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Summary. One approximates the entropy weak solutionf a nonlinear
parabolic degenerate equationt-div(qf(u)) — Ap(u) = 0 by a piecewise
constant functionip using a discretizatio® in space and time and a finite
volume scheme. The convergence:gfto v is shown as the size of the space
and time steps tend to zero. In a first step, estimatescare used to prove

the convergence, up to a subsequenceyofo a measure valued entropy
solution (called here an entropy process solution). A result of uniqueness of
the entropy process solution is proved, yielding the strong convergence of
up to u. Some numerical results on a model equation are shown.

Mathematics Subject Classificatiofb6M12

1 The nonlinear parabolic degenerate problem

Let 2 be a bounded open subsetRf, (d = 1,2 or 3) with boundaryds?
and letT" € R’ . One considers the following problem.

w(z, t) + div (q f(u)) (z,1) — Ap(u)(z,t) = 0,

1) for (z,t) € 2 x(0,7).
The initial condition is formulated as follows:
2 u(z,0) = ug(x) forz e 2.

Correspondence tdR. Eymard
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The boundary condition is the following nonhomogeneous Dirichlet con-
dition:
(3) u(z,t) = u(z,t), for(x,t) € 92 x (0,7T).

This problem arises in different physical contexts. One of them is the
problem of two phase flows in a porous medium, such as the air-water flow
of hydrological aquifers. In this case, Problem (1)-(3) represents the conser-
vation of the incompressible water phase, described by the water saturation
u, submitted to convective flows (first order space teqts ¢) f(u)) and
capillary effects QAp(u)). The expressiowy(x,t) f(u) for the convective
term in (1) appears to be a particular case of the more general expression
F(u,z,t), butsince it involves the same tools as the general framework, the
results of this paper could be extended to some other problems.

One supposes that the following hypotheses, globally referred to in the
following as hypotheses (H), are fulfilled.

Hypotheses (H)

(H1) (2 is polygonal (ifd = 1, 2 is an interval, and ifd = 3, {2 is a
polyhedron),

(H2) up € L>°($2)andu € L>® (942 x (0,T)), u being the trace of a func-
tion of H'(£2 x (0,T)) N L>(£2 x (0,T)) (also denoted:); one sets
Ur = min(infessuy, infessu) andUg = max(Supess.g, supessi),

(H3) ¢ is a nondecreasing Lipschitz-continuous function, with Lipschitz
constant?, and one defines a functignsuch thatt’ = /¢,

(H4) f € C'(R,R), f' > 0; one setsF = max,c [y, vq f'(5),

(H5) q is the restriction ta? x (0, T) of a function olC! (R? x R, R%),

(H6) div(q(x,t)) = 0 forall (z,t) € R? x (0,T), wherediv(q(z,t)) =

: 9qi
Gxi

(z,t), (¢; is thei-eth component of) and
i=1

(4) q(z,t).n(x) =0, fora.e.(z,t) € 02 x (0,T),
(for z € 02, n(x) denotes the outward unit normal fo at pointz).

Remark 1.1The functionf is assumed to be non decreasingif) for the

sake of simplicity. In fact, the convergence analysis which we present here
would also hold without this monotonicity assumption using for instance a
flux splitting scheme for the treatment of the convective terftu).

Under hypotheseé&H ), Problem (1)-(3) does not have, in the general
case, strong regular solutions. Because of the presence of a non-linear con-
vection term, the expected solution is an entropy weak solution in the sense
of Definition 1.1 given below.
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Definition 1.1 (Entropy weak solution) Under hypotheses (H), a function
u is said to be an entropy weak solution to Problem (1)-(3) if it satisfies:

(5) u e L2(2 x(0,7)),

(6) p(u) —p(a) € L*(0,T; H (12)),

andu satisfies the following Kruzkov entropy inequalitigs) € Dt (2 x

[0,7)), Vk € R,
/ (f (u(z, ) Tr) — f(u(z, t) k) a(z,t) - Vip(z,t) | ddt
230D | =V]p(u)(z,t) — @(k)] - Vi (,1)

+ / o) — wlib(x, 0)dz > 0,
2

]u(a:,t) - "{| 1/%(%75)4'

where one denotes lylb the maximum value between two real valaes
andb, and bya_L b their minimum value and whe®@* (2 x [0,7)) = {¢ €
C(2 % R,Ry),9(-,T) = 0}.

This notion has been introduced by several authors ([5], [20]), who
proved the existence of such a solution in bounded domains. In [20], the
proof of existence uses strong BV estimates in order to derive estimates
in time and space for the solution of the regularized problem obtained by
adding a small diffusion term. In [5], the existence of a weak solution is
proved using semigroup theory (see [2]), and the uniqueness of the entropy
weak solution is proved using techniques which have been introduced by
S.N. Krushkov and extended by J. Carrillo.

In the present study, thanks to condition (4), boundary conditions are
entirely taken into account by (6) and do not appear in the entropy inequality
(7). For studies of the continuous problem, one can refer to [20], which uses
the classical Bardos-Lerouxé&€lec formulation [1], or [5] in the case of a
homogeneous Dirichlet boundary condition@f? without condition (4).

Let us mention some related work in the case of infinite domdihs=(
R%): In [3], the authors prove the existence in the c&se R?, regularizing
the problem with the “general kinetic BGK” framework to yield estimates
on translates of the approximate solutions. Continuity of the solution with
respect to the data for a more general equation was studied by Cockburn
and Gripenberg [8], and convergence of the discretization with an implicit
finite volume scheme was recently studied by Ohlberger [21].

We shall deal here with the case of a bounded domain. The aim of the
present work is then to prove the convergence of approximate solutions
obtained using a finite volume method with general unstructured meshes to-
wards the entropy weak solution of Problem (1)-(3) as the mesh size and time
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step tend to 0. We state this result in Theorem 2.1 in Sect. 2, after presenting
the finite volume scheme. Then in Sect. 3, the existence and unigqueness of
the solution to the nonlinear set of equations resulting from the finite vol-
ume scheme is proven, along with some properties of the discrete solutions.
In Sect. 4 we show some compactness properties of the family of approx-
imate solutions. We show in Sect. 5 that there exists some subsequence of
sequences of approximate solutions which tends to a so-called “entropy pro-
cess solution”, and in Sect. 6 we prove the uniqueness of this entropy process
solution, which allows us to conclude to the convergence of the scheme in
Sect. 7. We finally give an example of numerical implementation in Sect. 8.

2 Finite volume approximation and main convergence result

Let us first define space and time discretization§2of (0, 7).

Definition 2.1 (Admissible mesh off2) An admissible mesh &? is given
by a set7 of open bounded polygonal convex subset& aflled control
volumes, a family of subsets of? contained in hyperplanes & with
strictly positive measure, and a family of poifisy ) k<7 (the “centers” of
control volumes) satisfying the following properties:

(i) The closure of the union of all control volumes(s

(i) Forany K € T,there exists a subs&f; of £ suchthab K = K\K =
Ugeg, 0. Furthermore = Ugcrék.

(iii) Forany (K, L) € T?with K # L, either the “length” (i.e. the(d — 1)
Lebesgue measure) AfN Lis0 or KN L = & for somer € £. Inthe
latter case, we shall write = K|L and&;,,y = {0 € £,3(K,L) €
T2,0 = K|L}. ForanyK € T, we shall denote by the set of
boundary control volumes df , i.e. Nx = {L € T,K|L € &k }.

(iv) The family of point§x ) k7 is such thateir € K (forall K € T)
and, ifo = KJ|L, it is assumed that the straight ling:x, z1) is
orthogonal too.

For a control volumeX € 7, we will denote byn(K) its measure and
Eext, i the subset of the edgesidfincluded in the boundar§ 2. If L € N,
m(K|L) will denote the measure of the edge betwéeand L, 7|, the

“transmissibility” through K| L, defined by x|, = M Similarly, if

. . dwy,xp)
o € Eext i, We Will denote byn (o) its measure and, the “transmissibil-
ity” through o, defined by, = m Onedenotes..: = Uxe7Eert Kk
dlzxg,o ’

and foro € &, one denotes by, the control volumeK such that
o € Eept k. The size of the meshis defined by

8) size(T) = max diam(K),
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and a geometrical factor, linked with the regularity of the mesh, is defined
by

diam(K)
9) reg7) = %ggg(cardé‘ K, max d@r.0)

).

Remark 2.1Assumption (iv) in the previous definition is due to the presence

of the second order term. Examples of meshes satisfying these assumptions
are triangular meshes satisfying the acute angle condition (in fact this con-
dition may be weakened to the Delaunay condition), rectangular meshes or
Vorond meshes, see [14] or [13] for more details.

Definition 2.2 (Time discretization of (0, 7)) A time discretization of
(0,T) is given by an integer valu&’ and by an increasing sequence of
real values(t"),,c[o,n+1] With t = 0 and ¢! = T The time steps are
then defined byt" = t"+1 — " forn € [0, N].

Definition 2.3 (Space-time discretization of2 x (0,T)) A finite vol-
ume discretizatioD of 2 x (0,7) is the familyD = (T, &, (k) keT, N,
(t")nefo,n1) WhereT, &, (z ) k7 is an admissible mesh 6fin the sense
of Definition 2.1 andV, (t"),,c[o,n+1] IS @ time discretization of0, T') in
the sense of Definition 2.2. For a given mé&3hone defines:

size(D) = max(size(T), (6t" )nefo,n]) andregD) =reg(7).

We may now define the finite volume discretization of Problem (1)-(3) .
LetD be afinite volume discretization 6fx (0, T') in the sense of Definition
2.3. The initial condition is discretized by:

1

(10) Uy = (i) /Kuo(as)dx, VK € T.

In order to introduce the finite volume scheme, we need to define:

n+1
U” = S (o) mio /t / u(x, t)dy(z

tn+l

(11) Vo € 5m,vn elo,N
1 tn+1
G = [ [ atet) i@
’ 6t tn K‘L
(12) VK € T,VL € Nk,Vn € [0, N],

whereng 7, is the normal unit vector té| L oriented fromi to L.

An implicit finite volume scheme for the discretization of Problem
(2)-(3) is given by the following set of nonlinear equations, the discrete
unknowns of which ar& = (UTl)KeT,neﬂo,N]]i
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U Uy
- = K
+ 30 (@D RO — (@h )]
LeNgk
- Z TK|L +1 (U}éﬂ))
LeNk
— Y TleFt) = e(UE)) =0,
UEgezt,K
(13) VK € T,Vn € [0, N],
where(¢j;}) " and(¢j"} )~ denote the positive and negative partgf;
(€. (q))F = max(qy'} . 0) and(q))~ = — min(g}iH}. 0).

Remark 2.2The upwind discretization of the fluef(«) in (13) uses the
monotonicity off and should be replaced in the general case by, for instance,
a flux splitting scheme.

Remark 2.3Thanks to Hypothesis (H6), one gets for Alle 7 andn €
LY. gt = Y ) — (@) 7] = 0. Thisleads to

LeNk LeNk
ST @D IO = (g Ut
LeENk
(14) == (qEH (FUpth = fFUET).
LeNk

This property will be used in the following.

In Sect. (3) we shall prove the existence (Lemma 3.1) and the uniqueness
(Lemma 3.4) of the solutioti = (U;éH)KeT,ne[[o,N]] to (11)-(13). We may
then define the approximate solution to Problem (1)-(3) associated to an
admissible discretizatiof of {2 x (0,7") by:

Definition 2.4 LetD be an admissible discretization 6f x (0,7) in the
sense of Definition 2.3. The approximate solution of Problem (1)-(3) asso-
ciated to the discretizatio® is defined almost everywhere §a x (0,7)

by:

up(z,t) = Uptt, Vo € K, Vt € (t", "), VK € T, ¥n € [0, N],
(15)

where(U}}“)KeT’ne[[O,Nﬂ is the unigque solution to (11)-(13).
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Theorem 2.1 (Convergence of the approximate solution towards the
entropy weak solution) Let ¢ € R, consider a family of admissible dis-
cretizations of2 x (0, T") in the sense of Definition 2.3 such that, for Al

in the family, one hag > reg(D). For a given admissible discretizatidn

of this family, letup denote the associated approximate solution as defined
in Definition 2.4. Then:

up — u € LP(£2 x (0,T)) assizgD) — 0, Vp € [1, +00),
whereu is the unique entropy weak solution to Problem (1)-(3) .

The proof of this convergence theorem will be concluded in Sect. 7 after
we lay out the properties of the discrete solution (Sects. 3 and 4), its con-
vergence towards an “entropy process solution” (Sect. 5) and a uniqueness
result on this entropy process solution (Sect. 6).

Remark 2.4Allthe results of this paper also hold for explicit schemes, under
a convenient CFL condition on the time step and mesh size.

3 Existence, uniqueness and discrete properties

We state here the properties and estimates which are satisfied by the scheme
which we introduced in the previous section and prove existence and unique-
ness of the solution to this scheme. All the discrete properties which we
address here correspond to natural estimates which are satisfied, at least for-
mally, by regular continuous solutions. Let us first start by.&nestimate:

Lemma 3.1 (L*° estimate) Under hypothese&H ), let D be a discretiza-
tion of {2 x (0, T) in the sense of Definition 2.3 and (ﬂﬁﬂ)KeT,ne[O,N}]
be a solution of scheme (11)-(13). Then

U <UM <Ug, VK €T, V¥ne[o,N].
K

Proof. LetUy = max U7 andletn € [0, N] andK € T such
LeT,me[o,N]

thatUp:! = Uy, Equations (13) and (14) yield

Uni = U = U + 28 S (@) (FUPHY) — S

m(K)LeNK

16) + S U — o(U)
m(K)LeNK
5&) S (T — pUE)).
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If one assumes that,; > max U™ *1, using the monotonicity of
0€Eext,me[0,N]

p andf, one getd/;; < Uy, and thereforé/,, < U})(.
This shows that

Uy <max(  max Um ! max UY),
0€Eezt,mE[0,N] LeT

yieldingU,; < Ug. By the same method, one shows that min UF“
LeT,me[0,N]

> Ur. a

A corollary of Lemma 3.1 is the existence of a solution
(U[n(—H)KET,nE[[O,N]] to (11)-(13). (Unigueness is proven in Lemma (3.4)
below).

Corollary 3.1 (Existence of the solution to the schemelnder hypothe-
ses(H), let D be a discretization of2 x (0,7") in the sense of Definition
2.3. Thenthere exists asolutidﬁﬁ“);{g’neﬂowﬂ tothe scheme (11)-(13).

The proof of this corollary is an adaptation of the technique which was
used in [11] for the existence of the solution to an implicit finite volume
scheme for the discretization of a pure hyperbolic equation.

The two following lemmas express the monotonicity of the scheme. Both
are used to derive continuous entropy inequalities.

Lemma 3.2 (Regular convex discrete entropy inequalities)nder hy-
pothese$H), letD be a discretization af? x (0, ') in the sense of Definition
2.3and letV = (U) ker nefo,n be a solution to (11)-(13).

Then, for ally € C?(R,R), with n” > 0, for all x andv in C}(R, R)
with i/ = /() andv’ = 1/ (¢)f', forall K € T, andn € [0, N], there
exist(Uit)) ey, with U € (min(UR, U7, max(UREH, z{g“))
forall L € Ng and (Ui oee,,, o With U € (min(URH, U7,
max (Uit U2+ for all o € Eeur e satisfying

pUR™) = (UR)

S m(K)
+ 3 (gD UE) = (@) vt
LeENk
3" T @eUE) = n(e(UEY))
LeNxk
= ) mm(e@F) = n(eUET))
0€Eeat, K

1 n n n
+5 > it (U (e(UTH) = o(UE)?
LeNk
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aD oty S w3 — pUR)? <0

Uegezt,K

Proof. In order to prove (17), one multiplies Equation (13)Bge (U-)).
The convexity ofu yields

Un+1 _yn . M(Un+1) _ M(Un+1)
m(K) KB (p(UH) 2 () R

(18)

Using the convexity of and Remark 2.3, one gets

= > (@O = FURTYY (p(UE)

LeNk
> = > (g WUt = v(Uith)
LeNk
> > () U = () vt
LeNgk

The Taylor-Lagrange formula gives, for dlle Nk and allo € Eqqt k.,
the existence of

U;}f; € (min(Up, Ut max (U, UP)
and
U}?Ll € (min(UE, U2, max(UE, U2HY)

such that

—((UPY) = o(UEI) (p(UET)
= —(n(eUth) = n(eUE™)))

ot (U U — (U ))2,
~(@(T3) — U (H(UFH))
= —((e(T3) ~ n(eU)))

" (U ((T3) — plUFH))

Then collecting the previous inequalities gives Inequality (17). O
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Lemma 3.3 (Kruzkov’s discrete entropy inequalities) Under hypothe-
ses(H), let D be a discretization of2 x (0,7') in the sense of Definition
2.3andletV = (U[?H)KET,nE[[O,N]] be a solution of the scheme (11)-(13).

Then, foralls € R, K € T andn € [0, N],
U — k| = U — |

S m(K)
+ 3 [@EDHFUE) = ) AU = £l
LeNk
= > W) = ()] = (U = p(x)])
LeNk
19 — > (W) - o) - [p(URE™) — p(x)]) <0
0€Ecat, K

Proof. In order to prove Kruzkov’s entropy inequalities, one follows [11].
Equation (13) is rewritten as

(20) B(U[’ré—"_l’ U}é’ (U£+1)LENK7 ((7;'14"»1)0'65@1757}() = 07

whereB is nonincreasing with respect to each of its arguments eié?p]t.
Consequently,

(21) BUF U TR, (U TR) Lenie, (U2 TR)seg.n ) < 0.
SinceB(k, K, (K) LeNy » (fs)oegew) =0, one gets

(22) Bk, UgTk, (U™ TE) Lenie, (U7 TR)gegon ) < 0.
Using the fact thal/j-t Tx = U™ or s, (21) and (22) give

(23) BUE' Tr, U Tk, (U TR) Lens, (U2 TR)oe ) < 0.
In the same way one obtains

(24) BUE" L, U Lk, (U Li) ene, (UFT k) seg i) = 0.

Substracting (24) from (23) and remarking that for any nondecreasing
functiong and all real values, b, g(aTb) — g(aLb) = |g(a) — g(b)| yields
Inequality (19). a

Let us now prove the uniqueness of the solution to (11)-(13) and define
the approximate solution.

Lemma 3.4 (Uniqueness of the approximate solutionJnder hypothe-
ses(H), let D be a discretization of2 x (0,7) in the sense of Definition
2.3. Then there exists a unique solut(cﬁr’ﬁ“)KeT’ne[o’N]] to (11)-(13).
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Proof. The existence ofU;:™!) KeTmelo,n] Was established in Corollary
3.1. There only remains to prove the uniqueness of the solution. Let

(UK ) kermetony and (V) ket nepo,ng (settingV = Ug) be two
solutions to the scheme (11)-(13). Following the proof of Lemma 3.3, one
gets, forall € 7 and alln € [0, N],

BURH TV URTVE, (U TV D penie, (U7 oeeiani) <0,
(25)
and
BURH LV UR LV (U LV ) renie, (U7 oeeinni) 2 0,
(26)
which by substraction give

U = VR — [UR — VR

ot"

q;?; HFUET) = f(VE)
(@)1 = pvpth)

2

LeNk
Un+1 Vn+1 .
- Z TK|L |: Un+2) ((‘?n+%|)’ :|
LeENK K
(27) + D Tle(URT) —e(VEH < 0.
UEgemt,K

Foragivem € [0, N], one sums (27) o € 7 and multiplies by¢".
All the exchange terms between neighbouring control volume disappear,
and because of the sign of the boundary terms, one gets

28) > (U = VRt m(K) < Y |UR — Vi m(K).
KeT KeT

SinceUy, = Vi, one concludesy _ [Upt" — V! | m(K) = 0, for
KeT
all n € [0, N, which concludes the proof of uniqueness. O

Let us now give two discrete estimates on the approximate solution
which will be crucial in the convergence analysis. The first estimate (29) is a
discreteL?(0, T, H'(£2)) estimate on the functiot(up) where¢’ = /.

This estimate will yield some compactness@np).

The second estimate is the wek inequality (30) onf (up). Such an
inequality also holds for the continuous problem with an additional diffusion
term —e A f(u). This inequality does not give any compactness property
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(to our knowledge, ndBV estimate is known in the case of unstructured
meshes); however it plays an essential role in the proof of convergence,
where itis used to control the numerical diffusion introduced by the upstream
weighting scheme (see Sect.5 and [7,9,11, 6]).

Proposition 3.1 (DiscreteH ' estimate and weakBV inequality)
Under hypothesedd ), letD be a discretization of? x (0, T") in the sense of
Definition 2.3. Le € R be such that > reg(D); let (Up™) ket nefo.ng
be the solution of the scheme (11)-(13).

Then there exists areal numb@r> 0, only depending of, T', ug, @, f,
q, p and¢ such that

N
(Np(C(up)))® = 25’5" > T CUET) = ¢Upth)?

n=0 K|LEEint
(29) +Z 0" Y T (U = ¢Uh) < C
0EEext
(Bp Z&‘” > U+ (@hh)
K|LEEint
(30) ><(f(U}é“) - [ty <c

Proof. One first defines discrete values by averaging, in each control vol-
ume, the functionz, whose trace o2 defines the Dirichlet boundary
condition. Note that this proof uses € H'(£2 x (0,7)) and not only

u € L0, T; H'(2)) andu, € L(0,T; H~1(£2)), since we use below the
fact thatu, € L2(0,T; L'(£2)). Let

_ 1
tn+1
Ut = / / u(z, t)dzdt,
tn K
(32) VK € T,\m € [0, N,

SettingV = U — U, one multiplies (13) bySt"Vﬁ*1 and sums over
K € T andn € [0, N]. This yieldsE1 + E2 + E3 = 0 with

(33) E1= Z > m(K) U = Up) Vet

n=0 KeT

N
B2=3"6t" 3 > (@ Fwpt

n=0 KeT LeNg
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GO IO v

E3 = Zat” S DD (et — Uit vt

n=0 KeT \LeNk

(35) + Z 7o (U T) — (U}“))VK”“).

oegezt K

UsingU =V + U yields E1 = E11 + E12 with

Ell = %Z m(E)(VE™)? = (Vd)?)

KeT

n 0KeT

N

(37) B12=> Y m(E) U - Ug)Vi'.
n=0 KeT
Setting
_ 1
_fm+l - — n
Apx = Uy () /Ku(x,t )dz and

1 _
BmK:/ a(x, t") — U,

one has

N N
E12=>" " m(E)AnxViF + D> m(K)Bu Vit

n=0KeT n=0 KeT

By a classical density argument one gets:
1
|Ap k| < ﬁHUtHLl Kx(tn 1)), ¥n € [0, N], VK € T
and
r .
| B,k | < m”utHLl(Kx(t”—l,tn))y Vn € [L,N], VK € T

(note thatBy x = 0 for all K € T). Using these two inequalities and the
L stability of the scheme (Lemma 3.1) yields:

|E12] < 2|t 11 (ox 0,r)) (Us — Ur).
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Now remarking that

1 9 1 _
E11 > _5 Z m(K)VIg > _§HUO - U('aO)HQLZ(Q)
KeT

the previous inequality allows us to obtain the existenc€df> 0, only
depending o2, T', ug andu, such thatz1 > C1.

The termE2 can be decomposed ifi2 = E21 + E22 with

E21—Z5t"2 S (g HTFUR) = (@)™ Fupt)uEtt,

n=0 KeT LeNk
B2 = Z&”Z > () FUR) = (ai) fUE T )HUE,
n=0  KeT LeENk

Using Remark 2.3, one gets

N
(38) E21=> &t" > (¢p ) (FIUR) — fupth))upt.
n=0 KeT

Let g be a primitive off andg(s) = sf(s) — g(s) for all reals. The
following inequality holds for all pairs of real valuds, b) (see [13] and
[6]).

1

57 (f(b) = f(a))?

(39)  g(b) —gla) SB((b) ~ fla) ~ 55

Using (39) for(a,b) = (U7, U) and (38) yield

E21>25t”2 S (@) (U — g(Upth)

n=0 KeT LeENk

+ﬁ(3D(f(UD)))2-

Using Remark 2.3 witly instead off gives

(40) Zétnz > (g (gUET) = g(UFh) =0,

n=0 KeT LeNk

and therefore

(41 B21 2 o (Bp(f(up)))*



Convergence of a finite volume scheme 55

A discrete space integration by partsH2 does not yield any boundary
termsincey-n = 0 onds?2, and gives, using the Cauchy-Schwarz inequality,

F22 = Zét” Y () U™ = ()~ FUEth)

= K|L6€”Lt
X(UI”(H AN

> —|ldll e @x o)) max |f(s)]

E[U[,Us}
XZ&” > m(K|L)|UR - U
K|L€51nt
> *IIqHLw (2x(07) B |f(s)INp(up)
Z(St” S m(K|L)d(xk, zL)]?
K|Le&int
1
> —Np(up)lldllreoxor)y max |f(s)|(dm($2)T)z.
s€[Ur,Us]

The following estimate foAp (ap) holds:

(42) Nop(up) < F)ull 207,01 (2))s

whereF' > 0 only depends og (Inequality (42) is proved in [14], with a
different definition of the regularity factor of the mesh), leading to a lower
bound of £22 denoted byC'22, only depending o2, T', ug, 4, f,q and§.

There only remains to deal with'3. A discrete space integration by
parts, using the fact th&" ! = 0,Vo € E..4, Vn € [0, N], yields

N
B3 =3 0 3 malpUE™) — elURNVET - Vi)
K|L€gint

43)  + > Tl(Urh) — U ) (VP =V,

o€Eext

Writing againV into U — U leads toE'3 = E31 + E32 where

N
E31 = Z St Y T (e(UET) — (U)W - Ut
K‘Legint
44)  + ) 1o(p(Urh) — p(UpE) (O3 — U

O'Egezt
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N
E32 — —Z (3" mrn(pUETY) — p(UR) (O — Tt
K|LEEint

45)  + > (Ut = e(UE (O = T
0€Eext

One has for all pairs of real numbérs b) the inequality(¢ (a) —¢(b))? <
(a —b)(¢(a) — p(b)). Also usingy’ < V&¢' (recall thatd = ||¢'||«), ONe
gets
(46) E31 > (Np(((up)))*,
(47) E32 > —V&Np(((up))Np(up).

Using the Young inequality and (42), one gets the existencésafonly
depending o2, T', ug, u, f, q, p and€ such that

(48) F32 >~ (No(((up)))® + €32

Gathering the previous inequalities, one gets

(49) C1+ 5 (Bo(f(un))? +C22 + S(Np(C(up))? +C32 0,
which completes the proof. O

Remarking that from the estimate of Lemma 2 in [14], one hag(
(up)) < \/§C|]a\|L2(O7T7H1(Q)), whereC > 0 only depends o4, one gets

Corollary 3.2 (Discrete H} estimate) Under hypothese&H ), let D be a
discretization off2 x (0,7") in the sense of Definition 2.3. Léte R be
such that¢ > reqgD), letU = (U}“)Kg’neﬂo,w be the solution of
the scheme (11)-(13) and 18t = (U") ke nefo,n be defined by (32).
Then, settingZ = ((U) — ¢(U), there exist&’ € R, only depending on
02,T,up,u,p,q, f and& such that

N
(50) > ot"( > Tr(ZETt = ZpT 4+ Y ez <

K|L€5mt Uegext

4 Compactness of a family of approximate solutions

From Lemma 3.1, we know that for any sequence of admissible discretiza-
tions(D,, )men, 0f £2x (0, T') inthe sense of Definition 2.3, the associated se-
quence of approximate solutiotp,, ) men is bounded in.>°(§2 x (0, T)).
Therefore one may extract a subsequence which converges for the weak star
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topology of L>(£2 x (0,T")) asm tends to infinity. This convergence is
unfortunately insufficient to pass to the limit in the nonlinearities. In order
to pass to the limit, we shall use two tools:

1. the nonlinear weak star convergence which was introduced in [11] and
which is equivalent to the notion of convergence towards a Young mea-
sure as developped in [10].

2. Kolmogorov’s compactness theorem, which was used in [14] in the case
of a semilinear elliptic equation.

Theorem 4.1 (Nonlinear weak star convergencelet () be a Borelian
subset ofR* and (u,,),en be a bounded sequence i°(Q). Then there
existsu € L>(Q x (0,1)), such that up to a subsequenesg, tends tou

“in the nonlinear weak star sense” as — oo, i.e.:

1
g € C(R.R). glu) — [ glulc))da
(51) for the weak star topology di**(Q) asn — oo.

We refer to [10, 11] for details and proof of Theorem 4.1.

This compactness result allows us to exhibit a limit (in the nonlinear
weak star sense) € L>(f2 x (0,7) x (0,1)) of a subsequence of the
sequencep,, Which we considered above. Of course, in order to show that
this functionu is the unique entropy weak solution to Problem (1)-(3) ,
we shall need to show that it does not depend on its argumeimtd that
it satisfies the boundary condition (6) and the entropy inequalities (7) of
Definition 1.1.

Let us now turn to the Riesz-&chet-Kolmogorov compactness criterion
(see e.g. [4]) which will allow us to pass to the limit in the nonlinear second
order terms.

Theorem 4.2 (Riesz-Fechet-Kolmogorov) Let Q be an open bounded
subset oR* and (u,,),cn be a bounded sequencelid(R*) such that

52 li n(-+6) —up(: =0,
52) i sup (- +) = () 120

then there exista € L?(Q) such that, up to a subsequence,
(53) U, — uin L*(Q) asn — oo.

Let us now show that we are in position to apply the Riesx:het-
Kolmogorov to(¢(up,, ))men- From the discrete estimates Proposition 3.1
and Corollary 3.2, one can state the following continuous estimategon
wherezp is defined almost everywhere §a x (0,7") by

(54) zp(x,t) = C(UE™) — ¢(UE) forz € K andt € (", t"1)
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where(Ux™) ke nepo,n7 is the solution to (11)-(13) and
(U ke nepo.n 1S defined by (32).

Corollary 4.1 (Space and time translates estimatesYnder hypotheses
(H), let D be a discretization of2 x (0,7") in the sense of Definition
2.3. Let¢ be a real number such thgt> regD); let U be the solution of
scheme (11)-(13), and lep be defined by (15). Léf be defined by (32), let
zp be defined by (54), and be prolonged by zer¢®@A") x 2¢. Then there
existsC; only depending o2, T', ug, 1, ¢, q, f and&, and there exist€),
only depending o2, such that

T
V¢ € RY, / / (zp(x + &, 1) — 2p(x,t))*dadt
0 JRd
(55) < C1f€|([€] + Co size(T)),
and there exist§’s only depending o2, T', ug, @, ¢, q, f and¢ such that

T—s
Vs > 0, / / (Clup) (.t + 5) — C(up)(z, ) dzdt < Co 5.
0 R4
(56)

The use of space translate estimates for the study of numerical schemes
for elliptic problems was recently introduced in [14]. The technique of [14]
may easily be adapted here to prove (55), using the estimates of Corollary 3.2.
Atime translate estimate was introduced in [16] to obtain some compactness
in the study of finite volume schemes for parabolic equations. The proof of
(56) follows the technique of [16] and uses estimate (29) and the discrete
equation (13).

From Theorem 4.2 and the estimates (55) and (56) of Corollary 4.1 we
deduce the following compactness result:

Corollary 4.2 (Compactness of a family of approximate solutions)Let
(Dm)men be a sequence of discretizationsf@fx (0,7") in the sense of
Definition 2.3 such that there exigts R with& > req(D,,,) for all m € N.

For all m € N, letup,, be defined by the scheme (11)-(13) and (15) with
D = D,,, and letzp,, be defined by (54) with = D,, and (32). Then
there existsu € L°°(£2 x (0,T) x (0,1)) andz € L?(£2 x (0,T)) such
that, up to a subsequencep,, tends tou in the nonlinear weak star sense
and zp,, tends toz in L2(£2 x (0,7)) asm — oo. Furthermore one has

z € L*(0,T, H}(02)), ¢(u) = z + ¢(u), and((u) = ((u) a.e. onds2.

Proof. The convergence aip,, towardsu € L*>(§2 x (0,7") x (0,1)) in

the nonlinear weak star sense is a consequence of Lemma 3.1 and Theorem
4.1. The convergence af,  to z in L2(2 x (0,T) is a consequence of
Theorem 4.2 and the estimates (55) and (56) of Corollary 4.1.
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Following [13] or [14], one then deduces from (56) thigt: € L?(12 x
(0,7)) fori = 1,...,d and sincezp,, (x,t) = 0 on £2¢ x (0,T) for all
m € N, one has € L?(0,T, H} (12)).

Now sinceup,, converges ta: in the nonlinear weak star sense and
that the functionip,, defined a.e. byip,, (z,t) = U™ for (z,t) in K x
(t", t"*+1) converges uniformly ta, one deduces thgtup,,) converges to
¢(u) in the nonlinear weak star sense anc:te ((u) in L2(2 x (0,7))
asm tends to infinity. Therefore, by Lemma 4.1 below, one obtains that
((u) = z + ((u) and¢(u) does not depend om. Furthermore, since €
L*(0,T, H}(£2)), it follows that¢(u) = ((u) a.e. ondf2 which ends the
proof of the corollary. O

Lemma 4.1 LetQ be a Borelian subset &* and let(u,),en € L2(Q)
be such that,, converges ta, € L>*(Q x (0,1)) in the nonlinear weak
star sense, and te in L?(Q), asn tends to infinity, them(z, a) = w(x),
fora.e.(z,a) € @ x (0,1) andu does not depend am.

Proof. With the notations of the lemma, we have

/ / u(zx, @) (z))2dzdo
—/ /(u(m,a))Qda:da—2/01/Qu(w,a)w(x)dxda
/ / z)%dzda.

Sinceu,, tends tou in the nonlinear weak star sense, one has

/Ol/Q(u(:r,a))zda:da

= lim ( )2dx and/ / u(z, )w(zr)drda
n—>- +00
= lim Up(x)w(x)de,

n—>-+oo Q

and sinceu,, tends tow in L?(Q), one deduces that(x, ) = w(z), for
a.e.(r,a) € Q x (0,1) andu does not depend an. 0

5 Convergence towards an entropy process solution

This section is mainly devoted to the proof of the convergence theorem
5.1, which states the convergence of the approximate solution to a measure
valued solution as introduced in [10], which is also called entropy process
solution [11], and defined as follows.
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Definition 5.1 Under hypotheses (H), an entropy process solution to Prob-
lem (1)-(3) is a functior: such that,

(57) we L2 % (0,T) x (0,1)),
(58) o(u) — () € L*(0,T; Hy(£2)),

(note thatp(u) does not depend an), andu satisfies the following inequal-
ities:
1. Regular convex entropy inequalities:
f() U(l’,t, )dOé ¢t($ t)
/ fo v(u(z,t, a))daq(z,t) V@, t) | a
2%(0,T) —V77 o(u)(x
" (p(u)(x

4 )
(p(u)(z,1)) - Vi (z, 1)
p(u)(x, 1)) (Vep(u) (2, 1)) * (2, 1)

ﬁLuWﬂWW%mwzu
(

Vi € DY x[0,T)), ¥n € C*(R,R),n" >0, i’ =1n'(¢()),
(59) v =7(e()f ()

2. Kruzkov’s entropy inequalities:
fo\uxta)—/f\dawtmt —|—f0 u(z,t,a)Tk)
/ —f(u(z,t,a) Lk))da q(z,t) - Vi)(x, ) dxdt
2x00) |~V () (@, 1) — (k)| - Vib(a, )
+ [ Juo(w) = (e, 0)ds > 0,
7

(60) Vi e DT(Rx[0,T)), Vk € R.

In the previous definition, we use two types of entropies, since in the
proof (given below) of the uniqueness theorem one should make use of
termsn” (p(u)). In [5], these terms are obtained from the equation satisfied
by a weak solution, which itself can be obtained from the Krushkov entropy
inequalities. We have prefered here to keep this slightly more complex defi-
nition since the following theorem shows that (59) and (60) are both obtained
by the natural limit of the approximate solutions.

Theorem 5.1 (Convergence towards an entropy process solution)
Under hypothese&H ), let (D,,)men be a sequence of discretizations of
2 x (0,7) in the sense of Definition 2.3, witizgD,,,) — 0 asm — oo,
such that there existé € R with & > reqD,,) for all m € N. For all

m € N, letup,, be defined by the scheme (11)-(13) and (15) Witk D,,.
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Then, there exists an entropy process solution of Problem (1)-(3) in
the sense of Definition 5.1 and a subsequencéuf, )mncn, again de-
noted by(up,,)men, such that(up,, )men converges ta: in the nonlin-
ear weak star sense and(up,,))men converges inL?(2 x (0,7)) to
C(u) € L3(0,T; H'(£2)) asm tends too.

Proof. By Lemma 4.2, there exist € L>(2 x (0,7) x (0,1)) and a
subsequence ¢fip,, )men, again denote@up,, )men, such thatup,, )men
converges ta in the nonlinear weak star sense &Q¢p,, ) ) men CONVerges
in L2(£2 x (0,T)) to ¢ (u) € L?(0,T; H*(£2)). There remains to show that
the functionu € L*>(§2 x (0,7") x (0, 1)) is an entropy process solution.

A number of the arguments involved in order to do so may be found
in [11] or [16] and therefore will be given with few details. The main new
argument introduced here concerns the term

[ ) (Vetu) . 0) (o dade
2x(0,T)

in equation (59). The passage to the limitto obtain this nonlinearity motivates
the use of the technical lemma 5.2 below (a related technique was used in
[18] in the case of a variational inequality).

The idea of the proof is to derive the continuous inequalities (59) and
(60) for the limitw by multiplying the discrete entropy inequalities (17)
and (19) by regular test functions and passing to the limit. Indeed, tet
DT (2 x [0,T)) ={¢ € C(2 xR,R;),v¥(-,T) = 0}. For a givenm,
let us denoted = D,,, and Iet(U}g“)KeT,ne[[O,N]] be the solution of the
scheme (11)-(13) associated®olLet¥ = (Vi) k7 nefo,n+1] b€ defined
by
(61) Up =y(xg,t") VK € T,Vn € [0, N + 1].

Remark 5.10ne cannot use fa¥. the mean value af on K x (", ¢"1);
indeed, in order to pass to the limit on the teABp beIov; (S(!aﬁ (66) and
(67)), we shall use the consistency of the approximafigh—2~y to the
normal derivativeVy - nk 1. This consistency holds i#}, = ¢ (zk,t")
thanks to the assumption on the family ) x <7 in Definition 2.3, but does
not generally hold if?% is the mean value of on K x (¢,¢"!). Note
that discrete values using the mean values were used\idren studying
an upper bound of/p (U) with respect to thd.?(0, T; H'(£2)) norm of .
However we did not have to use the consistency of the flux.on

With the notations of lemmas 3.2 and 3.3, let us multiply the discrete
entropy inequalities (17) and (19) by"¥7 and sum over € 7 and
n € [0, N]. From (17), one gets

(62) Alp + A2p + A3p + Adp <0



62 R. Eymard et al.

with
3 (U — u(UR)
Alp =) 6t" > m(K)—K S K2y
n=0 KeT
A2p = Zét”Z N (@)™ (U — v(UE)wp
n=0 KeT LeENk
—Z5tnz ZTK\L (P(UF) = n(p(UEH)) ok
= KeT LeNgk
+ Z T (U2 = n(e(UE)) k)
Jegeth

Adp = Z ot" Z Z Trin” (P (U (U — o(UR))?
= KeT LE/\/K
1 n rrn n n
<V + 5 > o (U (U — o(UE) R

Uegezt,K

Each of these terms will be shown to converge to the corresponding
continuous terms of Inequality (59) by passing to the limit on the space and
time steps, i.e. lettingr — oo.

Sincey (-, T) = 0, one hasl‘/NJrl = 0 and therefore:

n+1
Alp = Z St Z (Un-&—l)%

n=0 KeT

- Z WKM )

KeT

The sequence(up) converges weakly t(jo1 w(u(-, a))da asm —
oo. Let xp be the function defined almost everywhere@nx (0,7") by

xp(x,t) = i W if (x,t) € K x (t",#"*1); thenyp converges to
Yy in LY (02 x (0,T)) asm — +oo. Furthermore, IewT (respuT) be
defined almost everywhere dhby @Z’T ). (resp. uT U if z € K.
Then, u(u%) converges tqu(ug) in LP(£2) for anyp € [1,+o0) andy
converges ta)(.,0) uniformly asm — +o00. Hence passing to the limit
asm — +ooin Alp yields:

1E>n Alp,, / / / (z,t,))da iy (z, t)dxdt

(63) —AlLMw@DM%WW-
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Let us now rewrited2p as:

N
(64) A2p=—) 6"y > v(UR™)((axD) L — (aii0) " vR).

n=0 KeT LeNk

We replace the tery'| ) "W} — (qj') ) ~Wr by g fK‘L;b z,t)
q(z,t) - ng rdvy(z)dt. When doing so, we commit an error which may
be controlled (see the details in [11]) thanks to the consistency and the
conservativity of the scheme and thanks to the weak BV inequality (30).
Using the weak convergence ofur) to fol v(u(-, a))da asm — oo, we
then obtain:

lim A2p / / / (z,t,0))daV (q(z, t) (z, t))dudt

m—ro0

(65) /// u(z, t, ))daq(x,t) - Vip(z, t)dxdt.

Turning now to the study ofi3p, one remarks that for siz&) small
enough, the support @f does not intersect the control volumes with edges
on 02. Then for all control volumed({ € 7T the sum ovelr € &t
vanishes and thus

N
(66)  A3p=-> "> > 7rn(eUR) (P} — UR)

n=0 KeT LeNk

tn+1

Using the consistency of|, (¥}’ —¥i) with 51 [, S Vib(z,t)-
ng rdy(x)dt, Estimate (29) and the convergence)0p(up)) to n(p(u))
asm — oo, one gets with computations similar as in [14]:

lim A3p,, // (x,t) Ap(z, t)dzdt

m—0o0

(67) //Vn ) - V(x,t)dzdt.

One now deals witl4p. The second term ofldp vanishes if siz€T)
is again sufficiently small. TheA4p reduces to its first term which writes,
after gathering by edges:

N /" n+1 n " n+1 n
U v + U v
Adp = E St § : TK|L77 (p(URL)¥E : 0" (UL i )YT

n=0 K|L65int
(68) X (U — p(UE))?




64 R. Eymard et al.

Let us now introduce the sets, for o € £. Let K be a control volume
ando € k. One definedk , = {tex + (1 —t)z,x € o,t € (0,1)}. For
0=KI|L Vs =VkoUVLsandforo € E,t i, Vo = Vi ,». One denotes
by H}}TLl the discrete approximation af’ (u)y» on Vg, which appears in
(68), namely:

i1 M OUR) R+ 11" (0 (U R)) 27
(69) Hyf) = .

One defines the functiol, for a.e.(x,t) € £2 x (0,T) by
(70) R (z,t) = H?(TLl, x € Vg, t € (1", ")
(71) Ry (x,t) =0, x € V,, t € (1", ") if 0 € Eopt.

Letvyp be defined almost everywhere 6hx (0,T") by ¢¥p(z,t) = ¥}
forall (z,t) € K x (", ¢"*1), forall K € T andn € [0, N]. The function

0" (p(up) yp tends ton” (p(u))y in LP(2 x (0,T)) for all p € [1, +00)
asm — oo. Therefore one only needs to compafe andn” (¢(up))yp.
Since siz€T) is small enough, one has

1h% — 7" (¢ (up))¥D T2 (05 (07

N
72) =D 6t"> > m(Vie ko) (Hy [ — 0" (p(UR))Pg)%.
n=0 KeT LeNk

Let e > 0. The functionr” may be approximated by a functigne
C'(R,R) such thatg(s) —n"(s)| < eforall s € [¢(Ur), ¢(Us)]. Defining

H}“ﬂ*g and h$, using g instead ofy” in the definition ofH;?'FLl and h$,

respectively, one haghs, — EODH%Q(QX(QT)) < Cye and||g(¢(up))vp —
n//(QO(UD))@ZJD||%2(QX(07T)) < Cye whereCy,, > 0 only depends onp.
Thanks to Young'’s inequality, one gets

(Hyr — 9(p(UR)wR)?

2
3
< max s g g2 L = 2
- (se[wwf),@ws)]g( )> (Zie = V2" + Il 2x o)

2
73 X max /S> Un+1 B Un+1 2'
) (SG[AD(UIW(US)]Q() (p(Ug™) —(UL™))
Using (73), the regularity of the functian and Estimate (29), one gets

155 — g (un)enllzgan oy < €9 ¥ 0)size(T),
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wherec(g, 1, ¢) > 0 depends only op, ¢ andy. Hence for siz€7") small
enough, one has

HEQD - Q(W(UD))¢DH%2(QX(O’T)) < C¢€,

which proves that one can take € N large enough such that
(74) 1h% — 1" (up) YDl L2(02x (0,1)) < 2Cye.

Hencehg, tends ton”(¢(u))y in L2(£2 x (0,T)) asm — oc.

Using the straightforward generalization of Lemma 5.2 (stated below)
for space-time dependent functions, one gets:

T
(75) l}yl;ri)iglofAélpm 2/0/Q(Vgp(u)(x,t))217”(<p(u)(m,t))w(x,t)dfcdt.

Gathering (62), (63), (65), (67) and (75), the proof thatatisfies (59)
is therefore complete.

The same steps are completed in a similar way in order to show that
satisfies (60), without the difficult problem of the treatment/afThis also
completes the proof of Theorem 5.1. O

To complete the proof of Theorem 2.1 there only remains to show the
unigueness of an entropy process solution. This is the aim of Sect. 6.

Lemma 5.2 which was used in the above proof is a discrete equivalent
of the following continuous classical lemma.

Lemma 5.1 Let (u,).en be a sequence of functions &t (£2) which con-
verges weakly ta; in H'(£2) and g a nonnegative function essentially
bounded fron12? to R. Then

/ (Vu(z))2g(x)de < liminf / (Vi (2))2g (2)dz.
(% (%

n—oo
A discrete version of this lemma is now stated:

Lemma 5.2 (“Limit inf” lemma) Under hypothesedd ), letg € L>°(£2)
with g > 0, letu € H'(f2) and let M € R,. Consider a family of
admissible meshes d@? in the sense of Definition 2.1, such that for all
D = (T,E&, (zx)KeT) in the family:

— there exists afamilyG,, ) ,c< Of nonnegative values such that the function
Gp defined byGp(xz) = G, for all o € £ and allz € V), satisfies
Gp — gin L?(£2) assizgD) — 0,

— there exists a familyux ) k<7 of real values such that the functiam
defined byip(z) = ug forall K € T andallz € K satisfiesip — u
in L2($2) assizgD) — 0.
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— the valueNp defined byV3 = > ce

int

Tk (ux — ur)? satisfies

Np < M.
. 1
Then, denotingdp up.cp = 5 > i Gr(u — ur)?, the
KeT ~LeNk
following inequality holds:
(76) /(Vu(az))zg(m)dx < liminf  Dpyup.ap
I0) sizgp)—s0

Proof. The proof of this lemma is given in [18] in the particular cgse 1.
Letw € C(£2,R) (the functionw is meant to tend ta in H'(£2)) and
letg € C2°(£2,R) be a nonnegative function (which is meant to tend o
L2(02)).

LetD be one discretization of the considered familyJ#étbe the family
of values defined byVx = w(zk) for all K € T, and letg$, € L?(02)
be defined by the mean value (denotgg) of § on the diamond),, for all
o € £. One defines)(g) andQp(g%) by

7 Q)= [ sl@)Vu(e)Vula)ds,

(18) Qlod) = 3 5 O mrplusc —un)(We — Wi)Gr,
KeT LeNk

and one similarly defineQ(g) andQp(g%).

One has
Q) =~ [ ulw)div(u)w)ds
__ / wp (@) div(§Vw) (z)dz
(7
(79) —}—/Q(UD(:E) —u(x)) div(gVw)(z)dz.

Using the fact thatip is piecewise constant, one gets
_ / up(z) div(§Vw) (z)dz
Q

=Y Y [ 0ve nn

KeT LeNk KL

) =3 % S (ur - ux) / (@)Vo() - ng Ldy(@).

KeT LeNk KL
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Using the consistency of the mesh (it€iw) of Definition 2.1) and the
Cauchy-Schwarz inequality yields

> 5> w0 [ 5@ V(o) nxudi(e) - Qo)

KeT LeNK KL
(81) < Cg’w’QNDSiZG(D),

whereCj ., o € Ry depends only o, w and{2. Using the regularity of
w andg, the convergence afp to u in L?(£2) as siz¢ D) — 0 and using
(79), (80) and (81), one gets

(82) lim  Qp(gp) = Q(9)-

Sizgp)—0
One has
1Q(9) — Qp(9p)| < 1Q(9) — Qp(3D)]
Hlwll g o) IVl Lo (2)lg = Gl 220
+ND[|Vwl oo () l9p — 3Dl L2(2)
<1Q(9) — Qp(3p)l
+Hull g o)Vl Lo (@) lg — Gl 220

+M [ Vuwll o o) (1l = 91220
(83) +llg = 3ll 22 + 15— 5312200 )-
Thanks to (82) and (83) one gets
limsup |Q(9) — @p(9p)|

sizgp)—0
(84) < (full oy + M)Vl (@) lg = 9l L2(0)
Now one can lef — ¢ in (84). One then gets
(85) limsup |Q(g) — Qp(gp)| = 0.
SizgD)—0

which proves that

(86) lim  Qp(gp) = Qg).

sizgp)—0

By the same proof, replacingby w, one also has

lim TKI|L WL—WK) GKL

87) - /Q (Vw(z))2g () de.
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Thanks to the Cauchy-Schwarz inequality, we may write

(88) (@p(99))* < Dpyup i Z > Tkl (W — Wk)*Gp-
KeT LGNK

Passing to the limit in (88) when sigZ@) — 0 yields
(] 9(a)Vulo)Vu(o)do)?
(0]

(89) < / (Vw(z))?g(x)dz  liminf Dp up, G-
7 SizgD)—0
SinceC>(£2,R) is dense inH'(£2), one can letw tend tou in (89),
which gives (76). O

6 Uniqueness of the entropy process solution

One proves in this section the following theorem.

Theorem 6.1 (Uniqueness of the entropy process solutioriynder hy-
potheseq H), let v and v be two entropy process solutions to Problem
(2)-(3) in the sense of Definition 5.1. Then there exists a unique function
w € L*( x (0,T)) such thatu(z,t,a) = v(x,t, ) = w(x,t), for
almost every(z, t, o, ) € 2 x (0,T) x (0,1) x (0,1).

Proof. This proof uses on the one hand Carrillo’s handling of Krushkov
entropies, on the other hand the concept of entropy process solution, which
allows the use of the theorem of continuity in means, necessary to pass to
the limit on mollifiers. Note that the hypothesis (4) makes it easier to handle
the boundary conditions.

In order to prove Theorem 6.1, one defines foealt 0 a regularization
S. € CY(R,R) of the function sign given by

Se(a) = —1, Va € (—o0, —¢],
(90) Se(a) = 3559 Va € [—¢, €],
Se(a) =1, Va € [g,400).

One defineR, = {a € R,vb € R\ {a}, p(b) # ¢(a)}. Note that
e(R\R,) is countable, because for alc o(R\R,,), there exist$a, b) €
R? with @ < b andy((a,b)) = {s}, and therefore there exists at least one
r € Q with r € (a, b) satisfyingy(r) =

Letx € Ry. Lete > 0 and letu be an entropy processus solution. One
introducesin(59) thefunctiom (a) = fg(m) Se(s—p(k))ds. One defines

pie (@) = [Inl,(o(s))ds andvec(a) = [0l ,.(¢(s))f(s)ds, for all
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a € R.Usingthe dominated convergence theorem, one gets foraR that
1im077€,n(a) = |a — ¢(x)|, and, sinces € RW hm pex(a) =la—r|and
E—>

h—n>1o ver(a) = f(aTk) — f(aLlk). One gets for aI{p e DY (2 x [0,T)),

—f(u (96 t,a)Lk))da q(z,t) - Vi (z,t) dxdt
—Se(p(u )(33 t) — (k) Ve(u)(z,t) - Vi (,1)

—/ [Si(p(u)(@, 1) — (k) (Veo(w))* (z, 1) (x, 1)] dadt
2x(0,T)

i Tz, t, @) — w|da (. t) + fl(f( (z,t,0)TK)
/QX(OT)

(92) —I—/Q lug(z) — kY (z,0)dx > A(e, u, k, ),

where for any entropy process solutiananyvy € D (§2 x [0,T)), any
k € R, and anye > 0, A(e, u, x,) is defined by
Ale,u, k1)
fo( u(w,t,0) = K| — pep(ule, £, 0)) ) da vz, 1)
:/ Jrfo flu(z,t,a)Tk) — f(u(z,t,a)Lk)) dxdt
2x(0,7)
v w(u(a,t, 0)) ) daa(, t) - Vi, 1)

92) + /Q (|u0(x)—ﬁ| —um(uo(x)))zp(x,())dx.

—~ /\

Thanks to the dominated convergence theorem, one has

(93) lim A(e,u, k1) = 0.
e—0

This convergence is not uniform w.r4.(even if x remains bounded),
but A(e, u, k, 1) remains bounded (for a gives) if «, 1, ¢, andV1 remain
bounded and if the support gfremains in a fixed compact setlf x [0, T').

Using (60), one now remarks that, for alle R, one has for ally) €
DT (2 x1[0,T)),

fo lu(z, t, ) — klda Pe(x, t)+
/ fo( (u(z,t,a)Tk) — f(u(x, t, ) Lk))do ddt
ox©r) | a(z,t) - Vi(z,1)
—Se(p(u)(@,t) — (r))Ve(u)(z,t) - Vi(z,t)

04  + /Q o) — R[4z, 0)dz > Be,u, 5, 1),
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where for an entropy process solutionall v € DT (2 x[0,7)),allx € R
and alle > 0, B(e,u, k, ) is defined by

Beun) = [ o [T (@0 = 0] = (). 0)
(95) Vep(a, t)} dzdt.
For allyy € DT (2 x [0,T)), one has

Ble,u,n, 1) = - /Q I (COCUEECIEEOIED))
(96) x Az, t)} dwdt,
and
(97) 5liHInOB(s,u, K, 1) =0,

forall € DY(2 % [0,T)),e > 0andx € R.

As for the study of4, the quantityB(e, u, k, 1) remains bounded (for a
givenu) if kK and Ay remain bounded and if the supportfremains in a
fixed compact set dk? x [0, T).

Let v andv be two entropy process solutions in the sense of Definition
5.1. One defines the sef§, = {(z,t) € 2 x (0,7), u(z,t,a) € Ry,
fora.e.a € (0,1)} andE, = {(z,t) € 2 x (0,T), v(z,t,) € Ry,
for a.e.a € (0,1)}. Indeed, recall thap(u) andp(v) do not depend of
o€ (0, 1) Then,(2 x (0, T)\Eu = UsEcp(]R\]Rw)ES,u with E&u = {(.Qﬁ,t) S
2 x(0,7),p(u)(z,t) = s} (the same property is available fo}. Let
¢ € C*RY x R x R? x R,Ry) such that, for al(z,t) € 2 x [0,7T),
E(xvta 5 ) S D+(Q X [O,T)) and for a”(ya S) €2 x [07T)' 5(7 Y, S) <
Dt (02x][0,T)).One introducesin (91), fdy, s) € E,,anda.es € (0,1),
k =uv(y,s,[)andy = (-, -, y, s). One integrates the result @), x (0, 1).
One then gets

_fol f[)l ’U((L’, t’ Oé) - U(y, S, 6)|
dadf &z, t,y, s)+
Jy o (f(ua,t,0) To(y, s,8)—
/Ev /Qx(o;r) f(u(@,t,0) Lo(y, 5, 5)) ) dads dwdidyds
q(1‘7 t) : ng(l', ta Y, 3)

—Se(p(u)(z, t) — (v)(y, 5))Vo(u)(z, )
| V(. t,y,s) i

- S @) = 2009 g1 gravds
/U /QX(O,T) [(v@(u))Q(ﬂf,t)f(SU,t,y,s) ] dxdtdyd
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1
+/E/Q/0 luo(z) — v(y, s, B)|€(z, 0,y, s)dBdzdyds

Z/01/UA(s,U,v(y,s,ﬁ),g(.7.7y’5))dydsdﬁ.
(98)

One introduces in (94), foty,s) € 2 x (0,T) \ E,, and anyg €
(0,1), kK = v(y,s,8) andyp = £(+,-,y,s). One integrates the result on
(£2x(0,7)\ Ey) x (0,1). One then gets

/Q x(0,T)\Ey Lx (0,7)

[ fo fo lu(z,t,) — o(y, s, B)dadB &(x, t,,5)]
+Jo Jo (Flutz.t,a)To(y,s,8)-

f(ul,t,0) Lo(y, 5,)) ) dads dudtdyds
q(l‘, t) : fo(x, ta Y, 3)

—Se(p(u)(z,t) — o(v)(y, 5)) Ve(u)(z, 1)
vxg(xa t? y7 8)

L 1 i
+/ // luo(z) —v(y, s, 8)[¢(x,0,y, s)dBdzdyds
2x(0,T\E, /22 Jo

1
B . dydsdf3.
2/ /MT\EU (e, 0(y, 5, 8),EC+ -, 8))dydsd
(99)

Adding (98) and (99) gives

/QX(OT /QX(OT

[ Jo fo u(z,t,a) = v(y, s, B)|dadf &(x,t,y, 5) |
+f0 fo ( (z,t,) Tv(y, s, 3))
—f(u(w,t,0) Lo(y, 5, ) ) dads dudtdyds

q(SL‘,t) : vxg(x’ta Y, 5)
—Se(p(u)(z, 1) — o(v)(y, 5)) Ve(u)(z,1)-
Val(z,t,y,s)

/ /.Q>< OT)[ Z 12(z, o )5?;357( SS)))] dzdtdyds

i /Q o /Q /0 o) — v(y, 5, B)[€(@, 0, y, 5)dBdudyds
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1
A . .
2/0' /Ev (57U3U(y7836)a£(7 , Y, 8))dydsdﬁ

1
B .
+/0 /Q><(07T)\EU (g’u’v(y’s’lg)vf(a 'Y, S))dydsdﬁ
(100)

One now exchanges the rolesiodindv, and add the resulting equations.
It gives

(101) Ty + T + Ts(e) + Tu(e) + Ts(e) > T (e),

where

T = / /
02x(0,T)J 2x(0,T)

fo fo lu(z, t, ) —v(y, s, B)|dadf i
(gt(x7t7ya )+£S($ t 'Y, S ))

+Jo Jo ( u(z,t,a)To(y, s, B))—
f(ulw,t,0) Lo(y,s,8)) )dads | dedtdyds,
(ae,t) - Vab(w,t,y.5) + aly, )
| Vi€ (a, by, s))

(102)

1
TQ:/QX(O’T)/Q/O luo(x) = v(y, s, B)|E(x,0,y, s)dBdxdyds

1
(103) + / / / o) — u(z, t, @)|€ (. £y, 0)dadydudt,
axo,r)JeJo

_/Qx (O,T)/.Qx (0,T7)

Sulplw) (@) — 9(0)(y, 5)) Vo) ()
[ (Vel(z,t,y,s )_|_Vy£($ t,y,s)) } dxdtdyds

/_Qx OT)/_QX 0,7

(u)(z, 1)) Ve(v)(y, s)-
(104) [( xw t y, +vy£($ Fys) ]dxdtdyds,

/_Q>< OT)/QX(OT

[ggyép(u p(v)(y, 5))Ve(u)(z, t)} dxdtdyds

(x7
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1o /QX OT)/QX 0,7) [VS@ ’IE;) v )? ;:Z((x)gtxyf)))} dzdtdyds,
/ v/nx o) [ )(x(,;,)t) (x( t)(yyj )))} dudidyds

_ (@, t) = o)W ) | 1 dtduds
(106) /_()x(O,T)/u |:(V(,0(’U))2(y, S)f((E,t,y,S) :|d dtdyd ’

and
1
:/0 / A(€7u7v(y7 87/8)75('7"3./’ 8))dyd8d/8
1
+/ /_Qx(OT)\E B(s,u,v(y,s,ﬁ),é’(-,-,y,s))dydsdﬁ
1
[ Ao e, 0). €t )i
1
(107) +/ / B(e,v,u(z,t, ), &(x, t, -, -))dzdtda.
0 J2x(0,T)\Ey

(108)

By an integration by parts in (105) and using the fact theénishes on
002 x (0,T) x 2 x (0,T)and onf2 x (0,7) x 92 x (0, T) one gets

[ [ St - e
02x(0,17)J 02x(0,T)
x&(x,t,y,s)Ve(u )( t) - Vo(v)(y ,s)}dwdtdyds

o [se)m) - ewi)
2x(0,T)J2x(0
(109) €z, 1.y, S)Vgo(v)(y, 5) - Vi(u)(a, t)} dwdtdyds.

Recall thatEs , = {(z,t) € 2 x (0,T), p(u)(z,t) = s} forall s € R.
One hasVy(u) = 0 a.e. onE; , (see [4] for instance). Sinc@ x (0,7) \
By = Usepm\r,) Fsus and sincep(R \ R,,) is countable, the following
equations hold.

(110) Ve(u) =0, a.e.on?2 x (0,7)\ E

and
(111) Ve(v) =0, a.e.on2 x (0,7) \ E,.
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It leads to

Tie) = [ [setwle0) - o). 5)ele b5 Vo) o,1)
Vo(v)(y, s) dxdtdyds
s S 9) — el D) )T 0)05)
Ey X Ey

(112) -Vo(u)(z, t)_ dxdtdyds

and
Tie) == [ [Shetwie) - e )
x (Vo(u)?(z,t)é(x, t,y, s)} dxdtdyds
- [ Sttt - ). s)
EyxEy
(113) x (Vo (v))(y, 8)&(x, t, y, s)} dxdtdyds.

Thereforeve > 0,

&)+ Th(e / / u [S’ P(0) (1, 9)E(, 1,1, )

X <ch(u)(a;, t) — Ve(v)(y, s)) ] dxdtdyds

(114) <0.
One thus getse > 0,
(115) Ti + 1o + T(e) > To(e).

One can now let — 0in (115). This gives, sinc&(c) — 0 (thanks
to the dominated convergence theorem),
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/Qx 0,7 /.Q>< (0,7)

[ [ ) lulz,t, @) — v(y, s, B)|dadf
(&e(z,t,y,s )+€s(w t,y,s))+

fo fo ( u(z, t,a)To(y, s, 3))—
f(u(z.t.0) Lo(y, s, ) ) dads drdidyds

(q(d?, t) : fo(:z, ta Y, 5) + q(ya 5) : vyf(l‘, tv Y, S))

—(Valp(u)(z,1) — o(0)(y, )|+
Vylo(u)(z,t) —(v)(y, s)|)
V:vg(xa ta yv S) + Vy£($7 t> y7 5))

( -
1
+/ // |u0(l‘)_U(y>5’B)‘£($7ovy73)d/6d$dyd5
2x(0,7)J2J0

1
s o) — ulet )Gy, O)dadydadt >
02x(0,T)J2J0
(116)

Now, Iet us consider the analog of (60) foinstead of., with k = ug(x)

andv(y, s f &(x,0,y, 7)dr and integrate the result an € (2. One
then gets

'—fo [0(y, 5, 8) — uo(x)|df &(x,0,y, 5)+ |
ly ( v(y, 5, B) Tuo(x)) -

/ / f(u(y, s, 8) Luo(x )d aly dydsda
2 J02x(0,T) \V/ f g z,0,y, T ) r
p(uo(z))[-

—V\w( )y, s)—
_f Vyé(x,0,y,7)dr

. i
(117) —4—/9/Q |uo(z) — uo(y)]/o &(x,0,y, 7)drdxdy > 0.

A sequence of mollifiers iR and R? is now introduced. Lep €
C>*(R4, R, ) andp € C°(R, R, ) be such that

{z € R p(a) # 0} C {z € RY [a] < 1,
(118) {x € B; p(x) # 0} C [~1,0)

and

(119) /]Rd p(z)dr =1, /R,E(:E)dx =1.
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Forn € N*, definep,, = n?p(nz) for all z € R? andp,, = np(nx) for
all x € R.

Onesets(z,t,y,s) = ¥(z,t)pn(z—y)pm(t —s), wherey € C°(£2x
[0,7),R;) andn andm are large enough to ensure, for @il t) € 2 x
[0,7), &(x,t,-,) € DT(2 x [0,T)) and for all (y,s) € 2 x [0,7T),
&(,+,y,8) € DY (2 x [0,T)). This choice is not symmetrical i, t)
and(y, s), which gives an easier way to take the limitias— oo and
m — o0o. One gets, from (116),

/Qx OT)/QX 0,7

pnlz = )pm(t - )

~bo o (—f a:mt ?)a—gqj_(g(’;, Sﬂ)) >dad5

)
(pn(z — )pm(t—S) (z,t) - Vi(z,
—(x, ) pm(t — s)(q(z, t) q(y, s)
—pn(fv— )pm(t—S) Vaelp(u)(z,t

L +Vyle(u () (y,8)]) - Wj(l‘,t)

/W//

Y(,0)pn(z — y)pm(—s)dBdzdyds > 0.
(120)

dxdtdyds

The second of the two initial terms vanishes because of the asymmet-
ric choice of p,,. Using the same test function in (117), fat= 0, i.e.

5(357 0’ Y, S) = 1/)(957 O)pn(x - y)ﬁm(_s) and (119)1 we get

/.Q /_QX(U,T)

'—fo [0(y, 5. 8) — uo(x) rcw $(,0)pu(x — y)pn(—s) |
_f[) ( yvs B)TUO
v(y, s, ) Luo a:)))dﬂq : dydsdz

w(fﬂ 0)Vpn x_y)fg ﬁ
+Vylo(v)(y, s) — o(uo(z))|
| ¥(2,0)Vpp(z — )fs P (—T)dT

" /Q /Q g () — o ()] (, 0)pn (& — y)ddy > 0.
(121)
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One can now add (120) and (121) tettend tooo and use the theorem
of continuity in means. Since the function— fST pm/(—7)dT is bounded
and tends to zero as — oo for all s € (0,7'), one gets

//Qx 0,7
) ;0( Jo Tu( x)tT a( %,) t, B)|dad ¢y(x, 1) ]
u(z, t, @) To(y,t,
*fo 0o\ =t a1, 0y Lot ﬁ))) dodf
X (pn(y—x)q( z, ) V¢($ t) dxdtdy
Y(z,t)(aly,t) —a(z,t)) - Vou(y — z))
—pn(® — y)(Valo(u)(z,t) — p(v)(y,t)]
L +Vyle(u)(z,t) — o(v)(y,1)]) - Vip(z, 1)

T /Q /Q o () — 1o (4) [z, 0)pu (& — y)dledy > 0.
(122)

Remarking that

ol = 0)(Telol0)@.0) = 2(0) (0
//nm) [w (o)1) ~ ol0) 3, 0)) - () | 00

[pn(z — y)|p(u)(x, 1) — o(v)(y, )| Ap(x, 1) ] drdtdy,
2 Jox )
(123)

it is possible to leh — oo in (122). Usingdivq = 0 and the theorem of
continuity in means again, one gets

_fol fol lu(x,t a) — v(x, t, B)|dadB V(. t) |
+ 5 Jo ( u(z, t,a) Tu(z,t, 3))—
/QX(QT) flu(z, t, ) Lo(z, t,ﬂ)))dadﬂ dzxdt > 0.

Q(x> t) : V?/)(l’, t)
| —Vle(u)(z,t) — () (z,t)] - Vi(z,t)

(124)

One notices that (124) holds for agye H'(£2 x (0,T)), withs) > 0
andy(.,T) = 0, using a density argument. Therefore one can now take, in
(124), fory the functions). (z,t) = (T —t) min(@, 1), fore > 0.

Assume momentarily that for alb € Hg (£2) with w > 0,

d(xz,082)

,D)dz >0
€

(125) hmlnf/ Vuw(z min(—————=

(The proof of (125) is given below).
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d(z,002)
€ ’ 1

The expression(z, t) - V min( ) satisfies

d(xz,082)

lim q(z,t) - V min( ,1) =0, fora.e.(z,t) € 2 x (0,T),
e—0

and under condition (4) (and (H5)) remains bounded independentlfoof
a.e.(x,t) € 2 x(0,T). Lettinge — 0, (124), withy) = 1., gives

1,1
—/ [/ / lu(z, t,a) — v(x, t, B)|dadB| dzdt > 0,
2x,1) LJo Jo

which finally proves thatt = v and thatu is a classical function of space
and time (it does not depend an.

Proof of (125)

Lete > 0. Let (042;);=1,...n be the faces of?2, n; their normal vector
outward tof2, and fori = 1, ... N, let £2; be the subset a such that, for all
x € (2, d(z,082) < e andd(x, 012;) < d(z,02;) for all j # i. One has

N
/ Vuw(z) - Vmin(d(z,092) /e, 1)dz =Y / Vuw(z) n; , -
U, 2 o s

For each(2;, let ©2; be the largest cylinder generatedyincluded ins2;.
One denotes bymg the face off2; parallel tod(2;. Let £2. be defined by
2. = 2\ UX,£;. One hasneas(£2.) < C(2)e? and

/ Vw(z) - Vmin(d(z,02)/e,1)dz
2

N
w(z) [Vuw(z)]
2;/892 . d’y(x)—/ﬁs . dx.

Thanks to the Cauchy-Schwarz inequality, one gets

2 2
(/Qs |IVw(x)|dx)* < mea$95)/ (Vw(x)) dz.

€

One concludes, usingm [ (Vw(z))%dz = 0.
e—0 0.

Remark 6.1lnequation (125) could also be proved in the case wiitie
regular instead of polygonal, with a slightly different method. K&t =
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{z € 2,d(z,00) < £} and letds2. be the other face of’.. The normal
vector todf2. at any pointz is equal toVd(z, 912). Therefore one has

/ Vw(z) - Vmin(d(z, 012) /e, 1)dx
9]
:/ 11)(ac)d7(x)_/ w(:n)de.
a0 .

9 9

Since Hardy’s inequality leads to

/Qs <d(:,(g)(z)>2dx = CW)/ (Vw(z))?dz,

€

one concludes usingim [ (Vw(z))%dz = 0. O
e—0 (R

7 Conclusion

Let us finally prove the convergence theorem by way of contradiction:
Assume that the convergence stated in the Theorem 2.1 does not hold.

Then there exist > 0, p € [1,400) and a sequenc@up,,)men Such

that ||lup,, — ullzr(@x(0,r) > €, for anym € N. Then by Theorem 5.1,

there exists a subsequence of the sequéneg, ),.cn, still denoted by

(up,, )men Which converges to an entropy process solution of Problem (1)-

(3) . By Theorem 6.1 this entropy process solution is the unique entropy

weak solution to Problem (1)-(3) , and from Lemma 7.1 which is stated

below, the convergence 6fip,, )men IS Strong inanyL4((2 x (0,7')). This

is in contradiction with the fact thatup,, — ullzr(ox0,r) = &, for any

m € N.

Lemma 7.1 Let @ be a Borelian subset @&* and let(u,),en € L>®(Q)
be such that,, converges tar € L>(Q x (0,1)) in the nonlinear weak
star sense where does not depend om, then(u,,),cn converges ta in
L7 (Q) foranyp € [1,00).

Proof. Let K be a compact subset @, sinceu,, converges ta; in the
nonlinear weak star sense, one has

/K () — () [2da = /K W2 (2)dz — 2 /K iy () ()
+ /K u(z)?dz — 0 asn — +oo;

sinceK is bounded, one also has:
|un () — u(z)Pde — 0 asn — +oo, Vp € [1, 2]
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and since the sequente, ), cn is bounded in.>(Q),

/ |un () — u(z)Pde — 0 asn — +o0, Vp > 2. O
K

Remark 7.1An interesting (and open to our knowledge) question is to find
the convergence rate of the finite volume approximations. In the case of a
pure hyperbolic equation, i.e.= 0, it was proven by several authors (under
varying assumptions, see e.g. [9], [22], [11], [6]) that the error between the
approximate finite volume solution and the entropy weak solution is of order
less tharh!/* whereh is the size of the mesh, under a usual CFL condition
for the explicit schemes which are considered in [9], [22], [11], [6], and of
order less thah'!/* + k'/2 wherek is the time step in the case of the implicit
scheme considered in [11]. However, it is also known that these estimates
are not sharp, since numerically the order of the error behave&as

In the case of a pure linear parabolic equation, estimates of order 1 were
obtained in [17] (see also [13]).

We made a first attempt in the direction of an error estimate in the case
of the present degenerate parabolic equation by looking at the analogous
continuous problem [15]: lei. be the unique solution to

u(z, t) + div(q f(u))(x,t) — Ap(u)(z,t) — eAu(x,t) =0,
(126) for (x,t) € 2 x(0,T),

with initial condition (2) and boundary condition (3) anddelbe the unique
entropy weak solution solution of Problem (1)-(3) , then under assumptions
(H), we are able to prove thiti. — ul|1(g,) < Ce'/® whereC' € Ry
depends only on the data. This estimate is however probably not optimal and
we have not yet been able to transcribe its proof to the discrete setting (the
term —e Au being the continuous diffusive representation of the diffusive
perturbation introduced by the finite volume scheme).

8 A numerical example

We finally present some numerical results which we obtained by implement-
ing the scheme which was studied above in a prototype code.

The domain? is the unit squaré€), 1) x (0, 1). We define two subregions
7 = (0.1,0.3) x (0.4,0.6) and {2, = (0.7,0.9) x (0.4,0.6). The initial
data is given by).5in 2\ (2, U £22), 1in £2; and0 in {2. Itis represented
on upper left corner of Fig. 1. The boundary value is the congtant

The functiony is defined byp(s) = 0if s € [0,0.5] andp(s) =
0.2(s — 0.5) if s € [0.5,1], so that the diffusion effect only takes place in
the areas where the saturatiois greater than.5. The functighis defined
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Fig. 1a—d.Computed solution at timeé= 0 (initial condition),# = 0.007, ¢ = 0.028 and
t=0.112

by f(s) = s and the fieldq is defined byq(z,y) = (10(z — 2?)(1 —
2y), —10(y — y?)(1 — 2z)). Hence there is a linear rotating convective
transport.

We define a coarse mesh of 14 admissible triangles on the unit square,
from which we obtain a fine mesh of 12 600 triangles by refining these 14
triangles uniformly 30 times. This fine mesh is used for the computations.

Figure 1 presents the obtained results at timeso, 0.007, 0.028 and
0.112. The black points correspond to the valy¢he white ones to the value
0, with a continuous scale of greys between these values. One observes that
the initial value0 is transported, only modified by the numerical diffusion
due to the convective upstream weighting, and that, on the contrary, the
initial value 1 is rapidly smoothed, due to the effect of the parabolic term
which is active on the rangé.5, 1].
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