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Abstract There is an urgent need to improve the
pharmacotherapy of schizophrenia despite the introduc-
tion of important new medications. New treatment
insights may come from appreciating the therapeutic
implications of model psychoses. In particular, basic and
clinical studies have employed the N-methyl-D-aspartate
(NMDA) glutamate receptor antagonist, ketamine, as a
probe of NMDA receptor contributions to cognition and
behavior. These studies illustrate a translational neuro-
science approach for probing mechanistic hypotheses
related to the neurobiology and treatment of schizophre-
nia and other disorders. Two particular pathophysiologic
themes associated with schizophrenia, the disturbance of
cortical connectivity and the disinhibition of glutamater-
gic activity may be modeled by the administration of
NMDA receptor antagonists. The purpose of this review
is to consider the possibility that agents that attenuate
these two components of NMDA receptor antagonist
response may play complementary roles in the treatment
of schizophrenia.
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Introduction

Psychiatry is at a crossroads in the search for new
pharmacotherapies for schizophrenia. Over the past
15 years a large number of new antipsychotic medications
have greatly improved the tolerability and, to a lesser
extent, increased the efficacy of pharmacotherapy for this
disorder (Arvanitis and Miller 1997; Carpenter 1995,
1996; Daniel et al. 1999; Essock et al. 1996; Kane et al.
1988, 2002; Marder and Meibach 1994; Rosenheck et al.
1997; Tollefson and Sanger 1997). When prescribed
optimally, these new treatments follow the same funda-
mental paradigm: substantial but incomplete attenuation
of dopamine D2 receptor function combined with block-
ade or inverse agonism of serotonin 5-HT2 receptor
function (Burris et al. 2002; Egan et al. 1998; Kapur et al.
1999; Meltzer et al. 1989; Stockmeier et al. 1993). This
mechanistic redundancy may contribute to the failure of
available treatments to effectively treat many patients and
the finding that schizophrenia remains among the most
disabling disorders in society (Gross et al. 1999).

To fundamentally advance the pharmacotherapy of
schizophrenia, a path of high financial risk for the
pharmaceutical industry will need to be explored: the
pursuit of new treatment mechanisms. Most of the highly
novel treatment mechanisms explored as stand-alone
treatments for schizophrenia over the past 15 years failed
in development, including selective D4 receptor antago-
nism (Kramer et al. 1997), D4-5-HT2A receptor antago-
nism (Truffinet et al. 1999), selective 5-HT2 receptor
antagonism (Axelsson et al. 1991; Wiesel et al. 1994),
cannabinnoid-1 receptor antagonism (Diana et al. 1998;
Shen and Thayer 1999), and D1 receptor antagonism
(Loebel et al. 1999). The limitations of the agents tested
as stand-alone pharmacotherapies do not rule out a
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potential role for these agents in augmenting the efficacy
of other neuroleptic medications. In fact, most of these
mechanisms are common components of the receptor
affinity of currently “atypical” neuroleptic medications
(Meltzer et al. 1989; Zimbroff et al. 1997).

In response to the societal need and despite the risks,
the pharmaceutical industry has demonstrated a sustained
interest in exploring novel treatment mechanisms for
schizophrenia. A spectrum of novel agents are in devel-
opment including neuropeptide receptor agonists and
antagonists (Alonso et al. 1999; Emonds-Alt et al. 1995;
Gully et al. 1995; Kramer et al. 1998; Sarhan et al. 1997),
agonists or partial agonists for nicotinic receptors bearing
the a-7 subunit (Simosky et al. 2002), glycine transporter
antagonists (Lopez-Corcuera et al. 2001), AMPAkines
(Goff et al. 1999a), and metabotropic glutamate receptor
5 (mGluR5) agonists or positive allosteric modulators
(Awad et al. 2000). Each of these agents is based on a
novel and important aspect of corticolimbic circuitry.
Further, technological advances at the molecular and
biochemical levels are likely to produce many novel
compounds (Krstulovic 1999; Spencer 1998; Van Hijfte
et al. 1999). Both the academic community and the
pharmaceutical industry, however, face major challenges
in bridging the gap between promising compounds and
effective treatments. A premise of this review is that a
translational neuroscience perspective, including experi-
mental human laboratory-based research, may be a
critical component linking molecular neuroscience and
psychiatric practice.

This review will discuss two pathophysiologic themes
arising from recent schizophrenia research: (1) impaired
cortical connectivity and (2) glutamatergic disinhibition.
It will then describe the phenotypic similarities between
schizophrenia and the subanesthetic effects of ketamine in
healthy humans. A body of research will then be reviewed
that suggests that the face validity of the ketamine
“model” for schizophrenia may arise as a consequence of
the capacity of NMDA receptor antagonism to produce
transiently neural network dysfunction pertaining to the
two pathophysiologic themes associated with schizophre-
nia. Building on more than a decade of psychopharma-
cology research involving ketamine, this review will then
consider potential therapeutic implications of the actions
of NMDA receptor antagonists for the treatment of
schizophrenia.

Two pathophysiologic themes
in schizophrenia research: abnormal cortical connectivity
and glutamatergic disinhibition

There is growing consensus that schizophrenia is associ-
ated with abnormal or reduced cortical connectivity. In
postmortem studies, these deficits are reflected by
reduced cortical volume (Bogerts 1999), smaller gluta-
matergic somatic or neuropil size (Arnold et al. 1995;
Rajkowska et al. 1998; Selemon and Goldman-Rakic
1999), decreased number of dendritic spines (Glantz and

Lewis 2000, 2001; Rosoklija et al. 2000; see Fig. 1),
disarray of neuronal orientation (Kovelman and Scheibel
1984), and reduced synaptic proteins (Eastwood et al.
1995; Glantz and Lewis 1997). Paradoxically, particular
axonal projections may be relatively increased in schizo-
phrenia (Benes et al. 1987) and schizophrenia is associ-
ated with regional increases and decreases in glutamate
receptor gene expression and ligand binding (reviewed in
Deakin and Simpson 1997; Krystal et al. 2000; Meador-
Woodruff and Healy 2000). These postmortem studies are
paralleled by in vivo structural neuroimaging findings
indicating reduced cortical volumes (Lim et al. 1996;
Weinberger et al. 1992; Wible et al. 1995), magnetic
resonance spectroscopy studies consistent with reduced
neuropil volume or viability (Bertolino and Weinberger
1999; Steel et al. 2001), and diffusion tensor imaging
studies suggesting that cortical connectivity is disturbed
(Buchsbaum et al. 1998; Kubicki et al. 2002; Lim et al.
1999). These synaptic deficits appear to interfere with the
coherent activity of cortical networks (Hoffman et al.
1991; Koenig et al. 2001; Lawrie et al. 2002; Meyer-
Lindenberg et al. 2001; Michelogiannis et al. 1991;
Tauscher et al. 1998; Winterer et al. 2001), but may in
some cases and using some research paradigms produce
excessive coherence of regional brain activity (Mann et
al. 1997; Wada et al. 1998). Consistent with these
disturbances in cortical network functions, schizophrenic

Fig. 1A–C Depiction of dendritic spines from area 46, layer 3,
from postmortem human tissue from: A nonschizophrenic individ-
ual, B and C individual diagnosed with schizophrenia. In each
figure, dendritic spines are the lollipop-like blebs that protrude
from the dendrites. As is evident in these pictures, the number of
dendritic spines in the tissue from the schizophrenic individuals are
much lower than in the tissue from the nonschizophrenic individ-
ual. From Glantz and Lewis (2000)
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patients may fail to show optimal task-related activity as
reflected in particular frequencies of the electroenceph-
alogram (Haig et al. 2000; Kwon et al. 1999; Lee et al.
2001), reduction in event-related potentials (Mathalon et
al. 2000; McCarley et al. 2002), or decreased (or
pathologically increased) cortical activation during task
performance in functional neuroimaging studies (Barch et
al. 2001; Fletcher et al. 1998; Weinberger et al. 1986).
Presumably these disturbances in cortical network func-
tion underlie cognitive impairments that are evident
during neuropsychological testing that, in turn, appear
to underlie both symptoms and disability in schizophrenic
patients (Bell and Bryson 2001; Bryson et al. 1998; Gold
et al. 2002; Goldberg et al. 2001; Lysaker et al. 1996).

To the extent to which it occurs, it is not clear whether
a deficit in NMDA receptor function in patients diagnosed
with schizophrenia arises as a secondary consequence of
neuropil reductions (Hoffman and McGlashan 1997) or as
a primary impairment in NMDA receptor function (Olney
and Farber 1995; Coyle 1996; Tamminga 1998). From
this perspective, it is interesting that brain levels of two
metabolites that antagonize NMDA receptor function, N-
acetyl-aspartyl-glutamate (NAAG) (Tsai et al. 1995) and
kynurenate (Schwarcz et al. 2001) were elevated in
postmortem tissue from schizophrenic patients. These
findings renew interest in the possibility that endogenous
psychotigens contribute to schizophrenia symptoms,
reminiscent of older, now abandoned, autointoxication
hypotheses (Barbeau 1967; Carpenter et al. 1975). Recent
studies also suggest that polymorphisms in glutamate-
related genes that would be predicted to alter glutamater-
gic function are associated with schizophrenia. These
polymorphisms include neureglin 1 (Stefansson et al.
2002), which may influence the insertion of NMDA
receptor subunits into the membrane, and d-amino acid
oxidase and G72 (Chumakov et al. 2002), proteins that
interact to metabolize d-serine.

A second theme—increased glutamate release arising
from disinhibition or hyperactivity—has received less
attention, perhaps because it may contrast with the
prevailing view that schizophrenia is associated with
hypofrontality (Andreasen et al. 1997; Siegel et al. 1993).
Also, as will be briefly reviewed below, research findings
related to this research theme have been variable across
studies. Some reports suggest that schizophrenia may be
associated with normal frontal cortical metabolism (Biver
et al. 1992; Gur et al. 1995) or metabolic activation
(Catafau et al. 1994; Cleghorn et al. 1989). Studies of
metabolic activation are supported by proton magnetic
resonance imaging studies suggesting increased glutamate
or glutamine levels in the frontal cortex in schizophrenic
patients (Bartha et al. 1997; Cecil et al. 1999; Williamson
et al. 1999). Even when patients as a group had normal or
reduced metabolism, metabolic rates increased with
increasing severity of positive symptoms (Gur et al.
1987), particularly auditory hallucinations (Dierks et al.
1999; Shergill et al. 2000).

To the extent that glutamatergic hyperactivity occurs,
it may arise from deficits in GABAergic function.

Postmortem studies suggest many possible scenarios for
GABA deficiency: the number of GABA-releasing neu-
rons might be reduced (Beasley and Reynolds 1997;
Benes et al. 1991; Daviss and Lewis 1995). If the number
of these neurons is not reduced (Lewis 2000; Woo et al.
1997), then GABA neurons may be located in the wrong
cortical layers (Akbarian et al. 1993a, 1993b, 1996; Kalus
et al. 1997) or unable to release GABA normally due to
reduced levels of the GABA synthetic enzyme glutamic
acid decarboxylase (GAD) (Akbarian et al. 1995; Impag-
natiello et al. 1998; Volk et al. 2000) or absent terminal
axon cartridges (Pierri et al. 1999; Simpson et al. 1989).
In response to an observed or presumed deficit in
GABAergic innervation, studies reported an up-regulation
in gene expression for GABAA subunits (Ohnuma et al.
1999) or ligand binding to GABAA receptors (Benes et al.
1992, 1996; Dean et al. 1999; Hanada et al. 1984, 1987)
and a down-regulation of GABAB receptors (Mizukami et
al. 2000). A recent elegant study showed that GABA
receptor up-regulation was synapse specific: when the
terminal lacked the axon cartridge, the postsynaptic
GABA receptors were up-regulated (Volk et al. 2002).
In vivo studies of GABA receptors that used benzodiaz-
epine ligands have not produced evidence of diagnosis-
related alterations in GABAA receptors (Abi-Dargham et
al. 1999), but they have produced some interesting
secondary findings (Verhoeff et al. 1999), such as an
association with the severity of psychosis (Busatto et al.
1997). There is also evidence that neuroleptic treatment
may have a salutary effect on disturbances in GABA
systems in schizophrenic patients (Pierri et al. 1999;
Todtenkopf and Benes 1998).

The population of GABA cells that are most aberrant
in schizophrenia, chandelier cells, may be particularly
associated with glutamatergic disinhibition (Lewis 2000).
These cells synapse on the proximal axon segments of
glutamatergic neurons and provide both feedforward and
feedback inhibition on cortical glutamatergic output. One
predicted consequence of this glutamatergic disinhibition
is excessive glutamate release and glutamate receptor–
mediated neurotoxicity (Lewis et al. 1999). This view is
consistent with a growing body of evidence from
structural neuroimaging studies that the neuropathology
of schizophrenia may be progressive (Mathalon et al.
2001; Thompson et al. 2001). A recent study also
suggested that deficits in GABA receptor function
increased the vulnerability to a pharmacologically in-
duced psychosis (D’Souza et al. 2003). In addition, there
is some evidence that the GABA abnormalities that are
found in schizophrenic patients appear to be associated
with mood disorders and schizoaffective disorder (Benes
and Berretta 2001; Cotter et al. 2002). Thus, the treatment
implications of disinhibitory neuropathology may be
relevant to psychosis across these diagnoses, but may
not generalize to all schizophrenic patients.

Other data may suggest that glutamatergic hyperactiv-
ity in schizophrenia may emerge via other mechanisms.
For example, abnormalities of myelin formation schizo-
phrenia (Foong et al. 2000) and dysregulation of myelin-
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related genes (Hakak et al. 2001) may contribute to
impaired glutamatergic regulation (Werner et al. 2001).
Disturbance in glutamate transporters in thalamic neurons
may also reflect abnormalities in the handling of gluta-
mate in the cortex (Smith et al. 2001).

In summary, two themes of the emerging pathophys-
iology of schizophrenia—reduced connectivity and glu-
tamatergic disinhibition—have emerged from postmor-
tem analyses and in vivo neuroimaging studies. The
subsequent review will highlight the manner in which
studies of psychotigenic drugs help to articulate the
functional significance and therapeutic implications of
these two forms of pathology.

Psychotigenic drugs impair connectivity and activate
cortical networks: therapeutic implications

NMDA receptor antagonists have been employed in
human research studies that have attempted to character-
ize the contributions of NMDA receptors to human
cognition and behavior with the long-term aim of
identifying new treatments for schizophrenia and other
psychiatric and substance abuse disorders (Farber et al.
1998; Heresco-Levy and Javitt 1998; Krystal et al. 1999e,
2003b; Newcomer and Krystal 2001). As highlighted in
recent reviews (Krystal et al. 1999a; Vollenweider and
Geyer 2001), the insights generated through the admin-
istration of ketamine to healthy humans and patient
groups could not be generated through other means.

NMDA receptor antagonists and schizophrenia

NMDA receptor antagonist effects in healthy humans
resemble the signs and symptoms of schizophrenia (Abi-
Saab et al. 1998). The prototype uncompetitive NMDA
receptor antagonist, phencyclidine (PCP), produced psy-
chotic symptoms, thought disorder, blunted affect, and
cognitive impairments that, for the initial investigative
team, captured the gestalt of schizophrenia (Luby et al.
1959). Similarly, some individuals presenting to psychi-
atrists following PCP ingestion, generally in the context
of multiple episodes of use of multiple substances, could
not be distinguished from schizophrenic patients (Fauman
et al. 1976).

Ketamine, rather than PCP, emerged as the prototypal
NMDA receptor antagonist for experimental psychophar-
macologic research. PCP was withdrawn from the clinical
formulary in the 1960s as a result of its abuse liability.
However, the PCP derivative, ketamine, remains an
important anesthetic and analgesic medication with an
excellent safety record (Green et al. 1998; Haas and
Harper 1992; Mercadante 1996; Reich and Silvay 1989).
Ketamine presented advantages over PCP for experimen-
tal psychopharmacologic research because it had a similar
profile of effects in humans to that of PCP (Domino et al.
1965) but with lower NMDA receptor affinity (Anis et al.
1983) and shorter plasma half-life (Idvall et al. 1979;

Wieber et al. 1975). As a result, during intravenous
infusion, unpleasant ketamine effects may be terminated
by halting the infusion without the need for supporting
medications (J. Krystal, personal communication) and one
can rapidly titrate plasma levels for experimental purpos-
es (Bowdle et al. 1998). Further, with regard to settings
where appropriate safety procedures are in place, there is
extensive documentation of the safety of ketamine
infusion in patients diagnosed with schizophrenia (Car-
penter 1999). In the United States, ketamine is available
only as a racemic mixture. However, in Europe, the S-
isomer of ketamine is available, and it has greater
selectivity for NMDA glutamate receptors than the R-
isomer (Vollenweider et al. 1997). Overall, this record of
ketamine safety supports continued psychopharmacologic
research with this agent when the question under inves-
tigation is sufficiently important and the study design is
informative (D’Souza et al. 1999).

The hypothesis that ketamine effects model aspects of
schizophrenia is supported by the following observations:
(1) it transiently produces symptoms in healthy subjects
that are similar to the positive, negative, and disorganized
symptoms of schizophrenia (Krystal et al. 1994, 1998a;
Malhotra et al. 1997; Newcomer et al. 1999; Oye et al.
1992; Vollenweider et al. 1997; see Fig. 2); (2) ketamine-
induced thought disorder in healthy subjects resembles
thought disorder in schizophrenic patients when com-
pared directly (Adler et al. 1998); (3) it briefly increases
the signs and symptoms of the disorder in schizophrenic
patients (Lahti et al. 1995b; Malhotra et al. 1997); (4) it
produces executive cognitive impairments in healthy
subjects that are associated with schizophrenia, including
effects on attention, working memory, declarative mem-
ory, abstract reasoning, mental flexibility, insight, plan-
ning, and judgement (Krystal et al. 1994, 1998a, 1999d;
Malhotra et al. 1997; Newcomer et al. 1999; see Fig. 2);
and (5) it disturbs physiologic indexes of information
processing in healthy subjects that resemble deficits in
schizophrenia, including event-related potentials (Um-
bricht and Vollenweider 1999), smooth pursuit eye
tracking (Avila et al. 2002; Radant et al. 1998), and
cognitive activation of the prefrontal cortex as assessed
with fMRI (Abel et al. 2003; Belger et al. 2003b).

The breadth of ketamine effects produced in healthy
subjects suggests similarities to that in patients with
nonparanoid schizophrenia or patients early in the course
of their illness. The prominence of cognitive impairment
and conceptual disorganization associated with ketamine
effects are more consistent with the disorganized or
undifferentiated subtypes of schizophrenia rather than
paranoid schizophrenia. The paranoid/nonparanoid dis-
tinction has phenomenologic, prognostic, and biological
significance (Fenton and McGlashan 1991a, 1991b;
McGlashan and Fenton 1993). The distinction between
NMDA receptor antagonist effects in healthy human
subjects and paranoid schizophrenia is paralleled by the
apparent relative independence of the ketamine psychosis
of D2 receptor function. In schizophrenic patients, partic-
ularly those with recent psychotic exacerbations, psy-
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chotic symptoms are associated with dopaminergic
hyperactivity (Abi-Dargham et al. 2000; Breier et al.
1997b; Laruelle et al. 1996, 1999). In contrast, the
ketamine psychosis is not ameliorated by haloperidol
pretreatment or worsened substantially by amphetamine
coadministration (Krystal et al. 1999c, 1999d), even
though amphetamine increases the activation of dopamine
systems associated with ketamine administration (Kegeles
et al. 1999). Alternatively, prominent perceptual distor-
tions are more typically associated with young patients,
particularly during the onset of schizophrenia, rather than
chronic phases or elderly patients (Bowers and Freedman
1966; Davidson et al. 1995; Gouzoulis-Mayfrank et al.
1998).

While there are many parallels between the cognitive
and behavioral effects of ketamine and schizophrenia,
there are differences as well—as would be expected
between a pharmacologic model and a neurodevelopmen-
tal disorder (Abi-Saab et al. 1998). Ketamine produces
sedative and euphoric effects that resemble ethanol
intoxication (Krystal et al. 1998a, 1998b). Also, in a

pilot study, anecdotal reports suggested that the dissoci-
ation-like component of the perceptual effects of ket-
amine were recognized as not typical of their illness by
most schizophrenic patients (J. Krystal, personal commu-
nication). The attempt to finely map the cognitive effects
of ketamine upon the array of cognitive dysfunction in
schizophrenia also has met methodologic challenges.
First, the pattern of cognitive deficits associated with
schizophrenia is consistent across studies when functions
are considered generally, but the magnitude of impair-
ment on a particular test may vary across patients, as
would be expected from a heterogenous disorder that may
be treated with a large number of psychotropic agents and
that may be associated with progressive cognitive decline
(Buchanan et al. 1994; Green et al. 1997; Harvey et al.
1998; Heaton et al. 1979; Saykin et al. 1994). Similarly,
there is a general consensus related to the cognitve
dysfunctions produced by ketamine across studies, but
there are some differences across studies on whether a
particular test will be a sensitive measure of ketamine
effects. One reason for this inconsistency may be that

Fig. 2 Description of ketamine effects in healthy human subjects.
Top left figure illustrates the dose-related elicitation of transient
psychotic symptoms in healthy subjects (n=18) during ketamine
infusion, as reflected in the Brief Psychiatric Rating Scale (BPRS)
four key positive symptom score (BPRS items: hallucinatory
behavior, suspiciousness, unusual thought content, conceptual
disorganization). Data are presented as mean € SEM for saline
(open circles), ketamine 0.1 mg/kg (filled circles), and ketamine
0.5 mg/kg (filled squares). The ketamine dose-by-time interaction
effect was highly significant (p<.0001). Top right figure illustrates
the transient dose-related production of symptoms resembling the
negative symptoms of schizophrenia in the same group of healthy
subjects, as reflected in the BPRS three key negative symptom
score (BPRS items: blunted affect, emotional withdrawal, and

motor retardation). Data are presented as mean € SEM for saline
(open circles), ketamine 0.1 mg/kg (filled circles), and ketamine
0.5 mg/kg (filled squares). The ketamine dose-by-time interaction
effect was highly significant (p<.0001). Bottom left figure illus-
trates the dose-related reduction in verbal fluency during ketamine
infusion in healthy human subjects (n=15). Open circles represent
individual subjects. Comparisons of ketamine test days with
placebo test day, by a within-subjects post hoc contrast, **p<.01.
The bottom right figure presents ketamine effects on the Wisconsin
Card Sorting Test (WCST) perseverative error in healthy subjects
(n=19) on their 1st test day. Open circles represent individual
subjects. Comparisons of ketamine test days with placebo test day,
by Student-Newman-Keuls test, **p<.01. Modified from Krystal et
al. 1994
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there is a steep dose-response relationship for the
subanesthetic effects of ketamine upon cognitive function
(Krystal et al. 1994; Newcomer et al. 1999). Across
studies, different ketamine doses may be used and in
studies that do not successfully hold ketamine levels
steady during testing, tests may be performed when the
subject is exposed to varying plasma levels of ketamine.
Comparisons of the sensitivity of different cognitive
domains to impairment by ketamine is also complicated
by the use of different measures that vary in difficulty, to
evaluate particular cognitive functions across studies. As
a result, the fine mapping of the cognitive impairments
produced by ketamine in healthy subjects upon the
cognitive deficits of schizophrenia will be challenging
and may not turn out to be a productive enterprise.

However, gross differences in ketamine response in
schizophrenic patients and healthy subjects compared in
the same study may provide insight into altered gluta-
matergic function associated with the pathophysiology of
schizophrenia. Many dimensions of the ketamine re-
sponse in schizophrenic patients and healthy subjects are
similar in magnitude and form. Although equating
symptoms in an ill person and a healthy person is risky,
the magnitude of the worsening of delusions in schizo-
phrenic patients appears to be comparable to the extent to
which ketamine produces delusions in healthy individu-
als. In contrast, two preliminary observations have been
made: there may be blunting of the negative symptom
response (Lahti et al. 2001) and increased sensitivity to
the hallucinogenic effects (particularly auditory halluci-
nation) (J. Krystal, personal observation) of ketamine in
schizophrenic patients relative to healthy control subjects.
The finding of increased sensitivity to worsening of
auditory hallucinations in patients, if it can be replicated,
may suggest that ketamine exacerbates a glutamatergic
deficit in patients in a pathway that contributes to auditory
hallucinations. For example, frontotemporal connectivity
deficit in schizophrenic patients has been hypothesized to
contribute to auditory hallucinations (Ford et al. 2001a,
2002). Alternatively, reduced sensitivity to the evocation
of negative symptoms in patients could reflect a comple-
mentary hyperinnervation in some pathways (Benes et al.
1987; Longson et al. 1996), consistent with some
postmortem findings (Deakin and Simpson 1997).

Therapeutic implications of the impairment
of functional connectivity by NMDA receptor antagonists

NMDA receptor antagonist effects may guide the devel-
opment of at least two groups of agents related to the two
mechanistic themes outlined above: abnormal cortical
connectivity and glutamatergic disinhibition. One group,
including glycineB receptor agonists, glycine transporter
(GlyT-1) antagonists, AMPAkines, and mGluR5 agonists
consists of agents that are intended to counteract a deficit
in glutamatergic synaptic function. The other group of
agents, reviewed in the next section, consists of drugs that
might attenuate the impact of glutamatergic hyperactivity,

including glutamate release inhibitors (GRIs) and non-
NMDA glutamate receptor antagonists.

Glycinergic pharmacotherapies were the first treatment
approach introduced based on the NMDA receptor
antagonist model psychosis, and they were intended to
correct a deficit in NMDA receptor function. Glycine is a
coagonist of the NMDA receptor, meaning that this
receptor cannot function optimally unless both glycine
and glutamate are bound (Javitt and Zukin 1989; Johnson
and Ascher 1987). Recent data suggest that glycineB
binding sites of NMDA receptors are exposed to at least
two types of agonist exposure: tonic and phasic. The tonic
control synaptic glycine levels is controlled by high
activity glycine transporters, such as GlyT-1, that rapidly
take up glycine that passively diffuses into glutamatergic
synapses and maintains these levels below those required
to saturate glycineB sites (Supplisson and Bergman 1997).
Consistent with this view, GlyT-1 antagonists are effec-
tive in enhancing NMDA receptor function in animals
(Bergeron et al. 1998). One consequence of maintaining
glycine levels below the receptor saturation level is that it
enables another endogenous glycineB receptor agonist, d-
serine, to enhance NMDA receptor function in an
activity-dependent manner (Ivanovic et al. 1998; Schell
et al. 1997). d-Serine may be released into synapses by
glia in response to a-amino-3-hydroxy-5-methylisoxa-
zolepropionic acid (AMPA) glutamate receptor stimula-
tion associated with synaptic glutamate release (Schell et
al. 1995). From this perspective, drugs that enhance
AMPA receptor function, including the AMPAkines, also
may enhance d-serine release and thereby increase
NMDA receptor function.

Drugs that enhance glycineB binding site function
reduce the behavioral effects of NMDA receptor antag-
onists in healthy humans and negative symptoms and
cognitive impairments in schizophrenic patients. Glycine
or glycine transporter antagonists attenuate some NMDA
receptor antagonist effects acutely in both animals (Javitt
et al. 1997; Toth and Lajtha 1986) and humans (D’Souza
et al. 1997), perhaps related to interactions between the
glycine and glutamate binding sites of the NMDA
receptor (Grimwood et al. 1993; Priestley and Kemp
1994). With chronic administration, the glycineB receptor
agonists, glycine and d-serine, and the partial agonist d-
cycloserine are moderately successful in augmenting the
efficacy of all neuroleptics, except perhaps clozapine, in
treating negative symptoms and executive cognitive
impairments (D’Souza et al. 1995; Goff et al. 1995,
1996, 1999b; Heresco-Levy et al. 1996, 1998, 1999; Javitt
et al. 1994). d-Serine, which crosses the blood-brain
barrier better than glycine and is not a substrate for
GlyT-1, may offer the most promising approach that has
been tested in patients to date (Tsai et al. 1998).

Despite the attractiveness of viewing glycineB receptor
agonists as “anti-ketamines,” the therapeutic reality
appears more complicated. For example, glycineB recep-
tor agonists have not shown clear promise as stand-alone
treatments, their therapeutic effects emerge with chronic
rather than acute administration, and chronic administra-
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tion may reduce glycineB receptor function (Krystal and
D’Souza 1998). Further, chronic antipsychotic adminis-
tration, including the use of clozapine, appears to enhance
NMDA receptor function and to down-regulate ligand
binding to glycineB receptors (Banerjee et al. 1995;
McCoy and Richfield 1996). These adaptations might
suggest that neuroleptic treatment might reduce the
impact of pro-glycine treatments.

An alternative view of glycineB receptor treatments is
that they are neuroplasticity promotors. It is possible that
the progressive volume loss of brain volume observed in
some schizophrenic patients reflects a failure to manifest
the neurotrophic impact of life experience–related brain
network activity as opposed to increased neurotoxicity. In
animals, for example, environmental enrichment may
increase neurogenesis, protect against apoptosis, enhance
synaptic plasticity, and improve learning and memory
(Kempermann and Gage 1999; Kempermann et al. 1998;
Tang et al. 2001; Young et al. 1999). It appears that
NMDA receptor function is very important for the
positive impact of environmental enrichment on neuro-
plasticity (Tang et al. 2001) and, in turn, experience-
dependent activation increases the insertion of NMDA
receptors into synaptic dendritic membranes (Quinlan et
al. 1999). Thus, schizophrenic patients may suffer from
two compounded obstacles with respect to the neurotro-
phic or neuroprotective impact of life experience. First,
they have deficits in connectivity or in NMDA receptor
function, in particular, that impede this important form of
neuroplasticity. Second, the symptoms and cognitive
deficits associated with schizophrenia may contribute to
an impoverishment of life experience, particularly its
most important aspect for neurotrophic functions: the
novelty of environmental stimuli (Kempermann and Gage
1999).

From this perspective, one might expect therapeutic
programs that enrich environmental experience for
schizophrenic patients to synergize with pharmacologic
treatments that enhance NMDA receptor–related neuro-
plasticity and clinical outcomes in patients diagnosed
with schizophrenia. Cognitive remediation programs, for
example, appear to enhance task-related cortical activa-
tion, performance on neuropsychological tests, and over-
all clinical outcome in schizophrenic patients (Bell et al.
2001; Wexler et al. 2000). However, in the face of
deficient cortical connectivity or impairments in NMDA
receptor function, one might expect that environmental
enrichments, by themselves, might not compensate fully
for a reduced capacity for neuroplasticity associated with
schizophrenia. By facilitating NMDA receptor-related
neuroplasticity, drugs that facilitate NMDA receptor
function without promoting neurotoxicity might increase
the capacity of cortical networks to undergo experience-
dependent modification. From this perspective, the grad-
ually accumulating efficacy associated with glycine
treatment and the persistence of the therapeutic effects
of glycine following medication discontinuation (Heresco-
Levy et al. 1996, 1998) could represent the gradual
accrual of nontransient forms of neuroplasticity.

Other agents may provide alternatives to glycineB
receptor facilitation as a strategy for enhancing NMDA
receptor function or facilitating glutamatergic neurotrans-
mission. One might expect, for example, that drugs that
facilitated other excitatory glutamate receptors might help
to increase the level of neural network activity and to
enhance the voltage-dependent recruitment of NMDA
receptors (Yuste et al. 1999). One class of agents studied
to enhance glutamatergic function are the AMPAkines
that promote the activity of the AMPA glutamate receptor
(Nagarajan et al. 2001; Suppiramaniam et al. 2001). The
AMPAkine CX-516 reduced negative symptoms and
cognitive deficits in neuroleptic-treated schizophrenic
patients (Goff et al. 2001). Another approach would be
to augment antipsychotic treatment with an agonist of
another excitatory glutamate receptor, the group I
mGluRs (Schoepp 2001). In particular, mGluR5 receptors
are coupled to NMDA receptors (Tu et al. 1999). mGluR5
agonists enhance NMDA receptor function (Awad et al.
2000; Ugolini et al. 1999) and promote insertion of
NMDA receptors into synaptic membranes (Lan et al.
2001). Other approaches might also include directly
targeting NMDA receptor–related intracellular signaling
cascades (Nicoll and Malenka 1999) and the function of
dopamine1 receptors (Dunah and Standaert 2001; Snyder
et al. 1998).

Therapeutic implications of the disinhibition
of glutamatergic networks by NMDA receptor antagonists

The capacity of subanesthetic doses of NMDA receptor
antagonists to disinhibit glutamate release has generated a
non-overlapping list of possible pharmacotherapies for
schizophrenia (Krystal et al. 1999b; see Fig. 3). NMDA
receptor antagonists appear to block the stimulation of
GABA neurons with greater potency than they inhibit the

Fig. 3 Steps that may contribute to the increased activity of
glutamatergic neurons in response to administration of NMDA
glutamate receptor antagonists
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activation of glutamatergic neurons (Grunze et al. 1996;
Maccaferri and Dingledine 2002), resulting in a drop in
cortical extracellular GABA levels (Yonezawa et al.
1998) and an elevation of cortical and limbic extracellular
glutamate levels (Moghaddam et al. 1997; Moghaddam
and Adams 1998). With doses of NMDA receptor
antagonists that are noticeably higher than those used in
the human research, similar disinhibitory mechanisms
appear to contribute to neurotoxicity (Farber et al. 2002;
Olney and Farber 1995; Sharp et al. 2001). The disinhi-
bition of glutamate release is also presumed to account for
increases in human frontal cortex metabolism following
the administration of ketamine (Bertolino 1999; Breier et
al. 1997a; Lahti et al. 1995a; Vollenweider et al. 1997;
Belger et al. 2003a).

Cortical glutamatergic activation by NMDA receptor
antagonists stimulates monoaminergic terminals within
the cortex and limbic system and monoaminergic cell
bodies in the midbrain and brainstem via activation of
non-NMDA receptors (Jentsch et al. 1997; Martin et al.
1998; Pallotta et al. 1998; Takahata and Moghaddam
1998). Supporting this view is the fact that the AMPA/
kainate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione
(CNQX), blocks the capacity of NMDA receptor antag-
onists to raise cortical extracellular dopamine levels and
to stimulate locomotor activity in rats (Moghaddam et al.
1997). It is not clear whether AMPA receptor antagonists
are well-tolerated or antipsychotic in schizophrenic
patients. Reduced number or function of AMPA recep-
tors, particularly in the hippocampus, may be associated
with schizophrenia (Meador-Woodruff and Healy 2000;
Tamminga 1998) and AMPA receptor antagonists might
worsen these deficits. To date, the only agent with AMPA
receptor antagonist properties studied in schizophrenic
patients, topiramate, did not augment the efficacy of
neuroleptic treatment (Dursun and Deakin 2001).

A group of medications, lumped together as glutamate
release inhibitors (GRIs) may attenuate the hypergluta-
matergic effects of NMDA receptor antagonists and might
play a role in treating schizophrenia. The most commonly
prescribed examples of this class of medications are
anticonvulsants. Anticonvulsant agents are widely pre-
scribed to enhance neuroleptic efficacy (Baldessarini et
al. 1995; Citrome et al. 1998; Wilson et al. 1985).
However, there are limited supporting data for this
application of anticonvulsants in schizophrenic patients
(Carpenter et al. 1991; Casey et al. 2003; Dose et al. 1987,
1998; Greil et al. 1997; Klein et al. 1984; Nachshoni et al.
1994; Okuma et al. 1989).

Lamotrigine was the first anticonvulsant medication
implicated in the treatment of schizophrenia by virture of
its ability to attenuate ketamine effects in humans (Anand
et al. 2000). Lamotrigine reduces glutamate release via
blockade of voltage-dependent ion channels, particularly
sodium channels and P- and N-type calcium channels and
an outward potassium channel (Afanas’ev et al. 1999;
Grunze et al. 1998; Stefani et al. 1996, 1997; Waldmeier
et al. 1996; Wang et al. 1996). Thus, it was hypothesized
that lamotrigine would attenuate those ketamine effects in

humans that were mediated by the disinhibition of
glutamate release. Consistent with this hypothesis, lam-
otrigine pretreatment reduced ketamine-induced psycho-
sis, negative symptoms, and dissociation-like perceptual
alterations, and it increased the euphoric or stimulatory
effects of ketamine in healthy humans (Anand et al.
2000). In this study, lamotrigine also reduced the
ketamine-induced enhancement of a time-dependent (30
min) decline in memory, but not the reduction in
immediate recall produced by ketamine. In animals,
lamotrigine also showed efficacy in two models that have
predictive therapeutic value in schizophrenia: NMDA
receptor antagonist–induced neurotoxicity (Farber et al.
1999) and NMDA receptor antagonist disruption of pre-
pulse inhibition of the startle response (Brody et al. 2003).

Preliminary clinical evidence suggests that lamotrigine
may augment antipsychotic efficacy in some patients
diagnosed with schizophrenia (Durson et al. 1999; Dursun
and Deakin 2001; Saba et al. 2002; Tiihonen et al. 2003),
and definitive research is needed to establish the benefits
and risks associated with this approach. Other calcium
channel antagonists might also be explored in schizo-
phrenia. For example, the L-type calcium channel antag-
onist, nimodipine, attenuated ketamine effects in humans
(Krupitsky et al. 2001), and there is a very inconsistent
literature of uneven quality that suggests that L-type
calcium channel antagonists might reduce some symp-
toms in some schizophrenic patients when added to
neuroleptic treatment (Bartko et al. 1991; Duncan et al.
1990; Grebb et al. 1986; Price 1987; Reiter et al. 1989;
Stedman et al. 1991; Suddath et al. 1991; Yamada et al.
1996).

Other GRI classes might also be explored for the
pharmacotherapy of schizophrenia. One potential ap-
proach are the mGluR2 receptor agonists. mGlurR2
receptors are located on glutamatergic terminals in many
parts of the brain, where they provide feedback inhibition
of glutamate release (Conn and Pin 1997; Lujan et al.
1997). At doses that inhibit the stimulation of cortical
glutamatergic activation by PCP or serotonergic hallu-
cinogens, the mGluR2 agonist LY354740 does not inhibit
basal glutamate release in rats (Aghajanian and Marek
1999; Moghaddam and Adams 1998). Since glutamate
provides the excitatory basis for most normal brain
function, the preservation of basal glutamatergic tone may
be important clinically. A recent study also suggests that
LY354740 also reduces working memory impairments
and perhaps psychotic symptoms transiently produced by
ketamine in healthy human subjects (Krystal et al. 2003a).
However, the impact of adding this medication to ongoing
neuroleptic treatment has not yet been explored in
schizophrenic patients. A related approach may be to
enhance the accumulation of N-acetyl-aspartyl-glutamate
(NAAG) via inhibition of the catabolic enzyme, gluta-
mate carboxypeptidase II (GCPII) also known as N-
acetyl-alpha-linked acidic dipeptidase (NAALADase)
(Coyle 1997). NAAG stimulates the mGluR3 receptors
and may also reduce glutamate release (Coyle 1997;
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Jackson et al. 1996). Recent data suggest that GCPII
inhibition attenuates some PCP effects in rats.

Challenges to the development of glutamatergic
pharmacotherapies for schizophrenia

A number of challenges may predicted in the effort to
develop glutamatergic agents for the treatment of schizo-
phrenia: (1) nonlinear (inverted-U curve) relationships
between basal activity and functional activation of
glutamatergic function suggest that doses of glutamater-
gic agents might need careful adjustment; (2) the same
individual may manifest reduction in cortical glutamater-
gic connectivity and hyperglutamatergic states in distinct
regions or pathways; (3) glutamatergic agents may not
work equally well in combination with all antipsychotic
medication and particular pairings of medications may be
needed; (4) the therapeutic implications of the cortical
disinhibition may apply more broadly to patients with
mood disorders than to patients with schizophrenia; and
(5) glutamatergic pharmacotherapies may not treat all
symptoms of schizophrenia and therefore may need to be
developed as adjuncts to neuroleptic treatment.

Nonlinear relationships between basal activation and
functional activation of networks may suggest that the
utility of glutamatergic agents may be dose-limited.
Neural network models involving opponent processes
predict that the consequence of deficient glutamatergic
activation may resemble the impact of excessive gluta-
matergic activation (Grossberg 1984, 1999). Opponent
processes occur within neural networks when the activa-
tion of one excitatory pathway inhibits its neighboring
excitatory pathway resulting in an inverted-U relationship
between degree of basal activation and stimulus-depen-
dent output. Related computational models describe how
the recruitment of network inhibition and the distinctive
kinetics of NMDA glutamate receptor function enable the
hippocampus and cerebral cortex to store information in
the form of sustained network activity (Grunze et al.
1996; Lisman et al. 1998; Wang 1999). Further, the
experience-dependent manipulation of opponent process-
es appears to underlie the optimization or tuning of
network functions related to the coherent encoding of
environmental features within neural networks underlying
working memory (Rao et al. 1999, 2000). In the ketamine
model, there is evidence that stimulation of basal cortical
network activity is associated with deficient task-related
recruitment of cortical network activity (Belger et al.
2003a). However, the partial efficacy of lamotrigine
(Anand et al. 2000) and LY354740 (Krystal et al. 2003a)
in attenuating the cognitive and behavioral effects of
ketamine in humans suggests that these hyperglutamater-
gic effects of NMDA receptor antagonists only partially
account for the behavioral effects of this drug. Presum-
ably, the ketamine effects that persist after pretreatment
with GRIs reflect the direct consequences of NMDA
receptor antagonism on neural network function. Therein
may lie a conflict: reductions in glutamate release beyond

some optimal level may further compromise NMDA
receptor function and impair neural network function.
Similarly, attempts to enhance NMDA receptor function
by augmenting glutamatergic activity beyond an optimal
level may further exacerbate the hyperglutamatergic
effects of NMDA receptor antagonists and thereby
worsen the disturbances in task-related recruitment of
network function predicted by the parallel opponent
process model of network function.

The population of patients diagnosed with schizophre-
nia may present a more heterogeneous array of distur-
bances in cortical connectivity and glutamatergic
disinhibition than is produced by the ketamine model
psychosis. This would suggest that it may be harder to
predict, for an individual patient, the optimal dose of a
facilitatory or inhibitory glutamatergic treatment. How-
ever, some preliminary experience with lamotrigine
augmentation of neuroleptic treatment in schizophrenic
patients may suggest that overcorrection of glutamatergic
hyperactivity worsens symptoms of schizophrenia. A
small preliminary double-blind randomized placebo-con-
trolled study (E. Perry, D.C. D’Souza, W. Abi-Saab, J.
Krystal, unpublished data) found that six of 12 (50%)
patients treated with a higher target dose of lamotrigine
(200 mg) had their medication discontinued due to lack of
efficacy or worsening of symptoms of schizophrenia. In
contrast, four of 21 (20%) patients randomized to placebo
and one of five (20%) patients randomized to 50 mg of
lamotrigine required medication to be discontinued during
the study. Alternatively, overcorrection of deficient
glutamatergic activation using AMPAkines might worsen
symptoms related to glutamatergic disinhibition, perhaps
related to the worsening of some patients who received an
AMPAkine (Marenco et al. 2002).

As reviewed earlier, the same individual with schizo-
phrenia may manifest deficient glutamatergic innervation
in one region and excessive innervation in another
(Deakin and Simpson 1997). These postmortem findings
may be consistent with evidence that schizophrenic
patients may exhibit deficient task-related activation of
the prefrontal cortex, but hyperactivity of the hippocam-
pus when performing working-memory tasks (Meyer-
Lindenberg et al. 2001; Weinberger et al. 1992). These
findings might suggest that addressing one component of
network dysfunction would correct the other: for exam-
ple, enhancing functional activation of prefrontal cortex
would normalize hippocampal activation. However, with
medications, there might be a risk that enhancing
activation of the prefrontal cortex using a glutamatergic
agonist might also promote the hyperactivity of the
hippocampus or vice versa. In that case, dose-finding
might balance the predicted desirable and undesirable
effects on network function.

An alternative approach to pharmacotherapy would be
to use transcranial magnetic stimulation to depress the
actions of glutamate in specific pathways where increased
glutamatergic response is presumed to occur. As noted
earlier, patients who experience auditory hallucinations
may fail to normally depress activity in auditory or
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auditory association cortex when producing articulated
speech or even nonarticulated or “inner” speech (Ford et
al. 2001a, 2001b, 2002). The implication of this research
is that auditory hallucinations may reflect the pathological
activation of cortical auditory perception areas by one’s
thoughts and that these perceptions are perceived as
arising from external stimuli. This view is consistent with
the auditory perceptions associated with direct electrical
stimulation of brain regions associated with the auditory
function (Gloor 1990; Halgren et al. 1978; Penfield and
Perot 1963) and the regional cortical activation patterns
during auditory hallucinations (Dierks et al. 1999;
Silbersweig et al. 1995; Shergill et al. 2000). Repeated
transcranial magnetic stimulation (rTMS) of the brain has
been shown to depress cortical activation with low
frequency stimulation (1 Hz) and to potentiate the activity
of particular pathways with higher frequency stimulation
(10 Hz) (Speer et al. 2000). The capacity of low
frequency rTMS to depress or depotentiate the functional
activation of paricular brain regions has been likened to
long-term depression (LTD) (Hoffman and Cavus 2002).
In a series of studies, low frequency rTMS delivered over
auditory and auditory association areas in the left
temporoparietal cortex reduced or eliminated auditory
hallucinations that had been resistant to pharmacotherapy
in patients diagnosed with schizophrenia (Hoffman et al.
2000, 2003). The safety and tolerability of this approach
suggests that there may value in utilizing rTMS or related
approaches to selectively reduce activation of excessively
active pathways while preserving the function of areas
where there may be compromised activation due to
disturbances in cortical connectivity. It is interesting to
speculate that because rTMS may engage cellular mech-
anisms related to LTD or long-term potentiation (LTP),
pharmacologic approaches might be developed to en-
hance the efficacy of rTMS based on preclinical research
on the neurobiology and pharmacology of LTD and LTP.

A third challenge is that the glutamatergic agents may
not work equally well in combination with all antipsy-
chotic medications. In this regard, clozapine appears to
stand apart from all other antipsychotic medications. For
example, drugs that facilitate the glycineB site of NMDA
receptors appear to be ineffective in reducing symptoms
and may even exacerbate symptoms in patients treated
with clozapine (Evins et al. 2000; Potkin et al. 1999; Tsai
et al. 1999). In contrast, lamotrigine appears to be
particularly effective when prescribed in combination
with clozapine, but it may work less well in combination
with other neuroleptics (Dursun and Deakin 2001). A
better understanding of the actions of clozapine that
account for its uniqueness with respect to combination
pharmacotherapy may help to further medications devel-
opment for schizophrenia.

In addition, the lack of diagnostic specificity of GABA
deficits may point to applications of GRIs to disorders
other than schizophrenia. As noted earlier, reductions in
GABA neuronal populations have been described in
schizoaffective disorder and mood disorders, as well as
schizophrenia. Further, deficient glial function in these

disorders may contribute to hyperglutamatergic states in
mood disorders as well (Krystal et al. 2002; Ongur et al.
1998; Rajkowska et al. 1999). Mood disorders may be
more amenable to GRI treatments than schizophrenia
because the preservation of cortical innervation in mood
disorders might enable these people to tolerate reductions
of glutamatergic hyperactivity without showing worsen-
ing. From this perspective, several GRIs that reduce
perceptual or psychotigenic effects of ketamine in
humans, benzodiazepines, lamotrigine, and L-type calci-
um channel blockers (Anand et al. 2000; Krupitsky et al.
2001; Krystal et al. 1998a) may have greater safety or
efficacy in treating mood disorders than they do in
treating schizophrenia (reviewed in Krystal et al. 2002;
Post 1999).

The most daunting challenge facing the development
of glutamatergic pharmacotherapies for schizophrenic
patients may be economic and regulatory. Glycine and
AMPAkines are prototypes for the therapeutic opportu-
nities that will arise from the addition of glutamatergic
agents to neuroleptic treatment. They do not appear to be
effective antipsychotic agents even though they enhance
the efficacy of neuroleptic treatment. In particular, they
appear to address negative symptoms and cognitive
dysfunctions that may be the single strongest predictors
of disability (Bell and Bryson 2001; Brekke et al. 2001).
The prospect of the development of drugs that reduce the
disabling consequences of schizophrenia is extremely
important to patients, their families, and society. Howev-
er, there is substantial finanacial risk involved for the
pharmaceutical industry. First, these medications may not
be antipsychotic, therefore their prescription may be
limited to schizophrenic patients, as opposed to the
common prescription of neuroleptics for indications other
than schizophrenia. Consistent with this view, there is
already concern in some components of the pharmaceu-
tical industry that glutamatergic adjunctive agents may
not be sufficiently profitable to warrant substantial
investment. Second, these medications may need to be
prescribed in combination with neuroleptic agents, in
which case the availability of these medications may be
limited by the efforts of health care systems to contain
costs. Third, regulatory agencies, such as the US Food
and Drug Administration do not currently recognize the
capacity to reduce cognitive impairments as an indication
for approval. However, there is a growing interest on the
part of academia (Green and Braff 2001), the pharma-
ceutical industry, and the US National Institute of Mental
Health (Hyman and Fenton 2003) to highlight the
importance of cognition-enhancing agents for reducing
the personal, familial, and societal burdens associated
with schizophrenia. From this perspective, it appears that
psychiatry and the pharmaceutical industry are heading
toward a paradigm shift with respect to medications
development for this disorder.
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Toward new paradigms for the pharmacotherapy of
schizophrenia

In summary, the field of schizophrenia research appears
to be approaching a transition in medications develop-
ment. It appears to be time to move beyond the atypical
neuroleptics in the treatment of patients who have
residual symptoms and cognitive deficits despite optimal
treatment with available agents. One direction for med-
ications development would be to focus on treatment
mechanisms that seem to link the neuropathology and
pathophysiology of schizophrenia to the action of psy-
chotigenic drugs, such as the NMDA receptor antagonists.
This review has highlighted two of these pathophysio-
logic themes: deficient or aberrant functional connectivity
and the disinhibition of glutamatergic networks. Both of
these features of schizophrenia are produced by NMDA
receptor antagonist administration, perhaps accounting for
the similarities between the symptoms and cognitive
deficits associated with schizophrenia and the effects of
ketamine infusion in healthy human subjects. Drugs that
directly or indirectly facilitate NMDA receptor function
and GRIs may play a role in the treatment of some
symptoms and cognitive impairments in some patients.
Achieving the maximum benefit from drugs that facilitate
glutamate-related neuroplasticity may depend upon com-
bining these agents with psychosocial rehabilitation
approaches that enhance the functional engagement of
particular cortical networks. However, the development
of glutamatergic agents may present new challenges,
including the need to maintain glutamatergic function
with a functional range while attenuating hyperactivity,
addressing glutamatergic deficiencies, or opposing chang-
es in distinct brain regions or pathways. One strategy for
addressing neural pathway–specific changes is to develop
pathway-specific treatments, such as rTMS. The full
range of benefits and limitations of glutamatergic treat-
ments remains to be demonstrated, but the promise of
these agents constitutes one of several hopeful new
avenues for addressing the distress and disability that still
often plagues those individuals suffering from schizo-
phrenia.
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