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Abstract Rationale: The cardiovascular effects of psy-
chostimulant drugs (methylphenidate, amphetamine, co-
caine) have been mostly associated with their
noradrenergic effects. However, there is some evidence
that dopaminergic effects are involved in the cardiovas-
cular actions of these drugs. Here, we evaluated this
association in humans. Methods: Positron emission
tomography (PET) and [11C]raclopride, a dopamine
(DA) D2 receptor radioligand that competes with endog-
enous DA for occupancy of the D2 receptors, were used
to measure changes in brain DA after different doses of
intravenous methylphenidate in 14 healthy subjects.
Cardiovascular (heart rate and blood pressure) and
catecholamine (plasma epinephrine and norepineprhine)
responses were determined in parallel to assess their
relationships to methylphenidate-induced changes in

brain DA. Results: Methylphenidate administration sig-
nificantly increased heart rate, systolic and diastolic blood
pressures and epinephrine concentration in plasma. The
increases in blood pressure were significantly correlated
with methylphenidate-induced increases of DA in stria-
tum (r>0.78, P<0.001) and of plasma epinephrine levels
(r>0.82, P<0.0005). In turn methylphenidate-induced DA
increases in striatum were correlated with increases of
epinephrine in plasma (r=0.85, P<0.0001). Subjects in
whom methylphenidate did not increase DA had no
change in blood pressure or in plasma epinephrine
concentration. Discussion: These results are consistent
with the hypothesis that methylphenidate-induced in-
creases in blood pressure are in part due to its central
dopaminergic effects. They also suggest that methylphe-
nidate’s pressor effects may be in part mediated by DA-
induced increases in peripheral epinephrine.
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Introduction

Methylphenidate (MP) is the drug of choice for the
treatment of attention deficit hyperactivity disorder
(ADHD), which is the most common behavioral disorder
of childhood (Swanson et al. 1991; Greenhill et al. 2002;
Wilens et al. 2002). MP is also effective for the treatment
of narcolepsy (Littner et al. 2001) and as an antidepres-
sant in the treatment of medically ill elderly patients
(Kaufman et al. 1984; Chiarello and Cole 1987; Rozans et
al. 2001). Unfortunately MP also has reinforcing effects,
particularly when taken intravenously or when snorted,
which can lead to abuse and addiction (Parran and
Jasinski 1991).

Among the side effects of MP are its cardiovascular
effects; MP increases heart rate (HR) and blood pressure
(BP; Ballard et al. 1976; Brown et al. 1984). Though
cardiovascular effects are considered clinically insignif-
icant at typical therapeutic doses (Findling et al. 2001), a
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recent study that did ambulatory pressure monitoring over
24 h reported significant increases in BP with therapeutic
doses of MP in children with ADHD (Stowe et al. 2002).
Also tachycardia and hypertension have been reported
with unintentional overdoses, medication errors, and
overdoses caused by abuse or by suicide attempts
(Klein-Schwartz 2002). The brain mechanisms underlying
the cardiovascular effects of MP have not been well
defined. MP blocks the norepinephrine (NE) transporter
(Kuczenski and Segal 1997), and the prevailing view is
that its cardiovascular effects are mediated primarily
through NE stimulation, but some lines of investigation
suggest otherwise. First, the cardiovascular actions of
cocaine, a drug pharmacologically similar to MP that also
blocks dopamine (DA) and NE transporters, are mediated
in part by DA (Tella and Goldberg 1998). Second, there is
some evidence that DA contributes to cardiovascular
regulation via central and peripheral mechanisms (van
den Buuse 1998): stimulation of DA cells in the ventral
tegmental area (VTA) increases BP, and this effect is
antagonized by the DA D2 receptor blocker raclopride,
suggesting that DA regulates cardiovascular function.
Third, DA modulation of cardiovascular function appears
to be in part mediated via its effects on peripheral
catecholamines (Mannelli et al. 1997). Based on this
literature, we developed the hypothesis that DA effects
are also involved in the cardiovascular side effects of MP.
Directed by this hypothesis, in this paper we address the
relationships between MP-induced increases in brain DA
and effects on cardiovascular function and peripheral
catecholamine levels.

The effects of intravenous MP on HR and BP and on
peripheral NE and epinephrine (EP) concentrations were
investigated and related to changes in extracellular DA in
striatum (ST). Extracellular DA in ST was measured
using positron emission tomography (PET) and
[11C]raclopride, a radioligand which competes with DA
for binding to DA D2 receptors (Seeman et al. 1989;
Dewey et al. 1993). Since [11C]raclopride binding in the
human brain is highly reproducible (Volkow et al. 1993),
differences in binding between placebo and MP predom-
inantly reflect MP-induced changes in synaptic DA, and
consequent changes in availability of DA D2 receptors to
the radioligand (Volkow et al. 1994). MP-induced
changes in synaptic DA as assessed with PET and
[11C]raclopride have been shown to be reproducible when
subjects are tested and re-tested on separate occasions
(Wang et al. 1999). The data on MP-induced effects on
striatal DA were published in a prior paper that evaluated
the role of DA on the reinforcing effects of MP (Volkow
et al. 1999).

Methods

Subjects

The participants were 14 right-handed healthy subjects (8 males, 6
females, age 33€6 years, mean€SD). Subjects were excluded if

they had a present or past history of drug or alcohol abuse or
dependence (excluding nicotine/caffeine), as defined in Diagnostic
and Statistical Manual of Mental Disorders (DSM)-IV, or a current
or past history of psychiatric, neurological, cardiovascular or
endocrinological disease. None of the subjects was taking medi-
cations at the time of the study. Toxicological drug screens were
performed prior to each PET scan. Studies were approved by the
Institutional Review Board at Brookhaven National Laboratory and
informed consent was obtained from all subjects after procedures
were explained.

Scans

The design of the study called for four scans with [11C]raclopride
(two scans per day over a 2-day period). However, because of
scheduling problems, we completed the four scans only on 9 of the
14 subjects and, in the other 5 subjects, we only completed two
scans. The first scan on a given day was after placebo and the
second was 127 min later after an i.v. dose of MP established under
single-blind conditions. Since the dose-related effects of MP on the
measures of this study were not known, we performed a dose-
ranging evaluation: subjects were randomly assigned to receive one
of four i.v. doses of MP (0.025, 0.1, 0.25, 0.5 mg/kg). Table 1
shows the dose(s) of MP given to each one of the subjects. MP or
placebo (3 cc saline) was injected 7 min prior to [11C]raclopride.
Scans were done on a CTI-931 PET tomograph (6�6�6.5 mm full
width half maximum) and were started immediately after injection
of 3.8–10 mCi [11C]raclopride (specific activity 0.5–1.5 Ci/�M at
end of bombardment; 2–24 �g injected dose) for a series of 20
emission scans obtained over 60 min as previously described
(Volkow et al. 1993). Details on synthesis of [11C]raclopride,
subject positioning, transmission and emission scans, arterial blood
sampling for radiotracer quantification and metabolite analyses
have been published (Volkow et al. 1993). Venous blood was
drawn for quantification of plasma concentration of MP prior to and
at 27 min and 47 min after MP using capillary GC/mass
spectrometry (Srinivas et al. 1991). The plasma samples for MP
concentration were lost for one of the subjects.

Cardiovascular and catecholamine measures

Recordings for HR and BP were obtained continuously throughout
the placebo and MP scans. Arterial blood samples obtained for the
determination of plasma catecholamines were transferred to a tube
containing 20 ml of 9% ethylene diamine tetraacetic acid (EDTA)
and of 6% glutathione, and the plasma was analyzed for EP and
NE. 3,4-Dihydroxybenzylamine (DHBA) was added to plasma as

Table 1 Subjects studied for the different methyphenidate (MP)
doses. In nine of the subjects, we measured the changes in
dopamine induced by MP twice and in five of the subjects, we
measured MP-induced changes only once

Subject MP doses tested (mg/kg)

1 0.025
2 0.025
3 0.025, 0.1
4 0.025, 0.1
5 0.025, 0.1
6 0.25
7 0.25, 0.25
8 0.25, 0.25
9 0.25, 0.25

10 0.5, 0.25
11 0.5
12 0.5
13 0.5, 0.5
14 0.5, 0.5
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an internal standard, and catecholamines absorbed onto alumina at
pH 8.5 and eluted with perchloric acid (PCA; 0.1 M). The
processed samples were quantified by high-performance liquid
chromatography (HPLC) using a catecholamine column and an
electrochemical detector (Bioanalytic Systems, West Lafayette,
IN). Using this system, the detection limit for EP, NE and DHBA
was 10 pg.

Image analysis and modeling

Regions of interest (ROI) were outlined for ST and cerebellum
(CB), as previously described (Volkow et al. 1993). Briefly, ROI
were initially outlined on the individual’s summed baseline
[11C]raclopride image (images obtained between 15 min and
54 min) and were then projected into the dynamic [11C]raclopride
images to generate time activity curves for ST and CB. These time
activity curves for tissue concentration along with the time activity
curves for unchanged tracer in plasma were used to calculate
[11C]raclopride’s distribution volumes (DVs), which correspond to
the equilibrium measurement of the ratio of tissue concentration to
plasma concentration, in ST and CB using a graphical analysis
technique for reversible systems (Logan et al. 1990). The ratio of
DV in ST to that of DV in CB corresponds to (Bmax/Kd)+1 and is
insensitive to changes in cerebral blood flow (Logan et al. 1994).
The response to MP was quantified as the difference in Bmax/Kd
between placebo and MP and expressed as percentage change from
baseline [(Bmax/Kdplacebo�Bmax/KdMP)/Bmax/Kdplacebo]�100.

Data analysis

Differences in Bmax/Kd, the cardiovascular and the catecholamine
measures between placebo and MP were separately tested for each
one of the MP doses with paired t-tests. To assess the effects of MP
on peripheral EP and NE concentrations, we obtained the area
under the curve from time of injection up to 60 min. For the
cardiovascular measures, we averaged the eight scores that were
obtained between 4 min and 12 min, which were the time periods
when peak effects for MP occurred and compared them against the
baseline measures (eight scores obtained 1 h prior to MP injection).
Pearson product moment correlation analyses were calculated
between the changes in Bmax/Kd and the cardiovascular changes
(% change from placebo). On those correlations that were found to
be significant, we performed partial correlation analysis to deter-
mine whether the correlations remained significant after removing
the contribution of dose and of concentration of MP in plasma (Kirk
1990).

Results

Due to scheduling and technical problems, not all subjects
completed the four scans. Nine subjects were tested twice
as planned, but five subjects were tested only once, so a
total of 23 brain DA measures (PET raclopride studies)

were performed (Table 1). Peripheral catecholamine
measures were obtained for 17 of the 23 scans. The
number of brain DA and peripheral catecholamine
measures for each MP dose is shown in Table 2, and
Table 3 shows the plasma MP concentrations achieved for
the different doses.

Overall, MP significantly increased HR and systolic
and diastolic BPs, with maximum effects (in general) at
the 0.25-mg/kg dose (Fig. 1). For HR, the increases were
about the same magnitude and significant for the 0.5-mg/
kg (55€35%, t=5, df 6, P<0.003) and 0.25-mg/kg
(55€43%, t=3.5 df 7, P<0.01) doses, smaller (about half
the magnitude) and not statistically significant for the 0.1-
mg/kg (27€27%), and negligible for the 0.025-mg/kg
(4€4%) doses (Fig. 1). The same pattern held for BP.
Systolic BP increases were statistically significant for the
0.5-mg/kg (22€6%; t=9, df 6, P<0.0001) and 0.25-mg/kg

Table 2 Number of brain dopamine (DA) measures [two raclo-
pride scans; one done at baseline and one after methylphenidate
(MP)] and number of plasma catecholamine measures done for the
different MP doses

MP dose
(mg/kg i.v.)

No. of brain
DA measures

No. of catecholamine
measures

0.025 5 4
0.1 3 2
*0.25 8 7
*0.5 7 4

* For the 0.25-mg/kg and 0.5-mg/kg MP doses, three and two
subjects, respectively, were tested twice with the same dose. Also
because of technical errors, we could only obtain catecholamine
measures in 17 of the studies

Fig. 1 Temporal course for the
effects of the various doses of
intravenous methylphenidate on
heart rate and systolic and dia-
stolic blood pressures. Increases
were significant for the 0.5-mg/
kg and 0.25-mg/kg doses

Table 3 Plasma methylphenidate (MP) concentration (ng/ml) at
27 min and 47 min post-MP and peak concentrations of epinephrine
(EP) and norepinephrine (NE) (average measures obtained 4–
20 min after MP administration) after the administration of the
various MP doses

Dose MP in
plasma
27 min

MP in
plasma
47 min

EP
(pg/ml)

NE
(pg/ml)

Placebo (n=17) 108€92 241€102
0.025 mg/kg 7€2 3€1 49€20 142€72
0.1 mg/kg 26€5 13€3 64€10 113€48
0.25 mg/kg 63€14 38€9 262€193* 334€282
0.5 mg/kg 116€20 72€18 238€132* 273€142

* Significant increases from placebo P<0.05 (paired t-tests)
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(25€9%; t=9, df 7, P<0.0001) doses, but not for the
0.1-mg/kg (6€7%) and the 0.025-mg/kg (0€3%) doses.
Also, diastolic BP increases were statistically significant
for the 0.5-mg/kg (22€9%; t=7.5, df 6, P<0.0003) and the
0.25-mg/kg (20€4%; t=16, df 7, P<0.0001) doses but not
for the 0.1-mg/kg (9€5%) and negligible for the 0.025-
mg/kg (0€5%) doses.

Increases in EP concentrations in plasma were statis-
tically significant for the 0.5-mg/kg and the 0.25-mg/kg
doses but not for the 0.1-mg/kg and 0.025-mg/kg doses.
MP effects in NE were not statistically significant
(Table 3).

MP decreased Bmax/Kd for the 0.5-mg/kg (19€9%,
t=4.6, df 6, P<0.004) and the 0.25-mg/kg (15€11%, t=3.6,
df 7, P<0.01) doses but not for the 0.1-mg/kg (12€7%,
t=2.7, df 2, P<0.11) and 0.025-mg/kg (0€6%) doses. The
correlations of the DA changes with the other dependent
measures revealed some statistically significant effects.
MP-induced changes in DA (% change in Bmax/Kd from
placebo) were significantly correlated with systolic
(r=0.68, df 22, P<0.0004) and diastolic (r=0.58, df 22,
P<0.004) BPs but not with HR (r=0.27, df 1,22, P=0.21)
(Fig. 2). MP-induced changes in DA were also correlated
with MP-induced changes in EP (r=0.85, df 14,
P<0.0001) but not with NE (r=0.36, df 15, P=0.18)
(Fig. 3). After partialing out for the concentration of MP
in plasma and for MP doses, the correlations remained
significant for systolic (r=0.638; df 18, P<0.003) but not

for diastolic (r=0.378; df 18, P<0.10) BPs and were also
significant for EP (r=0.72, df 11, P<0.006).

Because the 23 DA measures were not independent
since 9 subjects were tested twice (5 subjects only once),
we tested separate correlations that included only the first
brain DA measure for each subject (total of 14 data
points). The same results were obtained and the correla-
tions with DA changes were significant for systolic
(r=0.79, df 14, P<0.001) and diastolic (r=0.76, df 14,
P<0.002) BPs and for EP (r=0.88, df 9, P<0.001).

The correlation between MP-induced changes in EP
and changes in the cardiovascular measures were signif-
icant for systolic (r=0.82, df 14, P<0.0002) and diastolic
(r=0.86, df 15, P<0.0001) BPs but not for HR (r=0.4, df
14, P=15) (Fig. 3). Similar results were obtained when the
correlations were done using only one data point per
subject and corresponded for the correlation between
changes in EP and systolic BP to r=0.86 (df 9, P<0.002)
and diastolic BP to r=0.91 (df 9, P<0.0005).

Discussion

The positive correlation between MP-induced increases in
DA and increases in systolic BP is consistent with the
hypothesis that this cardiovascular effect of MP might be
partially mediated by central DA effects. The fact that this
correlation remained significant after partialing out for
dose effects and the concentration of MP in plasma
suggests that this is not a spurious correlation reflecting
an association between higher doses and greater increases
in BP. Instead, after adjusting for dose, the covariation
between DA and systolic BP should be due to individual
differences in responsivity to MP. If an individual failed
to show an increase in DA to even a high dose of MP,
then that individual tended under the same conditions to
lack response on the physiological response of systolic
BP.

Evidence for the relevance of DA to the pressor effects
of other stimulant drugs has been previously documented.
Cocaine, which is a drug pharmacologically similar to MP
(Volkow et al. 1995; Rush and Baker 2001), increases BP
and HR when administered to rodents. These effects have
been shown to be antagonized by the DA D2 receptor

Fig. 3 Regression lines for the correlation between methylpheni-
date-induced changes in dopamine D2 receptor availability in
striatum and methylphenidate-induced increases in epinephrine
(r=0.85, P<0.0001) and norepinephrine (r=0.36, n.s.)

Fig. 2 Regression lines for the correlation between methylpheni-
date-induced changes in dopamine D2 receptor availability in
striatum and methylphenidate-induced increases in heart rate

(r=0.27, n.s.), systolic pressure (r=0.68, P<0.0005) and diastolic
pressure (r=0.58, P<0.005)
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blocker eticlopride (Tella 1996). Similarly, the DA-
selective reuptake inhibitor, GBR12909, also increased
BP and HR and eticlopride also blocked these effects
indicating that DA mediates the cardiovascular effects of
these drugs through DA D2 receptors. This is likely to be
a central effect of DA since the peripheral DA D2
antagonist drug domperidone did not block the cardio-
vascular effects of these DA enhancing drugs. Similarly,
human studies have indicated that increases in BP induced
by amphetamine have a DA component since they are
attenuated by the DA D2 receptor antagonist haloperidol
(Angrist et al. 1974, 2001). Also stimulation of the VTA
has been shown to increase BP, which is an effect
antagonized by the DA D2 receptor antagonist raclopride
(Cornish et al. 1997; van den Buuse 1997). Though most
studies have investigated the effects of DA D2 receptor
agonists and antagonist drugs on stimulant’s cardiovas-
cular effects there is also evidence that D1 receptors are
involved (Schindler et al. 2002). Overall, these findings
point to an involvement of DA in the pressor responses to
stimulant drugs and are consistent with studies docu-
menting an involvement of DA in cardiovascular regula-
tion (van den Buuse 1998). Though preclinical studies
have provided evidence of the involvement of central DA
in regulating stimulant induced increases in HR (Tella
1996), we did not observe a correlation between MP-
induced increases in DA and HR. The reason(s) for this
discrepancy are unclear but could reflect a differential
involvement of DA-regulated brain regions or mecha-
nism(s) regulating HR and BP. For example, the
mesolimbic DA system via the VTA potentiates the
effects of vasopressin on mean arterial pressure but not in
HR (van Den Buuse and Catanzariti 2000). Since the PET
raclopride method can only measure MP-induced changes
in ST, we cannot assess the role of non-striatal DA
regulated regions in MP-induced cardiovascular effects. It
is also possible that the failure to observe a correlation
between central DA and HR could reflect peripheral
adaptation responses that counteract the central effects on
cardiovascular function. For the case of amphetamine, it
has been suggested that peripheral baroreceptor responses
interfere with its effects in HR but not in BP (Angrist et
al. 2001).

The results from the present study are in agreement
with previous studies documenting increases in EP but not
in NE after intravenous MP (Joyce et al. 1984). Here we
show that MP-induced increases in EP were associated
with DA changes. Evidence that increases in EP induced
by drugs that block the DAT were in part mediated by a
centrally mediated effect of DA had previously been
shown for cocaine and for GBR12909 for which the EP
increases were blocked by eticlopride but not by
domperidone (Tella 1996). However, there is also
evidence that DA modulates EP release from the adrenals
in part through peripheral DA D2 receptors (Kujacic et al.
1995). Because the increases in EP were also correlated
with MP’s pressor effects, we speculate that MP-induced
increases in BP are indirectly mediated by DA-induced
EP release. However, because MP also blocks the NE

transporter, we cannot rule out the possibility that MP-
induced increases in EP are due to its central NE effects
(Kuczenski and Segal 1997). Furthermore while the
changes in DA induced by MP accounted for a significant
proportion of the variability in the pressor responses
(r2=46%), this does not account for it completely.

The association of DA changes was significant for
MP-induced changes in EP but not NE. The sources of
these two peripheral measures of catecholamines differ,
EP mostly reflects release from the adrenals while NE in
plasma is considered a spillover from sympathetic
nervous system activation at the tissue level (Ganong
2001). Thus, we speculate that the exclusive relationship
of DA with the MP-induced rise in EP levels and BP is a
reflection of DA-induced sympatho-adrenal stimulation,
which in turn mediates the pressor response.

Although this study evaluated the effects of MP, the
possibility that similar mechanisms underlie the cardio-
vascular effects elicited by other stimulant drugs such as
amphetamine and cocaine, which also increase DA and
NE in brain should not be excluded.

There are several limitations that should be considered
for this study. First, there was considerable missing data
due to scheduling and technical problems. This may be
inherent to studies that require multiple PET scans and
administration of psychoactive drugs. Also the expense of
the PET scans poses a limitation to the total number of
subjects that can be studied. Second, the PET DA D2
radioligand competition method provides only a relative
estimate of changes in DA concentration that underesti-
mates the actual magnitude of the DA changes (Laruelle
2000). In fact it has been estimated that a 1% decrease in
[11C]raclopride binding corresponds to at least an eight-
fold increase in extracellular DA (Breier et al. 1997).
Third, we used correlations to try to understand the
underlying relationships between MP-induced changes in
brain DA and changes in HR, BP and catecholamine
levels. Significant correlations do not identify causative
factors, but do provide candidates that can be evaluated in
light of the literature and additional factors. However, the
conclusions based on correlations are always tentative and
provide a piece in the puzzle not a definitive answer about
complex relationships. Fourth, this study was initially
designed to assess the role of DA on the reinforcing
effects of MP (Volkow et al. 1999) and thus the design
was not optimal to evaluate its role in its cardiovascular
effects.

In summary, this study provides the first documenta-
tion of a significant relationship between increases in
brain DA and the increases in BP in response to MP in
human subjects. These results are consistent with the
hypothesis that DA plays a role in the cardiovascular
responses to MP and suggest that DA, a neurotransmitter
that regulates locomotor activity, cognition and reward
(Le Moal and Simon 1991), may also be involved in
maintaining cardiovascular homeostasis in humans.
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