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Abstract Rationale: Though 5-HT plays an important
role in the modulation of motor function, which is
perturbed in depressive states, little is known concerning
the influence of serotonin reuptake inhibitors (SSRIs) on
locomotor activity (LA). Recently, we demonstrated that
SSRIs, such as citalopram, enhance LA in mice exposed
to a novel environment. Objectives: This study examined
the role of multiple classes of 5-HT receptor in citalo-
pram-induced LA. Methods: The most selective antago-
nists currently available were used. Results: Citalopram-
induced LA was dose-dependently attenuated by the 5-
HT1B/1D receptor antagonists, S18127, GR125,743 and
GR127,935, and by the selective 5-HT1B antagonist,
SB224,289, but unaffected by the selective 5-HT1A
antagonist, WAY100,635. The selective antagonists at
5-HT2A receptors, MDL100,907 and SR46,349 also dose-
dependently attenuated induction of locomotion by
citalopram, whereas the 5-HT2B antagonist, SB204,741,
and the 5-HT2B/2C antagonist, SB206,553 were ineffec-
tive. Further, the selective 5-HT2C antagonist, SB242,084,
potentiated the response to citalopram. Selective antag-
onists at 5-HT3 (ondansetron), 5-HT4 (GR125,487), 5-
HT6 (SB271,046) and 5-HT7 (SB269,970) receptors did
not significantly modify the action of citalopram. Under-
pinning these findings, SB224,289, GR125,743,
MDL100,907 and SR46,349 likewise attenuated induction
of locomotion by a further SSRI, fluvoxamine. Conclu-
sions: The locomotor response to SSRIs of mice exposed
to a novel environment is mediated via 5-HT1B and 5-
HT2A receptors. In view of the importance of motor
function to the etiology and treatment of depression, the

significance of these observations to the clinical actions
of SSRIs will be of interest to elucidate.
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Introduction

By actions at diverse loci, including the spinal cord, the
basal ganglia, the limbic system and the frontal cortex
(FCX), 5-HT plays an important role in the control of
motor behaviour (Millan 2002). This action reflects the
direct modulation of motor systems by serotonergic
mechanisms per se, as well as their influence on mood,
nociception and cognition, all of which impact on motor
behaviour (Maes and Meltzer 1995; Geyer 1996; Barnes
and Sharp 1999; Menard and Treit 1999; Meneses 1999;
Millan 2002). Accordingly, a dysfunction of serotonergic
transmission is involved in the motor symptoms of
neurological and psychiatric states such as Parkinson’s
disease, schizophrenia and depression: further, serotoner-
gic actions of psychotropic agents contribute to their
influence on motor (as well as affective and cognitive)
symptoms of these disorders (Maes and Meltzer 1995;
Millan 2000; Millan et al. 2000).

Inasmuch as psychomotor retardation constitutes a
core symptom of depressive disorders (Sachdev and Aniss
1994; Caligiuri and Ellwanger 2000), the role of seroto-
nergic mechanisms in the influence of antidepressant
agents on motor behaviour is of considerable interest. The
pronounced sedative effects of tricyclic drugs such as
amitryptiline, and atypical agents such as mirtazapine,
which reflect their potent antagonist properties at a1-
adrenoceptors and histaminergic receptors, virtually pre-
cludes evaluation of this issue (Tatsumi et al. 1997).
However, it can be addressed employing two classes of
antidepressant essentially devoid of actions at these sites:
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SSRIs, such as citalopram and fluvoxamine (Sanchez and
Meier 1997; Tatsumi et al. 1997; Goodnick and Goldstein
1998; Popik 1999; Millan et al. 2001a), and mixed 5-HT/
NA reuptake inhibitors (SNRIs), such as venlafaxine and
S33005 (Barker and Blakely 1995; Millan et al. 2001a,
2001b). Though little information is available concerning
their influence on locomotor behaviour, we recently
demonstrated that, in contrast to selective inhibitors of
noradrenaline reuptake, tricyclics, mirtazapine and other
classes of antidepressant agent, SSRIs and SNRIs elicit a
dose-dependent and specific enhancement in the LA of
naive NMRI mice exposed to a novel environment
(Brocco et al. 2002) at doses similar to those active in
models of potential antidepressant activity (Reneric and
Lucki 1998; Popik 1999; Millan et al. 2001a, 2001b). This
response bears comparison to the increase in LA elicited
by the 5-HT releasers, methylenedioxymethamphetamine
(MDMA) and para-chloroamphetamine (Callaway et al.
1992; Rempel et al. 1993, Fletcher et al. 2002). However,
in contrast to the latter agents, SSRIs increase LA only in
subjects unfamiliar with the test environment (Brocco et
al. 2002). Thus, in addition to motor function, a role of
“arousal”, “exploratory drive” and, possibly, decreased
fear, in the facilitation of LA by SSRIs and SNRIs should
not be neglected (Paulus and Geyer 1992; Brocco et al.
2002). Irrespective of its precise functional, and potential
therapeutic significance, LA provides a simple, robust and
instructive parameter for examination of receptorial
mechanisms involved in the influence of SSRIs on motor
behaviour.

Correspondingly, the purpose of the present investi-
gation was to examine the role of specific classes of 5-HT
receptor in the induction of LA by SSRIs in naive mice.
On the basis of their contrasting structures and coupling to
transduction mechanisms, seven classes of 5-HT receptor
are recognized (Barnes and Sharp 1999). Of these, several
subtypes have been implicated in the control of motor
function, both directly and indirectly via their influence
on mood and cognitive-attentional function: notably, 5-
HT1A, 5-HT1B, 5-HT2A, 5-HT2C and 5-HT4 receptors (see
Barnes and Sharp 1999 and Discussion). We thus
examined the influence of the most selective antagonists
currently available (Table 1) at individual subtypes of 5-
HT receptor on the induction of LA by citalopram and a
further SSRI, fluvoxamine. The drugs utilized were as
follows: 5-HT1A receptors, WAY100,635 (Fletcher et al.
1996); 5-HT1B receptors, SB224,289 (Gaster et al. 1998;
Millan et al. 1999c, 2000, 2002; Newman-Tancredi et al.
2000; Audinot et al. 2001); 5-HT1B/5-HT1D receptors,
GR125,743 and GR127,935 (Skingle et al. 1996;
Dom�nech et al. 1997; Gobert et al. 1998; Millan et al.
2002) and S18127 (Millan et al. 1999c, 2002; Newman-
Tancredi et al. 2000; Audinot et al. 2001); 5-HT2A
receptors, MDL100,907 and SR46,349 (Rinaldi-Carmona
et al. 1992; Millan et al. 1999a, 2000); 5-HT2B receptors,
SB204,741 (Duxon et al. 1997; Gobert et al. 2000b;
Cussac et al. 2002); 5-HT2B/5-HT2C receptors, SB206,553
(Kennett et al. 1996; Millan et al. 1997); 5-HT2C
receptors, SB242,084 (Kennett et al. 1997; Dekeyne et

al. 1999, 2000; Gobert et al. 2000b); 5-HT3 receptors,
ondansetron (Jones et al. 1988; Olivier et al. 2000); 5-HT4
receptors, GR125,487 (Barnes and Sharp 1999; Lucas et
al. 2001); 5-HT6 receptors, SB271,046 (Routledge et al.
2000; Dawson et al. 2001) and 5-HT7 receptors,
SB269,970 (Hagan et al. 2000; Roberts et al. 2001). All
drug doses were selected on the basis of those defined as
active at their respective central targets in previous
studies in this and other laboratories (see above citations).

As concerns the SSRIs employed in the present study,
citalopram was chosen since it is the most selective SSRI
to date described, while fluvoxamine was also used
inasmuch as this “prototypical” agent has been very
extensively employed both experimentally and clinically
(Popik 1999; Goodnick and Goldstein 1998). They were
employed at doses which we have previously demonstra-
ted, employing dose-response studies, to elicit robust and
reproducible increases in LA in NMRI mice (Brocco et al.
2002).

Although partial agonist actions of GR127,935 and
GR125,743 have been seen at cloned, human (h)5-HT1B
receptors, they behave as “pure” antagonists at central 5-
HT1B sites in vivo: further, S18127 and SB224,289
display negligible efficacy at h5-HT1B and native, 5-HT1B
receptors (Watson et al. 1996; Gaster et al. 1998; Millan
et al. 1999c; Newman-Tancredi et al. 2000; Audinot et al.
2001).

Materials and methods

Animals

LA was determined in male NMRI mice weighing 22–28 g and of 6
weeks of age (Iffa-Credo, L’Arbresle, France). They were main-
tained in sawdust-lined cages with unrestricted access to food and
water and allowed 1 week of acclimation prior to testing. They
were used once only. Laboratory temperature was 21€1�C and
humidity, 60€5%. There was a 12-h light/dark cycle, with lights
“on” at 7:30 a.m. All animal use procedures conformed with
international European ethics standards (86/609-CEE) and the
French National Committee (d�cret 87/848) for the care and use of
laboratory animals.

Table 1 5-HT antagonists employed in the present study

Drug Class References

WAY100,635 5-HT1A Fletcher et al. (1996)
GR125,743
GR127,935
S18127

5-HT1B/5-HT1D Millan et al. (2002)
Harrison et al. (1999)
Millan et al. (1999c)

SB224,289 5-HT1B Gaster et al. (1998)
MDL100,907
SR46,349

5-HT2A Millan et al. (1999a)
Rinaldi-Carmona et al.
(1992)

SB204,741 5-HT2B Duxon et al. (1997)
SB206,553 5-HT2B/5-HT2C Kennett et al (1996)
SB242,084 5-HT2C Kennett et al (1997)
Ondansetron 5-HT3 Olivier et al. (2000)
GR125,487 5-HT4 Barnes and Sharp (1999)
SB271,046 5-HT6 Dawson et al. (2001)
SB269,970 5-HT7 Hagan et al. (2000)
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Evaluation of locomotor activity in mice

As previously (Brocco et al. 2002), 24 h before testing, the mice
were isolated into transparent polycarbonate cages (23�13�13 cm)
with sawdust floor covering and free access to chow and water.
Testing was performed in the morning between 0900 h and 1200 h
with each session lasting 10 min. The test cage was made of white
plexiglass (27�27�30 cm) and was illuminated with a 6 W light.
Photocells (four on each of two walls facing each other) were
located 6 cm apart, 2 cm above the floor and connected via an
interface (Osys-Orga System, Chang�, France) to a computer.
Software was written by Hesperid, Loiron, France. The interruption
of two adjacent beams corresponded to a locomotion count.
Citalopram or fluvoxamine (10.0 mg/kg, SC) was administered
30 min prior to evaluation. Antagonists were administered 30 min
prior to citalopram or fluvoxamine. For drugs for which complete
dose-response curves were performed, data were analyzed employ-
ing ANOVA followed by Dunnett’s test. Inhibitory Doses (ID50s)
plus 95% confidence limits (CL) for blockade of the actions of
citalopram were computed from the percentage inhibition elicited
by each drug dose, which was calculated as follows:
1�(drug+citalopram)�(vehicle+vehicle)/vehicle+citalopram)�(ve-
hicle+vehicle)]�100. For drugs evaluated at single doses, Student’s
two-tailed t-test was employed.

Drugs

All drug doses are in terms of the base. Drugs were dissolved in
distilled water. For fluvoxamine, a few drops of lactic acid were
added and the pH adjusted to as close to neutrality as possible
(>5.0). With the exception of SB242,084, all drugs were admin-
istered subcutaneously in a volume of 10 ml/kg. SB242,084 was
administered intraperitoneally (IP) as a suspension in distilled water
with a few drops of Tween 80. Drug structures, sources and salts
were as follows. Ondansetron (Sigma Chimie, St Quentin-Fallavier,
France); fluvoxamine maleate (Tocris, Bristol, UK) and SR46,349
({[1(Z)-2 (dimethylamino)ethoxyiminol]-1–2-(2-fluorophenyl)-3-
(4-hydroxyphenyl)-2(E)propene} hemi-fumarate) (Sanofi, Mont-
pellier, France). Citalopram HBr, GR127,935 (N-[4-methoxy-3-(4-
methylpiperazin-1-yl)phenyl]-2-methyl-40-(5-methyl-1,2,4-oxadio-
zol-3-yl) biphenyl-4-carboxamide), SB242,084 (6-chloro-5-methyl-
1-[6-(2-methylpyridin-3-yloxy)pyridin-3-yl carbamoyl]indoline),
GR125,487 (1-2(methylsulphonylamino)ethyl]-4-piperidinyl]-meth-
yl-5-fluoro-2-methoxy-1H-indole-3-carboxylate hydrochloride),
GR125,743 (N-(4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-20-
methyl-40-(5-methyl-1,2,4-oxadiozol-3-yl) biphenyl-4-carboxam-
ide), SB271,046 (5-chloro-3-methyl-benzo[b]thiophene-2-sulfonic
acid (4-methoxy-3-piperazin-1-yl-phenyl)-amide)HCl, SB206,553
(N-3pyridinyl-3,5-dihydro-5-methyl-benzo[1,2-b:4,5-b0]dipyrrole-
1(2H)-carboxamide HCl), SB204,741 (N-(1-methyl-5-indolyl-5-
isothazolyl)ur�e) and MDL100,907 (2,3-dimethoxy-phenyl)-{1-[2-
(4-fluoro-phenyl)-ethyl]-piperidin-4-yl}methalol) were synthesised
by G. Lavielle (Servier), S18127 (N-[3-(1,4-benzodioxan-5-yl)
piperidin-4-yl]N-(indan-2yl)amine), WAY100,635 (N-[2-[4-(2-
methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-cyclohexane-
carboxamide maleate), SB224,289 (10-methyl-5-[20-methyl-40-(5-
methyl-1,2,4-oxadiazol-3-yl)-biphenyl-4-ylcarbonyl]-2,3,6,7-tetra-
hydro-5H-spiro[furo[2,3-f]indole-3,40-piperidine]) and SB269,970
((R)-1-{2-[1-(3-hydroxy benzenesulfonyl)pyrrolidin-2-yl]ethyl}-4-
methylpiperidine)HCl were synthesised by J.L.P�glion (Servier).

Results

Influence of SSRIs on LA in mice exposed
to a novel activity chamber

In corroboration of our previous study (Brocco et al.
2002), the SSRIs, citalopram and fluvoxamine, elicited a

pronounced, significant and comparable increase in the
LA of mice exposed to a novel environment (Figs. 1, 2, 3,
4, 5 and 6).

Influence of the 5-HT1B/5-HT1D receptor antagonists,
GR125,743 and GR127,935, on induction of LA
by citalopram

The chemically related, mixed 5-HT1B/5-HT1D receptor
antagonists, GR125,743 and GR127,935, both dose-
dependently and significantly reduced the elevation of
LA elicited by citalopram [ANOVAs as follows:
GR125,743, F(4,43)=4.66, P<0.005 and GR129,735,
F(4,38)=4.06, P<0.005] (Table 1, Fig. 1). Their ID50s
(95% CLs) were 4.8 (2.5–9.1) and 2.4 (0.9–6.6) mg/kg,
respectively. On administration alone, neither GR125,743
nor GR127, 935 significantly modifed LA [GR125,743:
F(4,39)=2.34, P>0.05 and GR127,935: F(4,35)=0.33,
P>0.05].

Fig. 1 Influence of the 5-HT1B/5-HT1D receptor antagonists,
GR125,743 (A) and GR127,935 (B) on the increase in locomotor
activity elicited by the SSRI, citalopram (10.0 mg/kg), in mice
exposed to a novel environment. Data are means€SEM. n=5–11 per
value. Symbols indicate significance of vehicle plus citalopram
versus vehicle plus vehicle (¤), and of GR125,743 and GR127935
plus citalopram versus vehicle plus citalopram (*) values in
Dunnett’s test. P<0.05
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Influence of the 5-HT1B/5-HT1D antagonist, S18127,
and of the selective 5-HT1B receptor antagonist,
SB224,289, on induction of LA by citalopram

The 5-HT1B/1D receptor antagonist, S18127, dose-depen-
dently and markedly suppressed the action of citalopram
with an ID50 (95% CL) of 0.39 (0.19–0.81) mg/kg
[F(3,28)=17.9, P<0.0001] (Table 2, Fig. 2). Administered
alone, S18127 did not significantly modify LA
[F(3,23)=2.44, P>0.05]. By analogy to S18127, the
selective 5-HT1B antagonist, SB224,289, which shows
only weak affinity for 5-HT1D receptors, dose-dependent-
ly abolished the induction of LA by citalopram
[F(3,20)=7.15, P<0.005]. It expressed this action with
an ID50 (95% CL) of 1.05 (0.77–1.44) mg/kg. SB224,289
did not itself affect LA at doses which attenuated the
action of citalopram [F(3,20)=1.49, P>0.05].

Influence of selective 5-HT2A receptor antagonists
as compared to antagonists at 5-HT2B and/or 5-HT2C
receptors on induction of LA by citalopram

The highly selective antagonist at 5-HT2A receptors,
MDL100,907, dose-dependently and markedly reduced
the elevation in LA evoked by citalopram [F(4,33)=2.98,
P<0.05] with an ID50 (95% CL) of 0.04 (0.02–0.12) mg/kg
(Table 2, Figs. 3 and 4). Similarly, a further selective 5-
HT2A antagonist, SR46,349, dose-dependently and signif-
icantly interfered with the induction of LA by citalopram
[F(4,32)=3.46, P<0.05] with an ID50 (95% CL) of 0.11
(0.05–0.23) mg/kg. Neither MDL100,907 nor SR46,349
significantly modified LA alone [MDL100,907:
F(4,26)=1.25, P>0.05 and SR46349: F(4,27)=1.14,
P>0.05]. In contrast to MDL100,907 and SR46,349, the
5-HT2B/2C antagonist, SB206,553, and the selective 5-HT2C
antagonist, SB242,084, failed to reduce the action of
citalopram [SB206,553: F(4,36)=2.47, P>0.05]. Indeed, the
latter significantly enhanced its induction of LA at doses of
0.63 and 2.5 mg/kg [F(4,37)=3.44, P<0.05]. SB206,553
tended to decrease LA itself and this action was significant

Fig. 2 Influence of the selective antagonist at 5-HT1B receptors,
SB224,289 (A), as compared to the 5-HT1B/5-HT1D receptor
antagonist, S18127 (B), on the increase in locomotor activity
elicited by the SSRI citalopram (10.0 mg/kg), in mice exposed to a
novel environment. Data are means€SEMs. n=5–7 per value.
Symbols indicate significance of vehicle plus citalopram versus
vehicle plus vehicle (¤),and of S18127 plus citalopram versus
vehicle plus citalopram (*) values in Dunnett’s test. P<0.05

Fig. 3 Influence of the 5-HT2A receptor antagonists, MDL100,907
(A) and SR46,349 (B), on the increase in locomotor activity elicited
by the SSRI, citalopram (10.0 mg/kg), in mice exposed to a novel
environment. Data are means€SEM. n=4–9 per value. Symbols
indicate significance of vehicle plus citalopram versus vehicle plus
vehicle (¤) and of MDL100,907 and SR46,349 plus citalopram
versus vehicle plus citalopram (*) values in Dunnett’s test. P<0.05

400



at the highest dose evaluated [F(4,31)=4.49, P<0.01]. The
selective 5-HT2B antagonist, SB204,741 did not modify the
influence of citalopram. Vehicle�citalopram=502.5€36.0
versus SB204,741 (10.0 IP)�citalopram=539.8€28.4:
P>0.05. SB204,741 did not affect LA alone (not shown).

Influence of antagonists at 5-HT1A, 5-HT3, 5-HT4, 5-HT6
and 5-HT7 receptors on induction of LA by citalopram

The selective antagonists at 5-HT1A, 5-HT3, 5-HT4, 5-HT6
and 5-HT7 receptors, WAY100,635, ondansetron,
GR125,487, SB271,046 and SB269,970, respectively, all
failed to significantly modify the action of citalopram.
They also did not affect LA on application alone (Table 3).

Fig. 4 Influence of the 5-HT2B/5-HT2C receptor antagonist,
SB206,553 (A) and of the 5-HT2C antagonist, SB242,084 (B), on
the increase in locomotor activity elicited by the SSRI, citalopram
(10.0 mg/kg), in mice exposed to a novel environment. Data are
means€SEM. n=5–10 per value. Symbols indicate significance of
vehicle plus citalopram versus vehicle plus vehicle (¤) and of
SB206,553 and SB242,084 plus citalopram versus vehicle plus
citalopram (*) values in Dunnett’s test. P<0.05

Fig. 5 Influence of the 5-HT1B receptor antagonist, SB224,289 (A)
and of the 5-HT1B/5-HT1D antagonist, GR125,743 (B), on the
increase in locomotor activity elicited by the SSRI, fluvoxamine
(10.0 mg/kg), in mice exposed to a novel environment. Data are
means€SEM. n=5–12 per value. Asterisks indicate significance of
vehicle plus fluvoxamine versus vehicle plus vehicle (¤) and of
SB224,289 and GR125,743 plus fluvoxamine versus vehicle plus
fluvoxamine (*) values in Dunnett’s test. P<0.05

Table 2 Effects of various 5-
HT1B, 5-HT1D, 5-HT2A, 5-HT2B
and 5-HT2C antagonists on in-
duction of locomotor activity by
citalopram. ID50 inhibitory
dose50 (mg/kg, SC, unless oth-
erwise indicated), MED Mini-
mal Effective Dose (mg/kg, SC)

Class Drug ID50, blockade of citalopram-induced
hyperlocomotion

n

5-HT1B/5-HT1D ANT GR125,743
GR127,935
S18127

4.8
2.4
0.39

5–11
5–8
5–7

5-HT1B ANT SB224,289 1.05 5–6
5-HT2A ANT MDL100,907

SR46,349
0.04
0.11

4–7
5–9

5-HT2B ANT SB204,741 >10.0 (IP) 6–10
5-HT2B/5-HT2C ANT SB206,553 MED=2.5* 5–10
5-HT2C ANT SB242,084 >10.0§ 4–10

* At a dose of 2.5 mg/kg, SC, SB206,553 decreased LA itself (P<0.05)
§ At doses of 0.63 and 2.5 mg/kg, SC, SB242,084 increased citalopram-induced hyperlocomotion
(P<0.05)
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Influence of SB224,289, GR125,743, MDL100,907
and SR46,349 on the induction of LA by fluvoxamine

By analogy to citalopram, the induction of LA by a
further SSRI, fluvoxamine, was blocked by SB224,289
[F(4,39)=5.83, P<0.001] with a similar ID50 (95% CL) of
0.7 (0.13–1.6) (Figs 5 and 6). GR125,743 also antago-
nised the induction of LA by fluvoxamine [F(3,30)=6.9,
P<0.005] with an ID50 (95% CL) of 3.7 (2.1–6.4).
MDL100,907 and SR46,349 blocked the induction of LA
by fluvoxamine [MDL100,907: F(3,33)=7.51, P<0.001
and SR46,349: F(4,25)=4.26, P<0.01]. Their ID50s (95%
CL)s were 0.02 (0.01–0.03) and 0.06 (0.03–0.14),
respectively. Thus, the potencies of SB224,289,
GR125,743, MDL100,907 and SR46,349 for blockade
of fluvoxamine-induced LA were similar to their poten-
cies for blocking the actions of citalopram (see above).

Discussion

Induction of LA by citalopram and fluvoxamine

The present observations with citalopram and fluvoxam-
ine corroborate the results of our previous study with
these and other SSRIs in which they were shown to dose-
dependently elicit LA in NMRI mice (Brocco et al. 2002).
As discussed therein, this response is distinctive to NMRI
mice inasmuch as a CD strain of mice as well as Sprague-
Dawley and Wistar rats do not display such an elevation
in LA (see Brocco et al. 2002). In this article, it was
pointed out that the facilitatory influence of SSRIs on LA
in NMRI mice should be borne in mind in the interpre-
tation of their actions in models of potential antidepres-
sant activity. Despite the fact that psychomotor
impairment is a cardinal symptom of depression (Cali-
giuri and Ellwanger 2000) it would be naive to directly

Table 3 Lack of influence of
antagonists at 5-HT1A
(WAY100,635), 5-HT3 (on-
dansetron), 5-HT4
(GR125,487), 5-HT6 (SB
271,046) and 5-HT7
(SB269,970) receptors on in-
duction of locomotor activity by
citalopram. Data are mean-
s€SEM. In ANOVA, F values
were significant in each case for
the influence of citalopram, but
in no case for the influence of
the antagonist (not shown)

Drug Dose Drug Dose Locomotor activity n

Vehicle
Vehicle
WAY100,635
WAY100,635

–
–
0.63
0.63

Vehicle
Citalopram
Vehicle
Citalopram

–
10
–
10

337.1€34.7
555.3€36.8*

276.2€27.7
513.5€62.8

7
8
5
6

Vehicle
Vehicle
Ondansetron
Ondansetron

–
–
0.16
0.16

Vehicle
Citalopram
Vehicle
Citalopram

–
10
–
10

348.0€45.8
595.8€30.5*

337.8€27.6
517.0€43.5

5
6
5
5

Vehicle
Vehicle
GR125,487
GR125,487

–
–
0.63
0.63

Vehicle
Citalopram
Vehicle
Citalopram

–
10
–
10

357.2€50.1
522.6€36.7*

421.0€17.4
597.7€66.0

5
5
5
6

Vehicle
Vehicle
SB271,046
SB271,046

–
–

10
10

Vehicle
Citalopram
Vehicle
Citalopram

–
10
–
10

366.0€52.0
545.0€55.5*

280.2€66.4
486.8€64.7

5
6
5
5

Vehicle
Vehicle
SB269,970
SB269,970

–
–

10
10

Vehicle
Citalopram
Vehicle
Citalopram

–
10
–
10

325.0€30.4
663.0€54.2*

266.7€8.8
528.4€50.9

7
7
7
7

Vehicle+citalopram versus vehicle+vehicle values, *P<0.05 in Dunnett’s test

Fig. 6 Influence of the 5-HT2A receptor antagonists, MDL100,907
(A) and SR46,349 (B), on the increase in locomotor activity elicited
by the SSRI, fluvoxamine (10.0 mg/kg), in mice exposed to a novel
environment. Data are means€SEM. n=4–9 per value. ANOVA as
follows. Symbols indicate significance of vehicle plus fluvoxamine
versus vehicle plus vehicle (¤) and of MDL100,907 and SR46,349
plus fluvoxamine versus vehicle plus fluvoxamine (*) values in
Dunnett’s test. P<0.05
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relate the present data to clinical depression and its
treatment. Further, it is still unclear whether the impli-
cation of 5-HT receptors in the management of depressive
states reflects their “acute” activation (analogous to the
present model) or gradual down-regulation on long-term
exposure (Caldecott-Hazard et al 1991). Nevertheless, as
discussed below, the present parameter of LA provides a
robust and efficient parameter for characterization of the
roles of individual classes of 5-HT in the actions of
SSRIs. In light of the important role of DA in the control
of motor function, the ensuing discussion extensively
evokes the significance of interactions between seroto-
nergic and dopaminergic mechanisms in the induction of
LA by SSRIs (see also Millan et al. 2000; Sasaki-Adams
and Kelley 2001). However, the precise significance of
dopaminergic receptors under the present conditions
remains to be characterized.

5-HT1A receptors

The influence of 5-HT1A receptors on motor function is
complex, reflecting the precise conditions and species of
study, actions at presynaptic versus postsynaptic sites and
their modification of arousal, anxious states and cogni-
tive-attentional function: indeed, activation of 5-HT1A
receptors can either enhance, depress or not affect LA
(Mittman and Geyer 1989; Hillegaart 1990; Kalkman and
Soar 1990; De la Garza and Cunningham 2000; Millan
2000). Though they participate in the facilitatory influ-
ence of SSRIs on cocaine-induced LA in rat (Herges and
Taylor 1998), herein, citalopram-induced LA was resis-
tant to the selective antagonist, WAY100,635. This
observation is analogous to the lack of influence of
WAY100,635 on MDMA-induced LA (McCreary et al.
1999; Bankson and Cunningham 2002a, 2002b). Further,
the reduction in LA elicited by fluoxetine in rats is
abrogated by WAY100,635 (Bagdy et al. 2001). Interest-
ingly, despite the lack of a role for 5-HT1A sites in the
mediation of citalopram-induced LA, blockade of 5-HT1A
receptors attenuated actions of SSRIs in experimental
models of antidepressant properties in certain, but not all,
studies (Redrobe et al. 1996; Moser and Sanger 1999;
Mayorga et al. 2001; O’Neill and Conway 2001). Further,
the anxiogenic effects of SSRIs are enhanced by 5-HT1A
receptor antagonists (Bristow et al. 2000; Dekeyne et al.
2000), reflecting blockade of inhibitory 5-HT1A autore-
ceptors and a potentiation of extracellular levels of 5-HT
(Gobert et al. 2000a; Millan et al. 2000; Mayorga et al.
2001).

5-HT1B receptors

Though certain studies suggest that 5-HT1B and 5-HT1A
receptors synergistically enhance LA (O’Neill and
Parameswaran 1997), the 5-HT1B antagonists,
SB224,289, GR125,743, GR127,935 and S18127, in
contrast to WAY100,635, abolished induction of LA by

citalopram. A role for postsynaptic 5-HT1B receptors is
underpinned by several arguments. First, these antago-
nists show marked selectivity for 5-HT1B receptors.
Second, they blocked induction of citalopram-induced
LA at doses little influencing basal LA and corresponding
to those active in other models of 5-HT1B receptor-
mediated activity (Skingle et al. 1996; Harrison et al.
1999; Millan et al. 1999c, 2000; O’Neill et al. 2000).
Notably, comparable doses attenuate the induction of
hyperactivity by the 5-HT1B agonist, RU24969 (Chee-
tham and Neal 1993; O’Neill et al. 1996, 2000; O’Neill
and Parameswaran 1997; Chaouloff et al. 1999). Third, 5-
HT1B receptors likewise mediate the induction of LA by
MDMA (McCreary et al. 1999; Bankson and Cunning-
ham 2002a, 2002b; Fletcher et al. 2002) which elicits a
pattern of locomotion behaviourally similar, and showing
cross-tolerance, to 5-HT1B agonists (Callaway and Geyer
1992; Callaway et al. 1992; Rempel et al. 1993). Further,
5-HT1B sites are implicated in the induction of sensitiza-
tion to the hyperlocomotion provoked by amphetamine
(Przegalinski et al. 2001). Interestingly, it has been
suggested that 5-HT1B receptors contribute to antidepres-
sant properties of SSRIs and tricyclic agents (O’Neill et
al. 1996; Redrobe et al. 1996; Mayorga et al. 2001;
O’Neill and Conway 2001).

5-HT1B receptors are concentrated in many structures
controlling motor function, including the nucleus accum-
bens, striatum and FCX (Bruinvels et al. 1993; Sari et al.
1999; Varn�s et al. 2001). Moreover, they interact with
mesolimbic dopaminergic pathways in the facilitation of
locomotor behaviour (Parsons et al. 1999; Yan and Yan
2001) and there is evidence for a role of dopaminergic
mechanisms in the induction of LA by 5-HT1B agonists
(Oberlander et al. 1987; Cheetham and Neal 1993;
O’Neill et al. 2000). However, the interrelationship
between 5-HT1B receptors and mesolimbic DA release
is complex (Harrison et al. 1999; Parsons et al. 1999;
Bronsert et al. 2001). Indeed, an interaction of postsyn-
aptic 5-HT1B sites with GABAergic, cholinergic and
glutamatergic pathways provides alternative substrates for
modulation of motor function (Johnson et al. 1992;
Consolo et al. 1996; Morikawa et al. 2000). The role of 5-
HT1B receptors in the control of anxious states (Moret and
Briley 2000; Dirks et al. 2001), arousal (Fletcher and
Korth 1999; Belzung et al. 2000) and cognitive-atten-
tional function (Malleret et al. 1999; Meneses 1999)
might also be relevant to the present observations.

Inhibitory 5-HT1B autoreceptors are localized on the
terminals of serotonergic pathways (Gobert et al. 2000a;
Trillat et al. 1998; Millan et al. 2000). Though they may
interact with co-localized 5-HT transporters (Daws et al.
2000), the significance of such actions in vivo remains
unclear. Such interactions are unlikely to be relevant to
the present findings inasmuch as, in analogy to 5-HT1B
knock-out mice, blockade of 5-HT1B autoreceptors by
SB224,289 transiently enhances the increase in extracel-
lular levels of 5-HT elicited by citalopram, fluvoxamine
and other SSRIs (Evrard et al. 1999; Knobelman et al.
2001; Millan et al. 2000, unpublished observation).
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5-HT1D receptors

Since SB224,289 mimics the influence of S18127,
GR127,935 and GR125,743 on citalopram-induced LA,
their common blockade of 5-HT1B receptors is clearly
involved. Unfortunately, the only drug which preferen-
tially blocks 5-HT1D (pKi 7.5) versus 5-HT1B (6.1) sites,
BRL15,772 ({10-methyl-5-[[20-methyl-40-(5-methyl-1,2,4-
oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahy-
dro-spiro[furo[2,3-f]indole-30,40-piperidine]}), is poorly
selective versus other receptors such as 5-HT2A (6.8)
receptors and 5-HT reuptake sites themselves (6.9) (Price
et al. 1997; Gobert et al. 2000a; Millan et al., unpublished
observation). Further, BRL15,772 markedly decreases
basal LA. Nevertheless, the highest dose of BRL15,772
which did not affect LA alone (0.63 mg/kg) failed to
modify induction of LA by citalopram (not shown).
Though postsynaptic 5-HT1D receptors are well repre-
sented in the basal ganglia, a region involved in motor
control, their functional role remains obscure. Further,
blockade of inhibitory, dendritic 5-HT1D receptors by
S18127, GR127,935 and GR125,743 (Davidson and
Stanford 1995) would, in principle, enhance the influence
of citalopram on extracellular levels of 5-HT and,
accordingly, LA.

5-HT2A receptors

Although citalopram displays weak antagonist activity at
5-HT2A and 5-HT2C receptors (Jenck et al. 1993;
P�lvim�ki et al. 1996), direct actions at these sites are
unlikely to intervene in its hyperlocomotor properties,
since selective 5-HT2A and 5-HT2C antagonists do not
mimic its induction of LA. Further, fluvoxamine, ven-
lafaxine and S33005, which likewise increase LA, have
negligible affinity for 5-HT2A and 5-HT2C receptors
(Tatsumi et al. 1997; Millan et al. 2001b; Brocco et al.
2002).

Blockade by MDL100,907 and SR49,369 of the
actions of citalopram is supported by other studies
indicating a broad role of 5-HT2A receptors in the
mediation of LA. First, MDL100,907 and other 5-HT2A
antagonists suppressed induction of LA by the 5-HT
releaser, MDMA, in rats (Bankson and Cunningham
2002a, 2002b; Fletcher et al. 2002). Second,
MDL100,907 attenuated the facilitatory influence of
fluoxetine on the LA elicited by the DA uptake inhibitor,
mazindole, (McMahon and Cunningham 2001b). Further,
an additional 5-HT2A antagonist, ketanserin, inhibited the
ability of fluoxetine to potentiate induction of LA by the
monoamine releaser, cocaine (Herges and Taylor 1998).
Third, MDL100,907 and ketanserin attenuated the loco-
motor actions of cocaine in rats though data are conflict-
ing as concerns their interference with stimulation of LA
by a further psychostimulant, amphetamine (Millan et al.
1999a; McMahon and Cunningham 2001a; Munzar et al.
2002). Fourth, 5-HT2A receptors are involved in the
induction of LA by the “dopaminergic” agonist, pergo-

lide, which displays agonist properties at 5-HT2A recep-
tors (Hagen et al. 1994; Moore et al. 1999). Finally,
MDL100,907 attenuated the LA elicited in rats by the
open channel blocker at NMDA receptors, PCP (Millan et
al. 1999a), without modifying its influence on extracel-
lular 5-HT: comparable observations were made here with
citalopram.

5-HT2A sites mediating PCP-induced LA in rats are
localized in the nucleus accumbens: they are activated by
local pools of 5-HT (Millan et al. 1999a). On the other
hand, 5-HT2A receptors on dopaminergic cell bodies in
the VTA are involved in the induction of LA by cocaine
(Doherty and Pickel 2000; McMahon and Cunningham
2001a). Indeed, 5-HT2A receptors augment the activity of
mesolimbic, as well as nigrostriatal and frontocortical,
dopaminergic projections (Ng et al. 1999; Bowers et al.
2000; Millan et al. 2000; Yan et al. 2000; De Deur-
waerd�re and Spampinato 2001). Thus, 5-HT2A receptors
facilitatory to mesolimbic dopaminergic mechanisms may
well be implicated in the present observations, although
this remains to be directly examined. Further, the possible
significance of 5-HT2A receptors modulating anxious
states should not be neglected (Griebel et al. 1997;
Dekeyne et al. 2000).

It should be noted that 5-HT2A receptor antagonists do
not modify the influence of SSRIs on dialysis levels of 5-
HT in rats, so the inhibitory influence of MDL100,907
and SR46,349 on the induction of LA by citalopram and
fluvoxamine is unlikely to reflect modulation of extra-
cellular levels of 5-HT (Millan et al. 2000; A. Gobert and
M.J. Millan, unpublished observations).

5-HT2B receptors

5-HT2B receptors are poorly represented in the CNS,
wherein their functional significance remains obscure
(Duxon et al. 1997; Barnes and Sharp 1999). Though their
activation may be associated with anxiolytic properties, a
role in the enhancement of LA by citalopram may be
discounted in view of its lack of sensitivity to 5-HT2B
receptor antagonists.

5-HT2C receptors

5-HT2C receptor agonists exert a suppressive influence on
locomotor behaviour (Lucki et al. 1989; Kennett et al.
1996, 1997; Martin et al. 1998), reflecting their inhibition
of central dopaminergic pathways (Millan et al. 2000; De
Deurwaerd�re and Spampinato 2001; Di Matteo et al.
2001). Correspondingly, SB206,553 and SB242,084 did
not inhibit the induction of LA by citalopram. Indeed,
SB242,084 facilitated its action, indicating that concur-
rent activation of 5-HT2C receptors may oppose the
induction of LA via 5-HT2A sites. Similarly, in contrast to
5-HT2A antagonists, 5-HT2C antagonists potentiated the
induction of LA by MDMA (Bankson and Cunningham
2002b; Fletcher et al. 2002), a combination of fluoxetine
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and mazindole (McMahon and Cunningham 2001b),
dizocilpine (Wood et al. 2001) and (at high doses)
cocaine (Herges and Taylor 1998; McMahon and Cun-
ningham 1999). Moreover the decrease in LA elicited by
fluoxetine is attenuated by SB242,084 (Bagdy et al.
2001). Thus, the contrasting roles of 5-HT2C versus 5-
HT2A receptors (vide supra) in the influence of citalopram
on LA parallel their opposite inhibitory and facilitatory
influence on motor function and dopaminergic transmis-
sion, respectively (Millan et al. 2000; De Deurwaerd�re
and Spampinato 2001; Di Matteo et al. 2001). Indeed, 5-
HT2C receptors may intervene in the modest inhibition of
mesolimbic dopaminergic transmission by SSRIs (Prisco
and Esposito 1995).

5-HT2C antagonists block the anxiogenic actions of
citalopram and other SSRIs (Bristow et al. 2000; Dekeyne
et al. 2000; Bagdy et al. 2001). Thus, the facilitatory
influence of SB242,084 on citalopram-induced LA in this
novel environment might also involve relief of its
anxiogenic properties. Indeed, 5-HT2C receptors are of
special interest in light of their broad implication in the
actions of SSRIs (Millan et al. 1999b). In analogy to LA,
antidepressant actions of SSRIs were enhanced by 5-HT2C
antagonists in certain studies (Yamada and Sugimoto
2001), though other authors reported their attenuation
(Clemett et al. 2001). Correspondingly, most evidence
suggests that blockade of 5-HT2C receptors, or their long-
term down-regulation (with SSRIs), improves depressed
mood (Martin et al. 1998; Millan et al. 2000).

5-HT3 and 5-HT4 receptors

The potential influence of 5-HT3 receptors on striatal DA
release remains controversial while the facilitatory influ-
ence of 5-HT3 receptors on mesolimbic dopaminergic
transmission and locomotor behaviour is variable (De
Deurwaerd�re et al. 1998; Kankaanp�� et al. 2002).
Indeed, ondansetron failed to modify the induction of LA
by citalopram, suggesting that 5-HT3 receptors are not
involved in this effect. 5-HT4 receptors are concentrated
in mesolimbic and striatal tissue, in the latter of which
their engagement enhances DA release (De Deurwaerd�re
et al. 1997; Lucas et al. 2001) and may be involved in
cocaine-induced LA (McMahon and Cunningham 1999).
However, Reavill et al. (1998) reported that 5-HT4 sites
do not play an important role in the modulation of motor
behaviour in rats, and 5-HT4 antagonists such as
GR125,847 (Barnes and Sharp 1999) do not modify LA
in rodents (Fontana et al. 1997). Thus, the lack of
influence of GR125,487 on citalopram-induced LA is
unsurprising. Moreover, like 5-HT3 sites, activation of 5-
HT4 receptors enhances anxious states (Jones et al. 1988;
Menard and Treit 1999; Olivier et al. 2000), actions
inconsistent with an elevation of LA by citalopram.

5-HT6 and 5-HT7 receptors

The inhibitory influence of the 5-HT6 antagonist, Ro-04-
6790, on ipsilateral rotation induced in unilateral sub-
stantia nigra pars compacta-lesioned rats by muscarinic
antagonists indicates a facilitatory influence of 5-HT6
sites on LA, in line with their occurrence in the basal
ganglia and nucleus accumbens (Gerald et al. 1997;
Bourson et al. 1998; Neumaier et al. 2001). However, 5-
HT6 antagonists do not modify central dopaminergic
transmission (Dawson et al. 2001), pronounced alterations
in motor function are not apparent in mice lacking 5-HT6
sites (Tecott et al. 1998) and antisense probes neutralizing
5-HT6 receptors did not modify LA in rats (Otano et al.
1999). These observations, together with indications that
the activation of 5-HT6 receptors is anxiogenic (Otano et
al. 1999), are consistent with the present findings that the
selective 5-HT6 antagonist, SB271,046 did not attenuate
the increase of LA by citalopram in mice. As regards 5-
HT7 sites, they are not enriched in structures controlling
motor function (Hagan et al. 2000; Neumaier et al. 2001)
and intracerebral administration of antisense probes
against 5-HT7 sites did not modify LA (Clemett et al.
1998). These findings are in line with the lack of
influence of the selective 5-HT7 antagonist, SB269,970,
on induction of LA by citalopram.

Combined role of 5-HT1B and 5-HT2A receptors
in mediating induction of LA

It is of particular interest that blockade of either 5-HT1B
or 5-HT2A receptors suppressed induction of LA by
SSRIs. Isobolographic analyses of interactions between 5-
HT1B and 5-HT2A antagonists would be necessary to
clarify whether they exert actions additively, synergisti-
cally or otherwise. In any case, these data imply that
activation of 5-HT1B or 5-HT2A receptors is necessary but
not sufficient for induction of LA by SSRIs. 5-HT1B and
5-HT2A receptors may be localized “in series”: for
example, 5-HT2A sites in the ventrotegmental area and
5-HT1B counterparts downstream in the nucleus accum-
bens (vide supra). Alternatively, both 5-HT1B and 5-HT2A
receptors may be co-localized in limbic structures con-
trolling motor function. Their precise localization and
their “functional” interrelationship remain, thus, to be
elucidated. Interestingly, this implication of both 5-HT1B
and 5-HT2A sites in the increase of LA by citalopram
mimics their cojoint role in mediating the increase of LA
elicited by MDMA (McCreary et al. 1999; Bankson and
Cunningham 2002a, 2002b; Fletcher et al. 2002). Further,
more generally, the present data draw attention to the
notion that simultaneous actions at multiple subtypes of 5-
HT (and other) receptor may be required for full
expression of antidepressant (and other) properties of
SSRIs and SNRIs.
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Conclusions

5-HT1B and 5-HT2A receptors fulfill complementary roles
in the induction of LA by SSRIs in NMRI mice exposed
to a novel environment. Additional study will be neces-
sary to clarify the neuronal substrates underlying their
involvement, as well as the role of modulation of motor
function per se as compared to other parameters such as
anxiety and vigilance. The pertinence of the present data
to the antidepressant properties of SSRIs will also be of
interest to evaluate. In the elucidation of such issues, it
would likely be instructive to examine more complex
measures of motor function, in addition to the parameter
of horizontal displacement exploited herein. Finally, the
present model should prove of use in further exploration
of receptor and neuronal mechanisms involved in the
actions of SSRIs.
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