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Abstract

Background and rationale Working memory performance
is considered to be a core deficit in schizophrenia and the
best predictor of social reintegration and propensity for
relapse. This cardinal cognitive process is critical for
human reasoning and judgment and depends upon the
integrity of prefrontal function. Prefrontal dysfunction in
schizophrenia has been linked to altered dopaminergic
and glutamatergic transmission. However, to date, an-
tipsychotics provide no substantial relief from the
debilitating cognitive consequences of this disease.
Objectives: This review examines the key rodent and
non-human primate models for elucidating the neural
mechanisms of working memory and their neuromodula-
tion. We compare the physiology and pharmacology of
working memory between the normal state and experi-
mentally induced models of prefrontal dysfunction and
evaluate their relevance for schizophrenia.

Results and conclusions Rodent models have demonstra-
ted the significance of aberrant dopaminergic and gluta-
matergic signaling in medial prefrontal cortex for working
memory. However, there is some question as to the extent
to which rodent tests of working memory tap into the
same process that is compromised in schizophrenia. Non-

human primates provide an unexcelled model for the
study of influences on prefrontal function and working
memory due to the high degree of homology between
human and non-human primates in the relationship
between prefrontal cortex and higher cognitive capacities.
Moreover, non-human primate models of prefrontal
dysfunction including amphetamine sensitization, sub-
chronic phencyclidine, and neurodevelopmental insult are
ideal for the analysis of novel compounds for the
treatment of cognitive dysfunction in schizophrenia,
thereby facilitating the translation between preclinical
drug development and clinical trials.

Keywords Spatial working memory · Non-human
primate · Prefrontal cortex · Schizophrenia · Dopamine ·
Animal models

Introduction

Keeping track of relevant information and ideas is a
constant necessity for the rational interpretation and
anticipation of ongoing events. Thus, in order to explain
many aspects of human reason and cognition, it has been
theorized that a system must exist for the active main-
tenance and manipulation of information. This construct
of working memory incorporates temporary buffers of
information and an attentionally constrained central
executive—subsystems which are served by distributed
neural networks (Baddeley and Hitch 1974; Baddeley
1992; Baddeley and Della Sala 1996). Studies in both
human and non-human primates have identified the
prefrontal cortex (PFC) as a critical node in these
networks. Much of what is known today about the
cellular and circuit basis of working memory comes from
the work of Goldman-Rakic and colleagues (Goldman-
Rakic 1990). The demonstration of a specific anatomical
and physiological substrate for different domains of
working memory led Goldman-Rakic to postulate that
the PFC plays a central role in working memory and
disruption of its intrinsic circuitry or functional connec-
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tivity with other brain regions could lead to the myriad of
cognitive deficits observed in schizophrenia (Goldman-
Rakic 1991; Goldman-Rakic and Selemon 1997). Work-
ing memory in multiple domains has been tested in both
human and non-human primates with a wide variety of
cognitive tasks. Each particular task may involve both the
transient neural representation of information to guide an
immediate response and executive function to varying
degrees especially when information held on-line has to
be manipulated in order to generate an appropriate
response (Perry et al. 2001). Notably, there is evidence
for both hypo- and hyperfrontality as a function of
working memory load in patients performing tasks which
involve these different aspects of working memory
function (Weinberger et al. 1986; Callicott et al. 2000;
Manoach et al. 2000). Moreover, disruption of dlPFC by
dysregulation of dopamine signaling in non-human
primates is associated with profound working memory
impairments involving both spatial and object domains as
well as executive function, consistent with evidence that
dopamine signaling appears to be substantially altered in
this region in schizophrenia. The above findings strongly
suggest that there is a homologous neurobiological
substrate for working memory between the two species
(Petrides and Pandya 1999; Petrides 2000; Nakahara et al.
2002; Rosano et al. 2002). In conjunction with the PFC,
there is much evidence to support the contribution of the
hippocampus to the process of working memory. Indeed,
the original model of working memory (Baddeley and
Hitch 1974) recognized the importance of the interface
between the visuospatial sketch-pad and episodic long-
term memory. Recently, Baddeley (2000) proposed that a
fourth subsystem, the “episodic buffer”, is necessary for
working memory operations. This limited capacity buffer
is postulated to facilitate binding of information from
multiple sources into chunks.

While positive and negative symptoms have long been
considered the hallmark features of schizophrenia, recent
clinical studies have highlighted cognitive dysfunction as
a third major diagnostic category which is increasingly
considered to be the core deficit of the disorder (Gold-
man-Rakic 1991, 1994; Andreasen 1997; Green 1997;
Weinberger and Gallhofer 1997; Meltzer et al. 1999;
Elevag and Goldberg 2000). Indeed, impairment in
working memory is the most consistently observed
cognitive deficit exhibited by patients with schizophrenia
(Park and Holzman 1992; Keefe et al. 1995; Park et al.
1999). Given that working memory is critical for the
integrity of the thought process, it can be postulated that
the breakdown in the neural circuitry of working memory
may underlie the cognitive deficits and associated thought
disorder observed in schizophrenia (Goldman-Rakic
1987, 1991). Notably, the extent of cognitive dysfunction
in patients with schizophrenia is the best predictor of
social functioning, unemployment, and even relapse
(Sevy and Davidson 1995; Green 1996; Lysaker et al.
1996; Meltzer et al. 1996; Keks 1997; Meltzer 1999;
Smith et al. 1999a, 1999b; Liddle 2000; McGurk and
Meltzer 2000). Although atypical antipsychotics tend to

improve cognition more than typical antipsychotics
(Meltzer and McGurk 1999; Meltzer and Sumiyoshi
2003), there is no consensus that any of the currently
available antipsychotics adequately alleviate the debili-
tating cognitive dysfunction associated with schizophre-
nia (Green et al. 2002; Sernyak et al. 2003).

Schizophrenia has an enormous economic impact that
is largely attributable to the lack of adequate therapeutics
targeted to treat the key cognitive symptoms as evidenced
by the fact that up to 90% of patients are unemployed.
Thus, it cannot be overemphasized that the best predictor
for those suffering from schizophrenia to reintegrate into
society is their level of cognitive abilities, particularly
working memory. To this end, Davidson and Keefe
(1995) have suggested that a new class of drugs should be
developed that are targeted towards treating the cognitive
deficits in the disease rather than the psychotic symptoms.
This is the challenge for drug development in the
treatment of schizophrenia. As such, the intention of the
present article is to review animal models of working
memory and cognitive dysfunction in order to foster
research on both the nature of the disease process in
schizophrenia and the development of novel pharmaceu-
tical strategies targeted toward improving cognitive
function in patients.

Rodent models of working memory

Molecular neuroscience research (such as gene knock-
outs) may be far more accessible and/or efficient in the
rodent than in the non-human primate. Therefore, it is
important to recognize the advantages and potential
limitations of rodent models for studying the distributed
neural systems involved in working memory and their
relevance to the understanding and treatment of cognitive
deficits in schizophrenia. Furthermore, it is equally
necessary to identify the parameters which affect perfor-
mance in the tasks purported to test working memory.
Possible confounds in such tasks include the use of
sensory cues, postural bias, and covert use of a directional
movement bias, especially in left/right response choices.
Many of the rodent tasks however, have been designed to
avoid such pitfalls and have provided important informa-
tion on the circuitry and neuropharmacology of working
memory.

Excitotoxic damage to the ventral hippocampus in
neonates provides a model that clearly demonstrates
concordance with dopaminergic and prefrontal dysfunc-
tion in schizophrenia (Lipska and Weinberger 2000). The
cardinal feature of this model is the postpubertal emer-
gence of behavioral and neurochemical abnormalities. As
such, this model addresses the neurodevelopmental
hypothesis (Lillrank et al. 1995), which has proven to
be a valuable conceptual framework for the synthesis of a
wide range of evidence supporting aberrant changes in
brain development in schizophrenia (see Knable et al.
1995; Weinberger 1996; Raedler et al. 1998). However,
this hypothesis has been criticized for not taking into
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account progression of abnormalities following an early
pathology (Woods 1998). In fact, it has been suggested
that particular degenerative processes occur in the early
stages of the disease coincident with emergence of
psychotic symptoms (Lieberman 1999).

Lesions of the ventral hippocampus in neonates, but
not in adults, induce the same deficits in working memory
as medial PFC (mPFC) lesions in adult rats performing
continuous delayed alternation and discrete paired trial
variable-delay alternation tasks (Lipska et al. 2002). It has
been questioned whether performance on the former task
is selectively dependent on working memory due to its
repetitive nature (Green and Stanton 1989), whereas the
latter task requires constant updating of information and
response on a trial-by-trial basis (Aultman and Moghad-
dam 2001). Neonatal ventral hippocampal-lesioned
(NVH) rats also show a similar deficit prior to puberty
in the radial arm maze (Chambers et al. 1996) where
spatial working memory is assessed by measuring the
frequency of re-entries into previously baited arms and
reference memory is tested by the frequency of visits to
baited arms that are not part of a previously learned set
(Zhang and O’Donnell 2000). Following NVH, rats are
also impaired in remembering the location of the
submerged platform (session-unique) in the Morris
water-maze, an alternative test of working memory (Le
Pen et al. 2000). Thus, multiple measures of working
memory in rodents provide concordant evidence that
interference with normal development in the functional
circuitry of ventral hippocampus and PFC induces a
postpubertal emergence of cognitive deficits consistent
with findings in schizophrenia. Evidence for a role for
mPFC in this process stems from studies that have shown
alterations in gene expression, neuronal morphology and
neurochemistry in mPFC following NVH, consistent with
the neuroanatomical connections between ventral hippo-
campus and mPFC in the rat (see Lipska and Weinberger
2000).

Notably, NVH lesions in rodents also induce a
postpubertal onset of deficits in sensorimotor gating or
pre-pulse inhibition (PPI; Chambers et al. 1996; Le Pen et
al. 2000; Daenen et al. 2003), a consistent feature in
schizophrenia spectrum disorders (Swerdlow et al. 1994;
Braff et al. 2001; Geyer et al. 2001). However, pharma-
cological activation/disruption of either ventral hippo-
campus (Bast et al. 2001) or mPFC (Japha and Koch
1999) also produces PPI deficits in adult rats, suggesting
that a progressive disruption of functional circuitry is not
obligatory for induction of this deficit. Another important
feature of the NVH lesion model is that it involves
distinct changes in mesocortical and nigrostrital dopamine
function in adulthood (Lipska et al. 1995; Lillrank et al.
1999) as evidenced by the finding that these rats display
exaggerated apomorphine-induced locomotor activity and
stereotopy that can be suppressed by both haloperidol
and clozapine. Since direct injection of amphetamine
(AMPH) into striatum or accumbens induces stereotopy
or hyperlocomotion, respectively, in the marmoset (An-
nett et al. 1983), it can be posited that the mechanism by

which antipsychotics ameliorate these symptoms in the
NVH model is by elevation of dopamine in PFC. Such a
mechanism may have an important bearing on the
postulated action of atypical antipsychotics in schizo-
phrenia (Youngren et al. 1999; Ichikawa et al. 2001). In
this respect, it is interesting to note that prefrontal
pyramidal neurons are rendered hyperexcitable to stim-
ulation of mesocortical neurons but not to stimulation of
thalamic afferents in this model (O’Donnell et al. 2002).

A novel neurodevelopmental model of immune acti-
vation during pregnancy in the rodent (Zuckerman et al.
2003) produces a postpubertal disruption of latent inhi-
bition that can be reinstated by both haloperidol and
clozapine. Notably, a similar loss of latent inhibition has
been reported in schizophrenia and this may be particu-
larly relevant for the difficulties in selection of relevant
versus irrelevant information (Feldon and Weiner 1992;
Braunstein-Bercovitz et al. 2001; Escobar et al. 2002).
Similar to NVH lesions, adult rats which experienced
immune activation in utero show an enhancement of
AMPH-induced locomotor activity that has parallels with
the enhanced release of striatal dopamine in response to
AMPH shown by patients with schizophrenia (Laruelle et
al. 1996; Breier et al. 1997). These animals also show
aberrant morphological changes in the hippocampus and
entorhinal cortex. Thus, there appears to be a disturbance
of the dopaminergic regulation of frontostriatal function
in adult rats that have experienced a neurodevelopmental
insult that involves the hippocampus. These rodent
models should therefore be considered highly significant
for the analysis of novel compounds in the treatment of
what is postulated to be a similar disturbance in schizo-
phrenia. However, the demonstration of a postpubertal
onset of deficits in spatial working memory is required for
the immune activation model to have full impact on
preclinical research.

An alternative approach to the study of drug action in
the rodent relevant to cognitive dysfunction can be found
in two pharmacological models, AMPH and phencycli-
dine (PCP). Both AMPH and non-competitive NMDA
antagonists (PCP and MK-801) produce deficits in spatial
working memory in rodents performing spatial delayed
alternation or delayed match-to-position tasks which have
relatively short delays (<60 s). For example, in the study
of Aultman and Moghaddam (2001) MK-801 impaired
performance independent of delay when the delay ranged
from 1 to 40 s. Moreover, mGluR2/3 activation or low
doses of an AMPA/kainate antagonist all produced a
delay-dependent impairment in the task, in support of the
hypoglutamatergia hypothesis of frontostriatal dysfunc-
tion in schizophrenia. Note however, that both PCP and
AMPH require the intervention of a considerably greater
between-trial delay in order to have an impact on working
memory as assessed in the radial arm and water mazes
(Buresova and Bures 1982; Beatty and Rush 1983;
Butelman 1990; Blokland et al. 1998). Whereas PCP
clearly induces deficits in PPI, its impact on spatial
working memory is debatable. Subchronic PCP has been
reported to produce deficits in delayed alternation in the
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T-maze (Jentsch et al. 1997b), but it has been found to
have no effect on spatial working memory in the radial
arm maze (Li et al. 2003). Furthermore, in rodents there is
conflicting evidence on whether subchronic PCP/ket-
amine or AMPH induce deficits in either spatial working
memory or PPI that persist after cessation of treatment
(Jentsch et al. 1997b; Martinez et al. 1999; Stefani and
Moghaddam 2002; Becker et al. 2003). Nonetheless,
further study of the pharmacology of deficits in working
memory and PPI in these models will provide an
important basis for the evaluation of the effects of novel
pharmacological compounds on gene expression, cell
physiology, and signaling systems.

An important factor in rodent tests of working memory
is the degree to which this form of memory can be
dissociated from reference memory by specific task/
behavioral parameters. For example, in the radial arm
maze AMPA receptor knockout mice show deficits in
spatial working memory but not spatial reference memory
(Schmitt et al. 2003), the latter being dependent upon
intact hippocampal function. Rodent tasks purported to
test working memory may involve episodic memory and
recruit the hippocampus to varying degrees especially
when encoding takes place over a number of trials and
retention intervals are long (minutes versus seconds).
Thus, it may be postulated that as the length of delay or
the number of items to be remembered increases,
temporary forms of consolidation may become involved
in order to sustain behavioral performance in working
memory tasks (Antonova et al. 2001; Kesner and Rolls
2001; Bhalla 2002) which may depend upon the hippo-
campus and utilization of episodic buffers in working
memory. Thus, the circuitry being tested in rodent models
of working memory may differ as a function of the extent
to which the hippocampus is recruited by the task. In
order to directly test the same mechanisms of working
memory that operate in humans, it is vital to translate
preclinical studies via the non-human primate where this
circuitry can be fully determined and the tasks designed to
assess working memory are identical between the two
primate species.

Non-human primate models of working memory

The nature of the tasks employed to investigate the key
cognitive functions in non-human primates that may
relate to a primary dysfunction of PFC in schizophrenia is
of critical importance. In this regard, there is little doubt
that there are critical measures of working memory in the
non-human primate that have direct bearing on cognitive
functions affected in schizophrenia (Park and Holzman
1992; Park et al. 1999). Here, we review the leading
primate models of working memory and discuss their
relationship to prefrontal function and the distributed
architecture of cognition.

Spatial delayed response task

Delayed response is the classical test of spatial working
memory. In this task, monkeys are tested in a sound-
attenuated Wisconsin General Testing Apparatus
(WGTA) and one of two or more spatially displaced
wells is baited, the wells are covered with identical
plaques, and an opaque screen lowered for variable delays
randomized across trials. During the delay, the monkey
must hold on-line information regarding the spatial
location of the baited well in order to respond appropri-
ately and be rewarded. Task difficulty/memory load is
increased by either increasing delay lengths or increasing
the number of spatially displaced wells (i.e. the spatial
resolution). Note that there is a potential confound in this
task given that the monkeys may change their posture
according to the spatial location of the baited well.
However, this is rarely observed. Keefe and colleagues
(1995) developed a pen and paper version of this task,
which is sensitive to the detection of deficits in spatial
working memory in patients with schizophrenia.

Based on the extensive work in the non-human
primate, many insights have been gained into the
functional neural circuitry and neuropharmacology of
spatial working memory. Ablation, excitotoxic damage,
or cooling of the principal sulcus region of dlPFC in
primates produces profound impairments in delayed
response performance (Butters et al. 1971; Bauer and
Fuster 1976; Passingham 1985; Goldman-Rakic 1987;
Fuster 1997; Levy and Goldman-Rakic 1999). These
studies demonstrated that the PFC is a key node in the
functional neural circuitry of working memory. Insight
into the neuropharmacology that underlies working
memory was first discovered by Brozoski and colleagues
(1979). In this study, a critical role for dopamine in
working memory was demonstrated by the finding that 6-
hydroxydopamine (6-OHDA) lesions of dlPFC in mon-
keys produced delay-dependent impairments in perfor-
mance. Note, 6-OHDA lesions reduced performance
dramatically (<50% of controls at a 20-s delay) and
levodopa treatment markedly improved performance in
lesioned animals by some 35%, indicating the strength of
dopaminergic modulation of working memory. The
integrity of dopamine in PFC has also been shown to be
critical for acquisition of the spatial delayed response task
but not for performance of a spatial self-ordered sequenc-
ing task (Collins et al. 1998). Using the delayed response
task in non-human primates, the inferior parietal cortex,
caudate nucleus, dorsomedial nucleus of the thalamus,
and hippocampus have also been identified as key nodes
in the circuitry of spatial working memory (Isseroff et al.
1982; Friedman and Goldman-Rakic 1988, 1994; Collins
et al. 2000; Sybirska et al. 2000).
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Delayed match-to-sample:
a test of object working memory

Delayed matching-to-sample (DMS) is the classical test
of object working memory. Monkeys are typically tested
in the WGTA using session- and trial-unique three-
dimensional objects. After a variable delay during which
the opaque screen is lowered, the monkey has to
remember and respond to the choice stimulus that
matches the sample. Modern computerized versions of
this task have been incorporated into the CANTAB
battery (Weed et al. 1999). Numerous studies in the non-
human primate have demonstrated that DMS relies upon
the integrity of ventrolateral PFC (vlPFC) as well as
medial temporal lobe, including hippocampus. Lesions or
cooling of either PFC or inferior temporal cortex impair
DMS performance (Bauer and Fuster 1976, 1978; Horel et
al. 1987; Cirillo et al. 1989; George et al. 1989; Gaffan
and Murray 1992; Easton et al. 2001). It is of note that
low dose AMPH potentiates the effects of cooling of PFC
in monkeys performing DMS (Bauer and Fuster 1978).
2-Deoxyglucose autoradiography has been used to show
considerable activation of lateral perirhinal cortex in this
task (Davachi and Goldman-Rakic 2001). Like spatial
working memory, recent evidence indicates that patients
with schizophrenia show impairments in object working
memory (Spindler et al. 1997; Coleman et al. 2002; Park
et al. 2003) consistent with the findings that both PFC and
hippocampus are part of the functional circuitry compro-
mised in the disease (Weinberger et al. 1986; Selemon et
al. 1995; Harrison 1999; Arnold 2000). However, it has
been postulated that deficits in object working memory
may be in part, attributable to impairments in perceptual
processing (Tek et al. 2002). Nevertheless, object working
memory may represent an important component of
working memory based on information from the ventral
visual stream as compared to spatial working memory
which relies upon information from the dorsal stream
(Wilson et al. 1994).

Attentional set-shifting: an analogue
of the Wisconsin card sorting task

Attentional set-shifting invokes cognitive processes that
recruit both executive function and maintenance/manip-
ulation of visual data. Both components of working
memory are compromised in schizophrenia as highlighted
by impaired performance on the Wisconsin Card Sorting
Task (WCST) (Berman et al. 1986; Weinberger et al.
1986; Park 1997). Medicated patients are also impaired
on a computerized attentional set-shifting task in which
they have to ignore the previously relevant dimension and
switch to a new one (Elliot et al. 1995). WCST
performance in patients is positively correlated with
CSF concentrations of homovanilic acid (HVA; Wein-
berger et al. 1988; Kahn et al. 1994), suggesting that there
may be a relationship between dopamine turnover in the
brain and performance. Attentional set-shifting relies on

the ability to make extradimensional shifts in response
(e.g. color to shape) as the appropriate dimension is
shifted back and forth during the task. A computerized
version of this task has been used in the marmoset to
show disruption of performance following excitotoxic
lesions of PFC (Dias et al. 1996). Furthermore, a version
of this task has been incorporated into the CANTAB
battery of neuropsychological tests (CeNeS, Cambridge,
UK) for use in both human and non-human primate
studies (Weed et al. 1999). In a recent fMRI study,
performance of the identical attentional set-shifting task
recruited homologous regions of vlPFC in both human
and non-human primates (Nakahara et al. 2002). Atten-
tional set-shifting recruits areas 45,12, and 47 of vlPFC
consistent with imaging and single unit recording studies
implicating involvement of this region in object working
memory (Haxby et al. 1996) and categorization or
familiarity of visual stimuli (Petrides et al. 2002). To
date however, the cellular mechanisms that subserve set-
shifting have not been directly investigated. Notably,
while fundamental aspects of cognitive processing in set-
shifting and spatial working memory are differentially
regulated by the prevailing level of dopamine stimulation
in PFC (Roberts et al. 1994; Elliot et al. 1997), set-
shifting is impaired in dopamine dysfunctional states
including schizophrenia (Daniel et al. 1991; Owen et al.
1993; Robbins et al. 1998). Thus, in the evaluation of
novel compounds targeted to treat cognitive dysfunction
in schizophrenia, it is important to include a battery of
tasks that tap into the distributed functional circuitry that
is compromised and to recognize that these systems may
be differentially modified by signaling at selective
receptor subtypes.

Physiological correlates of working memory

Spatial working memory can also be tested with an
oculomotor version of the classic delayed response task
(or ODR). Critically, patients with schizophrenia show
pronounced impairments on this task (Park and Holzman
1992; Park et al. 1999). In physiological experiments in
non-human primates, a trial is initiated by fixation of a
central stimulus for a period of 0.5 s, at which point a
stimulus is illuminated in one of eight or more peripheral
target locations for 0.5 s while the monkey continues to
fixate. A delay period of some 2–3 s then follows, during
which the monkey must continue to fixate while holding
on-line the target location to be remembered. At the end
of this delay, removal of the central stimulus signals the
monkey to make a saccade directly to the remembered
target location in order to obtain reward. The position of
the targets varies pseudorandomly across trials and
therefore must be remembered on a trial-by-trial basis.
In this task, neurons can be functionally characterized
according to their sensory, mnemonic, and response-
related activity in terms of mean firing rates and spatial
tuning (Funahashi et al. 1990). A large proportion of
neurons in dlPFC areas 46 and 8A show spatially tuned
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delay activity or “memory fields” comprising of varying
degrees of excitatory responses for preferred target
locations and inhibitory responses for targets in the
opposite direction (Funahashi et al. 1989; Rao et al.
1999). Fuster and colleagues were among the first to
identify the delay activity of prefrontal neurons in
monkeys performing manual delayed response tasks
(Fuster and Alexander 1971; Fuster 1973). ODR offers
the advantage of systematically controlling eye position
and studying the neuronal response to multiple locations
in the visual field. Neuronal populations within both
dlPFC and inferoparietal cortex have been shown to
possess almost identical cue, delay, and response-related
properties, asserting the integral role of this circuitry in
spatial working memory (Chaffee and Goldman-Rakic
1998). In this task, Funahashi et al. (1993) demonstrated
that microlesions within dlPFC produce “mnemonic
schotomas” in the contralateral visual field in memory-
but not sensory-guided saccades. These data, taken
together with the finding that failure of a clearly
responsive delay cell in dlPFC to sustain firing throughout
the delay period predicts an error in saccadic response
(Funahashi et al. 1989), strongly suggest that neurons in
this region constitute the cellular substrate of spatial
working memory. This is an ideal system for the
examination of the effects of local and systemic drug
action on memory-related neuronal responses (Williams
and Goldman-Rakic 1995; Williams et al. 2002a), the
strength of inhibitory processes in relation to spatial
tuning and trial epoch (Rao et al. 1999, 2000; Constan-
tinides et al. 2002), as well as recurrent excitation
between pyramidal cells, an integral component of
persistent activity shown to be modulated by dopamine
(Williams et al. 2002b). Therefore, the impact of various
receptor/transmitter/signaling systems on the operations
of working memory at the level of PFC can provide vital
information for the development of novel compounds
targeted to treat cognitive deficits in schizophrenia.

Neuromodulation of working memory
in animal models

Dopamine

Neuromodulation of cellular mechanisms in working
memory have been studied directly within dlPFC. Single
unit recordings in this region have revealed that the firing
of neurons in the ODR task is subject to significant
neuromodulation by direct iontophoretic application of
dopamine (Sawaguchi et al. 1988). The D1 receptor has
been shown to play a critical role in this modulation by
acting on multiple sites within prefrontal circuitry to
regulate mnemonic processing. Consistent with the fact
that D1 receptor binding is 10–20 times higher and more
widely distributed than that of the D2 receptor in primate
dlPFC (Lidow et al. 1991), it has been shown that local
microinjections of selective D1, but not D2, antagonists
into dlPFC disrupts memory but not visually guided

saccades (Sawaguchi and Goldman-Rakic 1991, 1994).
Williams and Goldman-Rakic (1995) discovered that
prefrontal D1 signaling operates within a critical range
(see Lidow et al. 1998) by revealing that iontophoresis of
low concentrations of a selective D1 antagonist dramat-
ically enhance the strength and tuning of delay activity or
“memory fields” of pyramidal neurons in dlPFC, but
excessively high concentrations have the opposite effect.
This study provided definitive evidence that the D1
receptor directly regulates the cellular mechanism of
spatial working memory such that the optimal level of D1
receptor occupancy may vary with increasing demands on
this process (Granon et al. 2000). This “inverted-U”
relationship has been verified at the behavioral level.
Acute or repeated D1 agonist administration improves
working memory performance in dopamine deficient
monkeys (Arnsten et al. 1994; Castner et al. 2000a;
Castner and Goldman-Rakic, in press), whereas the
preferential elevation of prefrontal dopamine by noise-
induced or drug-induced stress produces profound cogni-
tive deficits which are reversed by D1 antagonist admin-
istration (Murphy et al. 1996; Arnsten and Goldman-
Rakic 1998). Computational models that attempt to
explain the role of dopamine in optimizing working
memory on the basis of a local neuronal network provide
an accurate representation of the concentration dependent
action of dopamine on prefrontal circuitry (Brunel and
Wang 2001; Durstewitz and Seamans 2002; Tanaka
2002).

Understanding D1 receptor modulation of prefrontal
cortical function and working memory is pivotal to the
generation of novel drug strategies targeted toward the
core cognitive deficits in schizophrenia. A common
mechanism of action of chronic neuroleptic treatment is
to reduce prefrontal activation (Potkin et al. 1994; Vita et
al. 1995; Miller et al. 1997; Liddle et al. 2000; Ngan et al.
2002) and to downregulate D1 receptors in primate PFC
(Lidow et al. 1994, 1997). Therefore, it is conceivable
that the up-regulation of D1 binding potential in dlPFC
that is negatively correlated with working memory
performance in schizophrenia (Abi-Dargham et al.
2002) is representative of excessive D1 signaling in
PFC, parallel to that found in non-human primates under
conditions of acute stress (Arnsten and Goldman-Rakic
1998). Alternatively, the contradictory reports of down-
regulation of D1 binding in dlPFC that is also correlated
with cognitive performance (Okubo et al. 1997) may be
associated with the hyperactivation of this region in
patients performing the N-back task which typically
requires that the subject remember stimuli presented one,
two, or three trials previously (Callicott et al. 2000;
Manoach et al. 2000). This may reflect insufficient
dopamine/D1 signaling, parallel to that which occurs in
non-human primate models of dopamine deficiency or in
patients with Parkinson’s disease. Physiological studies of
non-human primate models of normal and aberrant
cognitive function can help to further elucidate the
relationships between prefrontal dopamine levels and
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the extent of recruitment of prefrontal neurons engaged in
working memory.

Serotonin

A major distinction in antipsychotic targets of action is
the high affinity of atypical antipsychotics at the serotonin
5-HT2A receptor which is densely localized within the
neocortex in humans (Hall et al. 2000). This receptor is of
interest due to its known involvement in hallucinogenesis
(Aghajanian and Marek 1999) and the facilitation by this
receptor of excitatory glutamatergic transmission onto
pyramidal neurons in PFC is suspected to be a potential
mechanism for disruption of prefrontal function in
cognition (Aghajanian and Marek 2000). In monkeys
performing the ODR task, local 5-HT2A stimulation
increases surround inhibition of prefrontal pyramidal
neurons, which at low levels improves their spatial tuning
but at higher levels diminishes their memory fields
(Williams et al. 2002a). Iontophoresis of 5-HT2A antag-
onists, including MDL100,907, directly attenuates mem-
ory fields of both pyramidal neurons and putative
inhibitory interneurons. This physiological evidence for
deleterious effects of prefrontal 5-HT2A blockade on
cognition stands in contrast to the proposed benefit of the
5-HT2A antagonist properties of atypical antipsychotics
(Schmidt et al. 1995). However, it has been proposed that
an important mechanism for their clinical efficacy might
be the elevation of prefrontal dopamine release (Youn-
gren et al. 1999; Ichikawa et al. 2001; Liegeois et al.
2002). Thus, the recent report of significant amelioration
of positive symptoms at low but not high doses of
MDL100,907 (De Paulis 2001) may reflect beneficial
elevation of prefrontal dopamine and deleterious blockade
of prefrontal 5-HT2A receptors, respectively. These find-
ings strongly support the use of the physiological
approach to investigate serotonergic neuromodulation of
prefrontal circuitry subserving working memory process-
es. Thus, selective cognitive testing and physiological
recordings in non-human primate models can provide an
invaluable platform for evaluating the impact of pharma-
cological treatments targeted to alter D1 and 5-HT2A
signaling on working memory performance.

Non-human primate models of prefrontal dysfunction

Subchronic PCP

Support for the PCP model stems from findings on the
effects of non-competitive NMDA antagonists in normal
healthy volunteers and patients with schizophrenia. For
example, acute exposure to ketamine in healthy volun-
teers produces symptoms resembling those of schizo-
phrenia (Javitt and Zukin 1991; Krystal et al. 1994; Abi-
Saab et al. 1998) and increases activation in dlPFC areas
46 and 9 (Vollenweider et al. 1997). Acute ketamine also
exacerbates positive symptoms in neuroleptic-free pa-

tients with schizophrenia (Malhotra et al. 1997). Further-
more, PCP abuse in humans can lead to a psychotic-like
state not altogether different from AMPH psychosis
(Ellinwood 1967; Snyder 1972, 1973; Rainey and Crow-
der 1975; Fauman et al. 1976; Allen and Young 1978).

In non-human primates, both acute and subchronic
PCP are used to model key symptoms associated with
schizophrenia. Acute PCP produces deficits in spatial
(Boyce et al. 1991; Rupniak et al. 1991) and object
working memory (Baron and Wenger 2001) as well as
PPI in monkeys (Linn and Javitt 2001) and the latter
deficit is reversible by clozapine (Linn et al. 2003). Prior
subchronic PCP exposure produces impairments in the
object retrieval/detour task, which is thought to be
dependent upon the integrity of corticostriatal function
and this deficit is associated with a reduction in dopamine
turnover in both dlPFC and striatum (Jentsch et al. 1997a,
1999a, 2000). Of note, acute administration of either a D4
antagonist or clozapine ameliorates this deficit (Jentsch
et al. 1997a, 1999b). Subchronic PCP also produces
behaviors reminiscent of other hallmark symptoms of
schizophrenia including psychomotor depression and
hallucinatory-like behaviors (Linn et al. 1999). At the
same time, however, this regimen actually tends to
increase affiliative behavior, in contrast to the effects of
repeated AMPH (see below) and the social withdrawal
that is prominent in schizophrenia. Another important
element of PCP, especially in cases of repeated admin-
istration, is the established evidence of primary neuro-
toxicity involving cingulate and retrosplenial cortices and
secondary degeneration in other limbic regions including
hippocampus (Corso et al. 1997; Ellison et al. 1999).
While the circuitry involved in this neurotoxicity may
also be compromised in schizophrenia, the issue must be
raised as to whether resulting neuropathology induced by
subchronic PCP can be fully ameliorated by subsequent
pharmacotherapies.

Chronic AMPH

It has been well established that chronic AMPH ad-
ministration in non-human primates elicits a subset of
behaviors reminiscent of the positive symptoms of
schizophrenia (Ellinwood et al. 1973; Ellison et al.
1981; Ridley et al. 1982; Ellison and Eison 1983). These
behaviors include hypervigilance, abnormal tracking,
grasping or manipulation of “thin air”, and checking the
environment as if in response to non-apparent stimuli and
have been referred to as psychotomimetic (Sams-Dodd
and Newman 1997) or hallucinatory-like (Ellison et al.
1981; Ellison and Eison 1983; Nielsen et al. 1983a,
1983b). As such, they provide a close approximation to
visual or auditory hallucinations in both AMPH psychosis
and schizophrenia (Ellinwood 1967; Snyder 1972, 1973).
There have been two particular criticisms of this model.
Continuous and/or high dose AMPH exposure induces
neurotoxicity of the nigrostriatal dopamine system (Elli-
son et al. 1978; Ellison and Ratan 1982; Ridley et al.
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1983), inconsistent with the known neuropathology of
schizophrenia and secondly, chronic AMPH has not been
considered to be associated with negative-like symptoms.
The latter is actually mistaken, as in fact, repeated AMPH
in non-human primates consistently induces negative-like
symptoms including social withdrawal and long-lasting
psychomotor depression (Annett et al. 1989; Knobbout et
al. 1996; Palit et al. 1997; Castner and Goldman-Rakic
1999a). The former criticism is harder to dispute since it
is well documented that continuous treatment or admin-
istration of doses in excess of 2 mg/kg per day in
monkeys is sufficient to induce nigrostriatal damage
(Ricaurte and McCann 1992).

AMPH sensitization

Repeated, intermittent escalating low-dose AMPH expo-
sure (AMPH sensitization) in rodents circumvents the
neural toxicity associated with continuous or high dose
exposure while producing a homologous behavioral
phenotype at the high doses of the escalating regimen
or in response to an acute low dose challenge after
repeated exposure (see Robinson and Becker 1986;
Kalivas and Stewart 1991). Castner and Goldman-Rakic
(1999a) have exploited AMPH sensitization to create a
novel non-human primate model relevant to schizophre-
nia which encompasses all of the symptoms induced by
continuous and/or high dose exposure without the obli-
gatory damage to the nigrostriatal system. In this model,
sensitized monkeys show evidence of both positive-like
and negative-like symptoms off drug including halluci-
natory-like behaviors and a persistent psychomotor
depression (Castner and Goldman-Rakic 1999a; Castner
et al. 2000b). Furthermore, this model produces the third
hallmark symptom, and possibly core deficit of schizo-
phrenia, i.e. a profound, long-lasting impairment in
working memory (Castner and Goldman-Rakic 1999b).
The nature of the cognitive deficits are of critical
importance as they are highly related to the integrity of
prefrontal cortical function and like subchronic PCP there
is a significant reduction of dopamine turnover in dlPFC
and striatum (Jentsch et al. 1997a, 1999a; Castner et al.
2001). Moreover, in AMPH sensitized monkeys the
reduction in prefrontal dopamine turnover is associated
with profound deficits in spatial working memory and
these deficits persist for several months even with
pretraining (Castner and Goldman-Rakic 2000) and
“permanently” without pretraining (Castner and Gold-
man-Rakic 1999b). Furthermore, aspiration of dlPFC in
monkeys blocks AMPH sensitization of hallucinatory-like
behaviors, raising the possibility that prefrontal function
and dysfunction and its working memory correlates may
have a significant role to play in the ontogeny of certain
symptoms of psychosis (Castner and Goldman-Rakic
2003). Therefore, we suggest that AMPH sensitization in
the non-human primate is a robust, stable, and validated
model in which to study the impact of novel compounds
targeted for the treatment of cognitive deficits in schizo-

phrenia. It is of note that a mechanism analogous to
sensitization has been postulated to play an etiological
role in the emergence of symptoms of schizophrenia
during adolescence and early adulthood (Lieberman et al.
1997).

Neurodevelopmental models

There are two major non-human primate models relevant
to the neurodevelopmental hypothesis, fetal X-irradiation
and NVH lesions. In the first model (Algan and Rakic
1997), X-irradiation is delivered to the fetus in utero
during critical periods of neuronal development, e.g.
between embryonic days 33 and 40, during which time
thalamic relay neurons are being generated that will send
projections to neocortex. There are several aspects of this
model that accurately simulate key deficits found in
schizophrenia. Notably, there is a delayed postpubertal
onset of spatial working memory deficits (Castner et al.
1998) analogous to that observed in schizophrenia
(Selemon et al. 1995). X-irradiated monkeys also have
>20% reduction in thalamic volume (Schindler et al.
2002), and this deficiency may be related to craniofacial
dysmorphogenesis consistent with abnormalities observed
in patients (Young et al. 2000; Gelowitz et al. 2002).
While this model shows promise for its relevance to
schizophrenia, further research is necessary with regard to
the ability of pharmacotherapy to alleviate working
memory deficits.

The second neurodevelopmental approach in non-
human primates entails NVH lesions as in rodents.
Similar to the other models, this manipulation approxi-
mates a subset of behavioral abnormalities that resemble
those found in schizophrenia. NVH lesions in rhesus
monkeys produce a delayed, postpubertal onset of social
withdrawal and an increase in the expression of locomotor
stereotypies (Beauregard and Bachevalier 1996). Further-
more, this neurological insult is also associated with a
postpubertal onset of impairments in specific aspects of
memory such as relational learning, consistent with the
postpubertal emergence/exacerbation of cognitive deficits
in schizophrenia (Bachevalier et al. 1999). It has been
hypothesized that the range of deficits shown in this
model provides evidence of dysfunction in brain regions
distant from the site of the initial insult such as PFC and
basal ganglia. Notably, adult monkeys with NVH lesions
show evidence of dysregulation of striatal dopamine and
neuropathology of dlPFC as measured by N-acetyl-
aspartate, a marker of neuronal function (Bertolino et al.
1997; Saunders et al. 1998) potentially akin to that
observed in schizophrenia (Breier et al. 1997; Bertolino et
al. 1999). Thus, this model has promise for studying both
the etiology as well as the treatment of schizophrenia.
However, the underlying neuropharmacology of the
deficits involved and their relation to working memory
needs to be fully characterized in order to prove useful for
evaluating novel pharmacotherapies targeted towards
cognitive deficits.
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Conclusions

From the above review, it is evident that subchronic PCP,
AMPH sensitization, and neurodevelopmental insult are
the best models for testing novel compounds for the
treatment of cognitive deficits in schizophrenia when used
in comparison with the study of normal neural mecha-
nisms in working memory. Although these models have
been studied in both primates and rodents, the probes used
to test the impact of these manipulations on neural
circuitry and cognition can be inconsistent between
species. Part of this problem is due to the neuroanatomical
differences between rodents and primates in the function-
al circuitry that is recruited by different working memory
tasks, particularly in relation to the mPFC in the rodent.
Moreover, the magnitude of cognitive deficits and the
extent of recovery or restoration of function by various
pharmacological treatments seen in these and other non-
human primate models are substantial and significant in
typically small sample sizes (n=4–6). Therefore, the non-
human primate models of cognitive dysfunction relevant
to schizophrenia provide an essential platform for the
analysis of the development of different aspects of
behavioral symptoms and their underlying cellular mech-
anisms. This can best be accomplished through an
integrated approach that combines selective cognitive
tasks identical to those that can be used in clinical trials in
conjunction with functional imaging and single unit
recording in these tasks. In addition, it is important to
have a measure of signal processing dysfunction, which
has been identified across all three species. PPI and
perhaps latent inhibition fulfill this requirement. There-
fore, it is important in models of prefrontal dysfunction to
contrast the impact on working memory performance as
compared to sensorimotor gating and to determine the
extent to which the underlying neural circuitry in the two
processes overlaps. Furthermore, this integrated approach
can be applied in longitudinal studies to provide insights
into the etiology, as well as the impact of pharmacolog-
ical intervention relevant to key symptoms. Thus, for
example, the neurodevelopmental models provide the
opportunity to investigate prefrontal and medial temporal
lobe function longitudinally before, during, and after
puberty. Therefore, it should be possible to determine the
temporal relationship between the emergence of cognitive
deficits and those that are considered positive- or
negative-like. Moreover, this temporal pattern can also
be examined for deficits in relation to sensorimotor gating
and latent inhibition. By these means, we can gain greater
insights into the cognitive sequelae of prefrontohip-
pocampal disruption and the dependence of positive and
negative symptoms on pre-existent cognitive dysfunction.
Such insights may help us to better ascertain the specific
pharmacological/circuit targets by which new drugs can
be formulated to alleviate all of the hallmark symptoms of
schizophrenia. On the other hand, the pharmacological
models also provide the opportunity for studying both the
underlying causes that generate these symptoms as well as
the pharmacotherapies for their alleviation. The demon-

strated durability of the AMPH sensitization model for the
induction and persistence of the hallmark symptoms of
schizophrenia provides a platform for pharmacotherapy in
the treatment of the core deficit in spatial working
memory, facilitating the investigation of both acute and
chronic drug therapies targeted for this purpose. Critical-
ly, this model has already been put to the test with the
demonstration that chronic administration of a dopamine
D1 antagonist can produce a long-lasting alleviation of the
deficit in spatial working memory (Castner and Goldman-
Rakic 1999b). In conclusion, non-human primate models
of cognitive dysfunction, by virtue of their direct
relationship with human cognition and working memory,
can provide critical information on the efficacy of novel
compounds and accelerate the discovery of new drugs for
treating the core deficit in schizophrenia.
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