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Summary. A domain with possibly non-Lipschitz boundary is defined as
a limit of monotonically expanding or shrinking domains with Lipschitz
boundary. A uniquely solvable Dirichlet boundary value problem (DBVP)
is defined on each of the Lipschitz domains and the limit of these solutions
is investigated. The limit function also solves a DBVP on the limit domain
but the problem can depend on the sequences of domains if the limit domain
is unstable with respect to the DBVP. The core of the paper consists in
estimates of the difference between the respective solutions of the DBVP on
two close domains, one of which is Lipschitz and the other can be unstable.
Estimates for starshaped as well as rather general domains are derived. Their
numerical evaluation is possible and can be done in different ways.
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1 Introduction

The paper deals with uncertain boundary in the definition of Dirichlet bound-
ary value problems. A boundary value problem is defined by a domain, an
equation in the domain, and a condition given along the boundary of the do-
main. It is common to assume that the three inputs are known exactly though
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our perception is uncertain to some extent and this uncertainty should be
reflected in our mathematical models of the real world, cf. [10].

The geometry of a body is usually considered well defined. An inspection
reveals, however, that it is not so in many cases due to inaccurate measure-
ments and other limitations. Digital images can serve as typical examples.
Their resolution is limited and all details smaller than the pixel size are in-
distinguishable. Moreover, interpretation of digital images depends on other
parameters as, for instance, threshold values for color-based separation of
domains, see [3] for black and white examples. As a consequence, a digital
image should be interpreted as a representation of a whole family of bodies
hidden under the umbrella of an uncertainty.

If such a family of bodies is taken into account instead of a unique domain
then also one has to consider a respective family of boundary value problems
and their solutions. A natural question arises whether it is possible to asses
the effect of the uncertainty in the domain on the solution of the boundary
value problem.

The question is addressed for two dimensional domains and a second
order elliptic equation with the Neumann boundary condition in [3]. An
uncertain domain Ω is represented by the limit of a monotone sequence of
domains with Lipschitz boundary. It corresponds to a sequence of domains
defined via smaller and smaller pixels in our digital image example. As the
convergence in the set sense is considered only, the boundary of the limit
domain can be “wild” (non-Lipschitz). This can give rise to the unstability
phenomenon. It means that the limit of the solutions of the boundary value
problems on a sequence of domains depends on the sequence though the
limit domainΩ is identical for the all sequences. In detail, the limit function
may not exist or different limits can exist for different sequences of domains.

If the limit domainΩ is stable then the limit of solutions, let us denote itu,
does not depend on the sequence approachingΩ. Moreover, functionu is the
unique solution of a boundary value problem (BVP) naturally corresponding
to the BVP on the sequence of domains. Thus the BVP solution depends
continuously on the domain of definition and the problem is well-posed,
cf. [7].

In [3], a simple example using domains originating in digital images of a
circle shows an unstable behavior of even a noncomplicated Neumann BVP
with a nonhomogeneous boundary condition given in a classical way, i.e.,
as the normal derivative along the boundary. To avoid such unnatural loss of
stability, a reformulation of the boundary condition is proposed in [3]. As a
consequence, the circle (as well as any Lipschitz domain) becomes a stable
domain.

The stability issue for elliptic equations with the Dirichlet or the homo-
geneous Neumann boundary condition was already treated in [1,2], where
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sufficient conditions guaranteeing that the limit domainΩ is stable are given.
An example can be ∂Ω is Lipschitz but this assumption can be weakened.

The stability problem is not only academic as it has connections to the
well-known plate paradox [2,4], to give an example.

Exploiting digital images, we have no chance to know Ω in practice
because the pixel size is always greater than a fixed positive value. In other
words, we are not able to construct a sequence of domains converging toΩ.

As Ω is uncertain, we have to admit it could be unstable. Unlike other
approaches, where the uncertain boundary is rather artificially made certain
and piece-wise smooth (see [5,6] for some algorithms) before the BVP is
solved, we wish to take the impact of uncertainty into account.

We hope or assume to have reasonable lower and upper bounds for Ω,
i.e., domains Ωlow and Ωup such that the BVP can be solved there and
Ωlow ⊂ Ω ⊂ Ωup.

Knowing the respective solutions ulow and uup, we wish to asses the
difference u− ulow or u− uup in a proper norm. The energy norm seems to
be a natural choice, at least from the theoretical numerical analysis point of
view. However, the choice of a domain over which the norm is to be defined
is less clear. In essence, there are two basic possibilities. Having Ω1 ⊂ Ω2
and functions u1, u2 defined in Ω2, we can use either ‖ · ‖Ω1 or ‖ · ‖Ω2 .
We decided for the latter approach. The former one is slightly touched in
Sect. 6.

Estimates of the difference between solutions of the Neumann problem
on close domains are given in [3].

The current paper focuses on analogous estimates for the Dirichlet
boundary value problem, i.e., it is a continuation of [1,2] motivated by [3].

The paper is organized as follows. Basic notions as well as some known
results comprise Sect. 2. In Sect. 3, first steps to estimate the difference
between two solutions on two close domains are made. Assuming general
coefficients of the equation and starshaped domains, Sect. 4 finishes the
estimate. Its version for constant coefficients and non-starshaped domains
is given in Sect. 5. Numerical examples are presented in Sect. 6.

2 The Dirichlet problem defined on a set of domains

We introduce basic notions and recall some known results in this section.
The Dirichlet boundary value problems we deal with are defined on

domains Ω,Ωn ⊂ Rd, d ∈ {1, 2, 3, . . . }. Moreover, we suppose a ball
B ⊂ Rd exists such that it contains closures of all domains we will consider.

For any domain Ω, Hk(Ω), k ∈ {1, 2, . . . }, is the standard Sobolev
space of square integrable functions the generalized partial derivatives up
to the order k of which are also square integrable on Ω, L2(Ω) ≡ H0(Ω).
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The space Hk(Ω) is equipped with the norm ‖ · ‖k,Ω and the kth seminorm
| · |k,Ω , while ‖ · ‖0,Ω stands for the L2(Ω)-norm. Identical symbols are
used for norms and seminorms of vector functions. In this case, the square
of a (semi)norm is defined as the sum of squared (semi)norms of individual
components.

The subspaceHk
0 (Ω) equals the closure of C∞

0 (Ω) in the ‖ · ‖k,Ω norm,
where C∞

0 (Ω) is the space of infinitely smooth functions with their support
contained in Ω.

Functions continuous up to the kth derivative on the closureΩ ofΩ form
the space Ck(Ω) if endowed with a proper norm. We confine ourselves to
C(Ω) ≡ C0(Ω) with the maximum norm ‖·‖∞,Ω , and C1(Ω), where the
norm includes also the seminorm |v|1,∞,Ω = ‖∇v‖∞,Ω , i.e., ‖v‖1,∞,Ω ≡
max{‖v‖∞,Ω , |v|1,∞,Ω}. The maximum value of component-wise norms

defines ‖w‖∞,Ω for a vector functionw. If a matrixA ≡ [aij ]di,j=1 comprises

elements fromC1(Ω) then |A|1,∞,Ω = max {|aij |1,∞,Ω : i, j = 1, . . . , d}.
For simplicity reasons, we limit ourselves almost exclusively to second

order scalar equations. Comments on higher order equations and systems of
equations will be given in the course of exposition.

Let f ∈ L2(B), ψ ∈ H1(B) and Ω ⊂ Ω ⊂ B with a Lipschitz
boundary be given. The Dirichlet boundary value problem onΩ then reads:
Find u ∈ H1(Ω) such that

u− ψ|Ω ∈ H1
0 (Ω),(2.1)

aΩ(u, v) = FΩ(v) ∀v ∈ H1
0 (Ω),(2.2)

where

aΩ(u, v) =
∫
Ω
A∇u · ∇v + buv dx, u, v ∈ H1(Ω),(2.3)

FΩ(v) =
∫
Ω
fv dx, v ∈ H1(Ω),(2.4)

and A = [aij ]di,j=1, aij ∈ L∞(B) (bounded measurable functions), b ∈
L∞(B). We suppose constants cAb, cAb > 0 independent of Ω ⊂ B exist
such that

cAb‖v‖2
1,Ω ≤ aΩ(v, v) ∀v ∈ H1

0 (Ω),(2.5)

|aΩ(v, w)| ≤ cAb‖v‖1,Ω‖w‖1,Ω ∀v, w ∈ H1(Ω).(2.6)

On the basis of (2.5)–(2.6), we can define a new norm ‖·‖a,Ω ≡ (aΩ(·, ·))1/2

on H1
0 (Ω). It is equivalent to ‖·‖1,Ω .

As indicated in Sect. 1, we will pay attention to uncertain boundary of
domains. More precisely, we suppose that we have a domain Ω ⊂ B and
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a sequence of known domains Ωn ⊂ B, n → ∞, converging to Ω in the
set sense. It means that x ∈ Ω implies ∃nx∀n > nx x ∈ Ωn, and that if
∃ny ∀n > ny y ∈ Ωn then y ∈ Ω. Obviously, the convergence does not
preserve the Lipschitz property of the boundary. We assume ∂Ω = ∂Ω, i.e.,
Ω with cracks is excluded.

Dirichlet problem (2.1)–(2.2) is defined on all Ωn, n = 1, 2, . . . , and its
solution is denoted un. By the properties of aΩ and FΩ , (2.5)–(2.6) and the
Lax-Milgram lemma, there exists a unique un ∈ H1(Ωn), un = ψ on ∂Ωn.
The first goal is to determine limn→∞ un.

According to [1,2], it is sufficient to restrict ourselves to monotone se-
quences of domains because these play a crucial role in the stability phe-
nomenon.

We consider expanding domains Ωn ↗ Ω, i.e., Ωn ⊂ Ωn ⊂ Ωn+1 ⊂
B, n = 1, 2, . . . , Ω =

⋃∞
n=1Ωn, and shrinking domains Ωn ↘ Ω, i.e.,

Ωn+1 ⊂ Ωn+1 ⊂ Ωn ⊂ B, n = 1, 2, . . . , Ω =
⋂∞
n=1Ωn (the assumption

∂Ω = ∂Ω is crucial here). If un is the solution of (2.1)–(2.2) on Ωn, a
question arises whether a limit u of un exists and, if yes, what equation it
solves.

The problem (with FΩ = 0) was addressed in [1,2], where a mod-
ified version of (2.1)–(2.2) was used. In that formulation, u ∈ H1(B)
and u = ψ outside Ω. It was shown that un → uψ and un → uψ in
H1(B), where the first limit corresponds to Ωn ↗ Ω and the second one
to Ωn ↘ Ω, respectively. Function uψ ∈ ⊥

aHΩ solves (2.1)–(2.2) on Ω,
⊥
aHΩ =

⋂∞
n=1

⊥
aHΩn , where Ωn ↗ Ω and ⊥

aHΩn is the orthogonal com-
plement ofH1

0 (Ωn) inH1(B) with respect to the scalar product induced by
the bilinear form aB(·, ·) after the prolongation of functions from H1

0 (Ωn)
by zero. Let us notice that ⊥

aHΩn+1 ⊂ ⊥
aHΩn if Ωn ↗ Ω. On the other

hand, if Ωn ↘ Ω then uψ ∈ ⊥
a H̃Ω =

⋃∞
n=1

⊥
aHΩn solves (2.1)–(2.2) on

Ω for all v belonging to a certain space H̃1
0 (Ω) ⊃ H1

0 (Ω). The closure is
taken in the energy norm induced by aB(·, ·).

In general, it can be ⊥
a H̃Ω /= ⊥

aHΩ . If ⊥
a H̃Ω = ⊥

aHΩ holds we say that
Ω is a stable domain with respect to the Dirichlet equation (D-stable). Then
also uψ = uψ for anyψ ∈ H1(B). OtherwiseΩ is a D-unstable domain and
we can find ψ ∈ H1(B) such that uψ /= uψ, see [1, Sect. 3, 4]; [2, Sect. 5].
An example of a D-unstable domain for the Laplace operator and two spatial
dimensions is shown in [2, Theorem 5.8]. Let us remark that the stability
behavior of harmonic and l-harmonic operators is representative of the be-
havior of the elasticity operator and higher order elliptic scalar operators,
respectively, see [2, Theorem 7.1, Theorem 5.2]. IfΩ is a starshaped domain
or if it has the σ-property [2, Definition 5.3] or [3, Definition 3.1] then Ω
is D-stable, see [2, Theorem 5.4, Theorem 5.5]. Any Lipschitz domain has
the σ-property, the opposite is not true in general.
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We arrive at similar conclusions if FΩn /= 0, i.e., 0 /= fn ≡ f |Ωn
. Then

the solution un of (2.1)–(2.2) can be represented as un = ufn +wn, where
ufn ∈ H1

0 (Ωn) solves (2.2) on Ωn:

aΩn(ufn , v) = FΩn(v) ∀v ∈ H1
0 (Ωn),(2.7)

andwn ∈ H1(Ωn) solves (2.1)–(2.2) onΩn withFΩn = 0. In what follows,
functions defined on B will often be restricted to Ω or Ωn. Also, functions
from H1

0 (Ω), H1
0 (Ωn) will be prolonged by zero to get functions from

H1(B). For the sake of simplicity, restrictions and prolongations will be
made tacitly and no new symbols will be introduced to distinguish between
the original function and its restriction or prolongation.

By virtue of the previous paragraphs,wn → wψ orwn → wψ inH1(B)
respectively, forΩn ↗ Ω orΩn ↘ Ω. The next lemma focuses on functions
ufn .

Lemma 2.1 Let Ωn ↘ Ω. Then ufn → ũf in H1(B), ũf ∈ H̃1
0 (Ω) and

aΩ(ũf , v) = FΩ(v) ∀v ∈ H̃1
0 (Ω),(2.8)

where

H̃1
0 (Ω) =

∞⋂
n=1

H1
0 (Ωn).(2.9)

Proof. We can apply the technique that acquitted itself well in convergence
proofs in the theory of optimal shape design, see [8]. Let us remark that (2.5),
(2.9) and the Lax-Milgram lemma imply the existence and uniqueness of
ũf .

By (2.5) and (2.7)

cAb ‖ufn‖2
1,Ωn

≤ aΩn(ufn , ufn) = FΩn(ufn) ≤ ‖f‖0,B ‖ufn‖1,Ωn
.

Realizing that ‖ufn‖1,Ωn
= ‖ufn‖1,B , we get

‖ufn‖1,B ≤ C,(2.10)

C > 0 is a constant independent of n.
The sequence {ufn}∞

n=1 is bounded in H1(B) so a weakly convergent

subsequence
{
ufni

}∞
i=1

exists, i.e., ufni
⇀ ũ (weakly) in H1(B). The

limit function ũ belongs to H̃1
0 (Ω). Indeed, if we fix an index m > 0 then

ufn ∈ H1
0 (Ωm), for all n ≥ m. Space H1

0 (Ωm) is weakly closed thus
ũ ∈ H1

0 (Ωm). As m is arbitrary, ũ ∈ H̃1
0 (Ω) due to (2.9).
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The next step is to prove ũ = ũf , see (2.8). To this end, we fix a function
v ∈ H̃1

0 (Ω). It holds

aΩni
(ufni

, v) = FΩni
(v)(2.11)

because v ∈ H1
0 (Ωn) for any n, see (2.9).

By (2.4) and meas(Ωn \Ω) → 0

lim
n→∞FΩn(v) = FΩ(v).(2.12)

By the weak convergence

lim
i→∞

aΩni
(ufni

, v) = lim
i→∞

aB(ufni
, v) = aB(ũ, v) = aΩ(ũ, v),(2.13)

the last equality is due to the fact that ũ, v ∈ H1
0 (Ωn) for any Ωn,

aB(ũ, v) = aΩn\Ω(ũ, v) + aΩ(ũ, v)

and meas(Ωn \Ω) tends to zero if n → ∞.
Applying (2.12), (2.13) to (2.11), we arrive at (2.8), i.e., ũ ≡ ũf . Since

the weak limit of any weakly convergent subsequence of {ufn} is equal to
a unique function ũf , we get the weak convergence of the whole sequence.

Taking into account (2.5) and ũf ∈ H1
0 (Ωn), we infer

cAb ‖ufn − ũf‖2
1,B ≤ aΩn(ufn − ũf , ufn − ũf )

= FΩn(ufn) − FΩn(ũf ) + aΩn(ũf , ũf ) − aΩn(ũf , ufn)
= FB(ufn) − FB(ũf ) + aB(ũf , ũf ) − aB(ũf , ufn) → 0, n → 0,

because ufn converges weakly to ũf in H1(B). ��

We are placed in a similar position if Ωn ↗ Ω. Then ufn → uf in
H1(B), where uf ∈ H1

0 (Ω) solves

aΩ(uf , v) = FΩ(v) ∀v ∈ H1
0 (Ω)(2.14)

because H1
0 (Ω) =

⋃∞
n=1H

1
0 (Ωn). The closure can be taken in the Sobolev

norm or the energy norm or the Sobolev seminorm as all are equivalent norms
on H1

0 (B). To show (2.14), it is helpful to follow the proof of Lemma 2.1
with a few minor modifications.

It holds H1
0 (Ω) ⊂ H̃1

0 (Ω) and it can be H1
0 (Ω) /= H̃1

0 (Ω) in general,
see [2, Theorem 5.8]. The latter happens iff ⊥

a H̃Ω /= ⊥
aHΩ because

⊥
(
H̃1

0 (Ω)
)

= ⊥ (⋂∞
n=1H

1
0 (Ωn)

)
=
⋃∞
n=1

⊥ (H1
0 (Ωn)

)
= ⊥

a H̃Ω if Ωn ↘ Ω,
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⊥ (H1
0 (Ω)

)
= ⊥

(⋃∞
n=1H

1
0 (Ωn)

)
=
⋂∞
n=1

⊥ (H1
0 (Ωn)

)
= ⊥

aHΩ if Ωn ↗ Ω.

Orthogonal complements are defined respective to the inner product induced
by the bilinear forms aΩ and aΩn .

Thus, for a D-unstable domainΩ, solutions un can converge to different
limits respective to sequences Ωn → Ω.

3 Difference between two solutions – introductory steps

Our goal is to estimate the difference between two solutions of problem
(2.1)–(2.2) solved on two different but close domains. One of them can be
the limit domain Ω.

We suppose domains Ω1, Ω2, and Ω3 are given, Ω1 ⊂ Ω2 ⊂ Ω3 ⊂
B ⊂ Rd. Next, we assume boundaries ∂Ω1, ∂Ω3 are known and Lipschitz
whereas Ω2 can be D-unstable. We also suppose ∂Ω2 = ∂Ω2 and A is
symmetric.

As a consequence, we have to take possible nonuniqueness of the bound-
ary value problem onΩ2 into account because, as we saw in Sect. 2, the test
and trial spaces of the limit problem can depend on the sequence of domains
approaching the limit domain.

We aim at approximating a solution onΩ2 by solutions on more explicit
domains Ω1 and Ω3. The two respective solutions are denoted u1 and u3.

Problem (2.1)–(2.2) with a space H̃ , H1
0 (Ω2) ⊂ H̃ ⊂ H̃1

0 (Ω2), instead
ofH1

0 (Ω2) is solved onΩ2 and its solution is labeled u2. For simplicity, we
define H1 ≡ H1

0 (Ω1), H2 ≡ H̃ , H3 ≡ H1
0 (Ω3).

Remark 3.1 Setting H̃ in the above way, we intend to cover all cases that can
happen. First,Ω2 can be Lipschitz. It could belong to a sequence of domains
converging to Ω, to give an example. Second, Ω2 can be the D-stable limit
of a sequence of Lipschitz domains. In both cases, H1

0 (Ω2) = H̃1
0 (Ω2).

Third, Ω2 can be the D-unstable limit of a sequence of Lipschitz domains.
Then H1

0 (Ω2) � H̃1
0 (Ω2) and the limit of the BVP solutions depends on

the sequence of domains. We studied two basic instances in Sect. 2, i.e.,
the limit belongs to H1

0 (Ω2) or H̃1
0 (Ω2). If the sequence of domains is not

monotone but the limit of solutions exists then the limit belongs to a space
H̃ between the spaces H1

0 (Ω2) and H̃1
0 (Ω2). The limit function solves the

Dirichlet BVP defined in Ω2 by H̃ .
We wish to derive estimates dependent on Ω2 only through the bounds

Ω1 and Ω3. ��
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We can express solutions ui as

ui = ui0 + ψ|Ωi
, ui0 ∈ Hi, i = 1, 2, 3.

To reformulate problem (2.1)–(2.2), we define continuous linear functionals

FψΩi
(v) = FΩi(v) − aΩi(ψ, v), v ∈ H1(Ωi), i = 1, 2, 3,

as well as quadratic functionals

JΩi(v) =
1
2
aΩi(v, v) − FψΩi

(v), v ∈ H1(Ωi), i = 1, 2, 3.

Then

ui0 = arg min
v∈Hi

JΩi(v), i = 1, 2, 3.(3.1)

The equivalent formulation is

aΩi(ui0, v) = FψΩi
(v) ∀v ∈ Hi, i = 1, 2, 3.(3.2)

Lemma 3.1 Let ui0 ∈ Hi is given by (3.1) or (3.2), i = 1, 2, 3. Then

‖u20 − u10‖2
a,Ω2

≤ ‖u30‖2
a,Ω3

− ‖u10‖2
a,Ω1

,(3.3)

‖u30 − u20‖2
a,Ω3

≤ ‖u30‖2
a,Ω3

− ‖u10‖2
a,Ω1

.(3.4)

Proof. By virtue of H1 ⊂ H2 and (3.1)–(3.2)

− ‖u20‖2
a,Ω2

= 2 min
v∈H2

JΩ2(v)

≤ 2 min
v∈H1

JΩ2(v) = 2 min
v∈H1

JΩ1(v) = − ‖u10‖2
a,Ω1

.(3.5)

Similarly, as H2 ⊂ H3,

− ‖u30‖2
a,Ω3

= 2 min
v∈H3

JΩ3(v)

≤ 2 min
v∈H2

JΩ3(v) = 2 min
v∈H2

JΩ2(v) = − ‖u20‖2
a,Ω2

.(3.6)

Utilizing (3.2) and H1 ⊂ H2 ⊂ H3, we also have

aΩ2(u20, u10) = FψΩ2
(u10) = FψΩ1

(u10) = aΩ1(u10, u10) = ‖u10‖2
a,Ω1

,

(3.7)

aΩ3(u30, u20) = FψΩ3
(u20) = FψΩ2

(u20) = aΩ2(u20, u20) = ‖u20‖2
a,Ω2

.

(3.8)

We infer from (3.7) and (3.6) that

‖u20 − u10‖2
a,Ω2

= ‖u20‖2
a,Ω2

− 2aΩ2(u20, u10) + ‖u10‖2
a,Ω2
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= ‖u20‖2
a,Ω2

− ‖u10‖2
a,Ω1

≤ ‖u30‖2
a,Ω3

− ‖u10‖2
a,Ω1

.

Combining (3.8) and (3.5), we get

‖u30 − u20‖2
a,Ω3

= ‖u30‖2
a,Ω3

− ‖u20‖2
a,Ω2

≤ ‖u30‖2
a,Ω3

− ‖u10‖2
a,Ω1

.
��

Remark 3.2 The right-hand sides of the inequalities in Lemma 3.1 do not
depend either on Ω2 or on the stability status of Ω2. They are also indepen-
dent of the spatial dimension ofΩ2. In the same way, analogous inequalities
can be derived for systems of equations as well as for higher order Dirichlet
boundary value problems defined through quadratic functionals. ��

Remark 3.3 Lemma 3.1 has an a posteriori nature. We have to know u30
and u10 to assess u20 − u10 or u30 − u20. It also offers a hint for estimates
based on numerical computation. As domains Ω1 and Ω3 are known, u10
and u30 can be approximated by means of a numerical method, e.g. the fi-
nite element method (FEM), the boundary element method, etc. The error
of the approximate solution can be estimated via an a posteriori error anal-
ysis in many instances. Thus a guaranteed estimate of (3.3), (3.4) can be
accomplished. ��

Remark 3.4 It can happen that domains estimatingΩ2 from inside and out-
side, respectively, are not suitable for a numerical treatment of the problem.
Pixel domains are typical examples. Their fine boundary structure can re-
quire very fine computational meshes, leading to expensive FEM calcula-
tions. Approximating pixel domains by more FEM-oriented domains, we
can avoid this difficulty and still benefit from the approach proposed in
Remark 3.3. ��

Remark 3.5 Let Ω be D-stable with respect to monotone sequences of do-
mains and letuΩ0 ≡ u20 be the limit solution of the Dirichlet BVP. According
to Lemma 3.1, Ω is D-stable for any (i.e., even nonmonotone) sequence of
Lipschitz domains converging to Ω and the limit of the respective BVP

solutions uΩ̂m
0 is uΩ0 .

Indeed, if Ω̂m → Ω then we can find Lipschitz domainsΩm
10 ⊂ Ω∩ Ω̂m

andΩm
30 ⊃ Ω ∪ Ω̂m such thatΩm

10 ↗ Ω andΩm
30 ↘ Ω, respectively (cf. [1,

Theorem 4.1, Theorem 4.2]). We construct the respective solutions um10 as

well as um30, and observe that both uΩ0 and uΩ̂m
0 can play the role of u20 in

Lemma 3.1. Applying (3.4) to the summands on the right-hand side of the
triangle inequality∥∥∥uΩ0 − uΩ̂m

0

∥∥∥
a,Ωm

30

≤
∥∥uΩ0 − um30

∥∥
a,Ωm

30
+
∥∥∥um30 − uΩ̂m

0

∥∥∥
a,Ωm

30

,
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we prove the statement by virtue of the D-stability ofΩ because‖um30‖
2
a,Ωm

30
−

‖um10‖
2
a,Ωm

30
tends to zero if m → ∞. ��

In the sequel, we will find useful estimates related to u10 and u30. As
u10 solves (3.2), i = 1, we get by (2.5), (2.6)

cAb ‖u10‖2
1,Ω1

≤ ‖u10‖2
a,Ω1

= aΩ1(u10, u10)

= FψΩ1
(u10)

≤
(
‖f‖0,Ω1

+ cAb ‖ψ‖1,Ω1

)
‖u10‖1,Ω1

.

Then

‖u10‖1,Ω1
≤ θ1 ≡ c−1

Ab

(
‖f‖0,Ω1

+ cAb ‖ψ‖1,Ω1

)
,(3.9)

‖u10‖a,Ω1
≤ √

cAbθ1.(3.10)

Analogously,

‖u30‖a,Ω3
≤ √

cAbθ
′
1,(3.11)

θ′
1 ≡ c−1

Ab

(
‖f‖0,Ω3

+ cAb ‖ψ‖1,Ω3

)
.(3.12)

We will further assess (3.3) and (3.4) in the next sections to get a priori
estimates dependent solely on known input data as Ω1, Ω3, f , ψ, cAb, etc.

4 Estimates for starshaped domains

If the shapes of Ω1 and Ω3 are related with a simple rule we have a chance
to find a fairly explicit estimate of the difference between u2 and u3 or u1,
respectively.

We suppose Ω1 is a starshaped domain with respect to the origin, i.e.,
any half-line starting from the origin intersects ∂Ω1 only once. We assume
Ω3 is given such that

Ω3 =
{
y ∈ Rd : y/α ∈ Ω1

}
,

where α > 1 is a constant, i.e., the mapping κ(x) = αx maps Ω1 onto Ω3.
Assuming a function v defined on Ω1, we can define a new function vα on
Ω3 by vα(y) = vα(κ(x)) = v(x). This α-subscript convention applies to
other scalar or matrix functions as f , b, orA. If v is differentiable inΩ1 then

∇yvα(y) = α−1∇xv(x), y = αx,(4.1)
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where the subscripts x and y symbolize differentiation with respect to the
components of x and y, respectively. We observe that v ∈ H1(Ω1) iff
vα ∈ H1(Ω3). By the substitution theorem

αd−2 ‖v‖2
1,Ω1

≤ ‖vα‖2
1,Ω3

= αd−2 |v|21,Ω1
+ αd

∫
Ω1

v2 dx

≤ αd ‖v‖2
1,Ω1

.(4.2)

We will follow a simple idea. First, we define

u10α(y) = u10α(κ(x)) = u10(x), x ∈ Ω1.

Next, we will find a boundary value problem u10α solves onΩ3. This equa-
tion together with (3.2), i = 3, will enable us to estimate ‖u30 − u10α‖a,Ω3
by means of f , ψ and α. Plugging ±u10α into the right-hand side of (3.3),
(3.4), and using the estimate as well as (4.2), we will express estimates (3.3),
(3.4) in known quantities.

Lemma 4.1 Function u10α ∈ H1
0 (Ω3) solves the equation

aαΩ3
(u10α, v) = Fψ,αΩ3

(v) ∀v ∈ H1
0 (Ω3),(4.3)

where

aαΩ3
(u10α, v) ≡

∫
Ω3

(
α2Aα∇u10α · ∇v + bαu10αv

)
dy,

Fψ,αΩ3
(v) ≡

∫
Ω3

(fα − bαψα)v dy − α2
∫
Ω3

Aα∇ψα · ∇v dy.

Proof. Let ṽ(x) = v(κ(x)), x ∈ Ω1. Applying (4.1), the substitution the-
orem and (3.2) on the slightly modified left-hand side of (4.3), we get∫

Ω3

[Aα(α∇yu10α) · (α∇yv) + bαu10αv] dy

= αd
∫
Ω1

(A∇xu10 · ∇xṽ + bu10ṽ) dx

= αd
∫
Ω1

(f − bψ)ṽ dx− αd
∫
Ω1

A∇xψ · ∇xṽ dx

=
∫
Ω3

(fα − bαψα) v dy − α2
∫
Ω3

Aα∇yψα · ∇yv dy.
��

It will be useful to introduce an auxiliary function ũ30 ∈ H1
0 (Ω3) as the

solution of the equation

aΩ3(ũ30, v) = Fψ,αΩ3
(v) ∀v ∈ H1

0 (Ω3).(4.4)
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Referring to (3.2), (4.3), (4.4), and plugging ±bαψv, ±Aα∇ψ · ∇v,
±Aα∇ψα · ∇v at proper places, we can write

|aΩ3(u30 − ũ30, v)|
=
∣∣∣FψΩ3

(v) − Fψ,αΩ3
(v)
∣∣∣

=
∣∣∣∣∫
Ω3

(f − fα − bψ + bαψα) v dy

−
∫
Ω3

(
A∇ψ · ∇v − α2Aα∇ψα · ∇v

)
dy

∣∣∣∣
≤ ‖f − fα‖0,Ω3

‖v‖0,Ω3
+
∫
Ω3

|bα − b||ψv| dy

+
∫
Ω3

|bα||(ψα − ψ)v| dy +
∫
Ω3

|(Aα −A)∇ψ · ∇v| dy

+
∫
Ω3

|Aα∇(ψα − ψ) · ∇v| dy

+(α2 − 1)
∫
Ω3

|Aα∇ψα · ∇v| dy

= I1 + I2 + I3 + I4 + I5 + I6.(4.5)

Similarly, due to (4.4) and (4.3)

|aΩ3 (ũ30 − u10α, v)| =
∣∣∣Fψ,αΩ3

(v) − aΩ3(u10α, v)
∣∣∣

=
∣∣aαΩ3

(u10α, v) − aΩ3(u10α, v)
∣∣

≤
∣∣∣∣∫
Ω3

(
α2Aα −A

)
∇u10α · ∇v dy

∣∣∣∣
+
∣∣∣∣∫
Ω3

(bα − b)u10αv dy

∣∣∣∣
= I7 + I8.(4.6)

To further estimate (4.5) and (4.6), we need a few auxiliary lemmata. We
start with citing [3, Lemma 4.4], where parameters ε0 = (α− 1)r and r =
supx∈Ω1

‖x‖
Rd appear. Let us notice that ε0 ≤ (α− 1)diamΩ1.

Lemma 4.2 Let ϕ ∈ L1(Ω3) ∩ C(Ω3) be a nonnegative function. Then∫
Ω1

(∫ αx

x
ϕ(z) dz

)
dx ≤ ε0

∫
Ω3

ϕ(x) dx.

Proof. The proof utilizes an idea from the proof of [9, Lemma 1.4.6] and
can be found in [3], where d = 2 is assumed. As its use is expected in Sect. 5,
we reproduce the proof modifying it for a general parameter d.
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Let us define the function γ(x) = (α− 1)‖x‖Rd . Its value at x is equal
to the length of the segment (x, αx). Then we define x/‖x‖Rd = 0 if x = 0
and calculate∫

Ω1

(∫ αx

x
ϕ(z) dz

)
dx =

∫
Ω1

(∫ γ(x)

0
ϕ
(
x+ t

x

‖x‖Rd

)
dt
)

dx

≤
∫
Ω1

(∫ ε0

0
ϕ
(
x+ t

x

‖x‖Rd

)
dt
)

dx

≤
∫ ε0

0

(∫
Ω3

ϕ(x) dx
)

dt

= ε0

∫
Ω3

ϕ(x) dx.

We integrated over spheres with increasing diameter to get the integral over
Ω1 and to infer the last inequality, details in [3]. ��

In the next three lemmata, w and wα are functions on Ω3, wα(y) =
wα(κ(x)) = w(x), x ∈ Ω1.

Lemma 4.3 Let w ∈ H1(Ω3). Then

‖w − wα‖2
0,Ω3

≤ αd(α− 1)2r2|w|21,Ω3
.

Proof. We follow the idea of the proof of [3, Lemma 4.5]. Let us suppose
w ∈ C∞(Ω3) ∩H1(Ω3).

By the substitution theorem, differentiability ofw, the Schwarz inequal-
ity, and Lemma 4.2∫

Ω3

(w(y) − wα(y))2 dy =
∫
Ω1

(w(αx) − w(x))2 αd dx

≤ αd
∫
Ω1

(∫ αx

x
|∇w(z)| dz

)2
dx

≤ αd
∫
Ω1

ε0

∫ αx

x
|∇w(z)|2 dz dx

≤ αd(α− 1)2r2
∫
Ω3

|∇w(x)|2 dx.

Since smooth functions are dense in H1(Ω3), the proof is finished. ��

Lemma 4.4 Let w ∈ H2(Ω3). Then

|w − wα|21,Ω3
≤ 2α2(α− 1)2 (r|w|2,Ω3 + |w|1,Ω1)

2 .

Proof. Lemma 4.4 is, in fact, [3, Lemma 4.5]. The proof is based on the
idea presented in the proof of Lemma 4.3 and applied to partial derivatives
of w, wα. ��
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Lemma 4.5 Let w ∈ C1(Ω3). Then

|w − wα|∞,Ω3
≤ ε0d

1/2|w|1,∞,Ω3 .

Proof. Let y = αx, y ∈ Ω3, x ∈ Ω1 ⊂ Ω3. It holds for a point ζ between
x and αx

|w(y) − wα(y)| = |w(αx) − w(x)| ≤ ε0|∇w(ζ)| ≤ ε0d
1/2|w|1,∞,Ω3 .��

Before formulating and proving the next lemma, we recall that

A = [aij ]di,j=1, Aα = [aαij ]
d
i,j=1, a

α
ij(y) = aαij(αx) = aij(x),

x ∈ Ω1, α > 1.

Moreover, we introduce a constant cA > 0 such that∫
Ω3

A∇v · ∇w dy ≤ cA|v|1,Ω3 |w|1,Ω3 ∀v, w ∈ H1(Ω3).(4.7)

Lemma 4.6 Let α, β > 1 be two parameters, let aij ∈ C1(Ω3), i, j =
1, . . . , d, and let v, w ∈ H1(Ω3). Then∣∣∣∣∫

Ω3

(βAα −A)∇v · ∇w dy

∣∣∣∣
≤
(
ε0βd

3/2|A|1,∞,Ω3 + (β − 1)cA
)

|v|1,Ω3 |w|1,Ω3 ,

where |A|1,∞,Ω3 = max {|aij |1,∞,Ω3 : i, j = 1, . . . , d}.

Proof. We have∫
Ω3

(βAα −A)∇v · ∇w dy =
∫
Ω3

β(Aα −A)∇v · ∇w dy

+
∫
Ω3

(β − 1)A∇v · ∇w dy

= I9 + I10.

By Lemma 4.5

∀y ∈ Ω3
∣∣aαij(y) − aij(y)

∣∣ ≤ ε0
√
d |aij |1,∞,Ω3

≤ ε0
√
d |A|1,∞,Ω3

,

i, j = 1, . . . , d.(4.8)

Taking a vector t ∈ Rd, we define t̂ ≡ (|t1|, |t2|, . . . , |td|). We also introduce
a matrix M = [mij ]di,j=1, mij = 1, i, j = 1, . . . , d.
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Applying (4.8), the Schwarz inequality and
(∑d

i=1 |ti|
)2

≤ d
∑d

i=1 t
2
i ,

we can estimate

|I9| ≤ βε0d
1/2|A|1,∞,Ω3

∫
Ω3

M∇̂v · ∇̂w dy

≤ βε0d
1/2|A|1,∞,Ω3

∫
Ω3

(
d∑
i=1

∣∣∣∣ ∂v∂yi
∣∣∣∣
)(

d∑
i=1

∣∣∣∣∂w∂yi
∣∣∣∣
)

dy

≤ βε0d
3/2|A|1,∞,Ω3 |v|1,Ω3 |w|1,Ω3 .

Inequality (4.7) gives an upper bound of |I10| and the proof is finished. ��

We are ready to finish estimate (4.5).

Lemma 4.7 Let f, v ∈ H1(Ω3), ψ ∈ H2(Ω3), b, aij ∈ C1(Ω3), i, j =
1, . . . , d. Then

|aΩ3(u30 − ũ30, v)| ≤ (α− 1)
(
θ2 ‖v‖0,Ω3

+ θ3|v|1,Ω3

)
,

where

θ2 ≡ r
(
d1/2|b|1,∞,Ω3 ‖ψ‖0,Ω3

+ αd/2|f |1,Ω3 + αd/2 ‖b‖∞,Ω1
|ψ|1,Ω3

)
,

θ3 ≡
√

2αd ‖A‖∞,Ω1
(r|ψ|2,Ω3 + |ψ|1,Ω1) + rd3/2|A|1,∞,Ω3 |ψ|1,Ω3

+(α+ 1)α(d−2)/2cA|ψ|1,Ω1 .

Proof. Focusing on (4.5) first, we get from Lemma 4.3 and Lemma 4.5

I1 + I2 ≤ (α− 1)
(
αd/2r|f |1,Ω3 + rd1/2|b|1,∞,Ω3 ‖ψ‖0,Ω3

)
‖v‖0,Ω3

.

(4.9)

By Lemma 4.3

I3 ≤ ‖b‖∞,Ω1
‖ψα − ψ‖0,Ω3

‖v‖0,Ω3

≤ (α− 1)αd/2r ‖b‖∞,Ω1
|ψ|1,Ω3 ‖v‖0,Ω3

.(4.10)

By Lemma 4.6 with β = 1, Lemma 4.4 and the algebraic inequality used in
the proof of Lemma 4.6

I4 + I5 ≤ (α− 1)rd3/2|A|1,∞,Ω3 |ψ|1,Ω3 |v|1,Ω3

+d ‖A‖∞,Ω1

√
2α(α− 1) (r|ψ|2,Ω3 + |ψ|1,Ω1) |v|1,Ω3 .(4.11)

To estimate I6, we introduce ṽ(x) = v(αx), x ∈ Ω1. Then the substitution
theorem, (4.1), (4.7) and again the substitution theorem (cf. (4.2)) lead to

I6 = (α2 − 1)α−2
∫
Ω1

|A(x)∇xψ(x) · ∇xṽ(x)|αd dx
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≤ (α2 − 1)αd−2cA|ψ|1,Ω1 |ṽ|1,Ω1

= (α2 − 1)α(d−2)/2cA|ψ|1,Ω1 |v|1,Ω3 .(4.12)

Combining (4.9)–(4.12), we complete the proof. ��

The next lemma finishes estimate (4.6).

Lemma 4.8 Let b, aij ∈ C1(Ω3), i, j = 1, . . . , d, and let v ∈ H1(Ω3).
Then

|aΩ3(ũ30 − u10α, v)| ≤ (α− 1)θ4 ‖v‖1,Ω3
,

where

θ4 = c−1
Abα

d/2
(
rα2d3/2|A|1,∞,Ω3 + (α+ 1)cA + rd1/2|b|1,∞,Ω3

)
×
(
‖f‖0,Ω1

+ cAb|ψ|1,Ω1

)
.

Proof. By (4.6), Lemma 4.6 with β = α2, Lemma 4.5 and (4.2)

I7 + I8 ≤ (α− 1)
(
rα2d3/2|A|1,∞,Ω3 + (α+ 1)cA + rd1/2|b|1,∞,Ω3

)
× ‖u10α‖1,Ω3

‖v‖1,Ω3

≤ (α− 1)
(
rα2d3/2|A|1,∞,Ω3 + (α+ 1)cA + rd1/2|b|1,∞,Ω3

)
×αd/2 ‖u10‖1,Ω1

‖v‖1,Ω3
.(4.13)

Finally, we plug (3.9) into (4.13). ��

To follow the ideas presented just before Lemma 4.1, we now estimate
the norm of the difference u30 − u10α.

Lemma 4.9 Under the assumptions of Lemma 4.7,

‖u30 − u10α‖a,Ω3
≤ (α− 1)θ5,(4.14)

where θ5 ≡
√
cAbc−1

Ab (θ2 + θ3 + θ4) and parameters θ2, θ3, θ4 are defined
in Lemmata 4.7 and 4.8.

Proof. Inequality (2.5) and Lemma 4.8 give

cAb ‖ũ30 − u10α‖2
1,Ω3

≤ (α− 1)θ4 ‖ũ30 − u10α‖1,Ω3
.(4.15)

Similarly, by (2.5) and Lemma 4.7

cAb ‖u30 − ũ30‖2
1,Ω3

≤ (α− 1)(θ2 + θ3) ‖u30 − ũ30‖1,Ω3
.(4.16)

Using the triangle inequality, (4.15) and (4.16) (after canceling), we infer

‖u30 − u10α‖1,Ω3
≤ ‖u30 − ũ30‖1,Ω3

+ ‖ũ30 − u10α‖1,Ω3
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≤ (α− 1)c−1
Ab (θ2 + θ3 + θ4) .(4.17)

Then (4.14) is a consequence of (2.6), i.e.,

(cAb)−1/2 ‖u30 − u10α‖a,Ω3
≤ ‖u30 − u10α‖1,Ω3

,

and (4.17). ��
We also need a counterpart to (4.2) for ‖vα‖a,Ω3

.

Lemma 4.10 Let v ∈ H1(Ω1), b, aij ∈ C1(Ω3), i, j = 1, . . . , d. Then

‖vα‖2
a,Ω3

≤ αd ‖v‖2
a,Ω1

+ (α− 1)θ6 ‖v‖2
a,Ω1

,

where
θ6 = rd1/2c−1

Ab

(
dαd−2|A|1,∞,Ω3 + αd|b|1,∞,Ω3

)
.

Proof. Plugging ±Aα, ±bα into the integral representing ‖vα‖2
a,Ω3

, we can
proceed as in Lemma 4.6 (β = 1), Lemma 4.5 and (4.2). In detail,

‖vα‖2
a,Ω3

=
∫
Ω3

[
(A−Aα)∇vα · ∇vα + (b− bα)v2

α

+Aα∇vα · ∇vα + bαv
2
α

]
dx

≤ ε0d
3/2|A|1,∞,Ω3 |vα|21,Ω3

+ ε0d
1/2|b|1,∞,Ω3 ‖vα‖2

0,Ω3

+αd ‖v‖2
a,Ω1

= ε0d
3/2αd−2|A|1,∞,Ω3 |v|21,Ω1

+ ε0d
1/2αd|b|1,∞,Ω3 ‖v‖2

0,Ω1

+αd ‖v‖2
a,Ω1

.

Applying (2.5), we finish the proof. ��
We are at the point of upgrading Lemma 3.1.

Theorem 4.1 Under the assumptions of Lemma 4.7,

‖u20 − u10‖2
a,Ω2

≤ (α− 1)X and ‖u30 − u20‖2
a,Ω3

≤ (α− 1)X,

where

X ≡
[
(α− 1)θ2

5 + 2c1/2Ab

(
αd + (α− 1)θ6

)1/2
θ1θ5

+cAb(αd−1 + · · · + 1 + θ6)θ2
1

]
(4.18)

or

X ≡
[
θ5 + c

1/2
Ab (αd−1 + · · · + 1 + θ6)θ1

]
c
1/2
Ab (θ1 + θ′

1).(4.19)

Parameters θ1, θ′
1, θ5 and θ6 are defined in (3.9), (3.12), Lemma 4.9, and

Lemma 4.10, respectively.
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Proof. Let us insert±u10α into the right-hand side of (3.3), apply the triangle
inequality, Lemma 4.9, and Lemma 4.10

‖u20 − u10‖2
a,Ω2

≤
(
‖u30 − u10α‖a,Ω3

+ ‖u10α‖a,Ω3

)2
− ‖u10‖2

a,Ω1

= ‖u30 − u10α‖2
a,Ω3

+ 2 ‖u10α‖a,Ω3
‖u30 − u10α‖a,Ω3

+ ‖u10α‖2
a,Ω3

− ‖u10‖2
a,Ω1

≤ (α− 1)2θ2
5 + 2

(
αd + (α− 1)θ6

)1/2
‖u10‖a,Ω1

×(α− 1)θ5 + (αd − 1) ‖u10‖2
a,Ω1

+(α− 1)θ6 ‖u10‖2
a,Ω1

.

Taking into account (3.10) and (αd − 1) = (α− 1)(αd−1 + · · · + α0), we
derive (4.18).

To get (4.19), we modify (3.3)

‖u20 − u10‖2
a,Ω2

≤
(
‖u30‖a,Ω3

− ‖u10‖a,Ω1

)(
‖u30‖a,Ω3

+ ‖u10‖a,Ω1

)
≡ I11I12.

By (3.10), (3.11)
I12 ≤ √

cAb
(
θ1 + θ′

1
)
.

By the triangle inequality, Lemma 4.9, Lemma 4.10, and (3.10)

I11 ≤ ‖u30 − u10α‖a,Ω3
+ ‖u10α‖a,Ω3

− ‖u10‖a,Ω1

≤ (α− 1)θ5 +
[(
αd + (α− 1)θ6

)1/2
− 1
]

‖u10‖a,Ω1

≤ (α− 1)
[
θ5 + (αd−1 + · · · + 1 + θ6)c

1/2
Ab θ1

]
.

To derive the last inequality, we also used[(
αd + (α− 1)θ6

)1/2
− 1
]

≤
[(
αd + (α− 1)θ6

)1/2
− 1
]

×
[(
αd + (α− 1)θ6

)1/2
+ 1
]

= (α− 1)(αd−1 + · · · + 1 + θ6).

��

Remark 4.1 The framework presented in this section is not restricted to the
second order scalar Dirichlet boundary value problems. It is applicable to
systems of equations as well as to higher order problems. One can expect,
however, increasing complexity of estimates. ��
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5 Estimates for more general domains

Our next goal is to find a parallel to Theorem 4.1 if Ω3 is not an α-multiple
of Ω1. Then the transformation of functions and their derivatives is more
complex than in Sect. 4 but we can still expect that the framework presented
there will prove itself useful in achieving our purpose.

To make calculations easier and more lucid, we confine ourselves to
constant coefficients A and b.

Let a domainΩ1 be fixed and a parameter εΩ1 > 0 be given. We assume
that the boundary of Ω1 is Lipschitz and that a family of ε-dependent one-
to-one mappings κε : Ω1 → Rd and their inverses κ−1

ε : Ω1ε → Rd, where
Ω1ε = κε(Ω1), exists such that

∀ ε ∈ [0, εΩ1) κε ∈
[
C1(Ω1)

]d
κ−1
ε ∈

[
C1(Ω1ε)

]d ;(A.1)

∀x ∈ Ω1 and κε(x) can be connected by a straight segment lying in Ω1ε;
(A.2)

∀ ε ∈ [0, εΩ1) ∀x ∈ Ω1 κε(x) = x+ eε(x), ‖eε‖1,∞,Ω1
≤ εCe;

(A.3)

∀ ε ∈ [0, εΩ1) ∀y ∈ Ω1ε κ−1
ε (y) = y + gε(y), ‖gε‖1,∞,Ω1ε

≤ εCg,

(A.4)

where Ce and Cg are positive constants independent of ε.
By virtue of its properties κε transformsH1(Ω1) intoH1(Ω1ε) and κ−1

ε

transforms H1(Ω1ε) into H1(Ω1).
We will need a generalization of Lemma 4.2 valid for rather unspecified

mappings κε. To this end we assume that∫
Ω1

(∫ κε(x)

x
ϕ(z) dz

)
dx ≤ ε

√
dC0

e

∫
Ω1ε

ϕ(x) dx(A.5)

holds for any nonnegative function ϕ ∈ L1(Ω1ε) ∩C(Ω1ε), where C0
e > 0

is a constant such that ‖eε‖∞,Ω1
≤ εC0

e . It is C0
e ≤ Ce, cf. (A.3).

Remark 5.1 Mappings κε fulfilling (A1), (A3), (A4) exist if d = 2 and Ω1
has the Lipschitz boundary, see [3, Sect. 5]. ��

We will transfer derivatives as well as integrals from Ω1 to κε(Ω1) and
vice versa. That is why we have to pay attention to the Jacobi determinant
of κ−1

ε .
Applying the chain rule onto w(y) = v(κ−1

ε (y)) = v(x), x ∈ Ω1, we
derive

∂w(y)
∂yj

=
d∑
i=1

∂v(x)
∂xi

∂xi(y)
∂yj

, j = 1, . . . , d,(5.1)

a system of linear equations for an unknown vector ∇v(x).
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Taking (A.4) into consideration, we see that the matrix of the system
equals I + G(y), where I is the d × d identity matrix and the elements of
the d× d matrix G(y) are equal to partial derivatives of the components of
gε at y. The determinant D(y) of I +G(y) has the form

D(y) = 1 + ĝε(y), ‖ĝε‖∞,Ω1ε
≤ εC,(5.2)

where ĝε is a continuous scalar function onΩ1ε and C is a positive constant
independent of ε.

We can employ the Cramer rule to get ∇v(x) from (5.1). Then

∇xv(x) = (∇yw(y) +Mgε(y)∇yw(y))/D(y), y = κε(x),(5.3)

where Mgε is a d × d matrix function the elements of which consist of
summed products of partial derivatives of gε.

We assume that εΩ1 is sufficiently small to ensureD is positive and close
to 1.

Now we are ready to investigate how aΩ1 changes if transferred from
Ω1 to Ω1ε.

Let us recall that u10 ∈ H1 is the solution of (3.2), i = 1. We define
u10ε(y) = u10(κ−1

ε (y)) = u10(x) and vε(y) = v(κ−1
ε (y)) = v(x), v ∈

H1(Ω1). The substitution theorem, (5.3), (5.2), and 1/D = 1+(1−D)/D
give∫

Ω1

(A∇u10 · ∇v + bu10v) dx

=
∫
Ω1ε

A(∇yu10ε +Mgε∇yu10ε) · (∇yvε +Mgε∇vε)|D|/D2 dy

+
∫
Ω1ε

bu10εvε|D| dy

=
∫
Ω1ε

A∇u10ε · ∇vεD−1 dy + â(gε;u10ε, vε)

+
∫
Ω1ε

bu10εvε(1 + ĝε) dy

= aΩ1ε(u10ε, vε) +
∫
Ω1ε

A∇u10ε · ∇vε(1 −D)/D dy

+â(gε;u10ε, vε) +
∫
Ω1ε

bu10εvεĝε dy

= aΩ1ε(u10ε, vε) + agε(u10ε, vε).(5.4)

The bilinear form â(gε; ·, ·) consists of terms related to Mgε and D−1. The
bilinear form agε(·, ·) contains â(gε; ·, ·) and terms with ĝε and (1−D)/D.
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It holds

|agε(w,ω)| ≤ εC ‖w‖1,Ω1ε
‖ω‖1,Ω1ε

∀w,ω ∈ H1(Ω1ε),(5.5)

C > 0 does not depend on ε, w, and ω.
The chain of equalities (5.4) offers a hint how to estimate ‖vε‖1,Ω1ε

.
We start with

∫
Ω1ε

(
|∇vε|2 + v2

ε

)
dy and transfer the integral ontoΩ1 using

formulae analogous to (5.1)–(5.3), i.e., formulae based not on κ−1
ε but κε.

A short calculation (cf. (5.4)) and (A.3) lead us to the inequality

‖vε‖2
1,Ω1ε

≤ ‖v‖2
1,Ω1

+ εC1 ‖v‖2
1,Ω1

,(5.6)

where the constant C1 > 0 does not depend on ε and v.
The next step is to transfer the right-hand side of (3.2), i = 1, onto Ω1ε.

We will need ψε(y) = ψ(κ−1
ε (y)) = ψ(x) and fε(y) = f(κ−1

ε (y)) =
f(x), y ∈ Ω1ε. On the basis of (5.4) and (5.2)

FΩ1(v) − aΩ1(ψ, v) =
∫
Ω1ε

fεvεD dy − aΩ1ε(ψε, vε) − agε(ψε, vε)

=
∫
Ω1ε

fεvε dy − aΩ1ε(ψε, vε)

+
∫
Ω1ε

ĝεfεvε dy − agε(ψε, vε).(5.7)

Let us suppose that Ω3 = κε(Ω1) for some ε, 0 < ε ≤ εΩ1 . We fix this
particular ε and use Ω3 instead of Ω1ε from now on. We summarize (3.2),
(5.4) and (5.7)

aΩ3(u10ε, w) =
∫
Ω3

fεw dy − aΩ3(ψε, w) − agε(u10ε + ψε, w)

+
∫
Ω3

ĝεfεw dy ∀w ∈ H3.(5.8)

We subtract (3.2), i = 3, from (5.8)

aΩ3(u10ε − u30, w) =
∫
Ω3

(fε − f)w dy − aΩ3(ψε − ψ,w)

−agε(u10ε + ψε, w) +
∫
Ω3

ĝεfεw dy

= I13 + I14 + I15 + I16.(5.9)

To estimate (5.9), we need generalizations of Lemmata 4.3–4.4.

Lemma 5.1 Let f ∈ H1(Ω3). Then

‖f − fε‖0,Ω3
≤ εC2|f |1,Ω3 ,

where C2 > 0 is a constant independent of f and ε.
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Proof. We can follow the proof of Lemma 4.3 supposing firstf ∈ C∞(Ω3)∩
H1(Ω3). Due to (A.3), the Jacobi determinant D̂ of the mapping κε(x) is
bounded from above by a constant. We know even more. If εΩ1 is sufficiently
small 0 < D̂ ≤ 1 + εĈ. Estimating the distance between x and κε(x) by
ε
√
dC0

e (cf. (A.3) and (A.5)), we use the Schwarz inequality and (A.5)∫
Ω3

(f(y) − fε(y))
2 dy ≤

∫
Ω1

(f(κε(x)) − f(x))2 |D̂| dx

≤
∫
Ω1

(∫ κε(x)

x
|∇f(z)| dz

)2
D̂ dx

≤ ε(1 + εĈ)
√
dC0

e

∫
Ω1

∫
κε(x)

x
|∇f(z)|2 dz dx

≤ ε2(1 + εĈ)d(C0
e )

2
∫
Ω3

|∇f |2 dx.

��

Lemma 5.2 Let ψ ∈ H2(Ω3). Then

‖ψ − ψε‖1,Ω3
≤ εC3 (|ψ|1,Ω3 + |ψ|2,Ω3) ,

where C3 > 0 is a constant independent of ε and ψ.

Proof. If d = 2 the estimate

|ψ − ψε|1,Ω3 ≤ εC (|ψ|1,Ω1 + |ψ|2,Ω3) , C > 0,

is proven as Lemma 4.11 in [3]. The idea of the proof is identical to that
of Lemma 5.1 but applied to the partial derivatives of ψ − ψε. Therefore
a generalization to a general d is rather straightforward and the estimate
remains unchanged. Combining this estimate with Lemma 5.1, we arrive at
the statement. ��

The next lemma is a consequence of Lemmata 5.1–5.2 and finishes the
estimate (5.9).

Lemma 5.3 Let f, w ∈ H1(Ω3) and ψ ∈ H2(Ω3). Then

|aΩ3(u10ε − u30, w)| ≤ εθ7 ‖w‖1,Ω3
,

where θ7 = C4

(
‖f‖1,Ω3

+ ‖ψ‖2,Ω3

)
and the constant C4 > 0 does not

depend on ε, f , ψ, and w.
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Proof. We estimate the right-hand side of (5.9).
By Lemma 5.1

|I13| ≤ ‖f − fε‖0,Ω3
‖w‖0,Ω3

≤ εC2|f |1,Ω3 ‖w‖0,Ω3
.(5.10)

Referring to (2.6) and Lemma 5.2, we get

|I14| ≤ εcAbC3 (|ψ|1,Ω3 + |ψ|2,Ω3) ‖w‖1,Ω3
.(5.11)

According to (A.4), ‖gε‖1,∞,Ω3
has the order ε. Since ‖u10ε + ψε‖1,Ω3

is

bounded by (1 + εC1)1/2 ‖u10 + ψ‖1,Ω1
, see (5.6), we have

|I15| ≤ εC ′
(
‖u10‖1,Ω1

+ ‖ψ‖1,Ω1

)
‖w‖1,Ω3

,(5.12)

where C ′ > 0 is independent of ε, u10, ψ, and w. By (5.2) the order of
‖ĝε‖∞,Ω3

is ε. Then an analogy to (5.6) for ‖fε‖0,Ω1ε
implies

|I16| ≤ εC ′′ ‖f‖0,Ω1
‖w‖0,Ω3

,(5.13)

C ′′ > 0 does not depend on ε, f and w.
Summing up (5.10)–(5.13) and taking (3.9) into account, we finish the

proof. ��

Theorem 5.1 Let f ∈ H1(Ω3) and ψ ∈ H2(Ω3). Then

‖u20 − u10‖2
a,Ω2

≤ εC and ‖u30 − u20‖2
a,Ω3

≤ εC,

where C > 0 is a constant dependent on ‖ψ‖2,Ω3
and ‖f‖1,Ω3

but indepen-
dent of ε.

Proof. First, let us substitute u10ε−u30 forw in Lemma 5.3 and recall (2.5).
Then

‖u10ε − u30‖a,Ω3
≤ εc

−1/2
Ab θ7.(5.14)

Next, we follow the framework of the proof of Theorem 4.1, i.e., we estimate
(3.3) plugging ±u10ε into ‖u30‖a,Ω3

. By the triangle inequality, (5.14), (2.6),
(5.6), (5.4), (3.9), (5.5), and again (5.6), (3.9)

‖u20 − u10‖2
a,Ω2

≤
(
‖u30 − u10ε‖a,Ω3

+ ‖u10ε‖a,Ω3

)2
− ‖u10‖2

a,Ω1

≤ ε2c−1
Abθ

2
7 + 2

√
cAb(1 + εC1) ‖u10‖1,Ω1

εc
−1/2
Ab θ7

−agε(u10ε, u10ε)

≤ ε2c−1
Abθ

2
7 + εc

−1/2
Ab 2

√
cAb(1 + εC1)θ1θ7

+εC(1 + εC1)θ1. ��
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Fig. 1. Boundaries ∂Ωsq
low (innermost), ∂Ωpix

low, ∂Ω, ∂Ωpix
up , ∂Ωsq

up

6 Numerical example

To illustrate the estimates presented in Lemma 3.1 and Theorem 4.1, we
investigated an uncertain boundary value problem defined via a digital image
simulation.

The limit domainΩ ≡ Ω2 (which is supposed to be virtually unknown in
the paper) was defined as the square (−1, 1)2 rotated through an angle π/6.
Then a regular grid of square pixels with sides parallel to the coordinate axes
was imposed on Ω and its neighborhood. The union of pixels fully inside
Ω formed the domain Ωpix

low ≡ Ω1. The union of all pixels with nonempty

intersection with Ω formed the domain Ωpix
up ≡ Ω3.

For simplicity, the setting of the Dirichlet boundary value problem (see
(2.1)–(2.4)) was given by ψ = x2

1 +2x2
2,A = I (the identity matrix), b = 1,

f = 3. As a consequence, the constants cAb, cAb, cA were equal to 1, see
(2.5), (2.6), (4.7), respectively.

The estimate (3.3) was checked first. As solutions u20, u10, and u30
were not available, we approximated them by means of the finite element
method with continuous piece-wise linear test and trial functions, i.e, uFE

20 ,
uFE

10 , and uFE
30 were computed. Gridding Ω and subdividing each square into

four identical triangles, we created a finite element mesh TΩ comprising
360 000 triangles and 180 601 nodes. We considered the mesh sufficiently
fine to produce an overkill solution uFE

20 . We also got
∥∥uFE

20

∥∥
∞,Ω

≈ 2.063,∥∥uFE
20

∥∥
0,Ω ≈ 2.314, |uFE

20 |1,Ω ≈ 5.259, and
∥∥uFE

20

∥∥
1,Ω ≈ 5.746.

To mesh Ω
pix
low and Ω

pix
up , we simply took already defined pixels and,

again, divided each of them into four identical triangles. Figure 1 depicts
the boundary ∂Ωpix

low, ∂Ω, ∂Ωpix
up together with the vertices of a coarse pixel

grid.
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Fig. 2. The boundary ∂Ωpix
low and contour lines of u20 − u10

Table 1. Estimates for pixel approximate domains

Pixel size Mesh size ‖uFE
20 − uFE

10‖1,Ω Estimate (3.3)

1.776 × 10−1 396 3.938 4.965
7.855 × 10−2 2 320 2.768 3.381
3.671 × 10−2 11 284 1.925 2.340
1.772 × 10−2 49 752 1.333 1.634

We extended uFE
10 by zero outside Ω1 and replaced the unavailable value

‖u20 − u10‖1,Ω by ‖uFE
20 − uFE

10‖1,Ω , supposing that the error caused by the
approximation is not significant if compared with the influence the difference
between domains Ω1 and Ω2 has on the value of ‖u20 − u10‖1,Ω .

Some features of the difference uFE
20 − uFE

10 can be inferred from Fig. 2
showing ∂Ωpix

low corresponding to a coarse pixel grid, and contour lines at
fixed levels. The difference value between two levels equals 0.1.

Table 1 presents the approximation of ‖u20 − u10‖1,Ω and the estimate
according to Lemma 3.1, i.e., the square root of the right-hand side of (3.3).
Four grids stemming from different pixel size are considered as indicated in
the first column. The number of triangles forming the respective meshes on
Ω

pix
low is given in the second column.

We observe that the values in the third and fourth column are simply
correlated with the pixel size. In detail, the values of ‖uFE

20 − uFE
10‖1,Ω and

of the estimate (3.3) are equal to a multiple of the square root of the pixel
size. The multiplicative parameter roughly equals 10 and 12, respectively.

Unlike Lemma 3.1, the estimates in Theorem 4.1 need only analytical
work in the case of simple input data. As Ωpix

low and Ωpix
up are not starshaped,

we constructed simply shaped domainsΩsq
low andΩsq

up, see Fig. 1. The former

is the largest square inΩpix
low the sides of which are parallel to those ofΩ. The

latter is the smallest multiple of Ωsq
low containing Ωpix

up , i.e., Ωsq
up = αΩ

sq
low.
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Table 2. Estimates for non-pixel approximate domains

Pixel size α ‖uFE
20 − uFE

10‖1,Ω Est. (3.3) Est. (4.18) Est. (4.19)

1.776 × 10−1 1.618 4.476 7.288 84.809 45.640
7.855 × 10−2 1.238 3.256 4.866 34.025 25.926
3.671 × 10−2 1.105 2.301 3.340 18.562 16.732
1.772 × 10−2 1.050 1.602 2.322 11.577 11.325

Solutionsu20,uFE
20 remain unchanged, butu10 andu30 are now approximated

by the finite element solutions to the boundary value problem in Ωsq
low and

Ω
sq
up, respectively. To get uFE

10 and uFE
30 , regular meshes (see the construction

of TΩ) with 40 000 triangles and 20 201 nodes were introduced in Ωsq
low and

Ω
sq
up. The number of nodes and triangles did not depend on the pixel size

and, consequently, on α. Thus the difference ‖u20 − u10‖1,Ω was again
approximated through the overkill solution on the mesh TΩ and the finite
element solution on the domain Ω1 equivalent to Ωsq

low in this case.
Table 2 displays the size of pixels, the corresponding parameter α, the

approximation of ‖u20−u10‖1,Ω , estimates based on (3.3), (4.18) and (4.19).
Let us recall that uFE

10 corresponds to Ωsq
low and was calculated on meshes

with the number of nodes and triangles independent of the pixel grids.
Again, we can infer similar correlation between the square root of the

pixel size and column values as in Table 1. The respective parameters are
equal to approximately 12 and 17 now. Also, the values of (4.19) are corre-
lated with the square root of the pixel size (the ratio roughly equals 90) but
the correlation is weaker for (4.18).

As a consequence, it is evident that the column values depend linearly on√
α− 1, too. The respective multiplicative constants equal approximately

7, 10, 60, and 50. This result is in line with the theory, see Theorem 4.1.
Observing the values of ‖uFE

20 −uFE
10‖1,Ω , we can also consider the thick-

ness of the layer between ∂Ω and ∂Ωsq
low, i.e., the distance between relevant

parallel sides, as an independent variable. Doing this, we again get a pro-
portion to the square root of the thickness.

The simple estimate (3.3) is superior to estimates (4.18), (4.19). This is
quite obvious as (4.18) and (4.19) stem from (3.3) by means of the chain
of other estimates. The estimate (4.19) gives better results than (4.18). An
inspection of the proof of Theorem 4.1 reveals that a triangle inequality
is used to infer (4.18) and (4.19). To get (4.18), the inequality is squared,
however. In our opinion, this is the cause of the poor performance of (4.18).

The magnitude ofuFE
20 −uFE

10 seems to be relatively large if compared with∥∥uFE
20

∥∥
1,Ω ≈ 5.746. Though depicting a pixel subdomain, Fig. 2 suggests a

reason valid also for a square subdomain. The difference uFE
20 − uFE

10 has a
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considerable slope near the boundary ∂Ω. Thus a boundary layer contributes
much to the seminorm |uFE

20 − uFE
10 |1,Ω .

We have always intended to measure the difference between solutions on
Ω, and the theoretical analysis aims at this goal but the aforesaid observation
invokes a question whether uFE

20 − uFE
10 restricted to a subdomain Ωtest ⊂

Ω
sq
low would exhibit behavior different from the above-mentioned one. For

Ωtest fixed, numerical experiments suggest that ‖uFE
20 − uFE

10‖1,Ωtest is rather
proportional to the pixel size (or α or the boundary layer thickness) than
its square root. More complicated behavior is observed if Ωtest = Ω

sq
low. In

that case, both uFE
10 and ‖ · ‖1,Ωtest depend on the pixel size. In both cases,

‖uFE
20 − uFE

10‖1,Ωtest is significantly smaller than ‖uFE
20 − uFE

10‖1,Ω .
On the condition that functions f and ψ do not behave wildly in the un-

certain layer, the example gives a hint for a computational analysis based on
geometrical input data delivered by digital imaging. Taking appropriate Ω1
and Ω3 and evaluating (3.3), we judge whether u10 or u30 are satisfactorily
close to unreachable u20. If not, digital data with finer resolution are neces-
sary. To guess how fine pixels should be taken, we employ the proportion
of the estimate value to the square root of the pixel size.
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