
Digital Object Identifier (DOI) 10.1007/s002110200401
Numer. Math. (2003) 93: 729–753 Numerische

Mathematik

Smolyak cubature of given polynomial degree
with few nodes for increasing dimension �

Knut Petras

Institut für Angewandte Mathematik, Technische Universität Braunschweig, Pockelsstr. 14,
38106 Braunschweig, Germany; e-mail: k.petras@tu-bs.de

Received September 24, 2001 / Revised version received January 24, 2002 /
Published online April 17, 2002 – c© Springer-Verlag 2002

Summary. Some recent investigations (see e.g., Gerstner and Griebel [5],
Novak and Ritter [9] and [10], Novak, Ritter and Steinbauer [11], Wasil-
kowski and Woźniakowski [18] or Petras [13]) show that the so-called
Smolyak algorithm applied to a cubature problem on the d-dimensional
cube seems to be particularly useful for smooth integrands. The problem is
still that the numbers of nodes grow (polynomially but) fast for increasing
dimensions. We therefore investigate how to obtain Smolyak cubature for-
mulae with a given degree of polynomial exactness and the asymptotically
minimal number of nodes for increasing dimension d and obtain their char-
acterization for a subset of Smolyak formulae. Error bounds and numerical
examples show their good behaviour for smooth integrands. A modification
can be applied successfully to problems of mathematical finance as indicated
by a further numerical example.

Mathematics Subject Classification (1991): 65D32

1 Introduction

The Smolyak algorithm is a procedure that derives numerical methods for
tensor product problems from those for univariate ones. Here, we consider
the numerical calculation of

(1) Id[f ] =
∫

[0,1]d
f(x) dx, x = (x1, . . . , xd).

Let therefore be Q = Q(1), Q(2), . . . a sequence of quadrature formulae
� The author is supported by a Heisenberg scholarship of the Deutsche Forschungsge-

meinschaft
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Q(i)[f ] := Qni [f ] :=
ni∑

ν=1

a(i)
ν f(x(i)

ν ) =
∫ 1

0
f(x) dx − R(i)[f ],

x(i)
ν ∈ [0, 1](2)

where R(i) is the residual of Q(i). The corresponding k-stage Smolyak for-
mulae (cf. Smolyak [16]) to the basic sequence Q for numerical calculation
of Id[f ] are now given by

Q(d + k, d) =
∑

k+1≤|i|≤d+k

(−1)d+k−|i|
(

d − 1
|i| − k − 1

)
×Q(i1)⊗ . . .⊗Q(id),(3)

where

Q(0)[f ] = 0, i = (i1, . . . , id) ≥ (0, . . . , 0) and

|i| =
d∑

ν=1

iν(4)

as well as

Q(i1)⊗ . . .⊗Q(id)[f ] =
n1∑

ν1=1

. . .

nd∑
νd=1

a(i1)
ν1

· · · a(id)
νd

· f(x(i1)
ν1

, . . . , x(id)
ν1

).

(5)

Another way of writing Smolyak cubature is to set Q(0) = 0,

∆(i) =

{
Q(i) − Q(i−1) for i > 0
0 otherwise

and

Q(d + k, d) =
∑

|i|≤d+k

∆(i1)⊗ . . .⊗∆(id)(6)

(for further properties, see, e.g., Novak and Ritter [10] or Wasilkowski and
Woźniakowski [18]). The cubature error is defined by

(7) R(d + k, d)[f ] = Id[f ] − Q(d + k, d)[f ].

Some competitors of the Smolyak algorithms are, e.g.

1. Product formulae (see (5))
2. Monte-Carlo formulae (see Caflisch [2] and Niederreiter [8])
3. Quasi-Monte-Carlo formulae (see Caflisch [2] and Niederreiter [8])
4. Lattice rules (see Sloan and Joe [14])
5. The fully symmetric rules of Genz [4].
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Some remarks concerning these formulae, respectively, are:

1. The numbers of nodes of nontrivial product formulae increase exponen-
tially with increasing dimension.

2. The Monte-Carlo method is – in a stochastic sense – a rather robust
method but the convergence rate of a “pure” Monte-Carlo method is
rather poor.

3. Quasi-Monte-Carlo rules have (like the trapezoidal rule for univariate
integration) favourable properties for integrands with low-order smooth-
ness but if higher order derivatives of the integrand exist, the known rules
do not use the full smoothness.

4. Lattice rules are particularly designed for the integration of periodic
functions. If we want to obtain a high convergence rate when applying
them to smooth non-periodic functions, we have to transform the inte-
grand into a periodic function. These transformations often reduce the
smoothness and increase norms of derivatives drastically.

5. Novak and Ritter [10] noticed that the Genz rules can be interpreted as
Smolyak rules.

In the recent literature on cubature of non-periodic functions with
Smolyak’s algorithm, mainly two basic sequences have been investigated:

1. The Clenshaw-Curtis sequence: Q(1)[f ] = f(1/2) and Q(i), i =
2, 3, . . . is the 2i−1 + 1-point Clenshaw-Curtis formula (see Brass [1]
or Novak and Ritter [9]) transformed to [0, 1]. We denote the resulting
Smolyak formulae by QCC .

2. The Kronrod-Patterson sequence: Q(1)[f ] = f(1/2), Q(2) is the 3-
point Gaussian formula and Q(i), i = 3, . . . , 9, are the successive 2i −
1-point Kronrod-Patterson extensions (see Patterson [12] or Gerstner
and Griebel [5]) transformed to [0, 1]. We denote the resulting Smolyak
formulae by QKP .

The second sequence has the advantage that the polynomial degree of
exactness of the respective formulae is considerably higher, while a disad-
vantage is that the numbers of nodes increase faster.

The properties of the Smolyak cubature formulae of course depend on
those of the underlying quadrature formulae. We therefore introduce some
notations and notions concerning these quadrature formulae.

Definition 1 A quadrature formula Q(i) is called positive if all its coefficients
a

(i)
ν (see (2)) are nonnegative. We say that the basic sequence Q is positive if

all its quadrature formulae are positive. The number of nodes is denoted by
n(Q(i)) for quadrature and by n(d + k, d) := n(Q(d + k, d)) for Smolyak
formulae. The degree of a quadrature or cubature formula is

deg(Q(i)) = sup{s | R(i)[Ps] = {0}} or
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deg(Q(d + k, d)) = sup{s | R(d + k, d)[P(d)
s ] = {0}}(8)

respectively (P(d)
s denotes the d-variate polynomials of total degree less

than s + 1). We call Q(i+1) extension of Q(i) and denote by δi the number
of nodes used by Q(i+1) but not by Q(i) (i.e., in particular, δ0 = n(Q(1))). If
δ1 = . . . = δm = 0 �= δm+1, we say thatQ is m-degenerate. A 0-degenerate
sequence will be called regular and we carry the notion of regularity and
degeneracy over to the corresponding Smolyak formulae. Finally, we denote
by ()i the function p given by p(x) = xi.

In particular for high dimensions, the number of nodes increase fast with
the number of stages and for a given number of stages, the number of nodes
increase fast with the dimension. Therefore, we want to investigate Smolyak
formulae of given degree using relatively few nodes. At the same time we
want to achieve good error properties. It was pointed out in [13] that a high
algebraic degree deg(Q(d + k, d)) implies in a certain sense a small error
for smooth functions. The main tool will be the repetition of quadrature
formulae in the basic sequence. We call formulae with such a repetition
“delay Smolyak formulae”.

The number n(d + k, d) of nodes used by the Smolyak formula Q(d +
k, d) can be calculated iteratively from the number of nodes of the elements
of the basic sequence of quadrature formulae. Namely,

n(d + k + 1, d + 1) = δ0 · n(d + k, d) +
k∑

ν=1

δν · n(d + k − ν, d),

n(1 + k, 1) = n(Q(k+1))(9)

(see [13, Sect. 3]). By a more explicit formulae that will be proved below,
we will see later how the numbers of nodes for fixed k and increasing d
grow polynomially if n(1, 1) = δ0 = 1 i.e., if Q(1) is based on one node
and exponentially if δ0 > 1.

It is the purpose of this paper to characterize and derive methods of
a given algebraic degree of precision using the minimal number of nodes
if d increases. This means that we try to retain the favourable properties
of the Smolyak algorithm for smooth functions with the asymptotically
minimal effort. For this purpose, we derive an expression for the number of
nodes of a Smolyak formula in Sect. 2. In Sect. 3, we characterize regularly
asymptotical minimal Smolyak formulae and give examples in Sect. 4 and
recommend a certain positive basic sequence. Then, in Sect. 5 and 6, we give
numerical tests including an example from finance for high dimensional
integration in weighted tensor product spaces, i.e., in spaces, where the
dimensions are of different importance. Finally, in Sect. 7, we discuss briefly
some properties of degenerate Smolyak cubature.
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2 The number of nodes

The number of nodes used by Q(d+k, d) can be calculated by formula (9).
Of course, in our approach, it may happen by chance that some weights aν

in the representation

(13) Q(d + k, d)[f ] =
n∑

ν=1

aνf(xν), xν = (xν,1, . . . , xν,d)

vanish. In this special case, which seems to be hard to predict by considering
the underlying basic sequence

(
Q(i)

)
i∈N

, we still count the corresponding
node. In our double precision numerical computations, it never occurred that
a coefficient aν has been of modulus less than 10−7.

Now, everything depends on the sequence
(
Q(i)

)
i∈N

, respectively on the
sequence

(
δi

)
i∈N

. Instead of calculating n(d + k, d) for each pair (k, d),
we give a general formula holding for all d, in which all coefficients can be
calculated for given fixed k.

Theorem 1 The number n(d+k, d) of nodes of the Smolyak formula Q(d+
k, d) is given by

(14) n(d + k, d) = δd
0

k∑
j=0

cj,k

(
d

j

)
, where

(
d

j

)
:= 0 if j > d,

(15) cj,k =
k−j+1∑
ν=1

δν

δ0
cj−1,k−ν , j = 1, . . . , k

and

(16) c0,k = 1.

Lemma 1 Formula (14) holds with

cj,k = (−1)j+1


k∑

µ=j+1

(−1)µcµ,k +
k−j+1∑
ν=1

δν

δ0

k−ν∑
µ=j−1

(−1)µcµ,k−ν

 ,

j = 1, . . . , k,(17)

and

(18) c0,k =
n(1 + k, 1)

δ0
− c1,k.
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Proof. This is proved by induction over the dimension. The case d = 1 in
(14) reads n(1 + k, 1) = δ0(c0,k + c1,k), which is equation (18). Suppose
therefore, the lemma is proved for dimensions less than d. By formula (9)
and by

(19)
(

d − 1
µ

)
=

µ∑
i=0

(−1)µ−i

(
d

i

)
(see Gradshteyn and Ryzhik [6, eq. 0.1514]), we obtain

n(k + d, d)
δd
0

=
k∑

ν=0

δν

δd
0
n(d − 1 + k − ν, d − 1)

=
k∑

ν=0

δν

δ0

k−ν∑
µ=0

cµ,k−ν

(
d − 1

µ

)

=
k∑

µ=0

(
d − 1

µ

) k−µ∑
ν=0

δν

δ0
cµ,k−ν

=
k∑

µ=0

µ∑
i=0

(−1)µ−i

(
d

i

) k−µ∑
ν=0

δν

δ0
cµ,k−ν

=
k∑

i=0

(
d

i

)
k−i∑
ν=0

δν

δ0

k−ν∑
µ=i

(−1)i+µcµ,k−ν

 .(20)

Comparing coefficients, we have

ci,k =
k−i∑
ν=0

δν

δ0

k−ν∑
µ=i

(−1)i+µcµ,k−ν

= ci,k − ci+1,k +
k∑

µ=i+2

(−1)i+µcµ,k

+
k−i∑
ν=1

δν

δ0

k−ν∑
µ=i

(−1)i+µcµ,k−ν .(21)

We set i + 1 = j and obtain the lemma. ��

Proof of Theorem. The theorem is equivalent to Lemma 1 at least for
j = k. Suppose, the result is true for ck,k, ck−1,k, . . . , cj+1,k. Then, we
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insert this in the first sum of the right-hand side of (17) in Lemma 1 and
obtain

cj,k = (−1)j+1


k∑

µ=j+1

(−1)µ
k−µ+1∑

ν=1

δν

δ0
cµ−1,k−ν

+
k−1∑

µ=j−1

(−1)µ
k−µ∑
ν=1

δν

δ0
cµ,k−ν


= (−1)j+1


k∑

µ=j+1

(−1)µ
k−µ+1∑

ν=1

δν

δ0
cµ−1,k−ν

+
k∑

µ=j

(−1)µ+1
k−µ+1∑

ν=1

δν

δ0
cµ−1,k−ν


=

k−j+1∑
ν=1

δν

δ0
cj−1,k−ν ,(22)

which is (15). We still have to prove formula (16), which obviously holds for
k = 0, i.e., for product formulae. Suppose now, it holds for k = 0, 1, . . . , s−
1. Then, by (18) and (15),

(23) c0,s =
n(1 + s, 1)

δ0
− c1,s =

1
δ0

s∑
ν=0

δν −
s∑

ν=1

δν

δ0
c0,s−ν =

δ0

δ0
= 1.

��

3 Minimality conditions

Definition 2 Let Q be a basic sequence satisfying

(24) deg(Q(d + k(d), d)) ≥ s

for all d. Then, we say that Q is asymptotically minimal (and write a.m.) for
degree s if for each basic sequence Q̃, the corresponding Smolyak formulae
of algebraic degree ≥ s use less nodes than Q(d+k(d), d) for at most finitely
many dimensions. We call a positive basic sequence Q p-asymptotically
minimal (p-a.m.), if it is a.m. among all positive basic sequences. A regular
basic sequence is called regularly (p-)a.m. if it is (p-).a.m. among all regular
basic sequences.

Note that we allow variation in the number of stages, i.e., we allow k to
depend on d, in order to achieve a certain degree. It will turn out that there
are already regularly asymptotically minimal sequences using a fixed k for
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all d although they compete with sequences where a varying k = k(d) is
allowed.

Completely analogous as in Novak and Ritter [10], we obtain

Proposition 1 If deg(Q(i)) ≥ 2i − 1 for all i, then,

(25) deg(Q(d + k, d)) ≥ 2k + 1.

We might hope that the condition of Proposition 1 is also necessary.
However, this is not true – things are more complicated.

Proposition 1 was originally proved by Novak and Ritter for a specific
basic sequence. Many basic sequences (of positive quadrature formulae)
satisfy the assumptions of this proposition and the number of nodes used
by the corresponding Smolyak formulae increases only polynomially as a
function of the dimension d. If n(Q(1)) > 1, then the number of nodes
used by Q(d + k, d) increases exponentially and the corresponding basic
sequence cannot be (p-) asymptotically minimal. If n(Q(1)) = 1 and δ1 > 0,
then the polynomial increase is of degree k with main coefficient (δ1/δ0)k.
Hence, we have

Corollary 1 A regular basic sequence with n(Q(1)) > 1 cannot be (p-)a.m.
Furthermore, a regular (p-)a.m. basic sequence for degree 2k + 1 can have
at most k stages for almost all dimensions.

In fact, we will first consider only regular basic sequences, i.e., those
with δ1 �= 0. In Sect. 7, we discuss briefly the degenerate case.

In this section, we prove two theorems. The first one concerns the prob-
lem, which regular Smolyak formulae have a certain degree of exactness for
infinitely many dimensions. It is the counterpart of Proposition 1. Theorem
3a/b give conditions for regular (p-) asymptotic minimality.

Theorem 2 Let Q be a regular basic sequence satisfying n(Q(1)) = 1, let
k ≤ s be fixed and let deg Q(d + k, d) ≥ 2s + 1 for more than s + 1
dimensions d. Then, k = s and

1. if s is odd, Q satisfies deg(Q(i)) ≥ 2i − 1 for i = 1, . . . , s + 1,
2. if s is even and Q is positive, then deg(Q(i)) ≥ 2i−1 for i = 1, . . . , s+1

and
3. if s is even, we have

(a) Q(1)[f ] = f(1/2),
(b) R(i)[()0] = R(i)[()1] = 0 for all i and
(c) either deg(Q(i)) ≥ 2i−1 or the sequence R(2)[()2], . . . , R(s+1)[()2]

is uniquely determined with R(2)[()2] = 1/6.

Theorem 2 distinguishes essentially two cases, namely if deg(Q(2)) ≥ 2
or not. The second case is much more complicated and causes some problems
in the following.
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Theorem 3a The regular positive sequence Q(1), . . . , Q(k+1) is regularly
p-a.m. for degree 2k + 1 if and only if

1. Q(1)[f ] = f(1/2)
2. deg(Q(i)) ≥ 2i − 1
3. Q(1), . . . , Q(k) is regularly p-a.m. for degree 2k − 1
4. Q(k+1) is positive and, among all positive extensions of Q(k) having

degree ≥ 2k + 1, Q(k+1) has minimal number of additional nodes.

With the proof of Theorem 3a, we will also have proved

Theorem 3b The basic sequence Q satisfying deg(Q(2)) ≥ 2 is regu-
larly a.m. for degree 2k + 1 among all basic sequences Q̃ also satisfying
deg(Q̃(2)) ≥ 2 if and only if

1. Q(1)[f ] = f(1/2)
2. deg(Q(i)) ≥ 2i − 1
3. Q(1), . . . , Q(k) is regularly a.m. for degree 2k−1 among all Q̃ satisfying

deg(Q̃(2)) ≥ 2
4. among all extensions ofQ(k) having degree≥ 2k+1,Q(k+1) has minimal

number of additional nodes.

For the proofs of the theorems, we need a series of lemmas and corol-
laries. In all these Lemmas, we will use

Assumption Throughout this section, we will assume that all basic se-
quences are regular.

Representation (6) for Smolyak cubature formulae indicates that the
following lemma may be helpful if f is of the form

(26) f(x) = h(x1) · . . . · h(xd)

Lemma 2 Let J, ω0, . . . , ωk ∈ R and define

(27) M (k)
s =

∑
|i|≤k

ωi1 · . . . · ωis . and M̃ (k)
s =

∑
|i|≤k
iν≥1

ωi1 · . . . · ωis .

If M
(k)
σ = Jσ for σ = 1, . . . , s − 1 ≤ k + 1, then

(28) M (k)
s = M̃ (k)

s + Js − (J − ω0)s

Proof. The Lemma is obviously true for s = 1. We now apply the lemma
to M

(k)
σ and use the assumption:

(29) M̃ (k)
σ = M (k)

σ −Jσ+(J−ω0)σ = (J−ω0)σ, σ = 1, . . . , s−1.
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Together with setting M̃
(k)
0 := 1 and collecting all terms containing a certain

number of factors ω0, this gives

M (k)
s =

k∑
ν=0

(
s

ν

)
ων

0M̃
(k)
s−ν

= M̃ (k)
s +

s∑
ν=1

(
s

ν

)
ων

0 (J − ω0)s−ν

= M̃ (k)
s +

(
ω0 + (J − ω0)

)s − (J − ω0)s.(30)
��

Lemma 3 If f is of the form (26) and R(d + k, d)[f ] = 0 for d = 1, . . . , s,
then, ∑

|i| ≤ d + k
iν≥2

∆(i1)[h]⊗ . . .⊗∆(id)[h] =
(
R(1)[h]

)d
,

for d = 1, . . . , s.(31)

Proof. The corollary is nothing but Lemma 2 applied with J = I[h], ωi =
∆(i+1)[h] and M

(k)
d = Q(d + k, d)[f ]. ��

Lemma 4 Let f be of the form (26) and let R(d + k, d)[f ] = 0 for d =
1, . . . , k + 1. Then, R(1)[h] = 0.

Proof. We can apply Lemma 3 with s = k + 1. The k + 1-st equation then
reads

(32) 0 =
(
R(1)[h]

)k+1

because the sum on the left-hand side of (31) is empty. ��
Since a 1-point formula can never be exact for P2 and Q(1)[f ] = f(1/2)

defines the only 1-point formula of degree 1, Lemma 4 applied to all h ∈
{()0, ()1, ()2} gives

Corollary 2 Let Q satisfy n(Q(1)) = 1. Then the corresponding k-stage
Smolyak formulae cannot have degree ≥ 2k + 2 for all d = 1, . . . , k + 1. If
the degree is ≥ 2k + 1 for all d = 1, . . . , k + 1, then Q(1)[f ] = f(1/2).

The k-th equation in Lemma 3 yields
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Corollary 3 Let f be of the form (26) and let R(d + k, d)[f ] = 0 for
d = 1, . . . , k. Then,

(33)
(
∆(2)[h]

)k
=
(
R(1)[h] − R(2)[h]

)k
=
(
R(1)[h]

)k

Lemma 5 Let Q(1)[f ] = f(1/2) and let R(i)[()2] = 0 for all i ≥ 2. Then,

R(1 + s, 1)[()2] = R(2 + s, 2)[()2⊗()2] = . . .

= R(2s, s)[()2⊗ . . .⊗()2] = 0(34)

but

(35) R(2s + 1, s + 1)[()2⊗ . . .⊗()2] �= 0.

Proof. The vanishing of the error functionals R(1+s, 1), . . . R(2s−1, s−1)
follows from Proposition 1, since the Smolyak formulae act on ()2⊗ . . .⊗()2

exactly like Smolyak formulae satisfying Q(1)[f ] = f(1/2) and deg(Q(i))
≥ 2i − 1. If (35) would not hold, then, by Lemma 4, R(1)[()2] = 0, which
is not true. ��
Lemma 6 Let Q(1)[f ] = f(1/2) and let deg(Q(d + k, d)) ≥ 2k + 1 for
d = 1, . . . , k+1. Let furthermore i ∈ {0, 1, . . . , 2k+1} denote the smallest
number such that ()i is not integrated exactly by some Q(s) with i ≤ 2s−1.
Then, i ≤ 2.

Proof. Let i > 2 and let s be the largest number such that Q(s) does not
integrate ()i exact. This cannot be k + 1 since

(36) R(k+1)[()i] = R(1 + k, 1)[()i] = 0

by assumption. Define now

(37) f(x) = xi
1g(x2, . . . , xd), where g(x2, . . . , xd) = x2

2x
2
3 . . . x2

d.

Then, the error representation (2) in [13] yields

(38) R(d + k, d)[f ] =
s+1∑
ν=1

∆(ν)[()i]R(d + k − ν, d − 1)[g].

If d = k − s + 2, then Lemma 5 yields

(39) R(d + k − ν, d − 1)[g]

{
= 0 for ν ≤ s and

�= 0 for ν = s + 1
.

Since ∆(s+1)[()i] = Q(s+1)[()i] − Q(s)[()i] = R(s)[()i] − R(s+1)[()i] �= 0,
we have R(d + k, d)[f ] �= 0 and therefore a contradiction, since the degree
of f is less than or equal to i + 2(k − s + 1) ≤ 2k + 1. ��
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Lemma 7 Let n(Q(1)) = 1, let deg(Q(d+k, d)) ≥ 2k+1 for d = 1, . . . , k
and let R(2)[()2] = 0, then R(i)[()2] = 0 for i = 3, . . . , k + 1.

Proof. Using Corollary 2, the assumptions imply Q(1)[f ] = f(1/2) and
hence ∆(2)[()2] �= 0. Therefore, Corollary 3 and Lemma 3 yield

(40)
∑

|i|≤d+k

iν≥2

�=(2,2,...,2)

∆(iν)[()2] = 0, for d = 1, . . . , k − 1.

d = k − 1 yields ∆(3)[()2]∆(2)[()2]d−1 = 0, i.e., ∆(3)[()2] = 0. Plugging
this into equation (40) for d = k − 2 gives ∆(4)[()2]∆(4)[()2]d−1 = 0 i.e.,
∆(4)[()2] = 0 etc. ��
Lemma 8 If deg(Q(d + k, d)) ≥ 2k + 1 for d = 1, . . . , k + 1, then
deg(Q(i)) ≥ 1 for i = 1, . . . , k + 1.

Proof. Corollary 2 says deg(Q(1)) = 1. The same procedure as in the proof
of Lemma 7 applied to ()0 and ()1 instead of ()2 now yields successively
deg(Q(i)) ≥ 1 for i = 1, . . . , k + 1. ��
Lemma 9 If a k-stage Smolyak algorithm has order ≥ 2k+1 for more than
k different dimensions, then all basic formulae integrate constant functions
exact.

Proof. Let rν := ∆(ν+1)[1]. Then,

(41) Q(d + k, d)[1] =
∑
|i|≤k

ri1⊗ . . .⊗rid .

Let ji(ν) be the frequency of the index ν in i and let ji = {ji(1), . . . , ji(k)}
be the frequency set (the frequency of the index 0 need not be mentioned
since

∑k
ν=0 ji(ν) = d). Define Ji := ji(1)+ . . .+ ji(k) ≤ k. Each product

with frequency set ji appears exactly

(42) s(ji, d) :=
1

ji(1)! · . . . · ji(k)!

d∏
ν=d+1−Ji

ν

times, i.e., s(ji, d) as a function of d is a polynomial of degree ≤ k. Note
that equation (42) holds also when Ji > d because then, both sides are zero.
With this notation, the quadrature value is now

(43) Q(d + k, d)[1] = rd−k
0

∑
Ji≤k

s(ji, d)rk−Ji
0 ·

(
r
ji(2)
2 · . . . · r

ji(k)
k

)
.
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This is of the form rd−k
0 p(d) with p ∈ Pk. If p(x) �≡ 1 or r0 �= 1, the

equation

(44) p(d) = rk−d
0 =: h(d)

can hold for at most k + 1 different dimensions d. Namely, if r0 = 1 and
p(x) �≡ 1, p − h is in Pk and nontrivial and can therefore have at most k
zeros. Let now r0 �= 1. If p coincides with h at k + 1 (or more) points, it
is an interpolation polynomial and, since sign(h(k)) is constant, has exactly
k + 1 points with h in common, which follows readily from the classical
error representation for the interpolation polynomial (see Conte and de Boor
[3, Theorem 4.3]). Hence, we have proved that if Q(d + k, d)[1] is 1 for at
least k + 2 dimensions d, then it is for all d. The first part of Corollary 2
now gives the statement. ��
Proof of Theorem 2. By Lemma 9, the assumption yields deg(Q(d+k, d)) ≥
2k + 1 for d = 1, . . . , k + 1. Then, 3b) is already proved by Lemma 8. The
equation s = k is now an immediate consequence of Lemma 5.
1. Since k is odd, equation (33) gives R(2)[()2] = 0. Lemma 7 now implies

that also R(3)[()2] = . . . = R(k+1)[()2] = 0. Applying Lemma 6 gives
the result.

2. For even k, since R(i)[()0] = R(i)[()1] = 0, Corollary 3 gives R(2)[(· −
1/2)2] = 1/12 − Q(2)[(· − 1/2)2] ∈ {0, 1/6}. If R(2)[(· − 1/2)2] = 0,
we can proceed as in the proof of 1.) and obtain the same implication.
If R(2)[(· − 1/2)2] = 1/6, we have Q(2)[(· − 1/2)2] = −1/12, i.e., a
negative number for a positive integrand, such that Q(2) is not positive.

3. a) and b) have already been proved and the first case in c) is the case
R(2)[(· − 1/2)2] = 0 discussed in the proof of 2.). If now R(2)[(· −
1/2)2] = 1/6, we have by b) that R(2)[(·)2] = 1/6. As in the proof
of Lemma 7, the equations of Lemma 3 determine successively the val-
ues ∆(ν)[()2]∆(2)[()2]d−1, ν = 3, . . . , k. Since R(2)[()2)] = 1/6 and
R(k+1)[()2] = 0 are known, this determines all R(i)[()2]. ��

Proof of Theorem 3a. Each positive formula of degree 2k − 1 can of course
be extended to a positive formula of degree 2k + 1. Namely, we can take
any positive formula of degree 2k + 1 and say that this is an extension.
The necessity of 1.) follows from Theorem 2. By Theorem 1, the coef-
ficient cj,k is monotonically increasing with respect to δ1, δ2, . . . , δk−j+1
and cj−1,k−1, cj−1,k−2, . . . , cj−1,j−1 and independent of all other δν and
cj−1,ν . Repeating this argument, we see that cj,k is only dependent on and
monotonically increasing with respect to δ1, δ2, . . . , δk−j+1 and c0,k−j =
1, . . . , c0,0 = 1. We furthermore note that all cj,k are nonnegative. In order
that {Q(1), . . . , Q(k)} be regularly a.m. for degree 2k + 1 it is necessary
and sufficient that the coefficients δν are minimal for ν = 1, . . . , k − 1 and
among those, δk is also minimal. ��
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4 Example algorithms

Up to now, we collected quite a lot of theory in order to characterize regu-
larly asymptotically minimal basic sequences. Nevertheless we do not know
yet, e.g., how many sequences for a certain degree exist, whether there are
positive sequences among them, or if the second case in Theorem 2.3c) may
occur. Before answering these questions, at least for certain degrees, we
start with defining a positive sequence that is not far from being asymptot-
ically minimal and will be recommended for numerical computations. It is
a delayed basic sequence of Kronrod-Patterson formulae:

Q(i) = QKP
m ,

3m + 4
8

≤ i ≤ 3m + 3
4

,

m = 1, 3, 7, 15, 31, . . . ,(45)

i.e.,

Q(1) = QKP
1 , Q(2) = Q(3) = QKP

3 ,

Q(4) = Q(5) = Q(6) = QKP
7 , . . .(46)

Since deg(QKP
2i−1) = 3 · 2i−1 − 1 for i > 1 (see Monegato [7]), the cor-

responding basic sequence satisfies the assumptions of Proposition 1. We
denote the corresponding Kronrod-Patterson-Smolyak delay algorithm by
Qdel

In order to illustrate the effect of the delay, we compare the number of
nodes used by Qdel with QKP and QCC for dimension d = 10.

Table 1. n(10 + k, 10)

k 3 4 5 6 7 8

QCC 1581 8801 41265 171425 652065 2320385
QKP 2001 13441 77505 397825 1862145 8085505
Qdel 1201 5281 19105 60225 169185 434145

Figures 1 and 2 give a comparison between the nodes of the two 321-point
formula Qdel(16, 2) and QCC(8, 2).

Theorem 4 Let k be odd. The basic sequence of the k-stage Smolyak al-
gorithm Qdel is regularly a.m. for degree 2k + 1 if and only if k ≤ 5. It
is the unique regularly a.m. basic sequence (of 6 formulae) if k = 5. For
k = 7, the basic sequence of a regularly a.m. Smolyak algorithm consists
of the first 6 formulae of the delay sequence. Q(7) = Q(8) is an extension
of QKP

7 with 6 additional nodes and has negative coefficients. For larger k,
the formulae Q(1), . . . , Q(8) are as described before and Q(9) has to be a
17-point formula.
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Fig. 1. The 321 nodes of QCC(8, 2) (degree 15)

Fig. 2. The 321 nodes of Qdel(16, 2) (degree 29)

Proof. Since k is odd, Theorem 2.1.) shows that we can apply Theorem
3b. Therefore, Q(1)[f ] = f(1/2). From deg(Q(2)) ≥ 3 it follows that Q(2)

must have at least 2 additional nodes. For a regularly a.m. basic sequence of
degree 3, we can take any symmetric 3-point formula of interpolatory type.
However, the only 3-point quadrature formula of degree 5, i.e., the only 3-
point quadrature formula that allows δ2 to be zero, is the Gaussian. For the
regular minimality of higher degree, we therefore have to choose Q(2) =
Q(3) and then to switch to a formula of higher degree. Since quadrature
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formulae of interpolatory type are uniquely determined by their nodes and
the property deg(Qn) ≥ n−1, all extensions of QG

3 having at most 6 nodes
and being of degree at least 5 are again QG

3 . Therefore, Q(4) can be any
extension of QG

3 with 4 additional nodes and of interpolatory type. In order
to generate further regularly a.m. formulae, we have to choose the 7-point
quadrature formula with highest possible degree to make δ4 = δ5 = 0. This
is the Kronrod extension of degree 11, i.e., Q(4) = Q(5) = Q(6) = QKP

7 .
Of course, now, each extension of QKP

7 with 6 additional nodes and of
interpolatory type is a valid extension with fewer nodes than QKP

15 and a
further extension gives a sequence with asymptotically less nodes than Qdel.

In order to obtain a 13 point extension of QKP
7 of degree 13+s, it is

necessary and sufficient to find a monic polynomial p ∈ P6 satisfying

(47)
∫ 1

−1
E4(x)P3(x)p(x)xν dx = 0, ν = 0, . . . , s

and having 6 zeros in [−1, 1] (see Brass [1, Theorem 55]). Here, P3 is
the Legendre polynomial of degree 3 and E4 is the so-called Stieltjes-
polynomial (see Monegato [7]), such that E4P3 is the nodal polynomial
of QKP

7 . Then, the zeros of p are the additional nodes of Q(7). By explicit
calculation, we obtain

(48) E4(x)P3(x) = const · (4455T7 + 693T5 + 1015T3 + 1005T1) ,

where Tν is the Chebyshev polynomial (of the first kind) of degree ν. It
is linear algebra to show that all monic polynomials x6 + q(x), q ∈ P5,
satisfying (31) with s = 4 have the form

(49)
1
32

(
T6(x) +

24
11

T4(x) +
58431
10285

T2(x) + c
)

with an arbitrary constant c. These functions are monotonically decreasing
for x < 0, increasing for x > 0 and its second derivative at x = 0 is positive.
Therefore, none of these functions has all its zeros in [−1, 1]. On the other
hand, requiring (47) with s = 2, we have

(50) p(x) =
1
32

(
T6(x) +

24
11

T4(x) + aT2(x) + b
)
.

p has 6 zeros in [−1, 1] if (a, b) is in a neighbourhood of (3.5, 2). Therefore
we have an extension with 6 additional nodes that is of degree 15. Any
further regularly minimal extension of this sequence has to continue with
Q(8) = Q(7) and an extension of the 13-point formula, that is of degree 17.
This must be a 17-point formula of interpolatory type.
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We still have to show that each of the possible Q(7) = Q13 has a negative
coefficient. By (50), the nodal polynomial of the additional nodes 6 nodes
zν in Q13 is of the form

p(x) = x6 − 9
44

x4 + cx2 + d

= (x2 − z2
1)(x

2 − z2
2)(x

2 − z2
3)

= x6 − (z2
1 + z2

2 + z2
3)x

4 + . . .(51)

If it has 6 real zeros, then, z2
ν ≤ 9/44 or zν ≤ √

9/44. Calculating also
the nodes of QKP

7 and of the Gaussian formula QG
8 , we obtain that no node

of Q13 is between the 7th node xG
7,8 and the 8th node xG

8,8 of the 8-point
Gaussian formula. But, each positive quadrature formula of degree ≥ 15
must have at least one node in [xG

7,8x
G
8,8] (see Brass [1, Theorem 61]), which

means that Q13 cannot be positive. ��

Theorem 5 The basic sequence of the k-stage Smolyak algorithm Qdel is
regularly p-a.m. for degree 2k + 1 if and only if k ≤ 5. For k = 6, we have
δ6 = 6.

Proof. By Theorem 3a, the proof is almost contained in that of Theorem 4.
We only have to note that the quadrature formula of interpolatory type with
the nodes of QKP

7 plus the nodes ±0.3, ±0.6 and ±0.85 is positive, which
can be shown numerically. ��

Corollary 4 A regularly a.m. minimal basic sequence for degree 2k+1 ≥ 15
cannot be positive.

Now, we want to show that the second case in Theorem 2.3c) may really
occur.

Example 1 We construct a regularly a.m. sequence for degree 5 with
R(2)[()2] �= 0. If the Smolyak formulae are regularly a.m., they must have
2 stages. By Theorem 2, all basic formulae have to be exact for P1 and
Q(1)[f ] = f(1/2). We have

0 = R(3, 1)[()3] = R(3)[()3].

By Theorem 55 in Brass [1], the nodal polynomial p(x) = (x − 1/2)(x −
x2)(x − x3) must have mean value zero, such that x2 + x3 = 1. Since Q(2)

also has to be based on the nodes 1/2, x2, x3 and since R(i)[()1] = 0, all
basic formulae must be symmetric. We only have to require that

(52) Q(2)[()2] = 1/6 and deg(Q(3)) ≥ 5.
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The resulting sequence then gives a Smolyak algorithm of degree ≥ 5, if
the latter is exact for ()2⊗()2. If we assume that δ2 + δ3 ≤ 3 the problem is
solved uniquely by Q(3) = QG

3 and

(53) Q(2)[f ] =
28
18

f(
1
2
) − 5

18

[
f(

1
2

+

√
3
20

) + f(
1
2

−
√

3
20

)

]
.

A similar example exists for degree 9. In both examples, we obtain
the same number of nodes as for Qdel. Numerical examples show only
minor differences between Qdel and Smolyak quadrature (say Q[5] and
Q[9]) with the above nonpositive basic sequences For example, we have
‖Qdel(54, 50)‖ ≈ 9.5 · 106 and ‖Q[9](54, 50)‖ ≈ 4.4 · 107.

Corollary 5 Qdel is regularly a.m. for all odd degrees less than 13.

Hence, according to Theorem 3b, we know that the first 5 formulae of
the basic sequence of Qdel are optimally chosen. Theorem 1 shows that
the number of nodes induced by a regularly a.m. basic sequence for degree
2k + 1 is a polynomial of degree k in d and the coefficients of the highest
for monomials in this polynomial are the same as for Qdel. Therefore, there
is only little space left for improvement, if we are looking for Smolyak
formulae of given polynomial exactness involving as few nodes as possible.
We summarize

Corollary 6 Let nmin(d + k, d) denote the numbers of nodes used by a
formulae corresponding to regularly a.m. sequence. Then,

ndel(d + k, d)
nmin(d + k, d)

= 1 + O(d−5)

for fixed k.

Remark Finally, we mention that regular asymptotic minimality does not
imply minimality in general.

1. In dimension one, for k > 1, QG
k+1 uses fewer nodes than Qdel(1+k, 1)

to be exact for P2k+1.
2. Setting Q(1) = QG

2 , we have for the formulae Q(2, 2) and Qdel(3, 2) of
degree 3 that n(2, 2) = 4 but ndel(3, 2) = 5 respectively.

3. Two Smolyak algorithms of degree ≥ 5 are the regularly a.m. Qdel(d +
2, d) as well as Q(d + 5, d) given by the basic sequence

Q(1)[f ] = f

(
1
2

+
1√
12

)
Q(2)[f ] = QG

2 [f ] =
1
2

[
f

(
1
2

− 1√
12

)
+ f

(
1
2

+
1√
12

)]
Q(3) = Q(4) = Q(5) = Q(2)
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and

Q(6) = QKP
5 .

We have n(d + 5, d) < ndel(d + 2, d) for d = 3, 4, 5.

5 Numerical examples in the unweighted case

As examples, we consider integration over the d-dimensional unit cube for
different basic sequences. In Fig. 3 we compare the right-hand side coeffi-
cients ε(d + k, d, r) of error bounds in (7) given by the procedure in [13].

Fig. 3. Error bounds; n := n(d + k, d) and ε = ε(d + k, d, r)

Now, we take the smooth examples from a frequently used test package
that has also been used, e.g., by Sloan and Joe [14] and by Novak and Ritter
[9]. In each of the examples, we made 21 tests with parameters randomly
chosen. The respective numbers of correct digits are

(58) dign[f ] := − log10

∣∣∣∣R(d + k, d)[f ]
Id[f ]

∣∣∣∣ , n = n(d + k, d).

and we denote by dign the respective medians of dign[f ] for the 21 tests.
The functions are in the following families

OSCILLATORY f1(t) = cos

(
2πw1 +

d∑
i=1

citi

)
,

∑
ci = 9

PRODUCT PEAK f2(t) =
d∏

i=1

1
c−2
i + (ti − wi)2

,
∑

ci = 7.25

CORNER PEAK f3(x) =

(
1 +

d∑
i=1

citi

)−d−1

,
∑

ci = 1.85

GAUSSIAN f4(t) = exp

(
−

d∑
i=1

c2
i (ti − wi)2

)
,
∑

ci = 7.03
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Fig. 4. Correct digits for sample functions; n := n(d + k, d)

Some samples from the tests are shown on Fig. 4.
Note that in these examples, the delay algorithm needs between 3.3 and 8
times less nodes than QKP (18, 10) and QCC(19, 10) to reach the same me-
dian of precision, except for the product peak function and the comparison
with QKP , where the delay algorithm shows approximately the same error
behaviour as QKP . Corresponding examples for non-smooth test functions
show a superiority of the non-delayed Smolyak basic sequences. This in-
dicates that the delayed algorithm uses too few function values along the
main axes. We recommend in such either non-delayed sequences or se-
quence of numbers of nodes with only little delay, e.g., 1, 3, 3, 7, 15, . . .
or 1, 3, 3, 7, 7, 15, 31, . . .. The numbers of nodes of the Smolyak algorithm
are then reduced compared with the non-delayed formulae, while the con-
vergence in univariate directions seems to be faster than for the delayed
algorithm. We compare the calculations with the above-used formulas with
those with the Smolyak formulas based on Kronrod-Patterson formulas
using 1, 3, 3, 7, 15, 31, 31, 63, 63, 63, 63 nodes respectively. It appears that
these Smolyak algorithms with only little delay are more competitive than
the delay algorithms.

For Fig. 5 we used the families
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Fig. 5. Correct digits for non-smooth sample functions; n := n(d + k, d)

CONTINUOUS

f5(t) = exp

(
−

d∑
i=1

ci|ti − wi|
)

,
∑

ci = 20.4

DISCONTINUOUS

f6(t) =


0 if t1 > w1 or t2 > w2

exp
(∑d

i=1 cixi

)
otherwise

,
∑

ci = 4.3

Remark Let us mention, that in [13, Example 1], we have proved, e.g., that
for a sample from the family GAUSSIAN, we obtain the error bound

(59) |RKP (18, 10)[f ]| ≤ 5.3 · 10−7

(and a relative error bound ≤ 2.2·10−6), where we have used n = 8 085 505
function evaluations. Analogously, one can show that

(60) |Rdel(21, 10)[f ]| ≤ 4.6 · 10−9

(relative error bound ≤ 2 · 10−8) with n = 5 020 449 function evaluations.

In Fig. 6 we illustrate that asymptotically minimal algorithms not nec-
essarily show their superiority for high dimensions. The reason is that
n(d + k, d) of all Smolyak algorithms with δ0 = 1 and δ1 = 2 has the
same main coefficient as a polynomial of d. In particular, the effort for
Clenshaw-Curtis- and Gauss-Kronrod-based Smolyak algorithms in high
dimensions is not much bigger than that for the delay Smolyak algorithm.
The results in dimension 10 for the ocillatory integrand have already been
listed. Now, we do the same for dimensions 6 and 18.

The “classical” Gauss-Kronrod-based Smolyak method seems to lose
its effectiveness in higher dimensions due to the fast increasing number
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Fig. 6. Correct digits for sample functions; n := n(d + k, d)

of nodes. In all smooth examples for dimesion 18, there were only minor
differences between the results for Clenshaw-Curtis and for the delayed
sequence.

6 An example from finance

Often, financial applications have a very high dimension. There is some
evidence (see Sloan and Woźniakowski [15]) that these problems are only
tractable, if some dimensions are less important than others. In that case, it
is useful to use a smaller number of nodes in less important directions. This
approach has been considered, e.g., in Wasilkowski and Woźniakowski [18]
or [19] and Novak, Ritter and Steinbauer [11]. We may try to learn from
the results above and repeat quadrature formulae in the basic sequence.
Since the upper dimensions in the example are less important, we repeat
the quadrature more often for these dimensions in order to save function
evaluations. Again, we choose basic formulae among Kronrod-Patterson
formulae. Table 2 shows, how often a certain Kronrod-Patterson formula is
in the basic sequence for the respective dimensions in our example.

The respective numbers of nodes of Q(360 + k, 360), k = 1, . . . , 7 are
11, 71, 413, 2241, 11433, 54757, 247017.

Table 2. Occurences in the basic sequence

dimension QKP
1 QKP

3 QKP
7 QKP

15 QKP
31

1 1 1 2 3 4
2..5 1 2 3 4 5

6..13 2 3 4 5 6
14..40 3 4 5 6 7

41..120 4 5 6 7 8
121..360 5 6 7 8 9
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Fig. 7. Correct digits dign for MBS-integral; n := n(d + k, d)

The arguments in Sect. 3 concerning the polynomial degree are therefore no
longer relevant. Nevertheless, we might hope to learn from the unweighted
case. As an example, we consider an example for valuing Mortgage-Backed-
Securities (MBS, see Tezuka [17]).

We have the following curve for the numbers of correct digits (see Fig. 7).
We see that already 413 function evaluations are sufficient to obtain a relative
error less than 10−5.2 and with 54757 nodes, the relative error is less than
10−6.6. The Quasi-Monte-Carlo used by Tezuka [17] shows a slightly slower
convergence. Near n = 5000 function evaluations, the relative errors are in
a range from zero to about 10−5. Both, Smolyak and Quasi-Monte-Carlo
beat the Monte-Carlo method in this application.

7 Remarks on degenerate basic sequences

Most of the results in Sect. 3 have been obtained under the assumption that
the basic sequence is regular. We now want to discuss briefly some changes
in the case of m-degenerate basic sequences, i.e. of basic sequences with
δ1 = . . . = δm = 0 �= δm+1.

1. The regular k-stage formulae can be considered as a subclass of m-
degenerate formulae. Namely if we have a regular basic sequence Q(1),

. . ., we can define Q̃(µ(m+1)+ν) := Q(µ+1) for µ = 0, 1, . . . and ν =
1, 2, . . . , m+1. The corresponding k(m+1)-stage m-degenerate algo-
rithm is the same as the original k-stage algorithm.

2. The formulae (15) and (16) show that

cj,k =
δm+1

δ0
cj−1,k−m−1 +

k−j+1∑
ν=m+2

δν

δ0
cj−1,k−ν

=
(

δm+1

δ0

)2

cj−2,k−2(m+1)
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+
k−j+1∑
ν=m+2

k−ν−j+2∑
µ=m+2

δµδν

δ2
0

cj−2,k−ν−µ

= . . .(61)

does not vanish only if k ≥ j(m+1). This means that the m-degenerate
Smolyak formula Q(d+ s(m+1), d) has approximately as many nodes
as the regular Smolyak formula Q̃(d + s, d) if δ0 = δ̃0 and δm+1 = δ̃1.
Hence, we have much less nodes for a given number of stages. On the
other hand, we need m + 1 times as many stages in order to obtain the
same degree:

3. In the same way as for regular formulae, we can prove that, with a m-
degenerate basic sequence, a degree of exactness ≥ 2k + 1 can only be
achieved for infinitely many dimensions, if

(i) Q(1) is exact for linear functions
(ii) The Smolyak formula has at least k(m + 1) stages

(iii) The determining equation for Q(m+1)[()2] of a m-degenerate
k(m+1)-stage Smolyak algorithm of degree ≥ 2k+1 is the same
as for Q(2)[()2] of a regular k-stage Smolyak algorithm. Hence
δm+1 ≥ 2. Therefore, for the number of nodes for those formulae
is determined by a polynomial of degree k with main coefficient
(δm+1/δ0)k, i.e., with the same main coefficient as regularly a.m.
basic sequences.

(iv) Suppose we have a (1-degenerate) basic sequence with δ0 = 1,
δ1 = 0, 0 < δ2 ≤ 2,

∑5
ν=0 δν ≤ 3 and

∑6
ν=0 δν ≤ 7. We

can solve the equations that are necessary for the corresponding
Smolyak formula to be of degree ≥ 7 with, e.g., MATHEMATICA,
and obtain that δ2 = 2 and that Q(3) uses the nodes of QG

3 . Since
Q(7) has to be of degree ≥ 7, we can argue as in the regular case
that δ6 = 4. Therefore, we know that any 1-degenerate algorithm
with deg(Q(d + k, d)) ≥ 7 for all d uses asymptotically as least
as many nodes as a regular a.m. algorithm for degree 7.

At this point, we can not decide, whether there are (degenerate) a.m.
basic sequences yielding the same degree of exactness but use less nodes than
regularly a.m. basic sequences. This might be topic of further investigations.
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