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Summary. The compound matrix method, which was first proposed for
numerically integrating systems of differential equations in hydrodynamic
stability onk = 2, 3 dimensional subspaces ofC

n, by using compound ma-
trices as coordinates, is reformulated in a coordinate-free way using exterior
algebra spaces,

∧k(Cn).
This formulation leads to a general framework for studying systems of

differential equations onk-dimensional subspaces. The framework requires
the development of several new ideas: the role of Hodge duality and the
Hodge star operator in the construction, an efficient strategy for construct-
ing the induced differential equations on

∧k(Cn), general formulation of
induced boundary conditions, the role of geometric integrators for preserv-
ing the manifold ofk−dimensional subspaces – the Grassmann manifold,
Gk(Cn), and a formulation for induced systems on an unbounded interval.
The numerical exterior algebra framework is most advantageous for nu-

merical solution of differential eigenvalue problemsonunboundeddomains,
where there are significant difficulties in setting up matrix discretizations.
The formulation is presented fork-dimensional subspaces of systems on

C
n with k andn arbitrary, and examples are given for the cases ofk = 2
andn = 4, andk = 3 andn = 6, with an indication of implementation
details for systems of larger dimension.
The theory is illustrated by application to four differential eigenvalue

problems on unbounded intervals: hydrodynamic stablity of boundary-layer
flow past a compliant surface, the eigenvalue problem associated with the
stability of solitary waves, the stability of Bickley jet in oceanography, and
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the eigenvalue problem associated with the stability of the Ekman layer in
atmospheric dynamics.

Mathematics Subject Classification (1991):65L99; 76E99

1 Introduction

Consider a linear system of ordinary differential equations

(1.1) ux = A(x, λ)u , u ∈ C
n , λ ∈ Λ ⊂ C ,

whereA(x, λ) is ann × n matrix depending analytically onλ, and differ-
entiably onx, andx lies in some interval, possibly unbounded.
Systems of this type arise in a wide range of applications. We will be

most concerned here with the case whereλ is an eigenvalue parameter, and
there are boundary conditions – possibly at infinity – associated with (1.1).
The boundary conditions will definek-dimensional subspaces ofC

n, and to
solve (1.1) numericallywill require numerical integration ofk−dimensional
subspaces.
The case of interest is when thex-interval is unbounded, but for il-

lustrative purposes, supposen = 4 and0 ≤ x ≤ 1, and there are two
homogeneous boundary conditions imposed atx = 0 and two atx = 1.
The system (1.1) is an eigenvalue problem with eigenvalue parameterλ.
The natural approach to integrating (1.1) would be to integrate the induced
system

(1.2) Ux = A(x, λ)U , U(x)
∣∣
x=0 = U0 ∈ C

4×2 ,

where the columns ofU0 span the two-dimensional subspacewhich satisfies
the boundary conditions atx = 0. The system (1.2) is then integrated with a
numerical method of sufficient accuracy fromx = 0 tox = 1. Imposition of
the boundary conditions atx = 1 then leads to a complex analytic function
D(λ), the characteristic determinant,whose zeros correspond to eigenvalues
of (1.1).
However, for many interesting examples, systems of the form (1.1) are

stiff, and therefore the columns ofU(x, λ) in (1.2) will not remain lin-
early independent during the numerical integration. The most well-known
approach to addressing this linear dependence problem is to use either dis-
crete orthogonalization, where the Gram-Schmidt algorithm is applied to
the columns of (1.2) every few time steps, or continuous orthogonalization
(cf. Drazin and Reid [17] Sect. 30, Hairer and Wanner [21] and references
therein).
However there are two significant disadvantages of orthogonalization

applied to complex systems. When using orthogonalization, particularly
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continuousorthogonalization, the inducedsystem isnonlinear, and therefore
numerical integration is an order of magnitudemore complex. Secondly, for
systems like (1.1) which depend analytically on a parameter, the induced
orthogonalized system is not an analytic function ofλ: for example, even
though a vectorξ(λ) ∈ C

n may depend analytically onλ, its length is not
analytic. Discrete orthogonalization also results in a solution which is not
analytic. So a basic property of the original system (1.1) is not preserved.
An alternative to orthogonalization – the compound matrix method –

was proposed in Ng and Reid [30–32] and Davey [13]) for integrating stiff
linear systems, and has been successfully applied to other problems (cf.
Davey [14], Straughn and Walker [34], Nicodemus et al. [33]). In this ap-
proachcompound matricesare used as coordinates for integrating (1.2).
Let

(1.3) U =
[
u v
]
=


u1 v1
u2 v2
u3 v3
u4 v4

 ∈ C
4×2 ,

andconsiderall possible2×2sub-determinantsofU ∈ C
4×2 ascoordinates:

y1 = u1v2 − u2v1 , y2 = u1v3 − u3v1 , y3 = u1v4 − u4v1 ,

y4 = u2v3 − u3v2 , y5 = u2v4 − u4v2 , y6 = u3v4 − u4v3 .(1.4)

Differentiating the compound matrix coordinatesy1, . . . , y6 and using the
property thatu ∈ C

4 andv ∈ C
4 satisfy the differential equation, it follows

that the coordinatesy ∈ C
6 satisfy

(1.5) yx = B(x, λ)y , y ∈ C
6 ,

whereB(x, λ) is a6×6matrix whose entries depend linearly on the entries
ofA(x, λ). Thecompoundmatrix coordinates then lead to inducedboundary
conditions atx = 0 andx = 1 (see Ng and Reid [30,32] and Drazin and
Reid [17] Sect. 43 for full details of this derivation).
The advantage of integrating the induced system, (1.5), over the original

system, is that each2−dimensional subspace is represented by a line in (1.5)
and therefore the numerical linear dependence problem is eliminated.More-
over, the induced system islinear, and whenA(x, λ) depends analytically
onλ,B(x, λ) will also depend analytically onλ.
However there are several issues with this method that are unresolved.

Implicit in the above derivation is a choice of basis forC
4: how can this basis

be changed? In principle the idea should work for anykwith 1 ≤ k ≤ n, but
how can this be done in a straightforward and implementable way? What
about boundary conditions on infinite domains? How are the systems on
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k−dimensional subspaces related to the system on(n − k)−dimensional
subspaces? Is there any advantage to using particular numerical integrators?
The purpose of this paper is multifold. We will show that exterior alge-

bra is the general setting which lies behind the construction of compound
matrices and with it, every existing aspect of the compound matrix method
can be illuminated and generalized. Moreover, the theory of exterior algebra
suggests several new results.
The paper is outlined as follows. Presented in Sect. 2 are the required

general aspects of exterior algebra along with the construction – and con-
structive aspects – of induced systems such as (1.5) for anyk, n and with
any basis forCn.
In Sect. 2.1, an important property of

∧k(Cn) is discussed: the set of
subspaces ofk−dimension is asubmanifoldofCd, whered is the dimension
of the induced system. In algebraic geometry this embedding is known as
the Pl̈ucker embedding of the Grassmannmanifold. From a numerical point
of view, it is important to preserve this submanifold, and here we appeal to
results in the theory of geometric numerical integration: a class of implicit
Runge-Kutta methods are ideal for preservation of this basic submanifold
to machine accuracy.
In Sect. 4 we consider general aspects of induced boundary conditions

using exterior algebra with generalizations of the theory of Ng and Reid
as well as several new results, particularly for semi-infinite and infinite
domains, where a new formulation for asymptotic boundary conditions is
constructed.
A key part of the new framework is the importance of Hodge duality and

theHodge star operator. It is not at all obvious how this operator would work
in the setting of compound matrices, but it arises naturally when exterior
algebra is used. As far as we are aware this is the first use of Hodge duality
in a numerical setting, and this theory is developed in Sect. 5.
Analyticity is preservedby themappingofA(x, λ) to the inducedsystem

on
∧k(Cn), and some of the implications of this are discussed in Sect. 6.
One of the most important applications of the theory is to eigenvalue

problems on an unbounded interval. On an unbounded interval, the most
obvious alternative to a shooting algorithm for (1.1) is to discretize (1.1)
and turn it into a matrix eigenvalue problem – this is most advantageous
whenλ appears linearly inA(x, λ). However, applying matrix methods
leads to problems when using correct asymptotic boundary conditions. For
example, consider the Schrödinger type equation on a semi-infinite interval,

(1.6) uxx + a(x)u = λu , 0 ≤ x ≤ +∞ , a(x) → 0 asx → +∞ ,

with a boundary condition atx = 0, sayu|x=0 = 0. To approximate this
equation on the bounded interval,0 ≤ x ≤ L∞, we would normally impose
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theexact asymptotic boundary conditionfor boundedness of the solution as
x → ∞,
(1.7) ux +

√
λu = 0 , atx = L∞ ,

derived using Levinson’s Theorem (cf. Coppel [12]). However, discretiza-
tion – say by a finite difference method or a spectral method – of (1.6) with
the proper boundary condition (1.7) would lead to a matrix which is anon-
linear function ofλ, and therefore matrixQR orQZ algorithms no longer
apply. This has lead in most cases to the use ofapproximateboundary con-
ditions at infinity (e.g. Grosch and Orszag [19], Boyd [4] Chapter 17, Beyn
and Lorenz [3], and references therein). The use of approximate boundary
conditions usually has a dramatic impact on the essential – i.e. continuous
– spectrum, whereas shooting using numerical exterior algebra computes
discrete eigenvalues with no effect on the essential spectrum.
In Sect. 7-10 we present four examples of eigenvalue problems on infi-

nite or semi-infinite intervals. In Sect. 7 the Orr-Sommerfeld equation for
boundary layer stability, on a semi-infinite interval, is considered.
In Sect. 8 it is shown how exterior algebra leads to the solution of an

open problem: how to accurately compute eigenvalues associated with the
linearization about solitary waves and fronts. Here the problem of stability
of the Hocking-Stewartson pulse is considered, with full details to appear
elsewhere (cf. Afendikov and Bridges [1]). Mathematically, the problem of
stability of solitary waves is identical to the stability of jets in atmospheric
dynamics, and thestability of theclassicalBickley jet is considered inSect. 9.
In higher dimension,n > 4 andk > 2, new features appear, and we

sketch some work in progress in Sect. 10 where the framework is being
applied to the stability of the Ekman boundary layer which is fundamental
in oceanography and atmospheric dynamics, and leads to a problem of the
form (1.1) withk = 3 andn = 6.

2 Exterior algebra spaces and differential equations on
∧k

The starting point is a given system of linear differential equations of the
form

(2.1) ux = A(x, λ)u , u ∈ C
n , x ∈ R , λ ∈ Λ ,

whereA(x, λ) is a continuously differentiable function ofx and an analytic
function ofλ for all λ ∈ Λ, andΛ is some specified subset of the complex
plane. The trace ofA(x, λ)will feature prominently in the sequel; therefore
define

(2.2) τ(x, λ) = Tr(A(x, λ)) .
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In this section, we consider the restriction of (2.1) tok−dimensional
subspaces ofCn, using exterior algebra. For example, ifξ1, . . . , ξk span a
k−dimensional space, thenξ1 ∧ · · · ∧ ξk, where∧ is the wedge product, is
ak−form which represents thek−dimensional subspace. The linear space
of all k−forms inC

n creates a vector space
∧k(Cn). Introducing a basis

enables a straightforward method for approaching constructive aspects of
these vector spaces.
Let e1, . . . , en be an orthonormal basis forCn. Then the nonzero and

distinct members of the set

(2.3) {ei1 ∧ · · · ∧ eik : i1, . . . , ik = 1, . . . , n }
form a basis for the vector space

∧k(Cn), with exactlyd = n!
(n−k)!k! (the

dimension of
∧k(Cn)) distinct elements in this set.

Choose an ordering such as a standard lexical ordering and label the
nonzero distinct elements in the set (2.3) byω1, . . . , ωd. Then, any element
U ∈ ∧k(Cn) can be represented as

U =
d∑
j=1

Uj ωj .

The compound matrix method can be interpreted as the restriction of
(2.1) to

∧k(Cn). The system (2.1) restricted to
∧k(Cn) is defined to be

(2.4) Ux = A(k)(x, λ)U , U ∈ ∧k(Cn) ∼= C
d ,

whereA(k)(x, λ) :
∧k(Cn) → ∧k(Cn) is a d × d matrix. The key to

constructing the induced system is an algorithm for constructing the matrix
A(k)(x, λ). There is a natural way to construct the induced matrixA(k),
givenA ∈ C

n×n, using the vector space structure of the spaces
∧k(Cn).

An inner product onCn induces an inner product on each vector space∧k(Cn) as follows. Let〈·, ·〉C be a complex inner product with conjugation
on the first element,

〈u,v〉C =
n∑
j=1

uj vj , u,v ∈ C
n .

To construct an inner product on
∧k(Cn), let

U = u1 ∧ · · · ∧ uk andV = v1 ∧ · · · ∧ vk, ui,vj ∈ C
n,

∀ i, j = 1, . . . , k ,

be any decomposablek-forms. A k−form is decomposable if it can be
written as a pure form: a wedge product betweenk linearly independent
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vectors inCn (further discussion of decomposability appears below). The
inner product ofU andV is defined by

[[U,V]]k
def= det

〈u1,v1〉C · · · 〈u1,vk〉C

...
...

...
〈uk,v1〉C · · · 〈uk,vk〉C

 , U,V ∈ ∧k(Cn) .

Since every element in
∧k(Cn) is a sum of decomposable elements, this

definition extends by (bi)-linearity to anyk-form.
The induced matrixA(k) :

∧k(Cn) → ∧k(Cn) is then thed× dmatrix
with entries

(2.5) {A(k)}i,j = [[ωi,Aωj ]]k , i, j = 1, . . . , d , d =
n!

k!(n − k)!
,

where, for anyU = u1 ∧ · · · ∧ uk ∈ ∧k(Cn),

A(k)U def=
k∑
j=1

u1 ∧ · · · ∧ Auj ∧ · · · ∧ uk .

With this definition,A(k)(x, λ) is an analytic function ofλ whenever
A(x, λ) is analytic. Indeed, if the basise1, . . . , en is independent ofx andλ,
thenA(k)(x, λ) inherits exactly the differentiability properties ofA(x, λ).
Another advantage of this definition of the induced matrix is that it is easily
automated, inMaple,Matlab orFortran, which is essential for large
n. For smalln, the induced matrices can be constructed explicitly.
For example, supposen = 4 andk = 2 and letA ∈ C

4×4 be an arbitrary
matrix of the form

(2.6) A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 .

Takee1, . . . , e4 to be the standard basis forC
4 and letω1, . . . , ω6 be a basis

for
∧2(C4). For example, using a standard lexical ordering,

ω1 = e1 ∧ e2 , ω2 = e1 ∧ e3 , ω3 = e1 ∧ e4 ,

ω4 = e2 ∧ e3 , ω5 = e2 ∧ e4 , ω6 = e3 ∧ e4 .(2.7)
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Thebasisω1, . . . , ω6 in (2.7) is orthonormalwith respect to the inner product
[[·, ·]]2. Therefore

{A(2)}1,1 = [[ω1,Aω1]]2 = [[e1 ∧ e2,Ae1 ∧ e2 + e1 ∧ Ae2]]2
= [[e1 ∧ e2,Ae1 ∧ e2]]2 + [[e1 ∧ e2, e1 ∧ Ae2]]2

= det
[〈e1,Ae1〉C 〈e1, e2〉C

〈e2,Ae1〉C 〈e2, e2〉C

]
+ det

[〈e1, e1〉C 〈e1,Ae2〉C

〈e2, e1〉C 〈e2,Ae2〉C

]
= 〈e1,Ae1〉C + 〈e2,Ae2〉C = a11 + a22 .

Similarly

{A(2)}1,2 = [[ω1,Aω2]]2 = 〈e2,Ae3〉C = a23 .

Continuing this way, we find

A(2) =(2.8)
a11 + a22 a23 a24 −a13 −a14 0

a32 a11 + a33 a34 a12 0 −a14
a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24
−a41 0 a21 a43 a22 + a44 a23
0 −a41 a31 −a42 a32 a33 + a44

 .

The induced matrix in (2.8) is precisely the form obtained using the com-
poundmatrixmethod (seeequation (2.11) in [32]). Theadvantageof exterior
algebra is that it is clear how to change basis, to automate the construction,
and to generalize it to anyk andn.
A simple and illuminating example showing the effect of basis change

is as follows. Keep the standard basis forC
4, but consider the following

permuted basis for
∧2(C4),

ω1 = e1 ∧ e2 , ω2 = e1 ∧ e3 , ω3 = e1 ∧ e4 ,

ω4 = e3 ∧ e4 , ω5 = e4 ∧ e2 , ω6 = e2 ∧ e3 .(2.9)

Starting withA in (2.6), the induced6 × 6 matrix on
∧2(C4) is

A(2) =(2.10)
a11 + a22 a23 a24 0 a14 −a13

a32 a11 + a33 a34 −a14 0 a12
a42 a43 a11 + a44 a13 −a12 0
0 −a41 a31 a33 + a44 −a32 −a42
a41 0 −a21 −a23 a22 + a44 −a43

−a31 a21 0 −a24 −a34 a22 + a33

 .



Numerical exterior algebra and the compound matrix method 205

The interesting feature of thismatrix is that a partition into3×3 sub-matrices
has extra structure,

A(2) =
[
B S1
S2 τI3 − BT

]
,

where the3×3 sub-matricesS1 andS2 are skew-symmetric.With this basis,
the ODEUx = A(2)U, with U = (V,W) andA(2) in the form (2.10),
can be written

(2.11) Vx = BV + S1W and Wx = −BTW + S2V + τ W .

2.1 k-dimensional subspaces, decomposability and Grassmannians

A k-form representing ak-dimensional subspace is in
∧k(Cn), but an ar-

bitrary pointU ∈ ∧k(Cn) will not necessarily represent ak-dimensional
subspace. For example, the two-form

U = e1 ∧ e2 + e3 ∧ e4 ∈ ∧2(C4) ,

does not represent a2-dimensional subspace ofC4 because it can not be
written asξ ∧ η with ξ, η ∈ C

4. In general, ifU ∈ ∧k(Cn) represents a
k-dimensional subspace then it is calleddecomposable(cf. Marcus [29]).
Therefore in order to integrate (2.4) along a path ofk-dimensional sub-

spaces, it has to be restricted to decomposablek-forms. We will give the
details of this restriction forn = 4 andk = 2 and then mention aspects of
the case for generalk andn.
A 2-formU ∈ ∧2(C4) is decomposable ifU∧U = 0 (cf. Griffiths and

Harris [18]). ExpandingU in terms of the standard basis (2.7) of
∧2(C4),

0 = U ∧ U =
6∑
i=1

6∑
j=1

UiUj ωi ∧ ωj

= (U1U6 − U2U5 + U3U4) e1 ∧ e2 ∧ e3 ∧ e4 .(2.12)

DefineI :
∧2(C4) → C by

(2.13) I(U) = U1U6 − U2U5 + U3U4 .

For a path of the equation (2.4) withk = 2 andn = 4 to be a path of2-
dimensional subspaces, the function (2.13) has to be preserved. The surface
defined byI(U) = 0 isG2(C4), the Grassmannian manifold of2-planes in
C

4 (cf. [18]).
Alternatively, the form of the invariant (2.13) can be derived using the

identity,

(2.14) Σ A(2) +
(
Σ A(2)

)T
= τ Σ ,
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whereΣ is a 6 × 6 symmetric orthogonal matrix associated with Hodge
duality, defined in equation (5.11) in Sect. 5, where the numerics of Hodge
duality is developed. The identity (2.14) can be verified by direct calculation
using the explicit expression (2.8), although a more general result can be
proved for anyA(k) using Hodge duality; see [6] and Sect. 5. UsingΣ,
(2.13) becomes

(2.15) I(U) = 〈U,ΣU〉C = 〈U,ΣU〉R = U1U6 − U2U5 + U3U4 ,

where theR subscript indicates a real inner product. The expression (2.15)
and the identity (2.14) canbeused toprove thatI(U) is an invariantmanifold
of (2.4) whenk = 2 andn = 4,

d

dx
I(U) =

d

dx
〈U, Σ U〉R

= 2 〈U, Σ Ux〉R

= 2 〈U, Σ A(2)U〉R , sinceUx = A(2)U

= 2 〈U, (τΣ − (ΣA(2))T )U〉R , using (2.14)

= 2τ 〈U, Σ U〉R − 2 〈U, Σ A(2)U〉R

= 2τ I − Ix
and so

(2.16)
d

dx
I(U) = τ I(U) .

If I(U) = 0 at the starting value ofx, thenI(U) = 0 for all x.Whenτ = 0,
Ix = 0 independent of the value ofI(U). In this latter case, we say that the
constraint manifold is astrong invariant. (See Leimkuhler and Reich [28]
for definitions of strong and weak constraint manifolds.) The preservation
of constraint manifolds of this type will be an important requirement of any
numerical scheme for integrating (2.4).
Whenn > 4 andk > 1 the number of constraints thatU ∈ ∧k(Cn)

must satisfy is much greater. However, the constraints are always quadratic.
Abstract general formulas for the quadratic constraints are given in [18] and
[22].
For the casek = 3 andn = 6, Davey [16] has worked out the complete

collection of quadric surfaces and he shows thatG3(C6) – the manifold of
3−dimension subspaces ofC6 – is the intersection of exactly 35 quadric
surfaces. The preservation of all these quadrics by a numerical scheme is
an interesting open problem. In [7], the casek = 2 andn = 5 is studied,
where there are exactly 5 quadrics.
When the basis for

∧k(Cn) changes, the form of the quadrics will also
change. For example, when the basis for

∧2(C4) is taken to be (2.9), the
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functionI(U) is transformed to

(2.17) I(U) = 〈U,ΣU〉R = U1U4 + U2U5 + U3U6 ,

since, relative to the basis (2.9),

Σ =
[
0 I
I 0

]
.

In the real case, an alternative basis for
∧2(R4) which provides illumi-

nating information is

ω1 = e1 ∧ e2 − e3 ∧ e4 , ω2 = e1 ∧ e3 + e2 ∧ e4 ,

ω3 = e1 ∧ e4 − e2 ∧ e3 , ω4 = e1 ∧ e4 + e2 ∧ e3 ,

ω5 = −e1 ∧ e3 + e2 ∧ e4 , ω6 = e1 ∧ e2 + e3 ∧ e4 .(2.18)

The mappingΣ relative to this basis simplifies to

Σ =
[
I 0
0 −I

]
,

and therefore the invariant manifoldI is transformed to
I(U) = V · V − W · W = V 2

1 + V 2
2 + V 2

3 − W 2
1 − W 2

2 − W 2
3 = 0 ,

whenU = (V,W) ∈ ∧2(R4) ∼= R
3 × R

3, and soV 2
1 + V 2

2 + V 2
3 =

W 2
1 + W 2

2 + W 2
3 . By a suitable scaling of the magnitude ofV andW,

these coordinates show that the invariant manifoldI is the double sphere
S2 × S2, and is a way of seeing the differential geometric result, namely
G2(R4) ∼= S2 × S2 (cf. Chern et al. [10], p. 64).

3 Geometric numerical integration

In choosing a numerical method for integrating the induced systems on∧k(Cn), accuracy is an important factor. However, it is also important to
preserve the manifold ofk-dimensional subspaces.
Numerical integration of the induced systems obtained by the compound

matrixmethod have been integrated using explicit fourth-orderRunge-Kutta
algorithms (cf. [30–32]). However, explicit algorithms will not necessarily
preserve the surfaceI(U) accurately, especially over long range integration.
Our main observation is that the natural family of integrators for these

systems is the class of implicit Gauss-Legendre Runge-Kutta algorithms,
because they possess the special property that strong quadratic invariants
are preserved automatically to machine accuracy.
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To illustrate the role played by the integrator, consider the case ofn = 4
andk = 2. Then the induced system on

∧2(C4) to be integrated is

(3.1) Ux = B(x, λ)U , U(x, λ)
∣∣
x=a = ξ(λ) ∈ ∧2(C4) ,

whereB(x, λ) = A(2)(x, λ), and ξ(λ) is a decomposable element of∧2(C4).
The decomposability ofξ(λ) implies thatI(ξ) = 0, and by (2.16)

I(U) = 0 for all x in the range of integration. Therefore if possible, the
numerical method should be designed to preserve this constraint exactly.
The requirementI(U) = 0 is a quadratic constraint on the differen-

tial equation (3.1). Cooper [11] has proved that implicit Gauss-Legendre
Runge-Kutta (GL-RK) methods preserve strong quadratic constraints – of
linear and nonlinear systems of differential equations – tomachine accuracy.
Algorithms for the implementation of GL-RK methods are given in Hairer
et al. [20].
If τ = 0, the GrassmanianI = 0 is a strong invariant and therefore

Is+1 = Is and the value ofI will be preserved exactly (to machine preci-
sion) by the numerical scheme. This special case is of great interest because
many examples of interest, such as the Orr-Sommerfeld equation and the
linearized Ginzburg Landau equation have the property thatτ = 0. In the
numerical results presented in Sect. 7-10, both the second order GL-RK and
the fourth order GL-RK algorithm will be used.

4 Induced boundary conditions on
∧k

One way that preferredk-dimensional subspaces ofCn arise is through
boundary conditions. In this section, the induced boundary conditions on∧k(Cn) are derived whenk-boundary conditions for the original system on
C
n are specified at some point, possibly infinity.
In Sect. 4.1, the case of boundary conditions on a finite domain expressed

in standard form is considered. The induced conditions in this case can be
deduced using compound matrices (cf. [32]) and we show how exterior
algebra approaches the problem, and how the construction depends on the
chosen basis.
In the case of semi-infinite Sect. 4.2 and infinite domains Sect. 4.3, the

approach using exterior algebra leads to a new and straightforward approach
to asymptotic boundary conditions. When thex−domain is infinite, the
natural way to integrate is fromx = L∞ tox = 0 and then fromx = −L∞
to x = 0, whereL∞ is some chosen large value ofx. The difficulty is how
to match the two solutions atx = 0. In the exterior algebra setting, the
matching condition is naturally derived using Hodge duality and the Hodge
star operator. As far as we are aware this is the first use of Hodge duality in
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a numerical setting. The necessary details about Hodge duality are given in
Sect. 5, and in Sect. 5.1, the new matching condition atx = 0 is derived.

4.1 Two-point boundary conditions – finite interval

Suppose that the boundary conditions for the linear system

(4.1) ux = A(x, λ)u , u ∈ C
n , λ ∈ Λ ,

are

(4.2) 〈ζj(λ),u(x, λ)〉R

∣∣
x=a = 0 , j = 1, . . . , n − k

and

(4.3) 〈ηj(λ),u(x, λ)〉R

∣∣
x=b = 0 , j = 1, . . . , k ,

where{ζ1(λ), . . . , ζn−k(λ)} and{η1(λ), . . . , ηk(λ)} each form linearly in-
dependent sets, and depend analytically onλ. If a complex inner product is
used then the conjugates ofζj(λ) andηj(λ) are used in (4.2) and (4.3).
The boundary conditions associated with the induced system on

∧k(Cn)
are obtained as follows. The conditions (4.2) define ak-dimensional sub-
space ofCn. Let{ζn−k+1(λ), · · · , ζn(λ)}beananalytic basis for this space.
Thek-form

ζn−k+1(λ) ∧ · · · ∧ ζn(λ) ∈ ∧k(Cn)

(or any complex multiple of it) is a characterizing form for the space. How-
ever, an expression for this form in terms of the same basis used in con-
structingA(k) is needed.
Let ω1, . . . , ωd be an orthonormal basis for

∧k(Cn). This basis should
be the same one used to construct the induced system on

∧k(Cn) for (4.1).
Then, the abovek-form can be expanded as

(4.4) ζn−k+1(λ) ∧ · · · ∧ ζn(λ) =
d∑
j=1

aj ωj .

Thed−dimensional vector,a = (a1, . . . , ad) ∈ ∧k(Cn) – or any complex
multiple ofa – is then the starting vector for the integration,

(4.5)
d

dx
U = A(k)(x, λ)U , U(x, λ)

∣∣
x=a = a ∈ ∧k(Cn) .

At x = b the appropriate boundary condition on
∧k(Cn) is deduced

from (4.3). Expand,

η1(λ) ∧ · · · ∧ ηk(λ) =
d∑
j=1

bjωj ,
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then the boundary condition imposed onU(x, λ) atx = b is

〈b,U(x, λ)〉R

∣∣
x=b = 0 ,

whereb = (b1, . . . , bd) ∈ ∧k(Cn) and, considering
∧k(Cn) as a complex

d−dimensional vector space, the inner product〈·, ·〉R is the standard inner
product onRd. This suggests the introduction of a complex analytic function
D(λ),

(4.6) D(λ) = 〈b,U(b, λ)〉R ,

whose zeros correspond to eigenvalues of the original boundary value prob-
lem.

4.2 Boundary conditions at infinity

Whenb = +∞ and the matrixA(x, λ) is asymptotically constant (inde-
pendent ofx),

(4.7) lim
x→∞ A(x, λ) = A∞(λ) , ∀λ ∈ Λ ,

asymptotically correct boundary conditions can be derived for the numerical
integration.
Asymptotic conditions for integration using the compound matrix

method have been derived by Ng and Reid [31] and Davey [14]. We expand
on these results in several directions. First, we show that the asymptotic
conditions can be derived using the induced system, and that the asymptotic
matrix associated with the induced system has aunique simple eigenvalue
of largest negative real part which controls the asymptotics. Secondly, the
framework of exterior algebra shows how the induced boundary condition
can be derived relative to any basis. Thirdly, whenA∞(λ) depends analyt-
ically onλ, the asymptotic boundary conditions can always be constructed
to be analytic, even when the eigenvalues ofA∞(λ) are not analytic.
Suppose that the spectrum ofA∞(λ) hask eigenvalues with negative

real part, andn − k eigenvalues with positive real part, for allλ ∈ Λ. Then
the space of solutions which are bounded asx → +∞ is k-dimensional.
Let

(4.8) σ+(λ) =
k∑
j=1

µ+
j (λ) ,

whereµ+
j (λ) are the eigenvalues ofA∞(λ) with negativereal part (the

plus superscript implies that they are associated with functions bounded
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asx → +∞). The functionσ+(λ) represents the decay rate of the entire
k-dimensional subspace of solutions which is bounded asx → +∞.
The functionσ+(λ) is an analytic function ofλ – even if some of the

individual µ+
j (λ)’s are not analytic. This follows sinceσ

+(λ) is a simple
eigenvalue ofA(k)(λ). First note that,

A(k)U =
k∑
j=1

u1 ∧ · · · ∧ Auj ∧ · · · ∧ uk ,

for anyU = u1 ∧ · · · ∧ uk ∈ ∧k(Cn) ,

and so the eigenvalues ofA(k)
∞ (λ) are thek-fold sums of the eigenvalues

of A∞(λ). The combinationσ+(λ) has negative real part strictly smaller
than any otherk-fold combination. Therefore it is simple, and by standard
arguments it is an analytic function (cf. Kato [26] Chapter 2).
The matrixA(k)

∞ (λ) can also be obtained by taking the limit asx →
+∞ of A(k)(x, λ). Let ξ+(λ) ∈ ∧k(Cn) be the eigenvector ofA(k)

∞ (λ)
associated with the eigenvalueσ+(λ),

(4.9) A(k)
∞ (λ) ξ+(λ) = σ+(λ) ξ+(λ) .

Sinceσ+(λ) is simple, the eigenvectorξ+(λ) can also be chosen to be an
analytic function.
By standard arguments from the theory of differential equations (cf.

Coppel [12]), there exists a solution of the differential equation in (4.5)
which is an analytic function ofλ and satisfies

(4.10) lim
x→+∞ e−σ+(λ)xU+(x, λ) = ξ+(λ) ,

or a complex multiple ofξ+(λ).
The numerical strategy to compute this solution is to integrate the dif-

ferential equation in (4.5) fromx = L∞ tox = 0with ξ+(λ) as the starting
vector.
If the boundary condition atx = 0 is of the form (4.3), then the formu-

lation of the condition atx = 0 follows the argument in Sect. 4.1.

4.3 Doubly infinite intervals

When thex−domain extends from−∞ to+∞, the procedure of the pre-
vious subsection can be used twice, but an additional subtlety arises when
the integration is matched atx = 0. For simplicity suppose that

(4.11) lim
x→±∞ A(x, λ) = A∞(λ) , ∀ λ ∈ Λ ,
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that is, the limiting matrixA∞(λ) is the same atx = ±∞. (It is straight-
forward to modify the theory for the case whereA−∞(λ) �= A+∞(λ).)
As in the previous subsection, assume that the spectrum ofA∞(λ) has

k eigenvalues with negative real part andn − k eigenvalues with positive
real part.
In this case we will have to integrate separate systems forx > 0 andx <

0. As x → +∞ the space of solutions which is bounded isk-dimensional,
and therefore we can use the procedure of the previous section, and integrate

Ux = A(k)(x, λ)U , U(x, λ)
∣∣
x=L∞

= ξ+(λ) ∈ ∧k(Cn) ,

from x = L∞ to x = 0.
However, asx → −∞ the space of solutions which is bounded is(n −

k)−dimensional, and therefore it is required to integrate
Vx = A(n−k)(x, λ)V , V(x, λ)

∣∣
x=−L∞

= ξ−(λ) ∈ ∧n−k(Cn) ,

from x = −L∞ to x = 0, whereξ−(λ) is the eigenvector corresponding to
the eigenvalueσ−(λ) ofA(n−k)

∞ (λ) of largest real part, satisfying,

A(n−k)
∞ (λ)ξ−(λ) = σ−(λ) ξ−(λ) .

The eigenvalueσ−(λ) will also be simple and an analytic function ofλ.
A pointλ ∈ Λwill be an eigenvalue if the space of bounded solutions as

x → +∞,U+(x, λ), hasanontrivial intersectionwith the spaceof solutions
which is bounded asx → −∞,U−(x, λ). In other words, if

U+(x, λ) ∧ U−(x, λ) = 0 , ∀ x ∈ R .

Introduce the complex analytic function

(4.12) ∆(λ) = e− ∫ x
0 τ(s,λ) dsU+(x, λ) ∧ U−(x, λ) .

The function∆(λ) is independent ofx – it is essentially the Wronskian for
the linear system – and vanishes ifλ ∈ Λ is an eigenvalue. However, this
expression is not in a form which is useful for numerical computation. In
the next section, we will develop the necessary machinery – based on the
Hodge star operator – for a numerical evaluation of∆(λ).

5 Numerics of Hodge duality and the Hodge star operator

The vector spaces
∧k(Cn) and

∧n−k(Cn) are isomorphic, and themapping
which takes elements of one space to the other is the Hodge star operator'.
In this section, explicit properties of this isomorphism are derived for use in
numerics.
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Let e1, . . . , en be an orthonormal basis forCn, with respect to the inner
product〈·, ·〉C, introduced in Sect. 2, and fix a volume form forC

n, for
example,

V = e1 ∧ · · · ∧ en .

Let ω1, . . . , ωd be an orthonormal decomposable basis for
∧k(Cn), where

d = dim(
∧k(Cn)),

[[ωi, ωj ]]k = δij , for i, j = 1, . . . , d ,

and letα1, . . . , αd be an orthonormal decomposable basis for
∧n−k(Cn):

[[αi, αj ]]n−k = δij , for i, j = 1, . . . , d .

TheHodge star operator maps an elementV ∈ ∧n−k(Cn) to an element
'V ∈ ∧k(Cn), and it can be explicitly defined by its action on basis vectors

(5.1) 'αi ∧ αj = δij V , i, j = 1, . . . , d .

The definition depends on the chosen inner product onC
n and the chosen

orientation.
Since'αi ∈ ∧k(Cn) for i = 1, . . . , d, there exists ad × d matrixΣ

such that

(5.2) 'αi =
d∑
j=1

Σij ωj , i = 1, . . . , d .

The action of' also includes complex conjugation (cf. Wells [35]). Here we
will assume that the basis is real in which caseΣ will be real. Moreover,
the matrixΣ will be orthogonal, since it is a mapping from one orthogonal
basis to another orthogonal basis. Therefore, the entries ofΣ will satisfy

(5.3) ΣT Σ = Id or
d∑

m=1

ΣmiΣmj = δij .

Substitution of (5.2) into (5.1) leads to

d∑
m=1

Σim ωm ∧ αj = δij V .

Multiply this expression byΣip and sum overi,

d∑
m=1

(
d∑
i=1

ΣipΣim

)
ωm ∧ αj =

(
d∑
i=1

δij Σip

)
V .
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Now, using (5.3) this expression reduces to

(5.4) ωi ∧ αj = Σji V .

GivenV =
∑d

j=1 Vjαj ∈ ∧n−k(Cn), a general expression for the
action of' is then

'V =
d∑
j=1

V j ' αj =
d∑
j=1

V j

d∑
�=1

Σj�ω� =
d∑
�=1

F� ω�

with F� =
d∑
j=1

Σj�V j .

LetF ∈ ∧k(Cn) have componentsF� as above, then an explicit expression
for the star operation is

(5.5) 'V = F = ΣT V ,

where the components ofV are relative to the basisαi of
∧n−k(Cn) and

the components ofF are relative to the basisωj of
∧k(Cn).

These constructions can now be used to prove the general expression

(5.6) U ∧ V = [['V,U]]k V = 〈V,ΣU〉C V ,

for anyU ∈ ∧k(Cn) andV ∈ ∧n−k(Cn), where[[·, ·]]k is the standard
inner product on

∧k(Cn), and〈·, ·〉C is a standard inner product onCd.
Note that inner product onCd can be written

(5.7) 〈V,ΣU〉C = 〈V,ΣU〉R .

To prove (5.6), expandU ∈ ∧k(Cn) andV ∈ ∧n−k(Cn) in terms of
the respective basis vectors,

U =
d∑
i=1

Ui ωi and V =
d∑
j=1

Vj αj .

Substitution into the left-hand side of (5.6) and use of the property

(5.8) U ∧ V = (−1)pq V ∧ U, for anyU ∈ ∧p(Cn), V ∈ ∧q(Cn) ,
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leads to

U ∧ V = (−1)k(n−k)V ∧ U = (−1)k(n−k)
d∑
i=1

d∑
j=1

UiVj αj ∧ ωi ,

=
d∑
i=1

d∑
j=1

UiVj ωi ∧ αj ,

=
d∑
i=1

d∑
j=1

UiVj Σji

= 〈V,ΣU〉C = 〈V,ΣU〉R ,

using (5.4).
For the right-hand side of (5.6),

[['V,U]]k = [[
d∑
i=1

V i ' αi,

d∑
j=1

Uj ωj ]]k

=
d∑
i=1

d∑
j=1

ViUj [['αi, ωj ]]k

=
d∑
i=1

d∑
j=1

ViUj

d∑
m=1

Σim [[ωm, ωj ]]k

=
d∑
i=1

d∑
j=1

ViUjΣij

= 〈V,ΣU〉R .

Comparing this expression with that obtained for the left-hand side of (5.6)
completes the proof of the expression (5.6). For the numerics the useful
formula deduced from (5.6) is

(5.9) U ∧ V = 〈V,ΣU〉R, for anyU ∈ ∧k(Cn), V ∈ ∧n−k(Cn) .

For particulark andn, the elements ofΣ are easily constructed using
the formula (5.1). For example, supposen = 4 andk = 2. Thend = 6,∧k(Cn) =

∧2(C4) and
∧n−k(Cn) =

∧2(C4). Therefore, take the same
basis for each space: takeαi = ωi, i = 1, . . . , 6, with

ω1 = e1 ∧ e2 , ω2 = e1 ∧ e3 , ω3 = e1 ∧ e4 ,

ω4 = e2 ∧ e3 , ω5 = e2 ∧ e4 , ω6 = e3 ∧ e4 .(5.10)
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Now, apply formula (5.1) to each basis vector,

'α1 = ω6 since α1 ∧ ω6 = V ,

'α2 = −ω5 since α2 ∧ ω5 = −V ,

'α3 = ω4 since α3 ∧ ω4 = V .

Using the formula (5.8), it follows that'α4 = ω3, 'α5 = −ω2, 'α6 = ω1,
and therefore, whenk = 2 andn = 4, and the basis (5.10) is used,

(5.11) Σ =


0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0

 .

In this caseΣ is orthogonal and symmetric. The formula (5.9) reduces to

U ∧ V = 〈V,ΣU〉C = 〈U,ΣV〉R ,(5.12)

for any U ∈ ∧2(C4), V ∈ ∧2(C4) ,

whereU = (U1, . . . , U6) andV = (V1, . . . , V6) are the components ofU
andV in the expansionsU =

∑6
i=1 Ui ωi andV =

∑6
j=1 Vj ωj .

Other useful formulae which follow from the above constructions, for
anyk andn, are

(5.13)
'ωi = (−1)k(n−k)

d∑
j=1

Σji αj , i = 1, . . . , d ,

and ' 'αi = (−1)k(n−k) αi .

Using these expressions and (5.5),

∗ ∗ V = ΣT ΣT V = (−1)k(n−k)V .

Therefore,Σ is symmetric (respectively skew-symmetric) whenk(n − k)
is even (respectively odd).

5.1 Interior matching condition for infinite domains

The formula (4.12) is not useful for numerics. A formula convenient for
numerics can be derived using Hodge duality.
SinceU+ ∈ ∧k(Cn) andU− ∈ ∧n−k(Cn), the function (4.12) is the

product of a complex function times the volume form onC
n. Fix the volume
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form to beV = e1 ∧· · ·∧en, wheree1, . . . , en is a fixed orthonormal basis.
The expression (4.12) then reduces to

(5.14) ∆(λ) = D(λ)V .

Anexplicit expression forD(λ)will be derived usingHodgeduality. The
vector spaces

∧k(Cn) and
∧n−k(Cn) are isomorphic and the isomorphism

is the Hodge star operator'. In particular, in (5.9) it is shown that, for any
pair of formsU+ ∈ ∧k(Cn) andU− ∈ ∧n−k(Cn),

U+(x, λ) ∧ U−(x, λ) = 〈U−,ΣU+〉R .

An algorithm for constructing thed× dmatrixΣ is given in Sect. 5, and in
the right-hand side of this formula, the components ofU+ ∈ ∧k(Cn) are
with respect to the basisω1, . . . , ωd. Similarly forU−, whose components
are the coordinates ofU− ∈ ∧n−k(Cn)with respect to thebasisα1, . . . , αd.
Therefore the matching functionD(λ) takes the explicit form,

(5.15) D(λ) = e− ∫ x
0 τ(s,λ) ds 〈U−,ΣU+〉R .

When τ = 0 the above formula simplifies. For the Orr-Sommerfeld
equation on an infinite domain, the case relevant for the stability of jets,
wakes and mixing layers for example, the above formula simplifies further.
In this casek = 2, n = 4, τ(x, λ) = 0 andΣT = Σ and so

(5.16) D(λ) = 〈U+,ΣU−〉R ,

whereΣ is given in (5.11).

6 Intermezzo: holomorphic systems and analytic subspaces

The functionD(λ), associated with either the finite or infinite interval case,
whose roots are eigenvalues, is a complex analytic function, and so appli-
cation of Newton’s method to find roots is straightforward. Given a suitable
first guessλ0 the Newton sequence

λm+1 = λm − D(λm)
D′(λm)

, m = 0, . . . ,

can be computed. When

D(λ) = 〈b(λ),U(0, λ)〉R ,

the derivativeD′(λ) is

D′(λ) = 〈b′(λ),U(0, λ)〉R + 〈b(λ), ∂λU(0, λ)〉R .
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The vectorb(λ) is known explicitly and therefore its derivative can be com-
puted analytically. The derivative ofU(0, λ) can be computed by appending
a differential equation for∂λU(x, λ) to the basic ODE,

(6.1)
d

dx

(
U

∂λU

)
=
[

A(k)(x, λ) 0
∂λA(k)(x, λ) A(k)(x, λ)

] (
U

∂λU

)
.

The initial condition for (6.1) is the initial condition forU(x, λ) and the
derivative of this initial condition. When the domain is finite this approach
is straightforward.
When the domain is infinite or semi-infinite, this approach is still sat-

isfactory although computing the starting values is not as straightforward.
This construction is needed for example when computing the stability for
3D rotating flows (cf. Sect. 10). An algorithm for computing the starting
vector and its derivative is constructed as follows.
To simplify notation, letB(λ) = A(k)

∞ (λ). The problem is to find the
eigenvalue ofB(λ) of largest positive (or negative) real part, its eigenvector
and the derivative with respect toλ of its eigenvector. For definiteness,
assume it is the eigenvalue with largest positive real part that is desired, and
denote it byσ(λ) and denote its eigenvector byξ(λ).
It follows from the theory in Sect. 4 that the eigenvalue of largest real

part ofB(λ) is simple and therefore analytic. The eigenvalue equation,
B(λ)ξ(λ) = σ(λ)ξ(λ), is analytic and when differentiated with respect to
λ,

(6.2) (B(λ) − σ(λ)I)
d

dλ
ξ(λ) = −B′(λ)ξ(λ) + σ′(λ) ξ(λ) .

To obtain d
dλξ(λ) it is necessary to solve this system, but the matrix

(B(λ)−σ(λ)) is singular sinceσ(λ) is aneigenvalue.The followingcoupled
bordered system onCd+1 is solved,

(6.3)

[(
[B(λ) − σ(λ)I] −ξ(λ)

−η(λ)∗ 0

)](
ξ′(λ)
σ′(λ)

)
=
(−B′(λ) ξ(λ)

0

)
.

It is straightforward to show that the bordered matrix is invertible.
In summary, for fixedλ, the eigenvalue (and associated eigenvector) of

A(k)
∞ (λ), of largest positive (or negative) real part is obtained numerically.

Since this eigenvalue is simple, and has real part farther from the origin
than any other eigenvalue of positive (respectively negative) real part, this
numerical construction will be robust. The augmented system (6.3) is then
solved forξ′(λ), and the starting vector for (6.1) is then(ξ(λ), ξ′(λ)) ∈
C
d × C

d.
There is another more subtle way that analyticity enters the analysis

when the domain of integration is infinite.
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As discussed in Sect. 4, even though individual eigenvalues may not be
analytic functions, theirk-fold sum, which appears as an eigenvalue of the
induced system is always analytic. A simple example from hydrodynamic
stabilitywhich illustrates thispoint about analyticity is thecaseof theasymp-
totic suction profile (cf. Drazin and Reid [17], p. 227, Hocking [25], Ng and
Reid [31], Herron [24]).
The governing equation for stability is a modification of the Orr-Som-

merfeld equation,

φ′′′′ + φ′′′ + (−2α2 − λR − iαRU(y))φ′′ − α2φ′

+(α4 + iαRU ′′(y) + iα3RU(y) + λRα2)φ = 0 ,

whereU(y) = 1 − e−y. This system can be written in the form (2.1), and
A(y, λ) goes to a well-defined limit asy → ∞.
The characteristic equation forA∞(λ) is

det[µI − A∞(λ)] = µ4 + µ3 + (−2α2 − λR − iαR)µ2

−α2µ+ (α4 + iα3R+ λRα2)
= 0 ,

Unlike the Orr-Sommerfeld equation, this asymptotic system has a value of
λ with positive real part, denotedλ0, with

λ0 =
α

R
− iα ,

where the twoµ−eigenvalues with negative real part coalesce (cf. Her-
ron [23] and Herron [24], p. 602). This coalescence can give rise to a branch
point in the complexλ plane, and individual solutions of (6.4) will not be
analytic for allλ in C+, the right-half complex plane.
On the other hand, the eigenvalueσ+(λ) – the sum of the eigenvalues

of negative real part – will be simple and an analytic function ofλ, and
therefore an eigenvalue relation for (6.4) constructed by restricting (6.4) to∧2(C4) will be analytic for allλ ∈ C+.

7 Example 1. Boundary layer interacting with a compliant surface

The study of the boundary-layer flow past a flexible surface has two primary
motivations. It is a fundamental model for the fluid flow past a dolphin and
other aquatic species (cf. Kramer [27]). Secondly, coating surfaces of man-
made waterborne vehicles with a compliant surface has been proposed as a
mechanism for delaying transition and drag reduction (cf. Carpenter [8]).
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In this section the theory of Sect. 2-6 will be applied to the model pro-
posed by Carpenter and Garrad [9] for the stability of two-dimensional
boundary-layer flow past a Kramer compliant surface.
The governing equations for the fluid are the two-dimensional Navier-

Stokes equations, linearized about the Blasius boundary layer, and the gov-
erning equation for the wall is a beam equation forced by the fluid pressure
at the wall. After nondimensionalization, the problem can be reduced to the
Orr-Sommerfeld equation, a fourth-order complex ODE, coupled to bound-
ary conditions at the wall. The Orr-Sommerfeld equation for the vertical
velocity perturbationφ(y) takes the form

(iαR)−1
(

d2

dy2 − α2
)2

φ = (U(y) − iλ/α)
(

d2

dy2 − α2
)

φ − U ′′(y)φ ,

0 ≤ y < +∞ ,(7.1)

whereU(y) is the Blasius velocity profile,α is the streamwise wavenumber,
R is the Reynolds number, andλ, which is associated with the wavespeed
of the perturbation, is the eigenvalue.
The two boundary conditions at the compliant surface,y = 0, are

(7.2) α2R (λ2 Cm + CBα
4 + CKE)φ(0) + λ(φ′′′(0) − α2φ′(0)) = 0 .

and

(7.3) αU ′(0)φ(0) + iλ φ′(0) = 0 ,

whereU ′(0) is the derivative of the Blasius velocity at the wall, andCm,
CB andCKE aredimensionlessparameters representativeofwall properties,
taking the form

(7.4)
Cm =

24226.420899
R

, CB = 6078227.413
E

R3

and CKE = 2.291813 × 10−13(230ER) .

Themain parameter isE, which represents wall rigidity and is input in units
of Nm−2; an increase inE represents an increase in wall rigidity, with
E = ∞ corresponding to a rigid wall. Details of the derivation of the above
system can be found in [9].
This equation canbewritten in the form (2.1)withn = 4 (and the symbol

x replaced byy) by taking

(7.5) u =


φ
φ′
φ′′
φ′′′

 and A(y, λ) =


0 1 0 0
0 0 1 0
0 0 0 1

γ1(y, λ) 0 γ2(y, λ) 0

 .
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where

(7.6)
γ1(y, λ) = −α4 − iα3RU(y) − iαRU ′′(y) − α2λR

and γ2(y, λ) = 2α2 + iαRU(y) + λR .

Note that the trace ofA(y, λ) is zero.
The boundary conditions aty = 0 can be written in the form (4.3),

(7.7) 〈η1(λ),u(0, λ)〉R = 〈η2(λ),u(0, λ)〉R = 0 ,

by taking

η1(λ) =


αU ′(0)

iλ
0
0

 , and η2(λ) =


θ1(λ)
αλ
0

−λ/α

 .

whereθ1(λ) = −αR(λ2Cm + α4CB + CKE).

7.1 Equation and boundary conditions on
∧2(C4)

The equations and boundary conditions are now in standard form to apply
the theory of Sect. 2-4. By fixing the standard basise1, . . . , e4 forC4, the in-
duced differential equation on

∧2(C4) associated with the Orr-Sommerfeld
equation is

(7.8) Uy = A(2)(y, λ)U , U ∈ ∧2(C4) ,

with

(7.9) A(2)(y, λ) =


0 1 0 0 0 0
0 0 1 1 0 0
0 γ2(y, λ) 0 0 1 0
0 0 0 0 1 0

−γ1(y, λ) 0 0 γ2(y, λ) 0 1
0 −γ1(y, λ) 0 0 0 0

 .

The limit asy → ∞ofA(y, λ)exists and therefore the theoryofSect. 4.2
applies. Working directly with (7.9), we find

(7.10) lim
y→+∞ A(2)

∞ (λ) =


0 1 0 0 0 0
0 0 1 1 0 0
0 γ∞

2 (λ) 0 0 1 0
0 0 0 0 1 0

−γ∞
1 (λ) 0 0 γ∞

2 (λ) 0 1
0 −γ∞

1 (λ) 0 0 0 0

 ,
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where

(7.11) γ∞
1 (λ) = −α4 − iα3R − α2λR andγ∞

2 (λ) = 2α2 + iαR+ λR.

TheeigenvalueofA(2)
∞ (λ)of largest negative real part is easily calculated

to be

σ+(λ) = −(α+ β) , where β2 = α2 + λR+ iαR ,

and thesquare rootwithpositive real part is taken.Theeigenvectorassociated
with σ+(λ) is

(7.12) ξ+(λ) =


1

σ+(λ)
α2 + αβ + β2

αβ
αβσ+(λ)
α2β2

 .

At y = 0 the induced boundary conditions are determined using the
theory in Sect. 4.1. The condition for an eigenvalue isD(λ) = 0 with

(7.13) D(λ) = 〈b(λ),U(0, λ)〉R ,

with the components ofb(λ) deduced from

b(λ) =
6∑
j=1

bj ωj = η1(λ) ∧ η2(λ) .

But writing η1(λ) andη2(λ) with respect to the standard basis,

η1(λ) ∧ η2(λ) = (αU ′(0)e1 + iλe2) ∧
(
θ1(λ) e1 + αλ e2 − λ

α
e4

)
=
(
α2λU ′(0) − iλθ1(λ)

)
e1 ∧ e2

−λU ′(0)e1 ∧ e4 − i
λ2

α
e2 ∧ e4

=
(
α2λU ′(0) − iλθ1(λ)

)
ω1 − λU ′(0)ω3 − i

λ2

α
ω5 ,

hence

b(λ) =


α2λU ′(0) − iλθ1(λ)

0
−λU ′(0)

0
−iλ2/α

0

 .
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Therefore, the proposed algorithm is to fix values forR, α, the wall
parameters andλ ∈ Λ and integrate (7.8) fromy = L∞ to y = 0 using an
implicit GL-RK method, with starting vectorξ+(λ) in (7.12). The results
presented here are computed usingL∞ = 10.0 and the fourth-order implicit
GL-RK method. A valueλ ∈ Λ is an eigenvalue ifD(λ) = 0 with D(λ)
defined in (7.13). Roots ofD(λ) are then refined using Newton’s method as
discussed in Sect. 6.

7.2 Computing neutral curves

Of interest in applications are curves ofneutral stabilitywhich correspond
to curves in theα−R plane whereRe(λ) = 0. Inside the curve corresponds
to instability.

Fig. 1. Effect ofE on the neutral curves, plotted in theα − R plane: values inside a curve
correspond to instabilityRe(λ) > 0

In Fig. 1, the computed effect of wall rigidity on stability is shown.When
E is very large, the neutral curve for the Blasius boundary layer is recovered
(cf. Drazin andReid [17], Sect. 31.5). Figure 2 shows a blowup of the region
near the nose of the neutral curve asE approachesEc. The pointEc, which
we compute to beEc = 0.007065, is the point where the neutral curve
collapses to a point. The pointEc is important in applications because for
E < Ec the flow is extraordinarily stable: the transition Reynolds number
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has been increased dramatically. This effect suggests that compliant surfaces
could reduce drag by delaying transition to turbulence. The results in Fig. 1
show excellent qualitative agreement with Fig. 11 of [9].

Fig. 2. Blowup of the nose of the neutral curve in Fig. 1 near the critical value ofE

Further results on this model are reported in [2], including a range of
new results on the effect of wall damping and wall tension.

8 Example 2. Eigenvalue problem
associated with the Hocking-Stewartson pulse

A particularly difficult eigenvalue problem is that associated with the lin-
earization about a solitary wave or pulse. In this section we give an example
of how the framework of this paper give a new robust algorithm for studying
the stability of solitary waves.
The complex Ginzburg-Landau (cGL) equation can be written in the

scaled form

(8.1) ρ eiψ At = Axx − (1 + iω)2 A+ (1 + iω)(2 + iω) |A|2A ,

whereA(x, t) is complex valued andρ > 0, ω, ψ are specified real pa-
rameters. There is an exact solution – the Hocking-Stewartson (HS) pulse –
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which can be explicitly determined,

(8.2) A(x, t) def= Â(x) = (coshx)−1−iω .

The spectral problem is obtained by linearizing the real form of (8.1) about
the HS pulse (8.2), and looking for solutions proportional toeλt. Then the
problem,withλ ∈ Cas the spectral parameter, is formulated in anequivalent
way as a system of the form

(8.3) vx = A(x, λ)v , x ∈ R , v ∈ C
4 ,

with Trace(A(x, λ)) = 0.
A discrete eigenvalue of this problem is a value ofλ ∈ C for which

(8.3) has a solution which decays exponentially asx → ±∞. For example,
λ = 0 is always an eigenvalue; in fact, of multiplicity at least two, due to
the rotation and translation symmetries of (8.2).
The system is now in standard form to apply the theory of Sect. 2 and

Sect. 5.1. Let

A∞(λ) = lim
x→±∞ A(x, λ) ,

then it is straightforward to show that for parameter values of interest, and
with Re(λ) > 0, the matrixA∞(λ) has exactly two eigenvalues with posi-
tive real part and twowith negative. Therefore, it is natural to study theODE
on the space

∧2(C4).
LetU+(x, λ) ∈ ∧2(C4) represent the two-dimensional space of solu-

tionswhichareboundedasx → +∞, and letU−(x, λ) ∈ ∧2(C4) represent
the two-dimensional space of solutions which are bounded asx → −∞.
Then, since the trace ofA(x, λ) is zero, the complex function whose zeros
correspond to eigenvalues is

(8.4) D(λ) = 〈U+(x, λ), Σ U−(x, λ)〉R .

whereΣ is as defined in (5.11), and no conjugation is used in the inner
product (a complex inner product could be used, and then conjugationwould
be appliedbeforeputtingU± into the inner product).
The numerical computation proceeds as follows. The infinitex−domain

is truncated to−L∞ < x < L∞ with L∞ suitably chosen. Then, the main
part of the algorithm involves numerical integration of the following two
systems withλ fixed

d

dx
U+ = A(2)(x, λ)U+ , U+(x, λ)

∣∣
x=L∞

= ξ+(λ) ,(8.5)

for L∞ > x > 0 ,
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and

d

dx
U− = A(2)(x, λ)U− , U−(x, λ)

∣∣
x=−L∞

= ξ−(λ) ,(8.6)

for − L∞ < x < 0 .

These two systems are integrated using the second-order implicit Gauss-
Legendre Runge-Kutta (GL-RK) method (higher-order GL-RK methods
could also be easily used but didn’t appear to be necessary).
Numerical results using this algorithm showed for the first time that

the Hocking-Stewartson pulse is unstable for the range of parameter values
associated with cGL as a model for plane Poiseuille flow. Details of the
numerical results are reported in [1], including comparison with Beyn and
Lorenz [3] who studied the stability problem using a matrix discretization
with approximate boundary conditions.
Further work on the use of numerical exterior algebra to compute the

stability exponents associated with the linearization about solitary waves
is in progress. For example, Bridges et al. [7] use this framework to study
numerically the stability of solitary waves of the 5th-order KdV, which leads
to a problem withn = 5 andk = 2.

9 Example 3. Instability of the Bickley jet

The stability of flows in unbounded domains, such as jets, wakes andmixing
layers, is often studied using the Orr-Sommerfeld equation (cf. Drazin and
Reid [17], Sect. 31, Herron [24]). In this section, the algorithm for infinite
domains developed in Sect. 5.1 is illustrated by application to the Bickley
jet. Mathematically, the stability problem for the Bickley jet is identical to
the stability problem for a solitary wave such as the HS pulse studied in
Sect. 8
In scaled variables, the horizontal velocity field for the Bickley jet takes

the form

(9.1) U(x) = sech2x , −∞ < x < ∞ .

The standard basis forC4 and
∧2(C4) are chosen so that the Orr-Sommer-

feld equation on
∧2(C4) takes the form,

(9.2) Ux = A(2)(x, λ)U ,

withA(2)(x, λ) given by (7.9).
For the jet,A∞(λ) is the same for both±∞. Whenα �= 0 andR > 0,

there are exactly two eigenvalues ofA∞(λ) with positive real part for all
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λ ∈ Λ, whenΛ = { C : Re(λ) > 0 }. The eigenvalues ofA(2)
∞ (λ) with

largest positive and negative real part respectively are

(9.3) σ±(λ) = ∓(α+ β) ,

whereα > 0 is the wavenumber, andβ is the root ofβ2 = α2+λR,λ ∈ Λ,
with positive real part. The connection betweenλ and the wave speedc is
λ = −iαc. The eigenvectors ofA(2)

∞ (λ) associated withσ±(λ) are

(9.4) ξ±(λ) =


1

σ±(λ)
α2 + αβ + β2

αβ
αβ σ±(λ)

α2β2

 .

The system (9.2) is integrated fromx = L∞ to x = 0 with starting vector
ξ+(λ), andL∞ is taken to beL∞ = 10 in the results reported here. Call
this solutionU+(x, λ). The system (9.2) is then integrated fromx = −L∞
to x = 0 with starting vectorξ−(λ). Call this solutionU−(x, λ).
A value ofλ ∈ C is an eigenvalue ifU+(x, λ) ∧ U−(x, λ) = 0 for all

x ∈ R. Using the theory in Sect. 5.1 this condition is satisfied ifD(λ) = 0
where

(9.5) D(λ) = 〈U+, Σ U−〉R ,

whereΣ is defined in (5.11).
Numerical calculation of the neutral curve for the Bickley jet using the

above algorithm is shown in Fig. 9, and the curve agrees to graphical accu-
racywith the neutral curve due toSilcock and reported in Fig. 4.26 byDrazin
and Reid [17]. Newton’s method, as described in Sect. 8, and continuation
were used to compute the points on the neutral curve.
The calculations were done using the implicit midpoint rule, which is

only second-order accurate, but is clearly adequate for graphical accuracy.

10 Example 4. ODEs on
∧6 and the rotating Ekman layer

The stability problem for the Ekman boundary layer – which appears in
atmospheric dynamics and oceanography – can be reduced to a sixth order
complex ODE of the following form, which is a generalization of the Orr-
Sommerfeld equation,

(10.1) φ′′′′ − b(x)φ′′ − a(x)φ+ 2ψ′ = 0 , 0 ≤ x < +∞

(10.2) ψ′′ + (γ2 − b(x))ψ − iγRŨ ′φ − 2φ′ = 0 , 0 ≤ x < +∞ .
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Fig. 3. Computed neutral curve for the Bickley jet

where

a(x) = −γ4 − iγ3R(Ṽ (x) − c) − iγRṼxx

b(x) = 2γ2 + iγR(Ṽ (x) − c) .

In this system,γ is the modulus of the wavenumber,R the Reynolds num-
ber, andc = iλ/γ with λ the eigenvalue. The functions̃U and Ṽ are the
components of the the Ekman velocity field, and explicit expression in terms
of elementary functions can be given but are not needed here (see [2]). The
coordinatex represents the vertical direction in a physical problem. The first
equation (10.1) reduces to the Orr-Sommerfeld equation whenφ′ = 0.
The boundary conditions associated with a rigid surface atx = 0 are

(10.3) φ(0) = φ′(0) = ψ(0) = 0 ,

It is straightforward to now transform this system into the standard form
of Sect. 2. The system of ODEs can be expressed as a linear system of the
form

ux = A(x, λ)u , u ∈ C
6 ,

with three boundary conditions

〈e1,u(0, λ)〉 = 〈e2,u(0, λ)〉 = 〈e5,u(0, λ)〉 = 0 ,

whereej is the standard unit vector inC6.
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The natural space to integrate this system is
∧3(C6) which has dimen-

sion20. We proceed by introducing a standard lexically-ordered basis for∧3(C6). We can then construct the induced ODE

(10.4) U+
x = A(3)(x, λ)U+ , U+ ∈ ∧3(C6) .

The induced boundary condition atx = 0 is that the component – called
D(λ) – ofU+ in the directione1 ∧ e2 ∧ e5 should be zero.
The most difficult part of this example is constructing the starting values

aty = L∞. Let
A∞(λ) = lim

x→∞ A(x, λ) .

The characteristic polynomial forA∞(λ) takes the form

det[µI − A∞(λ)] = µ6 − f1(λ)µ4 + f2(λ)µ2 − f3(λ) ,

wheref1, f2, andf3 are analytic functions ofλ with explicit expressions. It
is straightforward to prove that whenRe(λ) > 0 there are exactly three roots
with negative real part and three with positive. However explicit expressions
are difficult to work with, and therefore we used the numerical algorithm
proposed in Sect. 6 to construct the starting vectors.
Preliminary numerical results show that the algorithm is robust and the

results show impressive accuracy even with the second-order implicit mid-
point method. Details of this problem, the numerical results, and extension
to the case where the wall aty = 0 is compliant and so its dynamics are
coupled to the fluid are given in [2].

Appendix

A Hodge duality and adjoint systems

In Ng and Reid [32], it is shown for the casesn = 2k with k = 2, 3 that the
solutions of the adjoint systemsobtained from the compoundmatrix systems
can be related without calculation to the solutions of the basic system. In
this appendix, we give a new proof of this result and generalize it to arbitrary
n = 2k. In fact we show that this result is due to Hodge duality: themapping
from the adjoint system is related to the Hodge star operator, and therefore
a coordinate-free characterization can be given.
The basic question is the following. Given the induced system

(A.1) Ux = A(k)(x, λ)U , U ∈ ∧k(Cn) ,

how are the solutions of the adjoint of (A.1),

(A.2) U†
x = −[A(k)(x, λ)]∗ U† ,
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related to solutions of (A.1). The superscript∗ indicates complex conjugate
transpose.
Firstweproveamoregeneral result.Consider thesystemcomplementary

to (A.1),

(A.3) Vx = A(n−k)(x, λ)V , V ∈ ∧n−k(Cn) .

SupposeU andV are decomposable and complementary, and letΦ(x, λ)
be ann × n matrix whose columns are the decomposable vectors which
make upU andV. ThenΦ(x, λ) is a fundamental matrix solution of (1.1)
and

U ∧ V = det[Φ(x, λ)]V ,

whereV is a suitably chosenvolume form (without lossof generality, assume
the standard one), and so

(A.4)

d

dx
U ∧ V = τ(x, λ)U ∧ V

since
d

dx
det[Φ(x, λ)] = τ(x, λ) det[Φ(x, λ)] ,

by the Abel-Liouville Theorem for linear systems.
Now differentiate the identity (5.6)

(A.5)
d

dx
U ∧ V = 〈Vx,ΣU〉C V + 〈V,ΣUx〉C V .

The left-hand side can be transformed using (A.4) and (5.6).

(A.6) τ 〈V,ΣU〉C V = 〈Vx,ΣU〉C V + 〈V,ΣUx〉C V .

Now substitute forUx andVx,

(A.7) τ 〈V,ΣU〉C = 〈A(n−k)V,ΣU〉C + 〈V,ΣA(k)U〉C .

Since this identity holds for allU ∈ ∧k(Cn)andV ∈ ∧n−k(Cn), it follows
that

(A.8) ΣA(k) + [A(n−k)]T Σ = τ Σ .

Now consider the special casen = 2k and take the same basis for∧k(Cn) and
∧n−k(Cn). In this casek = n − k, and

(A.9) ΣA(k) + [A(k)]T Σ = τ Σ .

Now, define

(A.10) U† = e− ∫ x
0 τ(x,λ) dsΣT U , with U ∈ ∧k(Cn) ,
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withU satisfying (A.1). Then

d

dx
U† = e− ∫ x

0 τ(s,λ) ds(−τ(x, λ)ΣT U + ΣT Ux)

= e− ∫ x
0 τ(s,λ) ds(−τ(x, λ)ΣT + ΣT A(k))U

= e− ∫ x
0 τ(s,λ) ds(−[A(k)]∗ ΣT U) using (A.9)

= −[A(k)]∗ U† ,

showing thatU† in (A.10) is indeed the adjoint function, and is given ex-
plicitly in terms ofU using the Hodge star isomorphismΣ, and a scalar
multiplierwhen the trace ofA(x, λ) is nonzero. Anotherway towrite (A.10)
is

(A.11) U† = '(e− ∫ x
0 τ(x,λ) dsU) = e− ∫ x

0 τ(x,λ) ds ' U .

The result (A.10) is the generalization of equation (3.8) and (3.17) in
[32], and for the casesk = 2 andk = 3 it agrees with [32], when the
standard basis is chosen: compare the definition ofT in equation (3.9) of
[32] withΣ in (5.11) in Appendix A.
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