR 141716-treated mice maintained
significantly faster latencies compared to the vehicle-
treated mice on the probe trials conducted 1, 7, and 9
weeks after acquisition. Although a two-way ANOVA
failed to show a significant effect of SR 141716 for the
path length data (p=0.076), planned comparisons revealed
that path lengths to target were significantly lower in the
SR 141716-treated mice than in the vehicle-treated mice
on the fourth and fifth probe trials conducted 7 and 9
weeks post-acquisition, respectfully. Furthermore, results
from separate one-way ANOVAs revealed that both la-

tencies and path lengths to target significantly increased
across extinction sessions in the vehicle group, F(5,59)=
2.6, p<0.05 and F(5, 59)=4.3, p<0.01, respectively, but not
in the SR 141716-treated group (p=0.10 and p=0.16,
respectively). Post-hoc comparisons indicated that the path
latencies to target of the vehicle-treated mice were sig-
nificantly longer on the final three extinction trials than the
path length to target on the eighth day of acquisition
(Dunnett’s test, p<0.05).

A similar pattern of results can be seen in Fig. 5, in
which CB1 (−/−) and (+/+) mice were given repeated
probe trials following acquisition. Both genotypes exhi-
bited equivalent rates of acquisition. However, extinction
was disrupted in the CB1 (−/−) mice compared to the CB1

(+/+) mice, as reflected by significant main effects of ge-
notype in both the latency to target measure, F(1,100)=
6.1, p<0.05, and the path length to target measure, F
(1,100)=2.4, p<0.05. Although planned comparisons failed
to reveal significant differences between the genotypes at
any given probe trial, the significant main effect of ge-
notype was further analyzed by conducting separate one-
way ANOVAs for each genotype. The CB1 (+/+) mice
showed a significant trial-dependent increase in latencies,
F(5,41)=3.17, p<0.05, and path lengths, F(5,41)=3.63,
p=0.01, with post-hoc analyses revealing significantly
longer latencies and path lengths on the last three probe
trials than each respective measure on the eighth day of
acquisition (Dunnett’s test, p<0.05). These results in the
CB1 (+/+) mice are all consistent with a trial-dependent
extinction of the conditioned spatial bias. In stark contrast,
the extinction trials had no significant effects in the CB1

(−/−) mice on latencies (p=0.91) or path lengths (p=0.61),
further supporting the concept that the CB1 receptor plays
a role in extinction.

Figure 6 shows swim traces of representative mice of
each treatment group following acquisition and during the
last extinction probe trial. The SR 141716-treated and CB1

(−/−) mice continued to swim in the vicinity that the
platform was formerly located even after the five extinc-
tion trials, while the vehicle-treated and CB1 (+/+) mice
did not.
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treated mice, as well as CB1 (−/−) and CB1 (+/+) mice. Filled circles represent the location where the platform had previously been located
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Discussion

Taken together, the results of the present study suggest that
endocannabinoids may play a role in facilitating the
processes underlying extinction under specific circum-
stances. In support of this hypothesis is that compromising
CB1 receptors, by either pharmacological blockade with
SR 141716 or genetic deletion, led to extinction deficits in
mice that were given repeated probe trials that were spaced
apart over several weeks. Specifically, both CB1 (−/−)
mice and SR 141716-treated mice continued to return to
where the platform had been located more quickly when
compared to their respective controls. It is important to
note that the vehicle-treated and CB1 (+/+) controls clearly
extinguished their learned spatial bias across subsequent
probe trials. Additionally, the near-perfect performance of
the control group, which received only a single post-
acquisition probe trial (that coincided with the last probe
trial of the other groups) distinguished the trial-dependent
nature of the extinction observed here from a simple time-
dependent memory decay.

The findings presented here are consistent with our
previous report that CB1 (−/−) mice demonstrated in-
creased perseverance of an acquired spatial memory at the
expense of learning a new one (Varvel and Lichtman
2002), and are consistent with the notion that endogenous
cannabinoids play a role in extinction. Several other re-
ports have demonstrated that disruption of CB1 receptor
signaling impairs memory in fear conditioning procedures.
Previously, SR 141716-treated mice and CB1 (−/−) mice
exhibited impaired extinction of conditioned freezing to a
tone that had been paired with foot shock (Marsicano et al.
2002). Interestingly, presentation of the tone (CS) during
extinction was sufficient to increase endogenous levels of
anandamide and 2-AG in the amygdala. A subsequent
study found that SR 141716 also impaired conditioned
freezing to the test chamber in which the mice had re-
ceived the shock (Suzuki et al. 2004). Of consequence,
conditioned freezing to a context is believed to involve
hippocampal processes, while the hippocampus is not be-
lieved to play a role in conditioned freezing to a tone
(Phillips and LeDoux 1992).

Although the observation that the SR 141716-treated
mice continued to return to the platform location across the
spaced probe trials supports a role for endocannabinoids in
processes underlying the extinction of non-reinforced
behavior, another possible explanation is that the drug
did not block the actions of endogenous cannabinoids, but
evoked this effect through its own intrinsic activity either
at the CB1 receptor or at a non-cannabinoid site of action.
In particular, SR 141716’s inverse agonist activity in the
[35S]GTPγS binding assay has been well described
(Landsman et al. 1997; Pan et al. 1998). Although this
drug is 7,000-fold more potent as a CB1 receptor antag-
onist than as an inverse agonist in this assay (Sim-Selley et
al. 2001), its efficacy as an inverse agonist in vivo is
unknown. Alternatively, SR 141716 has also been reported
to have a non-CB1 receptor mechanism of action (Bukoski

et al. 2002). Nonetheless, the dose of 3.0 mg/kg SR
141716 used in the present experiments is generally viewed
as moderate, sufficient to block the effects of exogenously
administered cannabinoids without producing overt be-
havioral effects. More convincingly, the observation that
CB1 (−/−) mice exhibited a similar phenotype as the SR
141716-treated wild-type mice provides converging evi-
dence supporting the involvement of CB1 receptors in
extinction.

This apparent inhibitory effect on extinction learning is
distinguished from the observations that disruption of CB1

receptor signaling had no effect on the initial acquisition of
the water maze task here or in a previous report from our
lab in which no differences in Morris water maze ac-
quisition were detected between CB1 (−/−) and wild-type
mice (Varvel and Lichtman 2002). Although it should be
noted that our acquisition procedure may be insensitive to
detect cognitive enhancement, disruption of CB1 signaling
also failed to affect acquisition of conditioned aversion
freezing to a tone that had been paired with foot shock
(Marsicano et al. 2002). These observations, taken to-
gether, suggest that functioning endocannabinoid systems
may not be apparent for some aspects of learning, such as
acquisition of spatial learning and conditioned freezing
tasks.

In contrast, exogenously applied cannabinoids have
been shown to disrupt acquisition of the fixed platform
Morris water maze task through a CB1-dependent receptor
mechanism of action (da Silva and Takahashi 2002; Ferrari
et al. 1999). Undoubtedly, the concentration of exogen-
ously administered cannabinoids in these studies is likely
to be greater at CB1 receptors than the concentration of the
highly labile endogenous cannabinoids, which are likely to
also possess vastly different spatial–temporal activation
patterns, suggesting that exogenous cannabinoids are like-
ly to do more than simply mimic the function of endo-
cannabinoids. In fact, the very aspects of learning and
memory in the Morris water maze that appear to be most
sensitive to disruption by exogenous cannabinoids (i.e.,
acquisition, working memory) seem largely unaffected by
blockade of the endogenous system. On the other hand, it
will be important to determine whether elevating the
concentration of endocannabinoids or administering can-
nabinoid agonists facilitate extinction. Indeed, a recent
report has demonstrated that THC facilitates the extinction
of a conditioned place preference to either cocaine or
amphetamine (Parker et al. 2004). However, the failure of
SR 141716 to block this enhanced extinction and the
observation that cannabidiol, an inactive constituent of
marijuana, also facilitated extinction in the place prefer-
ence paradigm suggests a non-CB1 receptor mechanism.

Curiously, CB1 receptor deactivation failed to produce a
similar attenuation of extinction in the “massed extinction”
procedure. Under these relatively intense conditions, both
SR 141716-treated and CB1 (−/−) mice extinguished their
spatial biases in a manner indistinguishable from their re-
spective controls.While CB1 (−/−) mice did display quicker
latencies than CB1 (+/+) mice during these extinction trials,
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no such differences in path lengths were observed, sug-
gesting that the significant effect on latencies was second-
ary to the increased swim speeds observed in these mice,
and not due to any differences in extinction. What could
account for this apparent discrepancy between the “massed
trials” and “spaced trials” protocols? One possibility is that
the massed extinction paradigm may have been more
stressful to the mice, and this stress may have interfered
with their performance, effectively counteracting any pos-
sible protection against extinction. Conversely, the ex-
tended extinction procedure, which employed single 1-min
trials every 2–4 weeks, is likely to be less stressful than
the massed extinction paradigm, thereby allowing the ef-
fects of endocannabinoid modulation of extinction to be
observed. The stress associated with this task may be par-
ticularly relevant as a recent report suggests that mice with
compromised CB1 systems may be more reactive to stress,
and display a variety of anxiety-like behaviors (Martin et
al. 2002). Another possible explanation relates to the dis-
tinction between mechanisms mediating short-term extinc-
tion learning and those regulating the consolidation of such
learning. Suzuki et al. (2004) recently reported that SR
141716 failed to disrupt the within-session (short-term)
extinction of a conditioned fear response, but did disrupt
extinction when the mice were tested 24 h later. While the
timing of the conditioned freezing and water maze ex-
tinction experiments cannot be directly compared, the fact
that both studies reveal disruptive effects of CB1 blockade
on long-term, but not short-term, extinction learning sug-
gests that there may be similar mechanisms involved in
both tasks.

Interestingly, while no attenuation of extinction of the
learned spatial basis was observed when the more rigorous
extinction protocol was employed, SR 141716-treated and
the CB1 (−/−) mice did appear resistant to the extinction of
the swim response itself. Swim speeds of mice in both
control groups progressively declined across the massed
extinction trials, primarily the result of these mice in-
creasing the amount of time they spent simply floating. In
contrast, relatively constant swim speeds were maintained
in both the SR 141716-treated and the CB1 (−/−) mice
throughout the extinction protocol. Although high doses of
drug have been reported to increase general locomotor
activity (Compton et al. 1996), it is unlikely that this
explains the present data since the swim speeds of both
vehicle- and SR 141716-treated groups gradually de-
creased after several days of non-contingent swimming in
which an escape platform was never available. Thus SR
141716 prevented this decrease in swimming behavior
only when swimming had become a conditioned response
(i.e., contingent swimming associated with escape via
the platform), a phenomenon that seems best understood
within the context of an extinction deficit. In contrast, the
swim speeds of CB1 (−/−) mice remained high throughout
both the contingent and the non-contingent paradigms,
indicating that some other process was involved in main-
taining this behavior—possibly related to other conse-
quences of gene disruption throughout ontogeny (Mogil

and Grisel 1998). It should be noted that the decrease in
swimming behavior observed in the present experiments is
somewhat reminiscent of the learned helplessness tasks that
model depression (Porsolt et al. 1977), seemingly suggest-
ing that disrupting the function of CB1 receptors may
produce antidepressant-like effects. However, this interpre-
tation does not account for the present results with SR
141716 since no treatment effects were observed when the
swimming was an unconditioned response.

As discussed above, stress reactivity may be a par-
ticularly important factor given the nature of the pro-
cedures used here, and the fact that endocannabinoids have
been implicated in mediating emotional responses and
reactivity to stress (Martin et al. 2002). It is possible that in
the present study disruption of CB1 signaling increased
general levels of anxiety, which led to a concomitant
increase in motivation to remember platform location.
However, if this were the case, one would expect dif-
ferences in the initial rates of acquisition or even dif-
ferences in thigmotaxia, which is often thought to reflect
levels of anxiety. No drug or genotype differences were
found in the present study for either measure. This hypo-
thesis is also inconsistent with the observation that the
extinction deficit was only observed under the less stress-
ful protocol.

The results of the present study support the hypothesis
that endocannabinoids may play a specific role in fa-
cilitating the extinction of learned behaviors. If the en-
docannabinoid system was involved in such a process,
then disrupting CB1 receptor signaling could appear in
some models as improved memory, while in others in-
hibition of endocannabinoid signaling may actually inter-
fere with learning tasks that require the suppression of
previously learned responses. The observation that dis-
ruption of CB1 receptor signaling does not affect initial
learning of the platform location, but CB1 (−/−) mice
exhibit deficits in reversal learning (Varvel and Lichtman
2002) is consistent with this explanation. Conversely, one
implication of such a model is that it may be possible to
facilitate extinction under certain conditions by adminis-
tering cannabinoid agonists (Parker et al. 2004) or
blocking fatty acid amide hydrolase, which results in
elevated levels of endogenous anandamide (Cravatt et al.
2001; Kathuria et al. 2003; Lichtman et al. 2004). It has
been suggested that alterations in endocannabinoid sig-
naling may underlie a variety of disorders including cog-
nitive impairment, obsessive–compulsive disorders, and
post-traumatic stress syndrome (Marsicano et al. 2002) as
well as drug dependence (Parker et al. 2004). Conse-
quently, pharmacotherapies directed at the endocannabi-
noid system may represent a viable approach to treat a
variety of cognitive and behavioral disorders.
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