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Summary. The compound matrix method, which was first proposed for
numerically integrating systems of differential equations in hydrodynamic
stability onk = 2, 3 dimensional subspaces©f, by using compound ma-
trices as coordinates, is reformulated in a coordinate-free way using exterior
algebra spaceg)" (C™).

This formulation leads to a general framework for studying systems of
differential equations oh-dimensional subspaces. The framework requires
the development of several new ideas: the role of Hodge duality and the
Hodge star operator in the construction, an efficient strategy for construct-
ing the induced differential equations ¢x'(C™), general formulation of
induced boundary conditions, the role of geometric integrators for preserv-
ing the manifold ofk—dimensional subspaces — the Grassmann manifold,
G (C™), and a formulation for induced systems on an unbounded interval.

The numerical exterior algebra framework is most advantageous for nu-
merical solution of differential eigenvalue problems on unbounded domains,
where there are significant difficulties in setting up matrix discretizations.

The formulation is presented férdimensional subspaces of systems on
C™ with k& andn arbitrary, and examples are given for the casek ef 2
andn = 4, andk = 3 andn = 6, with an indication of implementation
details for systems of larger dimension.

The theory is illustrated by application to four differential eigenvalue
problems on unbounded intervals: hydrodynamic stablity of boundary-layer
flow past a compliant surface, the eigenvalue problem associated with the
stability of solitary waves, the stability of Bickley jet in oceanography, and

Correspondence td.J. Bridges



198 L. Allen, T.J. Bridges

the eigenvalue problem associated with the stability of the Ekman layer in
atmospheric dynamics.

Mathematics Subject Classification (199&%5L99; 76E99

1 Introduction

Consider a linear system of ordinary differential equations
1.1) u =A(x,\)u, ueC", XxeAcCC,

whereA (z, \) is ann x n matrix depending analytically ok, and differ-
entiably onz, andz lies in some interval, possibly unbounded.

Systems of this type arise in a wide range of applications. We will be
most concerned here with the case where an eigenvalue parameter, and
there are boundary conditions — possibly at infinity — associated with (1.1).
The boundary conditions will definedimensional subspaces@f, and to
solve (1.1) numerically will require numerical integratiorkefdimensional
subspaces.

The case of interest is when theinterval is unbounded, but for il-
lustrative purposes, suppose= 4 and0 < z < 1, and there are two
homogeneous boundary conditions imposead at 0 and two atz = 1.

The system (1.1) is an eigenvalue problem with eigenvalue pararketer
The natural approach to integrating (1.1) would be to integrate the induced
system

(1.2) U, =A(z,\)U, U(x)|,_,=UpecC™,

where the columns dff, span the two-dimensional subspace which satisfies
the boundary conditions at= 0. The system (1.2) is then integrated with a
numerical method of sufficient accuracy fram= 0 toz = 1. Imposition of
the boundary conditions at= 1 then leads to a complex analytic function
D()), the characteristic determinant, whose zeros correspond to eigenvalues
of (1.1).

However, for many interesting examples, systems of the form (1.1) are
stiff, and therefore the columns &f(z, A) in (1.2) will not remain lin-
early independent during the numerical integration. The most well-known
approach to addressing this linear dependence problem is to use either dis-
crete orthogonalization, where the Gram-Schmidt algorithm is applied to
the columns of (1.2) every few time steps, or continuous orthogonalization
(cf. Drazin and Reid [17] Sect. 30, Hairer and Wanner [21] and references
therein).

However there are two significant disadvantages of orthogonalization
applied to complex systems. When using orthogonalization, particularly
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continuous orthogonalization, the induced systemoidinear, and therefore
numerical integration is an order of magnitude more complex. Secondly, for
systems like (1.1) which depend analytically on a parameter, the induced
orthogonalized system is not an analytic functiomofor example, even
though a vectog(\) € C™ may depend analytically oR, its length is not
analytic. Discrete orthogonalization also results in a solution which is not
analytic. So a basic property of the original system (1.1) is not preserved.

An alternative to orthogonalization — the compound matrix method —
was proposed in Ng and Reid [30—32] and Davey [13]) for integrating stiff
linear systems, and has been successfully applied to other problems (cf.
Davey [14], Straughn and Walker [34], Nicodemus et al. [33]). In this ap-
proachcompound matriceare used as coordinates for integrating (1.2).
Let

up v1
(1.3) U= [u V} = Zi Z; e Ct? |

Uy V4
and consider all possibe< 2 sub-determinants & € C**2 as coordinates:

Y1 = U1v2 — U201, Y2 = UIV3 —U3V1, Y3 = UIV4 — U471,

(1.4) ys = uguz — ugve, Y5 = UgV4 — UgV2, Ye = U3V4 — U4V3 .

Differentiating the compound matrix coordinatgs. . ., y¢ and using the
property thain € C* andv € C* satisfy the differential equation, it follows
that the coordinateg € C° satisfy

(15) yar:B(xaA)yv ye(c67

whereB(z, \) is a6 x 6 matrix whose entries depend linearly on the entries
of A(z, \). The compound matrix coordinates then lead to induced boundary
conditions atr = 0 andx = 1 (see Ng and Reid [30,32] and Drazin and
Reid [17] Sect. 43 for full details of this derivation).

The advantage of integrating the induced system, (1.5), over the original
system, is that each-dimensional subspace is represented by aline in (1.5)
and therefore the numerical linear dependence problem is eliminated. More-
over, the induced systemlisear, and whenA (z, \) depends analytically
on\, B(z, A) will also depend analytically oh.

However there are several issues with this method that are unresolved.
Implicitin the above derivation is a choice of basis@. how can this basis
be changed? In principle the idea should work for amjith 1 < k& < n, but
how can this be done in a straightforward and implementable way? What
about boundary conditions on infinite domains? How are the systems on
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k—dimensional subspaces related to the systerfrwon k)—dimensional
subspaces? Is there any advantage to using particular numerical integrators?

The purpose of this paper is multifold. We will show that exterior alge-
bra is the general setting which lies behind the construction of compound
matrices and with it, every existing aspect of the compound matrix method
can be illuminated and generalized. Moreover, the theory of exterior algebra
suggests several new results.

The paper is outlined as follows. Presented in Sect. 2 are the required
general aspects of exterior algebra along with the construction — and con-
structive aspects — of induced systems such as (1.5) fokanyand with
any basis forC".

In Sect. 2.1, an important property mk((C”) is discussed: the set of
subspaces df—dimension is aubmanifoldf C?¢, whered is the dimension
of the induced system. In algebraic geometry this embedding is known as
the Plicker embedding of the Grassmann manifold. From a numerical point
of view, it is important to preserve this submanifold, and here we appeal to
results in the theory of geometric numerical integration: a class of implicit
Runge-Kutta methods are ideal for preservation of this basic submanifold
to machine accuracy.

In Sect. 4 we consider general aspects of induced boundary conditions
using exterior algebra with generalizations of the theory of Ng and Reid
as well as several new results, particularly for semi-infinite and infinite
domains, where a new formulation for asymptotic boundary conditions is
constructed.

A key part of the new framework is the importance of Hodge duality and
the Hodge star operator. Itis not at all obvious how this operator would work
in the setting of compound matrices, but it arises naturally when exterior
algebra is used. As far as we are aware this is the first use of Hodge duality
in a numerical setting, and this theory is developed in Sect. 5.

Analyticity is preserved by the mappingAf(x, \) to the induced system
on \"(C™), and some of the implications of this are discussed in Sect. 6.

One of the most important applications of the theory is to eigenvalue
problems on an unbounded interval. On an unbounded interval, the most
obvious alternative to a shooting algorithm for (1.1) is to discretize (1.1)
and turn it into a matrix eigenvalue problem — this is most advantageous
when A appears linearly imA (z, A). However, applying matrix methods
leads to problems when using correct asymptotic boundary conditions. For
example, consider the Sdtinger type equation on a semi-infinite interval,

(1.6) ugz+a(z)u=Au, 0<z<+4oc0, a(xr)— 0asr— +oo,

with a boundary condition at = 0, sayu|,—o = 0. To approximate this
equation on the bounded intenval< x < L., we would normally impose
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theexact asymptotic boundary condititor boundedness of the solution as
Tr — 00,

(1.7) ug +VAu=0, atz= Lo,

derived using Levinson’s Theorem (cf. Coppel [12]). However, discretiza-
tion — say by a finite difference method or a spectral method — of (1.6) with
the proper boundary condition (1.7) would lead to a matrix whichrisra

linear function of\, and therefore matrig) R or Q) Z algorithms no longer
apply. This has lead in most cases to the usapproximateboundary con-
ditions at infinity (e.g. Grosch and Orszag [19], Boyd [4] Chapter 17, Beyn
and Lorenz [3], and references therein). The use of approximate boundary
conditions usually has a dramatic impact on the essential — i.e. continuous
— spectrum, whereas shooting using numerical exterior algebra computes
discrete eigenvalues with no effect on the essential spectrum.

In Sect. 7-10 we present four examples of eigenvalue problems on infi-
nite or semi-infinite intervals. In Sect. 7 the Orr-Sommerfeld equation for
boundary layer stability, on a semi-infinite interval, is considered.

In Sect. 8 it is shown how exterior algebra leads to the solution of an
open problem: how to accurately compute eigenvalues associated with the
linearization about solitary waves and fronts. Here the problem of stability
of the Hocking-Stewartson pulse is considered, with full details to appear
elsewhere (cf. Afendikov and Bridges [1]). Mathematically, the problem of
stability of solitary waves is identical to the stability of jets in atmospheric
dynamics, and the stability of the classical Bickley jetis consideredin Sect. 9.

In higher dimensionp > 4 andk > 2, new features appear, and we
sketch some work in progress in Sect. 10 where the framework is being
applied to the stability of the Ekman boundary layer which is fundamental
in oceanography and atmospheric dynamics, and leads to a problem of the
form (1.1) withk = 3 andn = 6.

2 Exterior algebra spaces and differential equations orj\k

The starting point is a given system of linear differential equations of the
form

(2.1) u, =A(x,\)u, ueC", zeR, NeA,

whereA (z, \) is a continuously differentiable function efand an analytic
function of A for all A € A, andA is some specified subset of the complex
plane. The trace oA (z, \) will feature prominently in the sequel; therefore
define

(2.2) T(z,A) = Tr(A(x,\)) .
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In this section, we consider the restriction of (2.1)ktedimensional
subspaces df", using exterior algebra. For exampleif, . . ., &, span a
k—dimensional space, thén A - - - A &, whereA is the wedge product, is
a k—form which represents thie—dimensional subspace. The linear space
of all k—forms inC" creates a vector spa¢e® (C"). Introducing a basis
enables a straightforward method for approaching constructive aspects of
these vector spaces.

Leteq,...,e, be an orthonormal basis f@". Then the nonzero and
distinct members of the set

(2.3) {eil/\n-/\eik :il,...,ikzl,...,n}
form a basis for the vector spage’(C™), with exactlyd = (nj‘ik'),k, (the
dimension of\"(C™)) distinct elements in this set.

Choose an ordering such as a standard lexical ordering and label the

nonzero distinct elements in the set (2.3)dy. . . ,wy. Then, any element
U € A¥(C™) can be represented as

d
UZZUJ'WJ‘.
7j=1

The compound matrix method can be interpreted as the restriction of
(2.1) to \*(C™). The system (2.1) restricted f§"(C") is defined to be

(2.4) U,=A®(z,\)U, UeA"CH=c?,

where A®) (2, )) : A¥(C") — AF(C™) is ad x d matrix. The key to
constructing the induced system is an algorithm for constructing the matrix
A®)(z, )\). There is a natural way to construct the induced mati®),
given A € C"*™, using the vector space structure of the spz;(p’é(@").

An inner product orC™ induces an inner product on each vector space
A"(C™) as follows. Let(-, -)¢ be a complex inner product with conjugation
on the first element,

n

(u,v)c = Zﬂj vj, u,veC".
i=1

To construct an inner product g*(C™), let

U=wmA---AugandV =vi A--- A vy, ui,VjGC",
Vi, j=1,...,k,

be any decomposableforms. A k—form is decomposable if it can be
written as a pure form: a wedge product betwéelmearly independent
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vectors inC" (further discussion of decomposability appears below). The
inner product ofU andV is defined by

(uy, vi)c -+ (a1, vi)c
[U, Vi % det L , U, VepN(c.

(ug, vi)c -+ (g, vi)c

Since every element if\*(C") is a sum of decomposable elements, this
definition extends by (bi)-linearity to aryform.

The induced matriA *) : A*(C") — AF(C") is then thel x d matrix
with entries

25) {A®Y; =[w, Awlk, 45=1,...,d, d=
where, foranyU = u; A --- Aug € A¥(CP),

k
APUE S A AAu A Auy.
j=1

With this definition, A®)(z, \) is an analytic function of\ whenever
A(z,\)isanalytic. Indeed, ifthe basis, . . ., e, isindependent of and),
thenA (¥)(z, \) inherits exactly the differentiability properties af(z, \).
Another advantage of this definition of the induced matrix is that it is easily
automated, iMAPLE, MATLAB or FORTRAN, which is essential for large
n. For smalln, the induced matrices can be constructed explicitly.

For example, suppose= 4 andk = 2and letA € C*** be an arbitrary
matrix of the form

ail a12 a13 aia
(2.6) A — | @21 @22 a3 A24
a3l a3z a3z aza
Q4] Q42 Q43 Q44

Takeey, .. ., e, to be the standard basis f6f and letw,, . . . , wgs be a basis
for A?(C*). For example, using a standard lexical ordering,

wi=e3 Ney, wy=e;Ne3, w3=e;Ney,

(27) wg=ey/Ne3, ws=ex/Nes, wg=e3Ney.
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The basisu, . . ., wg in (2.7) is orthonormal with respect to the inner product
[-,]2- Therefore

{A(Q)}l,l = [wi, Awi]2 = [e1 Aes, Aer Aex +e1 A Aes]s
= [e1 Nea, Ae; Nex]s + [e1 N e, e1 A Aes]o

(e1,Aer)c (e1,e2)c (e1,e1)c (e1, Aea)c
= det det
(e, Aer)c (€2, €2)c e (e2,e1)c (e, Aea)c
= (e1,Aey)c + (e2, Aes)c = a11 + ag.

Similarly
{A(2)}1,2 = [wi, Awz]2 = (e2, Aes)c = ag3.

Continuing this way, we find

(2.8) A® =
a1 +az  as a24 —a13 —a14 0
aza a1l +asz  az a12 0 —a14
42 aq3 Q11+ aqq 0 a2 a13
—az1 ag1 0 ag2 +asz  ass —a24
—a4 0 ag1 (43 Q22 + Q44 Q23
| 0 —a4; asy —a42 azz  azz + agq ]

The induced matrix in (2.8) is precisely the form obtained using the com-
pound matrix method (see equation (2.11) in[32]). The advantage of exterior
algebra is that it is clear how to change basis, to automate the construction,
and to generalize it to anyandn.

A simple and illuminating example showing the effect of basis change
is as follows. Keep the standard basis €@, but consider the following
permuted basis fof\*(C*),

w; =e1 Ney,

wy=eyNeg, wz=er/\ey,

(2.9) wg=e3Ney, ws=egNey, wg=ezxNes3.

Starting withA in (2.6), the induce@ x 6 matrix onA\*(C?) is

(2.100A® =
ail +ase a3 (24 0 a14 —a13
aza a1l +asz  ass —ayy 0 a2
a42 a43 Q11 +a44 Q13 —aq2 0
0 —a41 az1r a3z +aqyq  —asz2 —Q42
aq1 0 —ag —a23 G2 + G44 —a43
—asi azi 0 —a —a34  az + ass|
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The interesting feature of this matrix is that a partition ihta3 sub-matrices
has extra structure,
A(2) = |:B Sl :| I

So 713 — BT

where the3 x 3 sub-matrice$; andS, are skew-symmetric. With this basis,
the ODEU, = A®U, with U = (V, W) and A in the form (2.10),
can be written

(211) V,=BV+S W and W,=-BITW+S,V+7W.

2.1 k-dimensional subspaces, decomposability and Grassmannians

A k-form representing &-dimensional subspace is j§*(C"), but an ar-

bitrary pointU € /\k(C") will not necessarily representiadimensional
subspace. For example, the two-form

U:el/\e2+e3/\e46/\2((C4),

does not represent &zdimensional subspace @f* because it can not be
written asé A n with £, € C*. In general, ifU ¢ /\k((C”) represents a
k-dimensional subspace then it is calbetomposablécf. Marcus [29]).

Therefore in order to integrate (2.4) along a path-afimensional sub-
spaces, it has to be restricted to decomposkdtems. We will give the
details of this restriction forn = 4 andk = 2 and then mention aspects of
the case for generalandn.

A 2-form U e A\?(C*) is decomposable i/ A U = 0 (cf. Griffiths and
Harris [18]). ExpandindJ in terms of the standard basis (2.7)/yf(C%),

6 6
0=UAU= ZZUinwi/\w]'
i=1 j—=1
(2.12) = (UlUG—UQU5+U3U4) et Neag Neg/Ney.
DefineZ : A*(C*) — C by
(213) I(U) =U1Ug — UxUs + UsUy .

For a path of the equation (2.4) with= 2 andn = 4 to be a path of-
dimensional subspaces, the function (2.13) has to be preserved. The surface
defined byZ(U) = 0is G2(C*), the Grassmannian manifold 2fplanes in
C* (cf. [18]).

Alternatively, the form of the invariant (2.13) can be derived using the
identity,

T
(2.14) A (2A<2>) -7y,
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whereX is a6 x 6 symmetric orthogonal matrix associated with Hodge
duality, defined in equation (5.11) in Sect. 5, where the numerics of Hodge
duality is developed. The identity (2.14) can be verified by direct calculation
using the explicit expression (2.8), although a more general result can be
proved for anyA*) using Hodge duality; see [6] and Sect. 5. Usiig
(2.13) becomes

(215) Z(U) = (U, 2 U)c = (U,EU)g = U1Us — U2Us + UsUs,

where theR subscript indicates a real inner product. The expression (2.15)
andtheidentity (2.14) can be used to prove #{af ) is an invariant manifold
of (2.4) whenk = 2 andn = 4

d d
5 2U) = (U, U
_2<U SUL)e

2(U, Y A®PU)g, sinceU, = AQU
=2(U, (72 — (ZA@)TYU)r, using (2.14)
=27 (U, X U)g — 2(U, X AP U

=277 -1,
and so
d
(2.16) %I(U) =7Z(U).

If Z(U) = 0 atthe starting value af, thenZ(U) = 0 for all z. Whenr = 0,

7, = 0 independent of the value @{U). In this latter case, we say that the
constraint manifold is atronginvariant. (See Leimkuhler and Reich [28]
for definitions of strong and weak constraint manifolds.) The preservation
of constraint manifolds of this type will be an important requirement of any
numerical scheme for integrating (2.4).

Whenn > 4 andk > 1 the number of constraints that € A*(C")
must satisfy is much greater. However, the constraints are always quadratic.
Abstract general formulas for the quadratic constraints are given in [18] and
[22].

For the casé& = 3 andn = 6, Davey [16] has worked out the complete
collection of quadric surfaces and he shows tHatC®) — the manifold of
3—dimension subspaces @ — is the intersection of exactly 35 quadric
surfaces. The preservation of all these quadrics by a numerical scheme is
an interesting open problem. In [7], the cdse- 2 andn = 5 is studied,
where there are exactly 5 quadrics.

When the basis fo\"(C") changes, the form of the quadrics will also
change. For example, when the basis fgi(C*) is taken to be (2.9), the
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functionZ(U) is transformed to
(2.17) I(U) = <U,EU>R = U1Uy + UUs5 + UsUs

since, relative to the basis (2.9),
01
2o [0

In the real case, an alternative basis Agi(R?*) which provides illumi-
nating information is

wp =e;Ney—e3Ney, wg=e3Neg+exNey,
w3 =e;Nes—eyNe3, wsg=e;/Negs+eyes,
(218) ws =—e;Negt+exNes, wg=e3Neyt+e3Neyq.

The mapping® relative to this basis simplifies to

10
»=[o ).

and therefore the invariant manifaldis transformed to
IU)=V-V-W - W=V2 4+ V2 + V2 W W5 -W2=0,

whenU = (V,W) e A*(RY) = R3 x R3, and soV? + V2 + V2 =

W2 + W3 + W2, By a suitable scaling of the magnitude ¥fand W,
these coordinates show that the invariant manifblid the double sphere
S? x S2, and is a way of seeing the differential geometric result, namely
Gy (R*) =2 82 x §2 (cf. Chern et al. [10], p. 64).

3 Geometric numerical integration

In choosing a numerical method for integrating the induced systems on
AF(C™), accuracy is an important factor. However, it is also important to
preserve the manifold df-dimensional subspaces.

Numerical integration of the induced systems obtained by the compound
matrix method have been integrated using explicit fourth-order Runge-Kutta
algorithms (cf. [30-32]). However, explicit algorithms will not necessarily
preserve the surfadd U) accurately, especially over long range integration.

Our main observation is that the natural family of integrators for these
systems is the class of implicit Gauss-Legendre Runge-Kutta algorithms,
because they possess the special property that strong quadratic invariants
are preserved automatically to machine accuracy.
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To illustrate the role played by the integrator, consider the case-oft
andk = 2. Then the induced system g\?(C*) to be integrated is

31 Uy,=B(z,A)U, U(x,\)|, _, =&\ e N\ (T,

where B(z, ) = A®(z,)), and&£()) is a decomposable element of
A’(CH).

The decomposability of(\) implies thatZ(¢) = 0, and by (2.16)
Z(U) = 0 for all = in the range of integration. Therefore if possible, the
numerical method should be designed to preserve this constraint exactly.

The requiremenf (U) = 0 is a quadratic constraint on the differen-
tial equation (3.1). Cooper [11] has proved that implicit Gauss-Legendre
Runge-Kutta (GL-RK) methods preserve strong quadratic constraints — of
linear and nonlinear systems of differential equations —to machine accuracy.
Algorithms for the implementation of GL-RK methods are given in Hairer
et al. [20].

If 7 = 0, the Grassmaniah = 0 is a strong invariant and therefore
75t = 7° and the value of will be preserved exactly (to machine preci-
sion) by the numerical scheme. This special case is of great interest because
many examples of interest, such as the Orr-Sommerfeld equation and the
linearized Ginzburg Landau equation have the propertyithat0. In the
numerical results presented in Sect. 7-10, both the second order GL-RK and
the fourth order GL-RK algorithm will be used.

4 Induced boundary conditions on/A\*

One way that preferred-dimensional subspaces €f* arise is through
boundary conditions. In this section, the induced boundary conditions on
AF(C") are derived whek-boundary conditions for the original system on
C™ are specified at some point, possibly infinity.

In Sect. 4.1, the case of boundary conditions on a finite domain expressed
in standard form is considered. The induced conditions in this case can be
deduced using compound matrices (cf. [32]) and we show how exterior
algebra approaches the problem, and how the construction depends on the
chosen basis.

In the case of semi-infinite Sect. 4.2 and infinite domains Sect. 4.3, the
approach using exterior algebra leads to a new and straightforward approach
to asymptotic boundary conditions. When the domain is infinite, the
natural way to integrate is from = L., toz = 0 and then fronx = — L
tox = 0, wherelL, is some chosen large valueof The difficulty is how
to match the two solutions at = 0. In the exterior algebra setting, the
matching condition is naturally derived using Hodge duality and the Hodge
star operator. As far as we are aware this is the first use of Hodge duality in
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a numerical setting. The necessary details about Hodge duality are given in
Sect. 5, and in Sect. 5.1, the new matching condition-at0 is derived.

4.1 Two-point boundary conditions — finite interval

Suppose that the boundary conditions for the linear system

(4.2) u; =A(z,\)u, ueC", red,
are

(4.2) (G, a(z, \)e|,_, =0, j=1,...,n—k
and

(4.3) (N, u(@, A)r| _, =0, j=1,...k,

where{¢1(A), ..., (-t (AN }and{ni(A),...,nx(\)} each form linearly in-
dependent sets, and depend analytically\olf a complex inner product is
used then the conjugates@i\) andn;(\) are used in (4.2) and (4.3).

The boundary conditions associated with the induced systeffiaz")
are obtained as follows. The conditions (4.2) definedimensional sub-
space ofC". Let{(,—r+1(N), -+, (n(A)} be an analytic basis for this space.
The k-form

Cnokr1(A) Ao A Ga(X) € AF(CP)

(or any complex multiple of it) is a characterizing form for the space. How-
ever, an expression for this form in terms of the same basis used in con-
structingA (*) is needed.

Letws,...,wq be an orthonormal basis fgt*(C™). This basis should
be the same one used to construct the induced systekf G&") for (4.1).
Then, the abové-form can be expanded as

(4.4) Gkt 1 (A) A A G (A Z aj Wi -

Thed—dimensional vector = (a;, ..., a4) € A¥(C") — or any complex
multiple of a — is then the starting vector for the integration,
d

(4.5) U= AP ()T, U, \)|,_, =aec A" (C").

At x = b the appropriate boundary condition M((C”) is deduced
from (4.3). Expand,

M(A) A= Ang(A Zb Wi
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then the boundary condition imposed Bz, \) atx = b is

<b7U(x7)‘)>R‘ =0,

x=b
whereb = (by, . ..,bs) € A¥(C") and, considering\*(C") as a complex
d—dimensional vector space, the inner prodictr is the standard inner
product orR¢. This suggests the introduction of a complex analytic function
D()),

(4.6) D(A) = <va(b) )\)>Ra

whose zeros correspond to eigenvalues of the original boundary value prob-
lem.

4.2 Boundary conditions at infinity

Whenb = +oo and the matrixA (z, A) is asymptotically constant (inde-
pendent oft),

4.7 leH;Q A(z,\) =Ax(N), VAeAd,
asymptotically correct boundary conditions can be derived for the numerical
integration.

Asymptotic conditions for integration using the compound matrix
method have been derived by Ng and Reid [31] and Davey [14]. We expand
on these results in several directions. First, we show that the asymptotic
conditions can be derived using the induced system, and that the asymptotic
matrix associated with the induced system hasigue simple eigenvalue
of largest negative real part which controls the asymptot®scondly, the
framework of exterior algebra shows how the induced boundary condition
can be derived relative to any basis. Thirdly, wheg,(\) depends analyt-
ically on A, the asymptotic boundary conditions can always be constructed
to be analytic, even when the eigenvalue\af (\) are not analytic.

Suppose that the spectrum Af, ()\) hask eigenvalues with negative
real part, anth — k eigenvalues with positive real part, for alle A. Then
the space of solutions which are boundedras> +c is k-dimensional.

Let

(4.8) ot =D ufn,

Whereuj()\) are the eigenvalues di ., (\) with negativereal part (the
plus superscript implies that they are associated with functions bounded
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asx — +o00). The functiono™(\) represents the decay rate of the entire
k-dimensional subspace of solutions which is bounded as +oc.

The functiono™* () is an analytic function of\ — even if some of the
individual Mj()\)’s are not analytic. This follows since™ (1)) is a simple

eigenvalue ofA (¥) (). First note that,
k
A(k)U:Zul/\---/\Auj/\--J\uk,
j=1

foranyU = u; A--- Auy, € AF(CP),
and so the eigenvalues ;Afgi,)()\) are thek-fold sums of the eigenvalues
of A, ()\). The combinatiorr™(\) has negative real part strictly smaller
than any othek-fold combination. Therefore it is simple, and by standard
arguments it is an analytic function (cf. Kato [26] Chapter 2).

The matrixAgZ)()\) can also be obtained by taking the limit as—
+o0o of AB)(z, \). Let ¢+ (X) € AF(C™) be the eigenvector oAgf))(/\)
associated with the eigenvalue (1)),

(4.9) AD N EFN) =tV

Sinceco™ ()) is simple, the eigenvectdr™ ()\) can also be chosen to be an
analytic function.

By standard arguments from the theory of differential equations (cf.
Coppel [12]), there exists a solution of the differential equation in (4.5)
which is an analytic function of and satisfies

: —ot(Nzy1+ _ ¢t
(4.10) Jim em P 0) =€),
or a complex multiple of ™ ().

The numerical strategy to compute this solution is to integrate the dif-
ferential equation in (4.5) from = L., toz = 0 with £ () as the starting
vector.

If the boundary condition at = 0 is of the form (4.3), then the formu-
lation of the condition at = 0 follows the argument in Sect. 4.1.

4.3 Doubly infinite intervals

When thex—domain extends from-oo to +oo, the procedure of the pre-
vious subsection can be used twice, but an additional subtlety arises when
the integration is matched at= 0. For simplicity suppose that

(4.11) lim A(2,)) = Ax(), VA€,
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that is, the limiting matrixA () is the same at = +oco. (It is straight-
forward to modify the theory for the case wheke o (A) # Ao (N).)
As in the previous subsection, assume that the spectrutn.gf\) has
k eigenvalues with negative real part amd- k£ eigenvalues with positive
real part.
In this case we will have to integrate separate systems fol0 andz <
0. Asx — +oo the space of solutions which is bounded:idimensional,
and therefore we can use the procedure of the previous section, and integrate

U, =AW @)U, U N)|,_, =) e AHC,

fromz = Lo tox = 0.
However, as: — —oo the space of solutions which is boundedris—
k)—dimensional, and therefore it is required to integrate

Vo= ACP@ NV, V()| = () e ATHTT,

fromz = — Ly, toz = 0, where¢~ () is the eigenvector corresponding to

the eigenvalue — (\) of AS.Z"“)(A) of largest real part, satisfying,

ALTPNE W) =0~ (N E ).

The eigenvalue— (\) will also be simple and an analytic function bf

A point A € A will be an eigenvalue if the space of bounded solutions as
x — 400, UT(z, \), has anontrivial intersection with the space of solutions
which is bounded ag — —oo, U™ (z, \). In other words, if

Ut (z, \)AU (2,A\) =0, VzecR.
Introduce the complex analytic function
(4.12) AN =e o TN Ut (2 ) AU (2, M)

The functionA(A) is independent af — it is essentially the Wronskian for

the linear system — and vanishes\ife A is an eigenvalue. However, this
expression is not in a form which is useful for numerical computation. In
the next section, we will develop the necessary machinery — based on the
Hodge star operator — for a numerical evaluatiom\¢h).

5 Numerics of Hodge duality and the Hodge star operator

The vector space§” (C™) and\"~*(C") are isomorphic, and the mapping
which takes elements of one space to the other is the Hodge star operator
In this section, explicit properties of this isomorphism are derived for use in
numerics.
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Letey,...,e, be an orthonormal basis f@*, with respect to the inner
product(-, -)¢, introduced in Sect. 2, and fix a volume form f6f, for
example,

V=eA---ANe,.

Letws,...,wy be an orthonormal decomposable basis/fﬁ((C”), where
d = dim(A\*(C™)),

Hwi,wj]]k:(sij, for i,j:1,...,d,
and leta, . . . , g be an orthonormal decomposable basis/f8r * (C™):

[[ai,aj]]n,kzéij, for i,j:L...,d.

The Hodge star operator maps an elemére /\""“(C”) to an element
*V e AF(C™), and it can be explicitly defined by its action on basis vectors

(5.2) *xoy ANag =05V, 1,5=1,...,d.

The definition depends on the chosen inner product®mnd the chosen
orientation.

Sincexa; € AF(C™) fori = 1,...,d, there exists @ x d matrix &
such that

d
(52) *ai:ZEijwj, i:l,...,d.
j=1

The action of also includes complex conjugation (cf. Wells [35]). Here we
will assume that the basis is real in which c&eavill be real. Moreover,
the matrixX will be orthogonal, since it is a mapping from one orthogonal
basis to another orthogonal basis. Therefore, the entrizsvafl satisfy

d
(5.3) TR =1 or Y ZpiZm;=0dij.

m=1

Substitution of (5.2) into (5.1) leads to

d
Zﬂimwm/\aj :52‘]‘]/.

m=1

Multiply this expression by;, and sum ovet,

d d d
Z (Z Ezp21m> wWm A o = <Z 5ij Ezp) V.
=1

m=1 \i=1
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Now, using (5.3) this expression reduces to
(5.4) wi N aj = ZJIV

GivenV = Z?Zl Vijoy € N"%(C™), a general expression for the
action ofx is then

d d d d
*V = ZVJ * Q= ZV] ZEngg = ZFZ‘*}Z
j=1 j=1 =1 =1
d
with F,= Z Engj .
7j=1

LetF € A(C") have components; as above, then an explicit expression
for the star operation is
(5.5) *sV=F=XTV,
where the components &f are relative to the basis; of A" *(C") and
the components df are relative to the basis; of AF(Cn).

These constructions can now be used to prove the general expression
(5.6) UAV = [[*V, U]]kvz <V, 2U>CV,
foranyU € A"(C") andV e A" *(C™), where[-, ], is the standard
inner product onA\*(C™), and (-, )¢ is a standard inner product d@¥’.
Note that inner product o8¢ can be written
(5.7) (V,2U)c = (V,ZU)z.

To prove (5.6), expantll € A*(C") andV e A" *(C") in terms of

the respective basis vectors,

d d
U:Zini and V:ZVJ‘CMJ‘.
i=1 j=1

Substitution into the left-hand side of (5.6) and use of the property

(5.8) UAV = (-1)P"V AU, foranyU € AP(C"), V € A (C"),
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leads to

using (5.4).
For the right-hand side of (5.6),

i=1 j=1 m=1
d d

-y 3,
i=1 j=1

= <V’ 2U>R

Comparing this expression with that obtained for the left-hand side of (5.6)
completes the proof of the expression (5.6). For the numerics the useful
formula deduced from (5.6) is

(5.9) UAV = (V,XU), foranyU € A\*(C"), V e A" *(Cn).

For particulark andn, the elements ok are easily constructed using
the formula (5.1). For example, suppase= 4 andk = 2. Thend = 6,
AF(C™) = AX(CH and A" F(Cm) = A\?(CH). Therefore, take the same
basis for each space: take = w;, i =1, ..., 6, with

wi=ey Ney, wy=e;Ne3, w3=e;ANey,
(510) wg=eyNe3, ws=ex/Nes, wg=e3Neyq.
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Now, apply formula (5.1) to each basis vector,

*rp = wg since a3 Awg =V,
*(ig = —ws since ag Aws = —V,

*ig = wy since agAwyg=V.

Using the formula (5.8), it follows thatay = w3, a5 = —we, xag = w1,
and therefore, wheh = 2 andn = 4, and the basis (5.10) is used,

0

—_

OO OO O

0
0
0
(5.11) =1y 0
1

—_ o oo oo
SO = OO O
OO O = OO

OOOO'

L 0 -

In this caseX is orthogonal and symmetric. The formula (5.9) reduces to

(5.12) UAV = (V,2U)c = (U,ZV)g,
forany U e A*(CY), Ve AX(CY),
whereU = (Uy,...,Us) andV = (V1,...,V;) are the components &f
andV in the expansion¥) = >0 | U; w; andV = 2?21 Vjwj.
Other useful formulae which follow from the above constructions, for
anyk andn, are

(5.13) *w; = (=1)HH) izji a;, i=1,....d,
and *xa; = (—=1)FF) O]él_
Using these expressions and (5.5),

«xV=XTyTy = (_1)k(n7k)v‘

Therefore,X' is symmetric (respectively skew-symmetric) whigm — k)
is even (respectively odd).

5.1 Interior matching condition for infinite domains

The formula (4.12) is not useful for numerics. A formula convenient for
numerics can be derived using Hodge duality.

SinceUt e A\*(C") andU~ e A" *(C"), the function (4.12) is the
product of a complex function times the volume form@h Fix the volume
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formtobey = e A---Ae,, Wheree, ..., e, is afixed orthonormal basis.
The expression (4.12) then reduces to

(5.14) AN) =D\ V.

An explicit expression foD () will be derived using Hodge duality. The
vector spaceg " (C™) and \"~*(C™) are isomorphic and the isomorphism
is the Hodge star operater In particular, in (5.9) it is shown that, for any
pair of formsU+ € A\*(C") andU~ e A" *(C™),

Ut (z, ) AU (2,)) = (U, ZUT)R.

An algorithm for constructing theé x d matrix X is given in Sect. 5, and in
the right-hand side of this formula, the component&iof ¢ A*(C") are
with respect to the basis,, . . . ,wy. Similarly for U~, whose components
are the coordinates &~ € A" *(C")with respecttothe basis, . . . , ovg.
Therefore the matching functiab(\) takes the explicit form,

(5.15) D) = TN E (U 20T

Whent = 0 the above formula simplifies. For the Orr-Sommerfeld
equation on an infinite domain, the case relevant for the stability of jets,
wakes and mixing layers for example, the above formula simplifies further.
In this casék = 2,n = 4, 7(z,\) = 0 andX” = X and so

(5.16) D\ =(U",2U )R,

whereX is given in (5.11).

6 Intermezzo: holomorphic systems and analytic subspaces

The functionD (), associated with either the finite or infinite interval case,
whose roots are eigenvalues, is a complex analytic function, and so appli-
cation of Newton’s method to find roots is straightforward. Given a suitable
first guess\y the Newton sequence

)\m+1 =Am —

can be computed. When

the derivativeD’ () is
D'(A) = (b'(A), U0, \))r + (b(A), U0, \))r -
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The vectoib()\) is known explicitly and therefore its derivative can be com-
puted analytically. The derivative &f (0, \) can be computed by appending
a differential equation fof, U(z, A) to the basic ODE,

6.1 d (U [ A®(z,)N) 0 U
() % o\u N a)\A(k)(fL‘,A) A(k)(aj,)\) onu) -

The initial condition for (6.1) is the initial condition foU(z, A) and the
derivative of this initial condition. When the domain is finite this approach
is straightforward.

When the domain is infinite or semi-infinite, this approach is still sat-
isfactory although computing the starting values is not as straightforward.
This construction is needed for example when computing the stability for
3D rotating flows (cf. Sect. 10). An algorithm for computing the starting
vector and its derivative is constructed as follows.

To simplify notation, lefB(\) = Aé’é)()\). The problem is to find the
eigenvalue oB(\) of largest positive (or negative) real part, its eigenvector
and the derivative with respect to of its eigenvector. For definiteness,
assume itis the eigenvalue with largest positive real part that is desired, and
denote it byo(\) and denote its eigenvector i§y\).

It follows from the theory in Sect. 4 that the eigenvalue of largest real
part of B(\) is simple and therefore analytic. The eigenvalue equation,
B(MN)E(A) = a(M)E(N), is analytic and when differentiated with respect to
A

62 (BO) - oD €)= ~BREN) + ()N

To obtain %5()\) it is necessary to solve this system, but the matrix
(B(A)—a(A))issingularsince (\) is an eigenvalue. The following coupled
bordered system of?t! is solved,

6.3) K[B(A_){(SM —50@))} <§<(§>)> _ <—B’<[A)>5<A>> |

It is straightforward to show that the bordered matrix is invertible.
In summary, for fixed\, the eigenvalue (and associated eigenvector) of

AE,’Z)()\), of largest positive (or negative) real part is obtained numerically.
Since this eigenvalue is simple, and has real part farther from the origin
than any other eigenvalue of positive (respectively negative) real part, this
numerical construction will be robust. The augmented system (6.3) is then
solved for¢’(\), and the starting vector for (6.1) is thé&(\),&'(\)) €
C? x €4,

There is another more subtle way that analyticity enters the analysis
when the domain of integration is infinite.
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As discussed in Sect. 4, even though individual eigenvalues may not be
analytic functions, theik-fold sum, which appears as an eigenvalue of the
induced system is always analytic. A simple example from hydrodynamic
stability which illustrates this point about analyticity is the case of the asymp-
totic suction profile (cf. Drazin and Reid [17], p. 227, Hocking [25], Ng and
Reid [31], Herron [24]).

The governing equation for stability is a modification of the Orr-Som-
merfeld equation,

¢" +¢" + (—20° = AR —iaRU(y))¢" — o*¢/
+(a* + iaRU" (y) + ia®RU (y) + ARa?)¢ = 0,

whereU (y) = 1 — e~ Y. This system can be written in the form (2.1), and
A(y, \) goes to a well-defined limit ag — oo.
The characteristic equation fd. () is

det[pl — Apo(N)] = p* 4+ 12 + (=20 — AR — iaR) >
—a?u+ (a* +ia® R+ ARa?)
= 0,

Unlike the Orr-Sommerfeld equation, this asymptotic system has a value of
A with positive real part, denotek), with

where the twou—eigenvalues with negative real part coalesce (cf. Her-
ron [23] and Herron [24], p. 602). This coalescence can give rise to a branch
point in the complexA plane, and individual solutions of (6.4) will not be
analytic for all\ in C_, the right-half complex plane.

On the other hand, the eigenvalaé& ()\) — the sum of the eigenvalues
of negative real part — will be simple and an analytic functiompfnd
therefore an eigenvalue relation for (6.4) constructed by restricting (6.4) to
A% (C*) will be analytic for all\ € C,..

7 Example 1. Boundary layer interacting with a compliant surface

The study of the boundary-layer flow past a flexible surface has two primary
motivations. It is a fundamental model for the fluid flow past a dolphin and
other aquatic species (cf. Kramer [27]). Secondly, coating surfaces of man-
made waterborne vehicles with a compliant surface has been proposed as a
mechanism for delaying transition and drag reduction (cf. Carpenter [8]).
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In this section the theory of Sect. 2-6 will be applied to the model pro-
posed by Carpenter and Garrad [9] for the stability of two-dimensional
boundary-layer flow past a Kramer compliant surface.

The governing equations for the fluid are the two-dimensional Navier-
Stokes equations, linearized about the Blasius boundary layer, and the gov-
erning equation for the wall is a beam equation forced by the fluid pressure
at the wall. After nondimensionalization, the problem can be reduced to the
Orr-Sommerfeld equation, a fourth-order complex ODE, coupled to bound-
ary conditions at the wall. The Orr-Sommerfeld equation for the vertical
velocity perturbation(y) takes the form

; -1 ﬁ 2 ? _ o ﬁ 2 s
(IOZR) dy2 o Qb - (U(y) Z)\/Oé) dy2 «Q ¢ U (y)qba
(7.0) 0<y <+,

whereU (y) is the Blasius velocity profiley is the streamwise wavenumber,
R is the Reynolds number, and which is associated with the wavespeed
of the perturbation, is the eigenvalue.

The two boundary conditions at the compliant surface; 0, are

(7.2) o®R(X*Cm + Cpa’ + Ckp) $(0) + A(¢"(0) — a*¢'(0)) = 0.
and
(7.3) alU'(0)p(0) +ir¢'(0) =0,

whereU’(0) is the derivative of the Blasius velocity at the wall, afig,
Cp andCk g are dimensionless parameters representative of wall properties,
taking the form
24226.420899 E
Cp=—————, Cp=06078227413—
(7.4) R B R3
and Cgp = 2.291813 x 10713(230ER) .

The main parameter i8, which represents wall rigidity and is input in units
of Nm™2; an increase inE represents an increase in wall rigidity, with
E = oo corresponding to a rigid wall. Details of the derivation of the above
system can be found in [9].

This equation can be writtenin the form (2.1) with= 4 (and the symbol
x replaced byy) by taking

(Z)/ 0 1 0 O

e o0 0o 1 o0

(7.5) u= & and A(y,\) = o o0 o0 1
¢" Y1(y,A) 072(y, A) 0
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where

1 (y,\) = —a* —iadRU(y) — iaRU" (y) — o> AR
(7.6)
and va(y,\) = 2a% +iaRU(y) + AR.

Note that the trace oA (y, \) is zero.
The boundary conditions gt= 0 can be written in the form (4.3),

(7.7) (m(A), u(0, A))r = (n2(A), u(0, A))r =0,
by taking

o’ (0) 01(\)

m=| 2| and mey=| 2

0 -«

wheref; (\) = —aR(\2Cy, + o*Cp + Ckp).

7.1 Equation and boundary conditions @t (C*)

The equations and boundary conditions are now in standard form to apply
the theory of Sect. 2-4. By fixing the standard basis . . , e, for C*, the in-
duced differential equation ofy*(C*) associated with the Orr-Sommerfeld
equation is

(7.8) U, =A@y, 0)U, Ue\}(CY,
with

[0 1 0 0 00]
0 0 1 1 00
) _ 0 Y2(y,A) 0 0 10
(79) AT AN=1 0 0 0 10
-7(,A) 0 07%(y,AN)01
0 —mA)O 0 00

Thelimitasy — oo of A(y, \) exists and therefore the theory of Sect. 4.2
applies. Working directly with (7.9), we find

[0 1 0 0 00]
0 0 1 1 00
. @)\ _ 0 Y$°(A) 0 0 10
(710 Hm AN =1 0o 0 0 10|’
—7°(A) 0 093°(A) 01
0 —°(\)0 0 00]
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where
(7.11) 4°(\) = —a* —ia®R — a®AR and~5°(\) = 20 + iaR + AR.

The eigenvalue QAQ (M) of largest negative real partis easily calculated
to be

o\ =—(a+p8), where 3?=0a®>+AR+iaR,

and the square root with positive real partis taken. The eigenvector associated
with o (\) is

1
at(N)

a? +af + 32
af
afBot ()
a2/82

(7.12) (N =

At y = 0 the induced boundary conditions are determined using the
theory in Sect. 4.1. The condition for an eigenvalu®is\) = 0 with

(7.13) D(A) = (b(X), U0, \))r ,

with the components dé(\) deduced from
6
b(N) = bjwj =m(N) Am().
j=1

But writing 71 (A) andnz () with respect to the standard basis,

771()\) A 772()\) = (aU’(O)e1 + i)\ez) A <91 ()\) e + al ey — 264)

= (a2)\U'(O) — M1 (N)) e1 A ey
2
—-AU'(0)e; Aey — i%QQ A ey

)\2
= (aQ)\U/(O) — Z)\Hl(/\)) w1 — )\U’(O)w;), - igw5 s

hence
AU’ (0) —iA01(N)
0
—A\U'(0)
0
—iX%/a
0
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Therefore, the proposed algorithm is to fix values Ryr«, the wall
parameters andl € A and integrate (7.8) from = L., toy = 0 using an
implicit GL-RK method, with starting vecta§™()\) in (7.12). The results
presented here are computed using = 10.0 and the fourth-order implicit
GL-RK method. A value\ € A is an eigenvalue iD(\) = 0 with D(\)
defined in (7.13). Roots dP(\) are then refined using Newton’s method as
discussed in Sect. 6.

7.2 Computing neutral curves

Of interest in applications are curvesrgutral stabilitywhich correspond
to curves in thex — R plane wher&e()\) = 0. Inside the curve corresponds
to instability.

022 —— - . . — i ~
E=0.9
02 F-O.T
E=0.5
\ (= 4+ E=03
| | i * E=0.1
0.18 \ | . -‘::r E=0.015
'|| » — E=0.01
. — E=0.0074
018¢ || [ = 3 E=0.007065
| Il .
t -
= 014 al
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Fig. 1. Effect of E on the neutral curves, plotted in the— R plane: values inside a curve
correspond to instabilitRe(A) > 0

InFig. 1, the computed effect of wall rigidity on stability is shown. When
Eis very large, the neutral curve for the Blasius boundary layer is recovered
(cf. Drazin and Reid [17], Sect. 31.5). Figure 2 shows a blowup of the region
near the nose of the neutral curvelaapproacheg.. The pointE,, which
we compute to bes. = 0.007065, is the point where the neutral curve
collapses to a point. The poitt, is important in applications because for
E < E. the flow is extraordinarily stable: the transition Reynolds number
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has beenincreased dramatically. This effect suggests that compliant surfaces
could reduce drag by delaying transition to turbulence. The results in Fig. 1
show excellent qualitative agreement with Fig. 11 of [9].

Neutral curves for the blasius boundary layer over a compliant surface with varying spring stiffness
T T T
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Fig. 2. Blowup of the nose of the neutral curve in Fig. 1 near the critical valug of

Further results on this model are reported in [2], including a range of
new results on the effect of wall damping and wall tension.

8 Example 2. Eigenvalue problem
associated with the Hocking-Stewartson pulse

A particularly difficult eigenvalue problem is that associated with the lin-
earization about a solitary wave or pulse. In this section we give an example
of how the framework of this paper give a new robust algorithm for studying
the stability of solitary waves.

The complex Ginzburg-Landau (cGL) equation can be written in the
scaled form

(8.1) peV A=Ay — (1+iw)? A+ (1 +iw)(2 +iw) |APPA,

where A(z, t) is complex valued ang > 0, w, 1 are specified real pa-
rameters. There is an exact solution — the Hocking-Stewartson (HS) pulse —
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which can be explicitly determined,
(8.2) Az, t) e A(z) = (cosha) %

The spectral problem is obtained by linearizing the real form of (8.1) about
the HS pulse (8.2), and looking for solutions proportionatta Then the
problem, with\ € C as the spectral parameter, is formulated in an equivalent
way as a system of the form

(8.3) vie=A(,\)v, ze€R, veC!

with Trace(A (x,\)) = 0.

A discrete eigenvalue of this problem is a valuedot C for which
(8.3) has a solution which decays exponentiallgas +occ. For example,
A = 0 is always an eigenvalue; in fact, of multiplicity at least two, due to
the rotation and translation symmetries of (8.2).

The system is now in standard form to apply the theory of Sect. 2 and
Sect. 5.1. Let

AN = xgrinooA(x, A),

then it is straightforward to show that for parameter values of interest, and
with Re(\) > 0, the matrixA () has exactly two eigenvalues with posi-
tive real part and two with negative. Therefore, it is natural to study the ODE
on the spacg)\*(C*).

Let Ut (x,\) € A*(C*) represent the two-dimensional space of solu-
tions which are bounded as— oo, and lefU~ (z, A) € A*(C*) represent
the two-dimensional space of solutions which are bounded as —oo.
Then, since the trace & (z, \) is zero, the complex function whose zeros
correspond to eigenvalues is

(8.4) D) = (Ut (z,0), 2 U (z,\))g.

where X is as defined in (5.11), and no conjugation is used in the inner
product (a complex inner product could be used, and then conjugation would
be appliedbeforeputting U= into the inner product).

The numerical computation proceeds as follows. The infinitdomain
is truncated to- L, < o < L With L, suitably chosen. Then, the main
part of the algorithm involves numerical integration of the following two
systems with\ fixed

85) S UT=AD(@ AU, U@, =),

=L oo

for Lo >x2>0,
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and

86) LU =APDENUT, U@, =0,

for — Lo <x<0.

These two systems are integrated using the second-order implicit Gauss-
Legendre Runge-Kutta (GL-RK) method (higher-order GL-RK methods
could also be easily used but didn’t appear to be necessary).

Numerical results using this algorithm showed for the first time that
the Hocking-Stewartson pulse is unstable for the range of parameter values
associated with cGL as a model for plane Poiseuille flow. Details of the
numerical results are reported in [1], including comparison with Beyn and
Lorenz [3] who studied the stability problem using a matrix discretization
with approximate boundary conditions.

Further work on the use of numerical exterior algebra to compute the
stability exponents associated with the linearization about solitary waves
is in progress. For example, Bridges et al. [7] use this framework to study
numerically the stability of solitary waves of the 5th-order KdV, which leads
to a problem withn = 5 andk = 2.

9 Example 3. Instability of the Bickley jet

The stability of flows in unbounded domains, such as jets, wakes and mixing
layers, is often studied using the Orr-Sommerfeld equation (cf. Drazin and
Reid [17], Sect. 31, Herron [24]). In this section, the algorithm for infinite
domains developed in Sect. 5.1 is illustrated by application to the Bickley
jet. Mathematically, the stability problem for the Bickley jet is identical to
the stability problem for a solitary wave such as the HS pulse studied in
Sect. 8

In scaled variables, the horizontal velocity field for the Bickley jet takes
the form

(9.1) U(x) =sech’s, —oo<x<oo.

The standard basis f@* and\?(C*) are chosen so that the Orr-Sommer-
feld equation or\?(C*) takes the form,

(9.2) U, =A%z, \U,
with A®)(z, \) given by (7.9).

For the jet,A () is the same for both-oo. Whena # 0 andR > 0,
there are exactly two eigenvalues Af, (\) with positive real part for all
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A€ A, whenAd = {C : Re(\) > 0}. The eigenvalues oAgZ)(/\) with
largest positive and negative real part respectively are

(9.3) ot () = F(a+0),

wherea > 0 is the wavenumber, anglis the root of3?> = o> + A R, X € 4,
with positive real part. The connection betweeand the wave speedis

A = —iac. The eigenvectors cAg;)()\) associated witlr*(\) are

1
a*(N)

042 +Oéﬁ+ﬂ2
of
afot(N)
QQBQ

(9.4) ) =

The system (9.2) is integrated fram= L, to z = 0 with starting vector
£t(\), and L, is taken to bel,, = 10 in the results reported here. Call
this solutionU™ (z, \). The system (9.2) is then integrated fram= — L.
to z = 0 with starting vectog (). Call this solutionU™ (z, A).

A value of A € Cis an eigenvalue iU* (z, \) A U~ (z,\) = 0 for all
x € R. Using the theory in Sect. 5.1 this condition is satisfie®{\) = 0
where

(9.5) D)) = (U",ZU g,

whereX is defined in (5.11).

Numerical calculation of the neutral curve for the Bickley jet using the
above algorithm is shown in Fig. 9, and the curve agrees to graphical accu-
racy with the neutral curve due to Silcock and reported in Fig. 4.26 by Drazin
and Reid [17]. Newton’s method, as described in Sect. 8, and continuation
were used to compute the points on the neutral curve.

The calculations were done using the implicit midpoint rule, which is
only second-order accurate, but is clearly adequate for graphical accuracy.

10 Example 4. ODEs or;/\6 and the rotating Ekman layer

The stability problem for the Ekman boundary layer — which appears in
atmospheric dynamics and oceanography — can be reduced to a sixth order
complex ODE of the following form, which is a generalization of the Orr-
Sommerfeld equation,

(10.2) " —b(x)" —a(x)p+2¢' =0, 0<2<+0

(10.2) "+ (7* —b(z))p —iyRU'¢ —2¢' =0, 0<z < +o0.
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Neutral Curve for the Bickley jet flow
3.16 T T T T T

032

01

0.031

0.01 I I I I
10 31.62 100 316.23 1000

Reynolds number

Fig. 3. Computed neutral curve for the Bickley jet

where

a(x) = _74 - 273R~(V(x) - C) - i’YRVza:
b(x) = 27> +iyR(V(x) — ¢).

In this systemyy is the modulus of the wavenumbéi,the Reynolds num-
ber, ande = i)/~ with \ the eigenvalue. The functiorig andV are the
components of the the Ekman velocity field, and explicit expression in terms
of elementary functions can be given but are not needed here (see [2]). The
coordinater represents the vertical direction in a physical problem. The first
equation (10.1) reduces to the Orr-Sommerfeld equation wheno.

The boundary conditions associated with a rigid surface-at0 are

(10.3) ¢(0) = ¢/'(0) = +(0) =0,

It is straightforward to now transform this system into the standard form
of Sect. 2. The system of ODEs can be expressed as a linear system of the

form
u, = A(z,\)u, ueC’,

with three boundary conditions
(e1,u(0, 1)) = (e2,u(0,\)) = (e5,u(0,\)) =0,

wheree; is the standard unit vector i
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The natural space to integrate this system\#C%) which has dimen-
sion 20. We proceed by introducing a standard lexically-ordered basis for
A?(C). We can then construct the induced ODE

(10.4) U = A® @2, )UT, Ut e A¥(CY).

The induced boundary condition at= 0 is that the component — called
D()\) —of U™ in the directione; A e A e5 should be zero.
The most difficult part of this example is constructing the starting values
aty = L. Let
A(A) = lim A(z, ).

T—r 00

The characteristic polynomial fok . (\) takes the form

det[pul — Aso(N)] = 1% — (Mt + f2(\p? = f3(N),

wherefi, f2, andfs are analytic functions of with explicit expressions. It

is straightforward to prove that wh&w(\) > 0 there are exactly three roots
with negative real part and three with positive. However explicit expressions
are difficult to work with, and therefore we used the numerical algorithm
proposed in Sect. 6 to construct the starting vectors.

Preliminary numerical results show that the algorithm is robust and the
results show impressive accuracy even with the second-order implicit mid-
point method. Details of this problem, the numerical results, and extension
to the case where the wall at= 0 is compliant and so its dynamics are
coupled to the fluid are given in [2].

Appendix
A Hodge duality and adjoint systems

In Ng and Reid [32], it is shown for the cases= 2k with £ = 2, 3 that the
solutions of the adjoint systems obtained from the compound matrix systems
can be related without calculation to the solutions of the basic system. In
this appendix, we give a new proof of this result and generalize it to arbitrary
n = 2k. In fact we show that this resultis due to Hodge duality: the mapping
from the adjoint system is related to the Hodge star operator, and therefore
a coordinate-free characterization can be given.

The basic question is the following. Given the induced system

(A.1) U, =A® @, N)U, UeA@C),
how are the solutions of the adjoint of (A.1),

(A2) Ul = —[A® (2, )] UT,
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related to solutions of (A.1). The superscriihdicates complex conjugate
transpose.

Firstwe prove amore general result. Consider the system complementary
to (A.1),

(A.3) V. =A@ )V, Ve ANTFCY.

Supposel andV are decomposable and complementary, and (et \)
be ann x n matrix whose columns are the decomposable vectors which
make upU andV. Then®(zx, \) is a fundamental matrix solution of (1.1)
and

UAV =det[®(z,\)]V,

where) is a suitably chosen volume form (without loss of generality, assume
the standard one), and so

d
TUAV =7 )UAV

(A.2) .
since %det[é(x, N)] = 7(z, A) det[@(z, N)],

by the Abel-Liouville Theorem for linear systems.
Now differentiate the identity (5.6)

(A.5) j—mUAV = (V,, ZU) eV + (V,SU,)c V.

The left-hand side can be transformed using (A.4) and (5.6).
(A.6) 7(V,ZU)cV = (V,,ZU)cV+ (V,ZU,)c V.
Now substitute folU,, andV,

(A7) 7 (V,EZU)¢ = (A-RV, 2U)¢ 4+ (V, AP U)¢.

Since thisidentity holds forall € A*(C")andV e A" *(C"), itfollows
that

(A.8) TA® L AT = 73,

Now consider the special case = 2k and take the same basis for
AF(C™) and \"F(C™). In this case: = n — k, and

(A.9) AR L AWTS =73,
Now, define

(A.10) Ul = e i 7@NdeTT | with U e A¥(Cn),
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with U satisfying (A.1). Then

d b _
d—UT =e Jo TGN (T V=T U+ 270,
XL

= Jo TN (F iz NET + =T AW)T
= e Jo T8N ds(_A®W* 2T T)  using (A.9)
= —[AW*Ut,

showing thafUT in (A.10) is indeed the adjoint function, and is given ex-
plicitly in terms of U using the Hodge star isomorphisky and a scalar
multiplier when the trace oA (x, \) is nonzero. Another way to write (A.10)

IS

(A.12) Ut = *(e” Jo T(x,\) ds U)=e" Jo (@A) ds U.

The result (A.10) is the generalization of equation (3.8) and (3.17) in

[32], and for the cases = 2 andk = 3 it agrees with [32], when the
standard basis is chosen: compare the definitiol @i equation (3.9) of
[32] with 3 in (5.11) in Appendix A.
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