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Summary. We consider a priori estimates in weighted norms for interface
problems with piecewise constant diffusion constants which do not depend
on the ratio between the constants. Our result generalizes an estimate of
Lemrabet to arbitrary dimensions and includes curved boundaries. Further-
more, we discuss criteria for the existence of a uniform Poincaré estimate
in weighted norms. In the affirmative case we obtain a robust finite element
error bound in weighted norms. Finally, we present numerical experiments
including a case with no uniform Poincaré constant.
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1 Introduction

The solution of an elliptic problem with smooth coefficients in a domain
� is smooth in the interior �, and for many cases all boundary singular-
ities can be classified, cf. Grisvard [8]. If the coefficients are piecewise
smooth, regularity gets lost at the interface; nevertheless, for piecewise con-
stant coefficients a singularity classification is possible for a wide range of
problems, cf. Nicaise [13] for polygonal domains. In this context, a priori
estimates for the smooth part of the solution are required. Here, we are in-
terested in estimates for the smooth part of the solution which in addition
are independent of the coefficients in appropriate weighted norms, i. e., in
robust estimates, and we generalize the results to the case of nonpolygo-
nal domains. Such robust estimates provide e. g. robust finite element error
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estimates, which in particular, together with a robust smoothing property [11,
15], lead to parameter-independent multigrid convergence.

We consider the following model problem: find u ∈ H 1
0 (�) such that

a(u, v) = (f, v)� for all v ∈ H 1
0 (�),(1)

where � ⊂ Rd is a bounded Lipschitz domain, f ∈ L2(�), and a is the
elliptic bilinear form

a(u, v) =
K∑

k=1

αk

∫

�k

∇u · ∇v dx, �̄ =
K⋃

k=1

�̄k,

with non-overlapping Lipschitz subdomains �k ⊂ � and constant coeffi-
cients αk > 0.

We assume that, besides the Lipschitz property, ∂�k is a piecewise smooth
boundary (in the sense that some closed measure-zero subsetZk ⊂ ∂�k exists
such that ∂�k \Zk isC2-smooth; a precise formulation of the requirements is
given in c) in Sect. 2). νk denotes the outer unit normal on ∂�k. On ∂�k\Zk we
can define the second fundamental tensor Sk(x) (with respect to νk), the mean
curvatureHk(x), and the maximal principal curvature Pk(x); we assume that
Hk and Pk are bounded functions.

The inner product in L2(�) is denoted by ( , )�, ∇v = (Div)i=1,...,d

denotes the gradient, D2v = (DiDjv)i,j=1,...,d the Hessian matrix, ‖ ‖�
denotes the norm in L2(�), L2(�)d and L2(�)d×d , and for matrices we use
the Frobenius norm. Moreover, we denote by vk := v|�k the restriction to the
subdomain �k and, if it exists, its continuous extension to �̄k. Finally, set

R = {u ∈ H 1
0 (�) | uk ∈ H 2(�k),

αk
∂uk

∂νk
= −αj ∂uj

∂νj
a. e. on ∂�k ∩ ∂�j , k �= j}.

Note that for u ∈ R the tangential derivatives ∂uk
∂tk

= ∇uk− ∂uk
∂νk
νk, taken from

both sides of the interface, are identical.
The main result of this paper is the following theorem.

Theorem 1 Let Sk ∈ L∞(∂�k) (k = 1, ..., K) be defined by

Sk(x) := (d − 1)Hk(x) for x ∈ (∂�k ∩ ∂�) \ Zk,
Sk(x) := max{(d − 1)Hk(x), Pk(x)} for x ∈ (∂�k \ ∂�) \ Zk.

Then, for all u ∈ R,

K∑

k=1

αk ‖D2u‖2
�k

=
K∑

k=1

αk ‖�u‖2
�k

+
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+
K∑

k=1

αk

∫

∂�k

(
(d − 1)Hk

(
∂uk

∂νk

)2

+
(
∂uk

∂tk

)T
Sk
∂uk

∂tk

)
dσ

≤
K∑

k=1

αk ‖�u‖2
�k

+
K∑

k=1

αk

∫

∂�k

Sk |∇u|2dσ,(2)

where, in the last line, equality holds in the case d = 2 or if all �k are
polygonal / polyhedral (i.e. if Sk ≡ 0 for k = 1, . . . K).

This theorem generalizes a result by Lemrabet [10], where the case of
two polygonal domains (K = 2, S1 = S2 = 0, d = 2) is considered.

For u ∈ R, the identities

K∑

k=1

αk

∫

∂�k

(d − 1)Hk

(
∂uk

∂νk

)2

dσ

=
K∑

k=1

αk

∫

∂�k∩∂�
(d − 1)Hk

(
∂uk

∂νk

)2

dσ

+
∑

k<j

∫

∂�k∩∂�j

(1/αk − 1/αj )(d − 1)Hk

(
αk
∂uk

∂νk

)2

dσ

and

K∑

k=1

αk

∫

∂�k

(
∂uk

∂tk

)T
Sk
∂uk

∂tk
dσ =

∑

k<j

∫

∂�k∩∂�j

(αk − αj )

(
∂uk

∂tk

)T
Sk
∂uk

∂tk
dσ

show that for nontrivial curvature terms (even in the simple case d = 2
and fibrous materials with circular inclusions, where Hk = Sk = const.) no
decision about the sign of the boundary term in Theorem 1 can be made (ex-
cept in the fully rotationally symmetric case, where ∂uk

∂tk
= 0, cf. the example

in Sect. 3). A discussion of robustness with respect to the curvature and the
number of the subdomains would require a much deeper knowledge about
the relations between the normal and tangential derivatives.

Up to a finite dimensional correction, the boundary integral in the previ-
ous theorem can be removed, as shown in Theorem 2 below. The following
Lemma 1 prepares this result. Here, we use the notation

(v,w)α =
K∑

k=1

αk (v,w)�k , ‖v‖2
α = (v, v)α, v,w ∈ L2(�).
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Lemma 1 Let 0 < λ
(α)
1 ≤ λ

(α)
2 ≤ · · · denote the eigenvalues of the problem

(∇w,∇v)α = λ (w, v)α, v ∈ H 1
0 (�),(3)

associated with a complete, (·, ·)α-orthonormal sequence (w(α)i )i∈N of eigen-
functions inH 1

0 (�). Let L denote the number of indices i ∈ N such that λ(α)i
is not bounded away from zero, as α = (α1, ..., αK) varies over (0,∞)K .
Then,

L ≤ #{k | meas(∂�k ∩ ∂�) = 0}.
Theorem 2 For all u ∈ R the estimate

K∑

k=1

αk ‖D2u‖2
�k

≤ C0

K∑

k=1

αk ‖�u‖2
�k

+ C1

K∑

k=1

αk (P0u,−�u)�k(4)

holds, whereP0 is the (·, ·)α-orthogonal projection ontoW0 = span{w(α)1 , ...,

w
(α)
L }.

Moreover, C0 = 1 and C1 = 0 if the interfaces ∂�k ∩ ∂�j are polygo-
nal / polyhedral.

Here and in the following, C,C0, C1, ... always denote positive constants
independent of α1, ..., αK and of the mesh parameter h.

An immediate consequence of Lemma 1 and Theorem 2 is the following
robust a priori estimate:

Corollary 1 If meas(∂�k ∩ ∂�) > 0 for all k = 1, ..., K , the estimate (4)
holds with C1 = 0.

By the detailed investigation of an example, we show that in general no
estimate (4) with C1 = 0 exists, where C0 is independent of the coefficients.
Furthermore, we will see that the case where λ(α)1 is not bounded away from
zero really occurs, so that there is no Poincaré estimate of the form

( K∑

k=1

αk ‖v‖2
�k

)1/2
≤ CP

( K∑

k=1

αk ‖∇v‖2
�k

)1/2
, v ∈ H 1

0 (�)

(withCP independent of α1, ..., αK ), but we can show that this estimate holds
up to some finite dimensional “remainder” in W0.

For these reasons, we can only expect weaker results in the general case
where C1 > 0. The relations

(P0u,−�u)α =
L∑

i=1

(u,w
(α)
i )α (−�u,w(α)i )α =

L∑

i=1

1

λ
(α)
i

(−�u,w(α)i )2α

≤ 1

λ
(α)
1

‖P0(�u)‖2
α ≤ 1

λ
(α)
1

‖�u‖2
α
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provide, as a consequence of Theorem 2, the following estimate, which is not
robust if (as in general) λ(α)1 is not bounded away from zero, but nevertheless
gives insight into the dependence of the constants on α:

Corollary 2 For all u ∈ R,
K∑

k=1

αk ‖D2u‖2
�k

≤
(
C0 + C1

λ
(α)
1

) K∑

k=1

αk ‖�u‖2
�k
.(5)

Since the a priori estimates hold for all u ∈ R, they can be applied to the
solution of the elliptic problem (1), if we make the regularity assumption

u ∈ R for f ∈ L2(�).(6)

Of course, this regularity assumption is a severe restriction to the shape of
∂�k, and for any given ε > 0 it is easy to construct a polygonal example where
the solution is not contained inH 1+ε(�). Nevertheless, there is an interesting
class of examples modeling composite materials where this regularity result
holds (e. g., for smooth boundaries see Foht [7]).

For laminated materials or for smooth inner boundaries ∂�k without cross
points the regularity result is derived from a classical Bernstein result [4] by
Babuška-Caloz-Osborn [1, Th. 2.2 and Th. 2.3]. There, it is not assumed
that the coefficients are locally constant, but all constants in the estimates
depend on the coefficients in a hardly assessable way.

Besides Theorems 1 and 2, we derive a priori bounds for finite element
approximations of (1), by applying Cea’s Lemma and the Aubin-Nitsche
Lemma to weighted norms. Let Vh ⊂ H 1

0 (�) be a conforming finite element
space depending on a mesh parameter h, and let uh ∈ Vh be the finite element
solution satisfying

a(uh, vh) = (f, vh)�, vh ∈ Vh.(7)

Theorem 3 Let 	h:R −→ Vh be an interpolation operator satisfying

‖∇(v −	h(v))‖�k ≤ C2 h ‖D2v‖�k , v ∈ H 2(�k).(8)

We assume that the regularity assumption (6) holds.

a) If C1 = 0 is satisfied, we have for the solution u ∈ H 1
0 (�) of (1) and

the finite element solution uh ∈ Vh of (7) the estimate in the energy
norm

( K∑

k=1

αk ‖∇(u− uh)‖2
�k

)1/2
≤ C3 h

( K∑

k=1

α−1
k ‖f ‖2

�k

)1/2
,(9)

and we have the weighted L2-error-estimate

( K∑

k=1

αk ‖u− uh‖2
�k

)1/2
≤ C2

3 h
2
( K∑

k=1

α−1
k ‖f ‖2

�k

)1/2
.(10)
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b) If C1 > 0, the estimates (9) and (10) hold with the α-dependent con-
stant

C2

(
C0 + C1

λ
(α)
1

)1/2

in place of C3.

We do not know in which form (9) and (10) (with α-independent con-
stants) extend to more general cases. Some empirical results presented at the
end of the paper indicate that (10) is indeed violated in some examples.

The results can be applied to nonhomogeneous Dirichlet data g if an ex-
plicit extension w ∈ R with w|∂� = g and robust estimates for w depending
on g are available (which in general will be difficult to obtain).

The paper is organized as follows. In Sect. 2 the main theorem is proved by
combining classical representation formulas for the derivatives on the bound-
ary for smooth functions with technical density arguments and an exception
handling for Zk. In Sect. 3 we prove Theorem 2 as a consequence of the
main theorem, and in a detailed investigation of a radially symmetric exam-
ple we comment on the limits of Theorem 2. In Sect. 4 the a priori estimates
are applied to finite elements. Finally, we present a numerical experiment
illustrating the finite element estimates and demonstrating robust multigrid
convergence in two examples – one example where we can prove a robust ap-
proximation property (as a consequence of Theorem 3), and another example
where we have robust multigrid convergence, but no robust approximation
property.

2 Proof of the main theorem

The proof of Theorem 1 consists of four steps:

a) It will be advantageous to work, in the proof, with vector functions in
the space

Q : = {q ∈ L2(�)d | qk ∈ H 1(�k)
d,

qk − (qk · νk)νk = qj − (qj · νj )νj
and αkqk · νk + αjqj · νj = 0 on ∂�k ∩ ∂�j , k �= j,

and qk − (qk · νk)νk = 0 on ∂�k ∩ ∂�}

so that in particular ∇u ∈ Q for u ∈ R.
Note that vector functions are also used for establishing a priori bounds
in polygonal domains in [8, Sect. 4.3] and [10].
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b) For homogeneous Neumann or Dirichlet boundary conditions, the Hes-
sian matrix of smooth functions can be represented by the Laplacian
and products of the gradient and curvature quantities from

‖D2v‖2
�k

= ‖�v‖2
�k

+
∫

∂�k

(
−�v ∂v

∂νk
+ νTk ·D2v · ∇v

)
dσ

(see e. g. Ladyzhenskaya [9]). For smooth functions, Theorem 1 can
be deduced directly from this formula; for our more general theorem
in R, this result is transferred to vector functions.
In the first step the case of one smooth interface is discussed.

c) An additional exception handling is required in Z := ⋃K
k=1 Zk, where

the boundaries are not smooth. Therefore, we specify the assumptions
on the boundaries. For k = 1, ..., K we assume that Zk ⊂ ∂�k is
closed and has (d−1)-dimensional measure zero, that ∂�k\Zk is aC2-
hypersurface of Rd with bounded principal curvatures, and moreover,
that

meas{x ∈ Rd | dist(x, Z) < ε} ≤ C ε2(11)

for all (sufficiently small) ε > 0.
Using a partition of unity, the results of step b) are extended to the
general situation under an additional boundedness assumption.

d) Another density argument removes this boundedness assumption.

Note that the (parameter-depending) results in [1] are also derived via a
partition of unity, and density arguments are already required for a priori
estimates in only one polygonal domain, e. g., [8, Lem. 4.3.1.2].

Lemma 2 Let k ∈ {1, . . . , K} and�∗
k ⊂ �k some domain. Let 
∗ ⊂ ∂�k ∩

∂�∗
k be a (relatively) open subset of ∂�k \ Zk, and p ∈ C1(�∗

k)
d .

a) Ifp−(p·νk)νk = 0 on
∗, then νTk (Dp)νk−divp = (d−1)Hk ·(p · νk)
on 
∗.

b) If p · νk = 0 on 
∗, then νTk (Dp)(I − νkν
T
k ) = pT Sk(I − νkν

T
k ) on


∗.

Proof. For x ∈ 
∗ given, let U ⊂ Rd−1 denote some open neighborhood of
0, andφ : U → 
∗ some localC2-parameterization of
∗ such thatφ(0) = x

andDφ(0)T Dφ(0) = Id−1, i. e., the columns ofDφ(0) form an orthonormal
basis of the tangential space at x, the matrix � := (Dφ(0)|νk(x)) ∈ Rd,d

is orthogonal, and Dφ(0)T νk(x) = 0. Straightforward calculations (see [14,
Sect. 4]) show that the second fundamental tensor Sk (with respect to νk) at
the point x can be written as

Sk(x) = −D(νk ◦ φ)(0) ·Dφ(0)T .(12)
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To prove a), differentiate the identity p ◦ φ ≡ [(p ◦ φ) · (νk ◦ φ)](νk ◦ φ) on
U to obtain

Dp(x)Dφ(0) = (p · νk)(x)D(νk ◦ φ)(0)
+νk(x)

[
p(x)TD(νk ◦ φ)(0)+ νk(x)

T Dp(x)Dφ(0)
]
.

Multiplication from the left by Dφ(0)T and taking the trace yields, by (12),

(13)

trace
[
Dφ(0)T Dp(x)Dφ(0)

] = −(p · νk)(x) trace(Sk(x))

= −(d − 1)Hk(x)(p · νk)(x) .

Since the matrix � is orthogonal, we obtain

(divp)(x) = trace [Dp(x)]

= trace
[
�TDp(x)�

]

= trace
[
Dφ(0)T Dp(x)Dφ(0)

]+ νk(x)
T Dp(x)νk(x) .

By use of (13), assertion a) follows.
To prove b), differentiate the identity (p ◦ φ) · (νk ◦ φ) ≡ 0 on U to obtain

νk(x)
T Dp(x)Dφ(0)+ p(x)TD(νk ◦ φ)(0) = 0 .

Multiplication by Dφ(0)T from the right yields, by Dφ(0)T Dφ(0) = Id−1

and (12),

νk(x)
T Dp(x)Dφ(0)Dφ(0)T =−p(x)TD(νk ◦ φ)(0)Dφ(0)T Dφ(0)Dφ(0)T

= p(x)T Sk(x)Dφ(0)Dφ(0)
T ,

and assertion b) follows since Dφ(0)Dφ(0)T = I − νk(x)νk(x)
T due to the

orthogonality of the matrix �. �

For the following, we choose some open ball B containing � and put
�0 := B\�. Furthermore, after (possibly) enlarging the zero-setsZ1, . . . , Zk,
we may assume for k = 1, . . . K that Zk = ∂�k ∩ Z. This implies (together
with the Lipschitz continuity of ∂�k), that 
kj := (∂�k ∩ ∂�j) \ Zk =
(∂�k \Zk)∩ (�k ∪�j)0 is an open subset of ∂�k \Zk for k = 1, ..., K and
j = 0, ..., K , k �= j . Let I := {(k, j) ∈ {0, . . . , K}2 | k �= j, 
kj �= ∅} and
set �kj := �k ∪�j ∪ 
kj for (k, j) ∈ I .

Lemma 3 Let p, q ∈ Q, let (k, j) ∈ I , k > 0, and let ϕ ∈ H 1,∞(B) denote
some function with compact support in �kj . Then,
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a) in the case j > 0 we have

(14)
∑

i∈{k,j}
αi

{∫

�i

ϕ [trace(Dpi ·Dqi)− (divpi)(divqi)] dx

+
∫

�i

∇ϕ · [(Dpi)qi − (divpi)qi] dx

−
∫

∂�k∩∂�j

ϕ
[
(d − 1)Hi(pi · νi)(qi · νi)

+
(
pi − (pi · νi)νi

)T
Si

(
qi − (qi · νi)νi

)]
dσ

}
= 0 ;

b) in the case j = 0 we have
∫

�k

ϕ [trace(Dpk ·Dqk)− (divpk)(divqk)] dx(15)

+
∫

�k

∇ϕ · [(Dpk)qk − (divpk)qk] dx

−
∫

∂�k∩∂�
ϕ(d − 1)Hk(pk · νk)(qk · νk)dσ = 0 .

Proof. Let (k, j) ∈ I , k > 0, be fixed. If j = 0 (so that our goal is to prove
b)), extend pk and qk, as H 1-functions, into �0, and define

p0 := αk

α0
pk, q0 := αk

α0
qk on �0 ,(16)

where α0 > 0 is arbitrary for the moment. Since the tangential components
pk− (pk ·νk)νk and qk− (qk ·νk)νk vanish on ∂�k ∩∂�0 = ∂�k ∩∂� due to
the boundary conditions inQ, (16) shows that the interface conditions posed
in Q also hold if j = 0.
Now return to general j ∈ {0, . . . , K}. We choose some Lipschitz domain
�∗ such that�∗ ∩�k =: �∗

k and�∗ ∩�j =: �∗
j are both Lipschitz domains

and that

supp(ϕ) ⊂ �∗, �∗ ⊂ �kj .(17)

Since
kj is aC2-manifold, the unit normal νk is inC1(
kj )
d and can therefore

be extended to a function

νk ∈ C1(�∗)d .(18)
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Define a function p̃ on �k ∪�j by

p̃ := pk on �k, p̃ := pj +
(
αj

αk
− 1

)
(pj · νk)νk on �j .(19)

The interface conditions posed for p ∈ Q ensure that p̃ is well-defined on

kj , and that p̃ ∈ H 1(�kj )

d . We can find a sequence (p̃(m))m∈N in C1(�∗)d

such that

‖p̃(m) − p̃‖H 1(�∗)d → 0 as m → ∞ ,(20)

applying the usual mollifier technique. Now, define a new sequence (p(m))m∈N

of functions on �∗
k ∪�∗

j by

p(m) :=
{
p̃(m) on �∗

k ,

p̃(m) +
(
αk
αj

− 1
) (
p̃(m) · νk

)
νk on �∗

j ,
(21)

and let p(m)k and p(m)j denote the continuous extensions of p(m)|�∗
k

and p(m)|�∗
j

to�∗
k and�∗

j , respectively. By (18) and the smoothness of p̃(m), (21) provides

p
(m)
k ∈ C1(�∗

k)
d , p

(m)
j ∈ C1(�∗

j )
d ,(22)

p
(m)
k − (p

(m)
k · νk)νk = p

(m)
j − (p

(m)
j · νk)νk ,

αk(p
(m)
k · νk) = αj (p

(m)
j · νk)(23)

on ∂�∗
k ∩ ∂�∗

j . Moreover, (18), (19), (20), (21) imply

‖p(m)k − pk‖H 1(�∗
k)
d → 0, ‖p(m)j − pj‖H 1(�∗

j )
d → 0 as m → ∞ .(24)

Now, let i ∈ {k, j} and define w := ϕ[(Dp̂)qi − (divp̂)qi], where p̂ ∈
C∞(�∗

i )
d is arbitrary for the moment, and with ϕ specified in the lemma.

Then w ∈ H 1(�∗
i )
d , and by (17), w|∂�∗

i \
 ≡ 0, with 
 ⊂ 
kj denoting some
(relatively) open subset satisfying supp(ϕ) ∩ ∂�∗

i ⊂ 
 ⊂ ∂�∗
i . Thus, the

Divergence Theorem yields

(25)∫




ϕ[(Dp̂)qi − (divp̂)qi] · νidσ =
∫

�∗
i

(divw) dx

=
∫

�∗
i

ϕ[trace(Dp̂ ·Dqi)−(divp̂)(divqi)] dx

+
∫

�∗
i

∇ϕ · [(Dp̂)qi − (divp̂)qi] dx .
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For each fixed m ∈ N, (22) and (17) show that p(m)i can be approximated
on supp(ϕ) ∩ �∗

i , with uniform convergence up to the first derivatives, by
C∞-functions p̂. This shows that (25) also holds with p(m)i in place of p̂.
Multiplying (25) (with p(m)i ) by αi and adding the two equations (for i = k

and for i = j ) we obtain, using νj ≡ −νk on 
,
∫




ϕ
{
αk[(Dp

(m)
k )qk − (divp(m)k )qk] · νk(26)

−αj [(Dp(m)j )qj − (divp(m)j )qj ] · νk
}
dσ

=
∑

i∈{k,j}
αi






∫

�∗
i

ϕ[trace(Dp(m)i ·Dqi)− (divp(m)i )(divqi)] dx

+
∫

�∗
i

∇ϕ · [(Dp(m)i )qi − (divp(m)i )qi] dx





.

Defining, for i ∈ {k, j}, p(m)i,t := p
(m)
i − (p(m)i ·νk)νk, qi,t := qi − (qi ·νk)νk,

and using that αk(qk · νk) = αj (qj · νk), qk,t = qj,t on 
, we find that the
term in braces on the left-hand side of (26) equals

{[
νTk (Dp

(m)
k )νk − divp(m)k

]
−
[
νTk (Dp

(m)
j )νk − divp(m)j

]}
αk(qk · νk)(27)

+
{
αkν

T
k (Dp

(m)
k )− αjν

T
k (Dp

(m)
j )

}
qk,t

= {
νTk (DP

(m))νk − divP (m)
}
αk(qk · νk)+ νTk (DP̃

(m))qk,t ,

where P (m) := p
(m)
k − p

(m)
j , P̃ (m) := αkp

(m)
k − αjp

(m)
j . After extending

p
(m)
j , as a C1-function, into �∗

k , we may regard P (m) and P̃ (m) as functions

in C1(�∗
k)
d (note (22)). Moreover, (23) shows that P (m) and P̃ (m) satisfy

the assumptions of parts a) and b), respectively, of Lemma 2, so that the
right-hand side of (27) equals

(d − 1)Hk(P
(m) · νk)αk(qk · νk)+ (P̃ (m))T Skqk,t(28)

=
∑

i∈{k,j}
αi

{
(d − 1)Hi(p

(m)
i · νi)(qi · νi)+ (p

(m)
i,t )

T Siqi,t

}
,

where we have used that νj ≡ −νk, Hj ≡ −Hk, Sj ≡ −Sk, and that the
normal component of P̃ (m) vanishes on 
, so that P̃ (m) ≡ αkp

(m)
k,t − αjp

(m)
j,t

on 
. We now insert the right-hand side of (28) (which equals the term in
braces on the left-hand side of (26)) into (26), and let m tend to ∞. Using
(24) and the continuity of the trace mappingH 1(�∗

i ) → L2(
) (and the fact
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that ϕ,∇ϕ, and the curvatures are bounded), we find that (26) (with (28)
replacing the brace-term) also holds with pk and pj in place of p(m)k and
p
(m)
j , respectively. Moreover, (17) implies that the integration ranges 
 and
�∗
i may now be replaced by ∂�k∩∂�j and�i , respectively. This establishes

(14) and therefore, part a) of the Lemma.
To prove b), regard that (14) now also holds if j = 0. Observing that the

tangential components of pk and qk vanish on ∂�k ∩ ∂�0 = ∂�k ∩ ∂� and
using (16), we obtain from (14) (with j = 0) that the left-hand side of (15)
equals

−αk
α0






∫

�0

ϕ[trace(Dpk ·Dqk)− (divpk)(divqk)] dx

+
∫

�0

∇ϕ · [(Dpk)qk − (divpk)qk] dx

−
∫

∂�k∩∂�0

ϕ(d − 1)H0(pk · ν0)(qk · ν0) dσ




 ,

so that (15) follows by letting α0 tend to ∞. �
Lemma 4 Let p ∈ Q and q ∈ Q ∩ L∞(�)d . Then

K∑

k=1

αk

{∫

�k

[
trace(Dpk ·Dqk)− (divpk)(divqk)

]
dx

−
∫

∂�k

[
(d − 1)Hk(pk · νk)(qk · νk)

+
(
pk − (pk · νk)νk

)T
Sk

(
qk − (qk · νk)νk

)]
dσ

}
= 0 .

Proof. Let p0 ≡ 0, q0 ≡ 0, α0 := 1. For ϕ ∈ H 1,∞(B) we define F [ϕ] ∈
L1(B) and fk[ϕ] ∈ L1(∂�k) (k = 0, . . . , K) by

F [ϕ]
∣∣
�k

:= αk

{
ϕ
[
trace(Dpk ·Dqk)− (divpk)(divqk)

]
(29)

+ ∇ϕ ·
[
(Dpk)qk − (divpk)qk

]}
,

fk[ϕ] := αkϕ
[
(d − 1)Hk(pk · νk)(qk · νk)(30)

+
(
pk − (pk · νk)νk

)T
Sk

(
qk − (qk · νk)νk

)]
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for k = 0, . . . , K . Then Lemma 3 (parts a) and b)) reads
∫

�k

F [ϕ]dx +
∫

�j

F [ϕ]dx =
∫

∂�k∩∂�j

(fk[ϕ] + fj [ϕ])dσ(31)

for all (k, j) ∈ I and each ϕ ∈ H 1,∞(B)with compact support in�kj . (If k =
0 or j = 0, regard that F [ϕ]

∣∣
�0

≡ 0, f0[ϕ] ≡ 0, and that qi − (qi · νi)νi = 0
on ∂�i ∩ ∂� for i ≥ 1.)

Now define, for �ε := {x ∈ B | dist(x, Z) < ε},

ψε(x) :=





1 if x ∈ �ε
2 − 1

ε
dist(x, Z) if x ∈ �2ε \�ε

0 if x ∈ B \�2ε




 .(32)

Since the distance function is Lipschitz-continuous (and thus, a H 1,∞-
function), we obtain ψε ∈ H 1,∞(B) and ‖∇ψε‖∞ ≤ C/ε (with C inde-
pendent of ε). Using (11) we obtain

‖∇ψε‖�2ε ≤ C̃ , with C̃ independent of ε .(33)

For fixed ε > 0, (�kj )(k,j)∈I is an open covering of the compact set � \�ε.
Let (φkj )(k,j)∈I denote a C∞-partition of unity subordinate to this covering
(i.e.

∑
(k,j)∈I

φkj ≡ 1 on � \ �ε, supp(φkj ) ⊂ �kj for (k, j) ∈ I ). For each

(k, j) ∈ I, φkj + φjk ≡ 1 on 
kj \ �ε, since �rs ∩ 
kj = ∅ for all (r, s) ∈
I \ {(k, j), (j, k)}. By (32), we therefore obtain

(1 − ψε)(φkj + φjk) ≡ 1 − ψε on ∂�k ∩ ∂�j .(34)

Furthermore, ϕ := (1 − ψε)(φkj + φjk) satisfies the assumptions of
Lemma 3 (resp. of (31)) and vanishes in �ε. Using (31), (34) we therefore
obtain

∫

�\�ε

F [1 − ψε]dx =
∑

(k,j)∈I

∫

�\�ε

F [(1 − ψε)φkj ]dx

= 1

2

∑

(k,j)∈I

∫

�\�ε

F [(1 − ψε)(φkj + φjk)]dx

= 1

2

∑

(k,j)∈I

[∫

�k

F [(1 − ψε)(φkj + φjk)]dx

+
∫

�j

F [(1 − ψε)(φkj + φjk)]dx
]
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= 1

2

∑

(k,j)∈I

∫

∂�k∩∂�j

(
fk[(1 − ψε)(φkj + φjk)]

+ fj [(1 − ψε)(φkj + φjk)]
)
dσ

= 1

2

∑

(k,j)∈I




∫

∂�k∩∂�j

fk[1 − ψε]dσ +
∫

∂�k∩∂�j

fj [1 − ψε]dσ





=
∑

(k,j)∈I

∫

∂�k∩∂�j

fk[1 − ψε]dσ =
K∑

k=1

∫

∂�k

fk[1 − ψε]dσ .

Therefore, using (32),
∫

�

F [1]dx =
∫

�\�ε

F [1 − ψε]dx +
∫

�2ε

F [ψε]dx

=
K∑

k=1




∫

∂�k

fk[1]dσ −
∫

∂�k∩�2ε

fk[ψε]dσ



+
∫

�2ε

F [ψε]dx ,

and our assertion
∫

�

F [1]dx =
K∑

k=1

∫

∂�k

fk[1]dσ

(regard (30), (29)) follows if we can show that, for k = 1, . . . , K ,
∫

∂�k∩�2ε

fk[ψε]dσ → 0 as ε → 0 ,(35)

∫

�k∩�2ε

F [ψε]dx → 0 as ε → 0 .(36)

The (d − 1)-dimensional measure of ∂�k ∩ �2ε tends to 0 as ε → 0, since
Zk has measure zero and is compact. Therefore, (35) immediately follows
from (29), using that 0 ≤ ψε ≤ 1, pk|∂�k and qk|∂�k are in L2(∂�k)

d , and
the principal curvatures are bounded. To prove (36), we use (30), (32), (33):

∫

�k∩�2ε

|F [ψε]|dx ≤ αk

∫

�k∩�2ε

|trace(Dpk ·Dqk)− (divpk)(divqk)| dx

+αkC̃‖Dpk − (divpk)I‖�k∩�2ε ‖qk‖∞ .

The right-hand side indeed tends to zero as ε → 0 since pk ∈ H 1(�k)
d ,

qk ∈ H 1(�k)
d ∩ L∞(�k)d, and meas(�k ∩�2ε) → 0 as ε → 0. �
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We intend to use Lemma 4, for given u ∈ R, with p = q := ∇u, which
however is not yet possible due to the restriction q ∈ L∞(�)d made in
Lemma 4. To remove it, we prove

Lemma 5 Q ∩ L∞(�)d is dense in Q with respect to the norm ‖q‖ :=
K∑
k=1

‖qk‖H 1(�k)
d .

Proof. Let q ∈ Q be given. By Calderon’s Extension Theorem, each qk =
q|�k (k = 1, . . . , K) can be extended to a function in H 1(Rd)d , which we
call qk again. We define ψ ∈ H 1(�) by

ψ(x) :=
[

K∑

k=1

qk(x) · qk(x)
] 1

2

(x ∈ �)

and, for given M > 0,

�(M) :=
{
x ∈ �

∣∣∣ ψ(x) > M
}
,

φ(M)(x) := min
{

1, M
ψ(x)

}
(x ∈ �),

q(M) := φ(M)q .

(37)

φ(M) is weakly differentiable on �, and

∇φ(M) =




− M

ψ2 ∇ψ = − M

ψ3 ·
K∑
k=1
(Dqk)

T qk on �(M)

0 on � \�(M)






which implies that, on �(M),

∣∣∇φ(M)∣∣2 = M2

ψ6

d∑

s=1

(
K∑

k=1

∂qk

∂xs

T

qk

)2

(38)

≤ 1

ψ4

d∑

s=1

(
K∑

k=1

∣∣∣∣
∂qk

∂xs

∣∣∣∣
2
)(

K∑

k=1

|qk|2
)

= 1

ψ2

K∑

k=1

|Dqk|2 ,

Since ∇φ(M) = 0 outside �(M), ψ > M in �(M), and |Dqk| ∈ L2(�), (38)
in particular yields

φ(M) ∈ H 1(�) .(39)
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Furthermore, (38) shows that, for each j ∈ {1, . . . , K},
∣∣qj (∇φ(M))T

∣∣2 = |qj |2 |∇φ(M)|2 ≤
K∑

k=1

|Dqk|2 ,(40)

so that we find, for q(M)j := q(M)|�j = φ(M)qj ,

Dq
(M)
j = φ(M)Dqj + qj (∇φ(M))T ∈ L2(�j )

d×d ,

and thus, q(M)j ∈ H 1(�j )
d . Moreover, by (37) and (40),

∥∥∥Dqj −Dq
(M)
j

∥∥∥
�j

≤ ∥∥(1 − φ(M))Dqj
∥∥
�j

+
∥∥∥qj

(∇φ(M))T
∥∥∥
�j∩�(M)

≤ ‖Dqj‖�j∩�(M) +
[

K∑

k=1

‖Dqk‖2
�j∩�(M)

] 1
2

which tends to 0 as M → ∞, since meas(�j ∩�(M)) → 0.
For the same reason,

‖qj − q
(M)
j ‖�j = ‖(1 − φ(M))qj‖�j ≤ ‖qj‖�j∩�(M) → 0 as M → ∞ ,

so that we have ‖qj − q
(M)
j ‖H 1(�j )

d → 0 as M → ∞.
Since obviously (37) provides q(M) ∈ L∞(�)d , the Lemma is proved if

we show that q(M) satisfies the interface and boundary conditions required
for elements ofQ; for this purpose, it is sufficient to prove the trace equality

q
(M)
j |∂�j = φ(M)|∂�j · qj |∂�j (j = 1, . . . , K)(41)

(to be understood as an equation in Lp(∂�j)d , where p ∈ (1, d
d−1

)
), since

q does satisfy the conditions in Q, and φ(M) provides the same trace from
“both sides” of the boundary ∂�j due to (39).

To prove (41) (for fixed j ∈ {1, . . . , K} and M > 0), let (̃q(m))m∈N

denote a sequence in C∞(�j )d converging to qj in H 1(�j )
d . By Sobolev’s

Embedding Theorem, φ(M)q̃(m) → φ(M)qj = q
(M)
j in H 1,p(�j ) for p ∈(

1, d
d−1

)
, and thus,

(
φ(M)q̃(m)

) |∂�j → q
(M)
j |∂�j in Lp(∂�j)

d .

On the other hand, (φ(M)q̃(m))|∂�j = φ(M)|∂�j · q̃(m)|∂�j since q̃(m) is in C∞,
and here the right-hand side converges to φ(M)|∂�j · qj |∂�j in Lp(∂�j)d , due
to the Sobolev embedding H 1(�j ) ↪→ L2p(∂�j). This establishes (41). �

Collecting the results, we can now prove Theorem 1.
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Proof. According to Lemma 5 and to the continuity of the trace mapping
H 1(�k)

d → L2(∂�k)
d , the assertion of Lemma 4 holds for all p, q ∈ Q, in

particular, for p = q := ∇u, with u ∈ R given. The assertion follows since

(d − 1)Hk

(
∂uk

∂νk

)2

+
(

∇uk − ∂uk

∂νk
νk

)T
Sk

(
∇uk − ∂uk

∂νk
νk

)

≤ Sk

[(
∂uk

∂νk

)2

+
∣∣∣∣∇uk − ∂uk

∂νk
νk

∣∣∣∣
2
]

= Sk|∇uk|2 .(42)

If d = 2, we have Hk ≡ Pk, and Sk(x) = Pk(x)idx (with idx denoting
the identity on the tangential space at x). Thus, equality holds in (42) and
therefore, in the assertion. The same is obviously true if Sk ≡ 0 for k =
1, . . . , K . �

3 An a priori bound (and proof of Theorem 2)

The this section we consider estimates for the boundary integral in Theorem 1.

Lemma 6 For u ∈ R, we have

K∑

k=1

αk ‖D2u‖2
�k

≤ C

K∑

k=1

αk ‖�u‖2
�k

+ C ′
K∑

k=1

αk ‖∇u‖2
�k
.

Moreover, for polygonal / polyhedral interfaces ∂�k we have C = 1 and
C ′ = 0.

Proof. For k ∈ {k | κk > 0}, where κk = supx∈∂�k\Zk Sk(x), we apply the
trace theorem in Grisvard [8, Th. 1.5.1.10] to ∇uk, and we obtain

‖∇uk‖2
∂�k

≤ 1

2κk
‖D2uk‖2

�k
+ C ′′ ‖∇uk‖2

�k
.(43)

�
Remark 1 Note that the constant C ′′ is large for large curvature κk. Thus,
our estimates are not robust with respect to the diameter of small fibers in a
composite material.

The remaining task is to estimate ‖∇uk‖�k .
Lemma 7 With P0 introduced in Theorem 2, we have

K∑

k=1

αk ‖v‖2
�k

≤ C6

K∑

k=1

αk ‖∇v‖2
�k

+
K∑

k=1

αk‖P0v‖2
�k

for v ∈ H 1
0 (�).
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Proof of Lemma 1 Besides the eigenvalue problem (3), we consider the de-
coupled space

Ṽ = {ṽ ∈ L2(�) | ṽk ∈ H 1(�k), ṽk|∂�k∩∂� = 0}
and ask for the eigenvalues µ1 ≤ µ2 ≤ · · · and eigenfunctions w̃1, w̃2, ... ∈
Ṽ of

(∇w̃,∇ṽ)α = µ (w̃, ṽ)α, ṽ ∈ Ṽ .
Note that the eigenvalues µi are independent of α1, ..., αK . Furthermore,
we have µ1 = · · · = µL̃ = 0 and µL̃+1 > 0 for L̃ := #{k | meas(∂�k ∩
∂�) = 0}. SinceH 1

0 (�) ⊂ Ṽ , the min-max theorem (see e. g. [3]) guarantees

λ
(α)
i ≥ µi, i = 1, 2, ...

This shows in particular that λ(α)
L̃+1

is bounded away from zero (by µL̃+1).
�

Proof of Lemma 7 Let γ := inf
α
λ
(α)
L+1 (γ is positive due to the choice of L).

Thus we have, for v ∈ H 1
0 (�) such that (v,wαi )α = 0 for i = 1, 2, ..., L,

‖v‖2
α ≤ 1

λ
(α)
L+1

‖∇v‖2
α ≤ 1

γ
‖∇v‖2

α.

This provides, with P0(v) =
L∑

i=1

(wαi , v)α w
α
i , that

‖v‖2
α − ‖P0v‖2

α = ‖v − P0v‖2
α ≤ 1

γ
‖∇(v − P0v)‖2

α ≤ 1

γ
‖∇v‖2

α

for all v ∈ H 1
0 (�). �

Proof of Theorem 2 Applying Lemma 7 yields

a(u, u) = −(�u, u)α = −(�u, u− P0u)α − (�u, P0u)α

≤ ‖�u‖α‖u− P0u‖α − (�u, P0u)α

≤
√
C6 ‖�u‖α‖∇(u− P0u)‖α − (�u, P0u)α

≤ C6

2
‖�u‖2

α + 1

2
‖∇u‖2

α − (�u, P0u)α,

and we obtain

K∑

k=1

αk‖∇u‖2
�k

≤ C6

K∑

k=1

αk‖�u‖2
�k

+ 2
K∑

k=1

αk(−�u,P0u)�k .(44)

Combining Lemma 6 and (44) gives the assertion. �
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Remark 2 For comparison, we state two other a priori estimates. In the case
of two subdomains and d = 2 with a polygonal interface, Lemrabet [10]
proves

α1‖u‖2
Hs+2(�1)

+ α2‖u‖2
Hs+2(�2)

≤ Cs

(
α1‖�u‖2

Hs(�1)
+ α2‖�u‖2

Hs(�2)

)
.

Note that there is no restriction on the space dimension in our proof. Moreover,
we consider K ≥ 2 and curved interfaces.

Introducing a weighted norm ‖ ‖L via local transformations for functions
u ∈ H 1(�) such thatuk ∈ H 2(�k), the estimate proved by Babuška-Caloz-
Osborn [1] has the form

‖u‖L ≤ C(α1, ..., αK) ‖f ‖�.
There, an unidirectional result for strongly varying coefficients is transformed
to more general situations by piecewise smooth local maps; note that our
approach covers more general interfaces since we require piecewise smooth
boundaries ∂�k only. In addition, our constants are independent of α1, ..., αK
in many cases.

Example. We show that neither in Lemma 7 nor in Theorem 2 the second
term (involving P0) on the respective right-hand sides can be omitted, i. e.
that Theorem 2 is optimal in a certain sense. For this purpose, we consider
the radially symmetric example � = B2 := {x ∈ R2 | |x| < 2}, �2 = B1,
�1 = � \ �̄2, and α1 = 1, α2 = α.

The Poincaré constant. Defining v(x) = 1 − max{0, |x| − 1}2 in �, we
obtain v ∈ R, ‖v‖2

α = ‖v‖2
�1

+ α ‖v‖2
�2

and ‖∇v‖2
α = ‖∇v‖2

�1
. Thus,

‖∇v‖2
α

‖v‖2
α

≤ C

α
, which shows that no Poincaré constant independent of α

exists (i. e. Lemma 7 does not hold without the P0-term), and moreover, that
the smallest eigenvalue λ(α)1 =: λ(α) of problem (3) satisfies

λ(α) ≤ C

α
, α ∈ (0,∞).(45)

In particular, λ(α) is not bounded away from zero.

The limit α −→ ∞. Let w̃(α) ∈ H 1
0 (�) denote an eigenfunction of (3)

associated with λ(α), normalized by ‖w̃(α)‖� = 1. Now, (45) implies

−�w̃(α)i = λ(α)w̃
(α)
i −→ 0 as α −→ ∞ in L2(�i) (i = 1, 2).(46)

Since w̃(α) is radially symmetric, its value γ (α) on ∂�2 is a single real number.
Clearly γ (α) is bounded away from 0 as α −→ ∞, because otherwise some
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sequence αn −→ ∞ would exist such that w̃(αn)|∂�2 = γ (αn) −→ 0 as
n −→ ∞, which together with (46) would imply w̃(αn)i −→ 0 in H 2(�i)

(i = 1, 2), contradicting the normalization of w̃(α). Consequently, the re-
normalized eigenfunction w(α) := 1

γ (α)
w̃(α) still satisfies (46), and moreover

w(α) = 1 on ∂�2. Thus, in H 2(�1) and in H 2(�2), w
(α) tends (as α −→

∞) to harmonic functions w(∞)
1 and w(∞)

2 , respectively, which satisfy the
corresponding boundary conditions (0 for |x| = 2, 1 for |x| = 1); an explicit
calculation gives w(∞)

1 (x) = 1 − log |x|/ log 2 and w(∞)
2 ≡ 1. In particular,

∂w
(α)
1

∂ν1
= −α∂w

(α)
2

∂ν2
−→ ∂w

(∞)
1

∂ν1
= 1

log 2
as α −→ ∞ on ∂�2,(47)

which implies α
∫

∂�2

∣∣∣∣∣
∂w

(α)
2

∂ν2

∣∣∣∣∣

2

dσ −→ 0 as α −→ ∞. Using the radial sym-

metry and (47) again, we obtain that (for u = w(α)) the second term on the
right-hand side in (2) tends, as α −→ ∞, to

∫

∂�1

S1

∣∣∣∣∣
∂w

(∞)
1

∂ν1

∣∣∣∣∣

2

dσ =
∫

|x|=1

∣∣∣∣∣
∂w

(∞)
1

∂ν1

∣∣∣∣∣

2

dσ − 1

2

∫

|x|=2

∣∣∣∣∣
∂w

(∞)
1

∂ν1

∣∣∣∣∣

2

dσ

= 3π

2(log 2)2
.

On the other hand, the first term on the right-hand side of (2) equals

‖�w(α)1 ‖2
�1

+ α‖�w(α)2 ‖2
�2

= (λ(α))2 ‖w(α)‖2
α

= α(λ(α))2

(γ (α))2

( 1

α
‖w̃(α)1 ‖2

�1
+ ‖w̃(α)2 ‖2

�2

)
,

which tends to 0 as α −→ ∞, due to (45).
Thus, the second term on the right-hand side of (2) cannot be bounded

against the first one; since equality holds in (2) for d = 2, this shows that
Theorem 2, in general, does not hold with C1 = 0.

Improving (45), a more precise asymptotic result for λ(α) can be obtained.
We have
∫

∂�2

w
(α)
2

∂w
(α)
2

∂ν2
dσ =

∫

∂�2

∂w
(α)
2

∂ν2
dσ =

∫

�2

�w
(α)
2 dx = −λ(α)

∫

�2

w
(α)
2 dx,

which implies

α ‖∇w(α)2 ‖2
�2

= α

∫

∂�2

w
(α)
2

∂w
(α)
2

∂ν2
dσ − α

∫

�2

w
(α)
2 �w

(α)
2 dx
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= αλ(α)
∫

�2

(−w(α)2 + (w
(α)
2 )2

)
dx −→ 0 as α −→ ∞,

due to (45) and w(α)2 −→ 1. This gives

αλ(α) = ‖∇w(α)1 ‖2
�1

+ α‖∇w(α)2 ‖2
�2

1
α
‖w(α)1 ‖2

�1
+ ‖w(α)2 ‖2

�2

−→ ‖∇w(∞)
1 ‖2

�1

‖w(∞)
2 ‖2

�2

= 2

log 2
.(48)

The limit α −→ 0. While, as shown above, the smallest eigenvalue λ(α)

tends to 0 as α −→ ∞, it is bounded away from zero as α −→ 0, so that a
uniform Poincaré estimate is at hand for α −→ 0: assuming that λ(α) −→ 0
as α −→ 0 (respectively along some sequence αn −→ 0), we obtain the
corresponding statements (46) and (47) as before (with α −→ ∞ replaced
by α −→ 0); but now (47) contradicts ∂w(α)2 /∂ν2 −→ 0 (as α −→ 0). This
shows that Corollary 2 and Theorem 3 b) may still provide “semi-robust”
estimates, even if L ≥ 1 resp. C1 > 0.

4 Application to finite elements (proof of Theorem 3)

Proof. The Galerkin orthogonality, (8) and Corollary 2 give

a(u− uh, u− uh) = a(u− uh, u−	h(u))

≤
( K∑

k=1

αk ‖∇u− ∇uh‖2
�k

)1/2 ( K∑

k=1

αk ‖∇u− ∇	h(u)‖2
�k

)1/2

≤
( K∑

k=1

αk ‖∇u− ∇uh‖2
�k

)1/2
C2 h

( K∑

k=1

αk ‖D2u‖2
�k

)1/2

≤ ‖∇u− ∇uh‖α C2

√
C0 + C1

λ
(α)
1

h
( K∑

k=1

α−1
k ‖f ‖2

�k

)1/2
,

which implies (9) with C3 = C2
√
C0, and the corresponding statement in

part b).
Now, let z ∈ H 1

0 (�) be the dual solution, i. e. the solution of

a(v, z) =
K∑

k=1

(v, αk(u− uh))�k , v ∈ H 1
0 (�),(49)

and let zh ∈ Vh be the corresponding discrete dual solution. This gives the
dual estimate from

K∑

k=1

αk ‖u− uh‖2
�k

= a(u− uh, z) = a(u− uh, z− zh)
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≤ C2
2

(
C0 + C1

λ
(α)
1

)
h2
( K∑

k=1

α−1
k ‖f ‖2

�k

)1/2

×
( K∑

k=1

α−1
k ‖αk(u− uh)‖2

�k

)1/2

by inserting the energy error estimate (9) for uh and zh; thus, we have (10)
and the corresponding statement in part b). �

5 A numerical experiment

In Theorem 3 we could obtain robust finite element estimates only under
additional assumptions. In this section we want to illustrate by numerical
experiments that the robust finite element estimates cannot be extended to all
cases, i. e., that also Theorem 3 is optimal in a certain sense.

We consider two examples: in Example 1 we set � = B1 \ B0.42 and
�2 = {x ∈ � | |x − (0.1, 0.2)| < 0.7}, in Example 2 we set � = B1

and �2 = {x ∈ � | |x − (0.1, 0.2)| < 0.7}; in both cases we define
�1 = {x ∈ � | |x − (0.1, 0.2)| > 0.7} (see Fig. 1). We consider (1) with
right-hand side f = 0 in �1 and f = 1 in �2, and coefficients α1 = 1 and
α2 = α.

The experiments are realized in the software system UG [2]. We use
a mesh with 131072 resp. 149504 linear triangular elements and maximal
edge length h = 0.0117.

Although we required in Theorem 3 conforming finite elements inH 1
0 (�),

we use polygonal approximations �h in our numerical experiments. Using
the techniques developed in [12], this can be analyzed by applying Theorem 3

Fig. 1. Geometries and coarse mesh for Example 1 (left) and Example 2 (right). We obtain
�h (resp. �2h) by 4 (resp. 3) uniform refinement steps of the coarse mesh, where the new
boundary vertices are projected on the curved boundaries
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Table 1. Numerical results for Examples 1 and 2 for various coefficients α and a fixed
mesh parameter h

α 0.0001 0.01 1.0 100.0 10000.0

Example 1
q(α)(uh, u2h, f, h) 0.0000218 0.0000111 0.0000123 0.0000146 0.0000147
λ
(α)
1,h 18.33 18.53 28.83 13.60 13.99

C
(α)
P 0.2335 0.2322 0.1862 0.2711 0.2673

Example 2
q(α)(uh, u2h, f, h) 0.0000409 0.0000143 0.0000193 0.0004704 0.0453968
λ
(α)
1,h 12.85 11.70 5.79 0.1278 0.001295

λ
(α)
2,h 18.52 18.64 14.77 7.097 6.930

C
(α)
P 0.2789 0.2923 0.4155 2.796 27.77

to curved finite elements (which are conforming on curved boundaries); for
our experiments we assume that the consistency error due to the polygonal
approximations is small.

Since all boundaries are smooth, the solution is in R, and the a priori
estimate in Theorem 2 holds withL = 0 (and thereforeC1 = 0) in Example 1,
and in Example 2 we have L = dim(W0) ≤ 1. From Theorem 3, we expect
at least for Example 1 that the quantities

q(α)(uh, u2h, f, h) = 1

h2

√
‖uh − u2h‖2

�1
+ α ‖uh − u2h‖2

�2

‖f ‖2
�1

+ α−1‖f ‖2
�2

are bounded independently of α: inserting the continuous solution u gives

‖uh − u2h‖α ≤ ‖u− uh‖α + ‖u− u2h‖α
≤ C2

3(h
2 + (2h)2)

(
‖f ‖2

�1
+ α−1‖f ‖2

�2

)1/2
,

which yields q(α)(uh, u2h, f, h) ≤ 5C2
3 . On the other hand, in Example 2 the

quotients q(α) can deteriorate because of L = 1. Since the configuration is
similar to the example in Sect. 3, we can expect according to Theorem 3 b)
that the best estimate is of the form q(α)(uh, u2h, f, h) ≤ C α.

We present in Tab. 1 numerical approximations of the quotients q(α), the

smallest eigenvalue, and the Poincaré constants C(α)P = 1

/√
λ
(α)
1 .

The results confirm clearly the assertion in Lemma 1, which predicts a
stable Poincaré constant in Example 1, whereas the Poincaré constant de-
teriorates in Example 2: for large α we observe the asymptotic behaviour
C
(α)
P ∼ √

α for α −→ ∞, cf. (48). Moreover, the second eigenvalue is
bounded from below (independent of α), as prediced by the lemma. In
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accordance with Theorem 3, we obtain robust bounds for the quotients q(α)

in the first example (up to effects which may be caused by the consistency
error due to the polygonal approximation of the interface for α = 0.0001).
On the other hand, we observe the expected deterioration of q(α) in Exam-
ple 2 (note that this effect relies on the special choice of the right-hand side).
Nevertheless, in accordance with the example in Sect. 3 we observe a stable
behaviour for α −→ 0.

The first example illustrates a robust finite element estimate in a very
special case; this can be stated as follows for the more general case that (4)
holds with C1 = 0, as an immediate consequence of Theorem 3.

Corollary 3 If the assumptions of case a) in Theorem 3 are satisfied, a robust
approximation estimate holds in the form

( K∑

k=1

αk ‖uh − u2h‖2
�k

)1/2
≤ C8 h

2
( K∑

k=1

α−1
k ‖f ‖2

�k

)1/2
.(50)

Multigrid convergence. In the examples, the arising linear systems are solved
with a multigrid method using a V(1,1)-cycle with symmetric Gauß-Seidel
smoother. The paper was motivated by the observation of robust multigrid
convergence rates for interface problems without singularities, cf. Tab. 2.

The “classical” multigrid analysis of the interface problem requires no reg-
ularity and no comparison with the exact continuous solution; robust multi-
grid convergence estimates (with respect to αk) can be found in Bramble-
Pasciak-Wang-Xu [5]. Note that this type of multigrid analysis uses only
arguments in discrete spaces, and it does not require that the finite element
solution converges robustly to the solution of the continuous problem; these
results are restricted to polygonal domains and nested discretizations.

The extension of a robust multigrid analysis to more general cases requires
a robust approximation property, which is provided (in case a) of Theorem 3)
by Corollary 3. This result is the first step for proving robust multigrid con-
vergence in nonnested spaces and for varying forms, where the analysis [5]
cannot be applied. Furthermore, it can be used for interface problems with
singularities, if the singularities are subtracted from the solution with the
technique introduced in [6].

Table 2. Asymptotic multigrid convergence rate (= spectral radius of the iteration matrix)
for Examples 1 and 2 for various coefficients α

α 0.0001 0.01 1.0 100.0 10000.0

Example 1 0.55378 0.55378 0.55378 0.55378 0.55378

Example 2 0.55378 0.55378 0.55378 0.55378 0.55378
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On the other hand, the second example shows that one has to distinguish
clearly between the robust convergence of the finite elements and the robust
convergence of the multigrid iteration. Nevertheless, the approximation prop-
erty fails only for large α and only with respect to the “small” space W0. It
remains an open question whether this information can be used for a robust
multigrid analysis which includes variational crimes.

Acknowledgements. The authors are grateful to the anonymous referee for helpful
comments.
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1. Babuška, I., Caloz, C., Osborn, J.: Special finite element methods for a class of second
order elliptic problems with rough coefficients. SIAM J. Numer. Anal., 31, 945–981
(1994)

2. Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H.,
Wieners, C.: UG – a flexible software toolbox for solving partial differential equations.
Computing and Visualization in Science, 1, 27–40 (1997)

3. Berkowitz, J.: On the discreteness of spectra of singular Sturm-Liouville problems.
Comm. Pure and Appl. Math., 12, 523–542 (1959)
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