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Summary. A numerical scheme for the controlled semi-discrete 1-D wave
equation is considered.Weanalyze the convergenceof theboundary controls
of the semi-discrete equations to a control of the continuous wave equation
when the mesh size tends to zero. We prove that, if the high modes of the
discrete initial data have been filtered out, there exists a sequence of uni-
formly bounded controls and any weak limit of this sequence is a control for
the continuous problem. The number of the eliminated frequencies depends
on the mesh size and the regularity of the continuous initial data. The case
of the HUM controls is also discussed.
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1 Introduction

The start point of our study is the boundary controllability of the 1-D wave
equation: givenT > 2 and(u0, u1) ∈ L2(0, 1) × H−1(0, 1) there exists a
control functionv ∈ L2(0, T ) such that the solution of the equation



u′′ − uxx = 0 for x ∈ (0, 1), t > 0
u(t, 0) = 0 for t > 0
u(t, 1) = v(t) for t > 0
u(0, x) = u0(x) for x ∈ (0, 1)
u′(0, x) = u1(x) for x ∈ (0, 1)

(1)
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satisfies

u(T, ·) = u′(T, ·) = 0.(2)

By ′ we denote the time derivative.
This problem has been studied and solved some decades ago and sev-

eral approaches are now known. The moments theory is one of the oldest
and most successful (see, for instance, [1] and [11]). More recent, Hilbert
uniqueness method (HUM) offered a different and a very general way to
solve this and multi-dimensional similar problems (see, for instance, [10]).

In the last years many works have dealt with the numerical approxi-
mations for the control problem (1)-(2). For instance, in [4], [6] and [5],
by using HUM, some numerical algorithms have been proposed. In these
articles a bad numerical behaviour of the approximate controls has been
observed. This phenomenon is due to the high frequency components of the
discrete solution and a biharmonic Tychonoff regularization procedure has
been given in order to avoid it.

This paper studies a finite-difference space discretization of equation (1).
As we shall see, the main problem of the numerical algorithms we have just
mentioned (bad behaviour of the discrete highmodes) is still a characteristic
of this case.Our analysiswill be basedon the filtering of the high frequencies
of the initial data.

Let us consider firstN ∈ N
∗, a steph = 1

N+1 and an equidistant division
of the interval(0, 1), 0 = x0 < x1 < ... < xN < xN+1 = 1, with xj = jh,
0 ≤ j ≤ N + 1.

We introduce the following finite-difference semi-discretization of (1):




u′′
j (t) − uj+1(t)+uj−1(t)−2uj(t)

h2 = 0 for 1 ≤ j ≤ N, t > 0
u0(t) = 0 for t > 0
uN+1(t) = vh(t) for t > 0
uj(0) = u0

j , u′
j = u1

j for 1 ≤ j ≤ N

(3)

and we study the following controllability problem: givenT > 0 and
(u0
j , u

1
j )1≤j≤N ∈ C

2N , there exists a control functionvh ∈ L2(0, T ) such
that the solutionu of (3) satisfies

uj(T ) = u′
j(T ) = 0, ∀j = 1, 2, ..., N.(4)

System (3) consists ofN linear differential equations withN unknowns
u1, u2, ..., uN . uj(t) is an approximation of the solutionu of (1) in (t, xj),
provided that(u0

j , u
1
j )1≤j≤N approximates the initial datum(u0, u1).

It is not difficult to see that the controllability problem we have just ad-
dressed has a positive answer. Moreover, as we shall see later on, explicit
discrete controlsvh can be provided. Our interest is to study when is the
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sequence(vh)h>0 a good approximation of a control of the continuous prob-
lem (1). The first question we address is the boundedness of the sequence
of the controls.

It is by now well known that, generally, the sequence(vh)h>0 is not
bounded inL2(0, T ). In order to explain the causes of this phenomenon we
introduce the following Fourier decomposition of the initial datumU0(h) =
(u0
j , u

1
j )1≤j≤N of (3):

U0(h) =
∑

|n|≤N
n/=0

a0
n(h)Φn(h)(5)

where(Φn(h))|n|≤N
n/=0

is the family of2N orthonormal eigenvectors of thema-

trix of the system (3). Let also(iλn)1≤|n|≤N be the family of the eigenvalues
of (3). Full details will be given in Sect. 3.

As we shall prove later on in the paper, to control the high eigenmodes
of U0(h), a control with an exponentially increasingL2−norm is needed.
For instance, ifU0(h) = ΦN (h), any controlvh satisfies

||vh||L2(0,T ) ≥ C exp(
√
N)(6)

whereC is a constant not depending onN .
Hence, it seems impossible to find a sequence of uniformly bounded

controls(vh)h>0 for (3) if U0(h) contains high eigenmodes.
Moreover, we shall prove that in any Sobolev space there exist initial

data(u0, u1) such that the following natural choice ofU0(h)

u0
j = u0(jh), u1

j = u1(jh), 1 ≤ j ≤ N(7)

does not ensure the uniformly boundedness of the controls.
As we have said before, this phenomenon is due to the fact that the

numerical schema introduces spurious high frequency vibrations that are not
observed in the continuous problem. More precisely, as it was pointed out
in [7] (see also [5]), the differences between the discrete and the continuous
systems become significant for the modes of order ofN .

The choice of an appropriate approximation(u0
j , u

1
j )1≤j≤N for the initial

datum(u0, u1)of (1) reveals to be crucial if onewants to ensure theexistence
of a bounded sequence of controls(vh)h>0.

Since theexistenceof higheigenmodes in the initial datumU0(h)has this
unwanted effect on the discrete controls, it seems natural to look for discrete
approximations of(u0, u1) in which the high frequencies have been filtered
out. More precisely, we shall consider thatU0(h) has been chosen of the
following form

U0(h) =
∑

|n|≤M
n/=0

a0
n(h)Φn(h)(8)
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whereM dependson thesizeof thespacesteph = 1
N+1 andon the regularity

of the initial datum of the continuous problem.
We shall prove that, by consideringU0(h) like in (8) withM ≤ √

N ,
there exists a sequence of bounded controls(vh)h>0 for (3). Moreover, if
(u0, u1) has a sufficient amount of analyticity, one can chooseM = N and
no filtering is needed. In this case, the discretization (7) can be used and
guarantees the existence of a bounded sequence of discrete controls. All
these results are true for control timesT sufficiently large but independent
of N .

In [7] it was proved that uniform boundary observability can be obtained
for the adjoint homogeneous system corresponding to (3), if the short wave
length components of the solutions are eliminated. This result ensures the
existence of a sequence of uniformly bounded controls which led to zero the
projection of the solution of (3) over a space generated by low frequency
eigenvectors. Our approach is different in the sense that we eliminate from
the very beginning the short wave length components of the initial datum
and we prove the existence of a sequence of uniformly bounded controls for
the solutions of (3). Moreover, our analysis gives more information on the
behaviour of the controls corresponding to the high frequencies.

The rest of the article is organized in the following way: In Sect. 2 we
prove some estimates for the biorthogonal families to the set of complex
exponentials

(
eiλjt

)
|j|≤N
j /=0

. These estimates will offer bounds for the discrete

controls. In Sect. 3 some general results for the semi-discrete system (3) are
given. A moments problem is deduced and some inequalities for the adjoint
equation are proved. In Sect. 4 the main results on the boundedness of the
controls are given and some convergence results are also proved. Finally,
in the last section, we discuss the existence of unbounded controls and we
analyze the case of HUM controls.

2 Estimates for the norm of a biorthogonal family

Let us consider the sequence(λj)|j|≤N
j /=0

whereλj = 2
h sin

(
jπh
2

)
. As we

shall see in the following section,(iλj)|j|≤N
j /=0

are the eigenvalues of the semi-

discrete problem (3).
In this sectionweconstruct anexplicit biorthogonal sequence(Θm)|m|≤N

m/=0

to the family of complex exponentials
(
eiλjt

)
|j|≤N
j /=0

in L2(−T, T ) and we

estimate the norm of the elements of this biorthogonal sequence.
We recall that(Θm)|m|≤N

m/=0
is a biorthogonal sequence to

(
eiλjt

)
|j|≤N
j /=0

in

L2(−T, T ) if
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∫ T

−T
Θm(t)eiλntdt = δmn, ∀m,n = ±1,±2, ...,±N(9)

(see [1] and [12]).
Since

(
eiλjt

)
|j|≤N
j /=0

is a finite family of exponential functions, it follows

immediately that there are infinitely many biorthogonal families. Neverthe-
less, since we are interested on the dependence of these biorthogonals on
N , it is not easy to give precise estimates for the norm of the elements of
them.

In the next Theorem we shall construct an explicit biorthogonal and we
shall evaluate the norms of its elements.

Theorem 2.1 If T > 0 is sufficiently large, there exists a sequence
(Θm)|m|≤N

m/=0
, biorthogonal inL2(−T, T ) to the family of complex exponen-

tials
(
eiλjt

)
|j|≤N
j /=0

, such that

||Θm||L2(−T,T ) ≤ C|λm| exp
(
α

|λm|2
N

)
, for

m = ±1,±2, ...,±N(10)

whereC andα are two positive constants which do not depend onm and
N .

Remark 1As we shall see, Theorem 2.1 provides a biorthogonal set for any
T > 0. However, for the estimates (10) we need a timeT sufficiently large
(but independent of the discretized problem). An estimate forT can be also
obtained from the proof.

Remark 2Let us remark that Theorem 2.1 implies that there exists a
biorthogonal sequence(Θm)|m|≤N

m/=0
, such that

||Θm||L2(−T,T ) ≤ C ′|λm|, form = ±1,±2, ...,±
√
N(11)

whereC ′ is a constant which does not depend onN .

Remark 3From Theorem 2.1 it follows that

(12)

||Θm||L2(−T,T ) ≤ C ′|λm| exp(α′|λm|), form = ±1,±2, ...,±N

whereC ′ andα′ are two positive constants which do not depend onN .
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Proof.Let us first define, for eachm such that| m |≤ N andm /= 0,

ξm(z) =


 ∏

|n|≤N
n/=0,m

z − λn
λm − λn



(

sin T (z−λm)
4N

T (z−λm)
4N

)2N

×
(

sin T (z−λm)
4

T (z−λm)
4

)2

.(13)

Each functionξm has the following properties:

• ξm is an entire function
• ξm(λn) = δnm, ∀|n| ≤ N , n /= 0
• ξm(x) ∈ L2(−∞,∞)
• ξm is of theexponential typeatmostT , i.e. thereexistsaconstantAm > 0
such that, for allε > 0, we have

|ξm(z)| ≤ Ame(T+ε)|z|, ∀z ∈ C.

We introduce now the Fourier transform ofξm

Θm(z) =
1
2π

∫ ∞

−∞
ξm(x)e−xzidx.(14)

We shall show that{Θm}|m|≤N
m/=0

is the biorthogonal sequence we are

looking for.
From the properties ofξm, by using Paley-Wiener Theorem, it follows

thatΘm(t) has compact support in[−T, T ], it belongs toL2(−T, T ) and∫ T

−T
Θm(t)eiλntdt = ξm(λn) = δnm, ∀|n| ≤ N, n /= 0.

It follows that(Θm)|m|≤N
m/=0

is a biorthogonal sequence to
{
eiλnt

}
|n|≤N
n/=0

.

Our next objective is to estimate the norm ofΘm. From Plancherel’s
Theorem we have

√
2π ‖ Θm ‖L2(−T,T )=‖ ξm ‖L2(−∞,∞) .(15)

Hence, to estimate the norm ofΘm, we have to study the norm ofξm in
L2(−∞,∞). We have

‖ ξm ‖2
L2(−∞,∞)

=
∫ ∞

−∞

∣∣∣∣∣∣∣

 ∏

|n|≤N
n/=0,m

x − λn
λm − λn



(

sin T (x−λm)
4N

T (x−λm)
4N

)2N (
sin T (x−λm)

4
T (x−λm)

4

)2
∣∣∣∣∣∣∣
2

dx
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=


 ∏

|n|≤N
n/=0,m

1
| λm − λn |2


∫ ∞

−∞

×

∣∣∣∣∣∣∣

 ∏

|n|≤N
n/=0,m

(x − λn)



(

sin T (x−λm)
4N

T (x−λm)
4N

)2N (
sin T (x−λm)

4
T (x−λm)

4

)2
∣∣∣∣∣∣∣
2

dx

Let us first evaluate the constant

γ1(N) =
∏

|n|≤N
n/=0,m

1
| λm − λn |2 .(16)

Lemma 2.1 The following estimates hold:

(i) γ1(N) = 4 cos4
(
mπh

2

)∏
|n|≤N
n/=0,m

1
|λk|2 .

(ii) γ1(N) ≤ | cos(mπh
2 ) sin(mπh)|2

h224N−2(N !)4 .

Proof.First of all remark that

|λn − λm| =
4
h

∣∣∣∣sin
(
n − m

4
πh

)
cos

(
n + m

4
πh

)∣∣∣∣ .
Let us now evaluate

∏
|n|≤N
n/=0,m

| λm − λn |.
For1 ≤ m ≤ N , we obtain∏
|n|≤N
n/=0,m

| λm − λn |

=
(

4
h

)2N−1 ∏
|n|≤N
n/=0,m

∣∣∣∣sin
(
n − m

4
πh

)∣∣∣∣ ∏
|n|≤N
n/=0,m

∣∣∣∣cos
(
n + m

4
πh

)∣∣∣∣ .
But∏

|n|≤N
n/=0,m

∣∣∣∣sin
(
n − m

4
πh

)∣∣∣∣
=

∏
1≤n≤m−1

∣∣∣∣sin
(
n − m

4
πh

)∣∣∣∣ ∏
m+1≤n≤N

∣∣∣∣sin
(
n − m

4
πh

)∣∣∣∣
∏

−(N−m)≤n≤−1

∣∣∣∣sin
(
n − m

4
πh

)∣∣∣∣ ∏
−N≤n≤−(N−m)−1

∣∣∣∣sin
(
n − m

4
πh

)∣∣∣∣



730 S. Micu

=
∏

1≤k≤m−1

∣∣∣∣sin
(
kπh

4

)∣∣∣∣ ∏
1≤k≤N−m

∣∣∣∣sin
(
kπh

4

)∣∣∣∣
∏

m+1≤k≤N

∣∣∣∣sin
(
kπh

4

)∣∣∣∣ ∏
−N−1+m≤k≤−N

∣∣∣∣sin
(

(m − k)πh
4

)∣∣∣∣
=

∏
1≤k≤N

k /=m

∣∣∣∣sin
(
kπh

4

)∣∣∣∣ ∏
1≤k≤N−m

∣∣∣∣sin
(
kπh

4

)∣∣∣∣
×

∏
N+1−m≤k≤N

∣∣∣∣sin
(

(k + m)πh
4

)∣∣∣∣ .
On the other hand∏

|n|≤N
n/=0,m

∣∣∣∣cos
(
n + m

4
πh

)∣∣∣∣
=

∏
−m≤n≤−1

∣∣∣∣cos
(
n + m

4
πh

)∣∣∣∣ ∏
−N≤n≤−m−1

∣∣∣∣cos
(
n + m

4
πh

)∣∣∣∣
∏

1≤n≤N−m

∣∣∣∣cos
(
n + m

4
πh

)∣∣∣∣ ∏
N−m+1≤n≤N

∣∣∣∣cos
(
n + m

4
πh

)∣∣∣∣
=

1∣∣cos
(
mπh

2

)∣∣ ∏
0≤k≤m−1

∣∣∣∣cos
(
kπh

4

)∣∣∣∣ ∏
1≤k≤N−m

∣∣∣∣cos
(
kπh

4

)∣∣∣∣
∏

m+1≤k≤N

∣∣∣∣cos
(
kπh

4

)∣∣∣∣ ∏
N+1−m≤k≤N

∣∣∣∣cos
(

(m + k)πh
4

)∣∣∣∣
=

1∣∣cos
(
mπh

2

)∣∣ ∏
0≤k≤N

k /=m

∣∣∣∣cos
(
kπh

4

)∣∣∣∣ ∏
1≤k≤N−m

∣∣∣∣cos
(
kπh

4

)∣∣∣∣
×

∏
N+1−m≤k≤N

∣∣∣∣cos
(

(k + m)πh
4

)∣∣∣∣ .
Hence, we obtain

∏
|n|≤N
n/=0,m

| λm − λn |= 22N−1

h2N−1
∣∣cos

(
mπh

2

)∣∣ ∏
1≤k≤N

k /=m

∣∣∣∣sin
(
kπh

2

)∣∣∣∣
∏

1≤k≤N−m

∣∣∣∣sin
(
kπh

2

)∣∣∣∣ ∏
N+1−m≤k≤N

∣∣∣∣sin
(

(k + m)πh
2

)∣∣∣∣ .
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Let us now remark that

∏
N+1−m≤k≤N

∣∣∣∣sin
(

(k + m)πh
2

)∣∣∣∣ =
N+m∏
k=N+1

∣∣∣∣sin
(
kπh

2

)∣∣∣∣
=

1∣∣cos mπh2

∣∣ ∏
1≤k≤m

∣∣∣∣cos
(
kπh

2

)∣∣∣∣
=

1∣∣cos mπh2

∣∣ ∏
N+1−m≤k≤N

∣∣∣∣sin
(
kπh

2

)∣∣∣∣ .
It follows that, for1 ≤ m ≤ N ,∏

|n|≤N
n/=0,m

| λm − λn | =
22N−1

h2N−1| cos
(
mπh

2

)
sin(mπh)|

×

 ∏

1≤k≤N

∣∣∣∣sin
(
kπh

2

)∣∣∣∣



2

.

On the other hand, if−N ≤ m ≤ −1, we have∏
|n|≤N
n/=0,m

| λm − λn |

=
(

4
h

)2N−1 ∏
|n|≤N
n/=0,m

∣∣∣∣sin
(
n − m

4
πh

)∣∣∣∣ ∏
|n|≤N
n/=0,m

∣∣∣∣cos
(
n + m

4
πh

)∣∣∣∣
=
(

4
h

)2N−1 ∏
|n|≤N
n/=0,m

∣∣∣∣sin
(−n + m

4
πh

)∣∣∣∣ ∏
|n|≤N
n/=0,m

∣∣∣∣cos
(−n − m

4
πh

)∣∣∣∣
=
(

4
h

)2N−1 ∏
|n|≤N

n/=0,−m

∣∣∣∣sin
(
n − (−m)

4
πh

)∣∣∣∣
×

∏
|n|≤N

n/=0,−m

∣∣∣∣cos
(
n + (−m)

4
πh

)∣∣∣∣
=

∏
|n|≤N

n/=0,−m

| λ−m − λn |= 22N−1

h2N−1| cos
(
mπh

2

)
sin(mπh)|

×

 ∏

1≤k≤N

∣∣∣∣sin
(
kπh

2

)∣∣∣∣



2

.
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It follows that, for each|m| ≤ N ,m /= 0, we have

∏
|n|≤N
n/=0,m

| λm − λn | =
22N−1

h2N−1| cos
(
mπh

2

)
sin(mπh)|

×

 ∏

1≤k≤N

∣∣∣∣sin
(
kπh

2

)∣∣∣∣



2

.(17)

By taking into account thatλk = 2
h sin

(
kπh
2

)
(i) follows immediately

from (17).
On the other hand, by taking into account thatsin

(
kπh
2

) ≥ kh, (ii) can
be obtained directly from (i) and the proof of Lemma 2.1 finishes. ��

Let us now evaluate the integral

γ2(N) =
∫ ∞

−∞

∣∣∣∣∣∣∣

 ∏

|n|≤N
n/=0,m

(x − λn)




×
(

sin T (x−λm)
4N

T (x−λm)
4N

)2N (
sin T (x−λm)

4
T (x−λm)

4

)2
∣∣∣∣∣∣∣
2

dx.(18)

If 0 < δ < 1 is a positive sub-unitary number we have thatγ2(N) =
I1 + I2 where

I1 =
∫

|x−λm|≤δNπ

∣∣∣∣∣∣∣
∏

|n|≤N
n/=0,m

(x − λn)

∣∣∣∣∣∣∣
2 ∣∣∣∣∣sin

T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣∣
4N ∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx,

I2 =
∫

|x−λm|≥δNπ

∣∣∣∣∣∣∣
∏

|n|≤N
n/=0,m

(x − λn)

∣∣∣∣∣∣∣
2 ∣∣∣∣∣sin

T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣∣
4N ∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx.

We shall evaluate each of the two integrals. For the second integral we
have

Lemma 2.2 For T > 0 sufficiently large but independent ofN there exists
a positive constantC1 > 0, which does not dependent onN , such that

γ1(N)I2 ≤ C1.(19)
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Proof.

I2 =
∫

|x−λm|≥δNπ

∣∣∣∣∣∣∣
∏

|n|≤N
n/=0,m

(x − λn)

∣∣∣∣∣∣∣
2 ∣∣∣∣∣sin

T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣∣
4N ∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx

≤ (4N)4N

T 4N

∫
|x−λm|≥δNπ

∏
|n|≤N
n/=0,m

∣∣∣∣ x − λn
x − λm

∣∣∣∣
2 1

|x − λm|2dx.

But, for anyx such that|x − λm| ≥ δNπ, we have∣∣∣∣ x − λn
x − λm

∣∣∣∣ ≤ |x − λm| + |λm − λn|
|x − λm| ≤ 1 +

2Nπ

|x − λm| ≤ 1 +
2
δ
.

It follows that,

I2 ≤ (4N)4N

T 4N

(
1 +

2
δ

)4N−2 ∫
|x−λm|≥δNπ

1
|x − λm|2dx

≤ 2(4N)4N

δNπT 4N

(
1 +

2
δ

)4N−2

.

Moreover, from the second estimate of Lemma 2.1, by using Stirling’s
formula, it follows that

γ1(N)I2 ≤ exp[βN − 4N ln(T )]

whereβ is a positive constant independent ofN .
Hence, forT > 0 sufficiently large (but independent ofN ), there exists

a positive constantC1, independent ofN , such thatγ1(N)I2 ≤ C1 and the
proof of the Lemma finishes. ��

The estimates for the first integral are more laborious. Let us first remark
that

I1 =
∫

|x−λm|≤δNπ

∣∣∣∣∣∣∣
∏

|n|≤N
n/=0,m

(x − λn)

∣∣∣∣∣∣∣
2 ∣∣∣∣∣sin

T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣∣
4N ∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx

=


 ∏

|n|≤N
n/=0,m

|λn|2

∫

|x−λm|≤δNπ


 ∏

|n|≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣
2




×
∣∣∣∣∣sin

T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣∣
4N ∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx.
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We denote byI3 the integral

I3 =
∫

|x−λm|≤δNπ


 ∏

|n|≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣
2




×
∣∣∣∣∣sin

T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣∣
4N ∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx.

The following result holds

Lemma 2.3 For T > 0 sufficiently large but independent ofN there exist
two positive constantsC2 andC3, which do not dependent onN , such that

I3 ≤ (C2|λm|2 + C3)e
16|λm|2

N .(20)

Proof.We evaluate first the term

∣∣∣∣ sin T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣
4N

.

Let us first remark that, there existsa > π2 such that

sinx

x
≤ 1 − 1

a
x2, ∀ |x| < π.(21)

From (21) it follows that, for
∣∣∣T (x−λm)

4N

∣∣∣ < π, we have

∣∣∣∣∣sin
T (x−λm)

4N
T (x−λm)

4N

∣∣∣∣∣
4N

≤
(

1 − 1
a

(
T (x − λm)

4N

)2
)4N

= exp

(
4N ln

(
1 − 1

a

(
T (x − λm)

4N

)2
))

≤ exp

(
4N

(
−1
a

(
T (x − λm)

4N

)2
))

≤ exp
(

−T 2(x − λm)2

4aN

)
.

Hence,

(22)∣∣∣∣∣sin
T (x−λm)

4N
T (x−λm)

4N

∣∣∣∣∣
4N

≤ exp
(

−T 2(x − λm)2

4aN

)
, if |x − λm| < 4Nπ

T
.
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On the other hand, if
∣∣∣T (x−λm)

4N

∣∣∣ ≥ π, it follows that

∣∣∣∣∣sin
T (x−λm)

4N
T (x−λm)

4N

∣∣∣∣∣
4N

≤ 1∣∣∣T (x−λm)
4N

∣∣∣4N ≤ exp(−4N ln(π)).

Hence,∣∣∣∣∣sin
T (x−λm)

4N
T (x−λm)

4N

∣∣∣∣∣
4N

≤ exp(−4N ln(π)), if |x − λm| ≥ 4Nπ

T
.(23)

Let us now pass to evaluate the product
∏

|n|≤N
n/=0,m

∣∣∣x−λn
λn

∣∣∣. Sinceλn =

−λ−n we have that

∏
|n|≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣ =
|x − λ−m|

|λ−m|
N∏′

n=1

∣∣∣∣x2 − λ2
n

λ2
n

∣∣∣∣ =
|x + λm|

|λm|
N∏′

n=1

∣∣∣∣x2 − λ2
n

λ2
n

∣∣∣∣ .
In the above′ indicates that the index|m| has been skipped.
We shall consider the cases|m| ≤ δN and|m| ≥ δN .

Case I:m ≤ δN .

We first remark that

N∏′
∣∣∣∣x2 − λ2

n

λ2
n

∣∣∣∣

=




∣∣∣∣x2−λ2
N+1−|m|

λ2
N+1−|m|

∣∣∣∣
N/2∏′

∣∣∣∣x2 − λ2
n

λ2
n

∣∣∣∣
∣∣∣∣∣x

2 − λ2
N+1−n

λ2
N+1−n

∣∣∣∣∣ ,
if N even∣∣∣∣x2−λ2

N+1−|m|
λ2

N+1−|m|

x2−λ2
(N+1)/2

λ2
(N+1)/2

∣∣∣∣
(N−1)/2∏′

∣∣∣∣x2 − λ2
n

λ2
n

∣∣∣∣
∣∣∣∣∣x

2 − λ2
N+1−n

λ2
N+1−n

∣∣∣∣∣ ,
if N odd.

Since, for|j| ≥ N
2 , we have that

N
2 ≤ |λj | ≤ Nπ, it follows that

max

{∣∣∣∣∣
x2 − λ2

N+1−|m|
λ2
N+1−|m|

∣∣∣∣∣
∣∣∣∣∣
x2 − λ2

(N+1)/2

λ2
(N+1)/2

∣∣∣∣∣
}

≤ (2δπN)2 + (Nπ)2(
N
2

)2 = 4π2(4δ2 + 1) < 20π2.



736 S. Micu

Hence,

N∏′
∣∣∣∣x2 − λ2

n

λ2
n

∣∣∣∣ ≤ (20π2)2
[N

2 ]∏′
(∣∣∣∣x2 − λ2

n

λ2
n

∣∣∣∣
∣∣∣∣∣x

2 − λ2
N+1−n

λ2
N+1−n

∣∣∣∣∣
)

= 400π4

[N
2 ]∏′
(∣∣∣∣∣x

2 − 4
h2 sin2 (nπh

2

)
4
h2 sin2 (nπh

2

)
∣∣∣∣∣
∣∣∣∣∣x

2 − 4
h2 cos2

(
nπh
2

)
4
h2 cos2

(
nπh
2

)
∣∣∣∣∣
)

= 400π4

[N
2 ]∏′
(∣∣∣∣∣x

4 − 4
h2x

2 + 4
h2 sin2 (nπh

2

) 4
h2 cos2

(
nπh
2

)
4
h2 sin2 (nπh

2

) 4
h2 cos2

(
nπh
2

)
∣∣∣∣∣
)

.

Since|x − λm| ≤ δNπ and|λm| ≤ δNπ it follows that |x| ≤ 2δπN .
Hence, ifδ < 1

4π , there existsp ∈ N
∗, p ≤ N

4 and a real numberz with
p ≤ z < p + 1 such thatx2 = 4

h2 sin2 ( zπh
2

)
. We obtain that

∏
|n| ≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣

≤ |x + λm|
|λm|

[N
2 ]∏′
∣∣∣∣sin2(nπh) − sin2(zπh)

sin2(nπh)

∣∣∣∣
=

|x + λm|
|λm|

p∏′
(

sin2(zπh)
sin2(nπh)

− 1
) [N

2 ]∏′

n=p+1

(
1 − sin2(zπh)

sin2(nπh)

)

≤ |x + λm|
|λm|

p∏′
(

sin2[(p + 1)πh]
sin2(nπh)

− 1
) [N

2 ]∏′

n=p+1

(
1 − sin2(pπh)

sin2(nπh)

)

=
|x + λm|

|λm|
p∏′ sin[(p + 1 − n)πh] sin[(p + 1 + n)πh]

sin2(nπh)

×
[N

2 ]∏′

n=p+1

sin[(n − p)πh] sin[(n + p)πh]
sin2(nπh)

≤ |x + λm|
|λm|

sin2(|m|πh)
|sin[(p − |m|)πh] sin[(p + |m|)πh]|

×
p∏

n=1

sin[(p + 1 − n)πh] sin[(p + 1 + n)πh]
sin2(nπh)
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×
[N

2 ]∏
n=p+1

sin[(n − p)πh] sin[(n + p)πh]
sin2(nπh)

≤ |x + λm|
2

p∏
n=1

sin[(p + 1 − n)πh] sin[(p + 1 + n)πh]
sin2(nπh)

×
[N

2 ]∏
n=p+1

sin[(n − p)πh] sin[(n + p)πh]
sin2(nπh)

.

But
p∏

n=1

sin[(p + 1 − n)πh] sin[(p + 1 + n)πh]

×
[N

2 ]∏
n=p+1

sin[(n − p)πh] sin[(p + n)πh]

=
p∏

k=1

sin(kπh)
2p+1∏
k=p+2

sin(kπh)
[N

2 ]−p∏
k=1

sin(kπh)
[N

2 ]+p∏
k=2p+1

sin(kπh)

=
sin[(2p + 1)πh]
sin[(p + 1)πh]

[N
2 ]∏

k=1

sin(kπh)
[N

2 ]−p∏
k=1

sin(kπh)
[N

2 ]+p∏
k=[N

2 ]+1

sin(kπh)

≤ 2
[N

2 ]∏
k=1

sin(kπh)
[N

2 ]−p∏
k=1

sin(kπh)
[N

2 ]+p∏
k=[N

2 ]+1

sin(kπh).

It follows that

∏
|n|≤N
n/=0,m

∣∣∣∣x + λn
λn

∣∣∣∣ ≤ 400π4|x + λm|
k=[N

2 ]∏
k=[N

2 ]−p+1

1
sin(kπh)

[N
2 ]+p∏

[N
2 ]+1

sin(kπh)

= 400π4|x + λm|
[N

2 ]∏
k=[N

2 ]−p+1

sin[(p + k)πh]
sin(kπh)

.

Taking into account that0 ≤ (p + k)πh ≤ π and since the function
h(x) = sinx

x is decreasing on[0, π], it follows that

sin[(p + k)πh]
sin(kπh)

≤ p + k

k
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and hence, sincep ≤ N
4 , we obtain that

∏
|n|≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣ ≤ 400π4|x + λm|
[N

2 ]∏
k=[N

2 ]−p+1

p + k

k

≤ 400π4|x + λm| exp


 [N

2 ]∑
k=[N

2 ]−p+1

ln
(
1 +

p

k

)

≤ 400π4|x + λm| exp


 [N

2 ]∑
k=[N

2 ]−p+1

p

k




≤ 400π4|x + λm| exp

(∫ [N
2 ]+1

[N
2 ]−p+1

p

y
dy

)

= 400π4|x + λm| exp

(
p ln

( [
N
2

]
+ 1[

N
2

]− p + 1

))

= 400π4|x + λm| exp

(
p ln

(
1 +

p[
N
2

]− p + 1

))

≤ 400π4|x + λm| exp

(
p2[

N
2

]− p + 1

)

≤ 400π4|x + λm| exp
(

4p2

N

)

≤ 400π4|x + λm| exp
(

4x2

N

)
.

Hence,

∏
|n|≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣ ≤ 400π4|x + λm| exp
(

4x2

N

)
.(24)

From (22) and (24) it follows that

∫
|x−λm|≤ 4Nπ

T


 ∏

|n|≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣
2



∣∣∣∣∣sin

T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣∣
4N ∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx

≤ 400π4
∫

|x−λm|≤ 4Nπ
T

|x + λm|2 exp
(

−T 2(x − λm)2

4aN

)
exp

(
8x2

N

)
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×
∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx

≤ 400π4e
16|λm|2

N

∫
|x−λm|≤ 4Nπ

T

|x + λm|2

× exp
(

−T 2(x − λm)2

4aN
+

16(x − λm)2

N

) ∣∣∣∣∣sin
T (x−λm)

4
T (x−λm)

4

∣∣∣∣∣
4

dx.

Hence, forT > 0 sufficiently large, we get that

∫
|x−λm|≤ 4Nπ

T


 ∏

|n|≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣
2



∣∣∣∣∣sin

T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣∣
4N ∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx

≤ 400π4e
16|λm|2

N

∫
|x−λm|≤ 4Nπ

T

|x + λm|2
∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx

≤ 400π4e
16|λm|2

N

×

∫

|x−λm|≤ 4Nπ
T

(2|x − λm|2 + 2λ2
m)

∣∣∣∣∣sin
T (x−λm)

4
T (x−λm)

4

∣∣∣∣∣
4

dx




≤ (C ′
2|λm|2 + C ′

3)e
16|λm|2

N

whereC ′
2 andC

′
3 are two positive constants which do not depend onN and

m.
On the other hand (23) implies that

∫
4Nπ

T
≤|x−λm|≤δNπ


 ∏

|n|≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣
2




×
∣∣∣∣∣sin

T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣∣
4N ∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx

≤ 400π4
∫

4Nπ
T

≤|x−λm|≤δNπ
|x + λm|2

× exp (−4N ln(π)) exp
(

8x2

N

) ∣∣∣∣∣sin
T (x−λm)

4
T (x−λm)

4

∣∣∣∣∣
4

dx

≤ 400π4e
16|λm|2

N

∫
4Nπ

T
≤|x−λm|≤δNπ

|x + λm|2
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× exp
(

−4N ln(π) +
16(x − λm)2

N

) ∣∣∣∣∣sin
T (x−λm)

4
T (x−λm)

4

∣∣∣∣∣
4

dx

≤ 400π4e
16|λm|2

N

∫
4Nπ

T
≤|x−λm|≤δNπ

|x + λm|2

× exp
(−4N ln(π) + 16δ2π2N

) ∣∣∣∣∣sin
T (x−λm)

4
T (x−λm)

4

∣∣∣∣∣
4

dx.

Sinceδ can be made arbitrarily small we obtain that

∫
4Nπ

T
≤|x−λm|≤δNπ


 ∏

|n|≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣
2




×
∣∣∣∣∣sin

T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣∣
4N ∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx

≤ 400π4e
16|λm|2

N

∫
4Nπ

T
≤|x−λm|≤δNπ

|x + λm|2
∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx

≤ (C”2|λm|2 + C”3)e
16|λm|2

N

whereC”2 andC”3 are two positive constants which do not depend onN
andm.

It follows that

I3 =
∫

4Nπ
T

≤|x−λm|≤δNπ


 ∏

|n|≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣
2




×
∣∣∣∣∣sin

T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣∣
4N ∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx

+
∫

|x−λm|≤ 4Nπ
T


 ∏

|n|≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣
2




×
∣∣∣∣∣sin

T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣∣
4N ∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx

≤ (C2|λm|2 + C3)e
16|λm|2

N
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whereC2 andC3 are two positive constants which do not depend onN and
m.

Case II:m ≥ δN .

This case is much simpler than the previous one since we have that

∏
|n|≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣ ≤
∏

|n|≤N
n/=0,m

|x − λm| + |λm − λn|
|λn|

≤
∏

|n|≤N
n/=0,m

δNπ + 4(N + 1)
2|n|

≤ (4N)2N−1 m

(N !)2

≤ |λm|e32N

≤ |λm|e 8|λm|2
N .

It follows that

I3 =
∫

|x−λm|≤δNπ


 ∏

|n|≤N
n/=0,m

∣∣∣∣x − λn
λn

∣∣∣∣
2




×
∣∣∣∣∣sin

T (x−λm)
4N

T (x−λm)
4N

∣∣∣∣∣
4N ∣∣∣∣∣sin

T (x−λm)
4

T (x−λm)
4

∣∣∣∣∣
4

dx

≤ 2δNπ|λm|2e 16|λm|2
N

≤ (C2|λm|2 + C3)e
16|λm|2

N

whereC2 andC3 are two positive constants which do not depend onN and
m.

The proof of the Lemma is now complete. ��

We are able now to conclude the proof of Theorem 2.1. Indeed we have

2π||Θm||2L2(−T,T ) = ||ξm||2L2(−∞,∞)

= γ1(N)I2 + γ1(N)I3


 ∏

|n|≤N
n/=0,m

|λn|2

 .
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Relation (i) from Lemma 2.1 implies that

γ1(N)


 ∏

|n|≤N
n/=0,m

|λn|2

 ≤ 4

and the proof of the Theorem finishes by taking into account the estimates
from Lemmas 2.2 and 2.3.

Remark 4The explicit biorthogonal family(Θm)|m|≤N
m/=0

may not have mini-

mal norm. Of course, there exists an unique biorthogonal of minimal norm
which belongs to the space generated by

(
eiλjt

)
|j|≤N
j /=0

. However, it is not easy

to evaluate its norm.

Theorem 2.1 gives a biorthogonal sequence,(Θm)|m|≤N
m/=0

, to the family

of complex exponentials
(
eiλjt

)
|j|≤N
j /=0

with the property that the norms of

the elements(Θm)|m|≤√
N

m/=0

increase polynomially withm. Note also that

the norms of all the elements of the biorthogonal family depend ofm but
do not depend explicitly ofN . Nevertheless, form large, these norms can
have an exponential growth. In the following Theorem we show that in any
biorthogonal family there are elements with exponentially big norms.

Theorem 2.2 Let (ψm)|m|≤N
m/=0

biorthogonal to{eiλnt}|n|≤N
n/=0

in L2(−T, T ).

Then there exists a positive constantsC2 not depending onN , such that

‖ ψN ‖L2(−T,T )≥ C2e
√
N .(25)

Proof. In order to prove the theorem some arguments from [3] will be used.
We shall give the proof in several steps.

Step 1:Let us define the following sequence of functions

τm(z) =
∫ T

−T
ψm(t)eitzdt, | m |≤ N, m /= 0.(26)

From Paley-Wiener Theorem it follows thatτm is an entire function of
exponential type at mostT . Moreover,

| τm(x) |≤
√

2T ‖ ψm ‖L2(−T,T ), ∀x ∈ R.(27)

Sinceτm is a function of exponential type it follows from Hadamard’s
Factorization Theorem that

τm(z) = azpebz
∏
zk∈E

(
1 − z

zk

)
ez/zk(28)
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whereE is the set of the zeroszk of τm with zk /= 0, E = {zk ∈ C |
τm(zk) = 0, zk /= 0}.

From the definition of the functionτm it follows thatτm(λn) = δm,n.
Therefore{λn : | n |≤ N, n /= 0, n /= m} ⊆ E. Let E′ = {λn : | n |≤
N, n /= 0, n /= ±m} and define the polynomial function

Pm(z) =
∏

|n|≤N
n/=0,±m

z − λn
λm − λn

.(29)

Let us now define functionφm(z) by

φm(z) =
τm(z)
Pm(z)

.(30)

The functionφm has the following properties:

• is an entire function of exponential type at mostT
• φm(λm) = 1
• τm(z) = Pm(z)φm(z)

Let us defineϕN : C → C, ϕN (z) = φN (λN − z). Evidently,ϕN is
an entire function such thatϕN (0) = 1.

Step 2:In this step we shall give some estimates for| PN (λN − z) |.

PN (λN − z) =
∏

|n|≤N−1
n/=0

λN − z − λn
λN − λn

=
∏

|n|≤N−1
n/=0

µn − z

µn
,

where

µn = λn − λN =
4
h

cos
(
N + n

4
πh

)
sin

(
N − n

4
πh

)
, 0 < |n| < N.

(31)

Let us now denote byνj = µN−j = 4
h sin

(
jπh
4

)
sin

(
(j+2)πh

4

)
for 1 ≤

j ≤ 2N − 1, j /= N and putν0 = 0. Evidently, the sequence(νj)1≤j≤2N−1
j /=N

is increasing and

PN (λN − z) =
∏

1≤j≤2N−1
j /=N

νj − z

νj
.

Now, if z ∈ C is such that| z |≤ N , there existsp ∈ {0, 1, ...,
[
N
2

]}
such that|z| ∈ [νp, νp+1].
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We obtain that

|PN (λN − z)| =
∏

1≤j≤p

|νj − z|
|νj |

∏
p+1≤j≤2N−1

j /=N

|νj − z|
|νj |

≥
∏

1≤j≤p

|z| − νj
νj

∏
p+1≤j≤2N−1

j /=N

νj − |z|
νj

≥


 ∏

1≤j≤p−1

νp − νj
νj

∏
p+2≤j≤2N−1

j /=N

νj − νp+1

νj




×
( |z| − νp

νp

νp+1 − |z|
νp+1

)
.

But

∏
1≤j≤p−1

νp − νj
νj

=
∏

1≤j≤p−1

λN−j − λN−p
λN − λN−j

=
∏

1≤j≤p−1

sin
(

(p−j)πh
4

)
cos

(
(2N−j−p)πh

4

)
sin

(
jπh
4

)
sin

(
(j+2)πh

4

)

=
∏

1≤j≤p−1

sin
(

(p+j+2)πh
4

)
sin

(
(j+2)πh

4

)

=

∏2p+1
k=p+3 sin

(
kπh
4

)
∏p+1
k=3 sin

(
kπh
4

) .

On the other hand

∏
p+2≤j≤2N−1

j /=N

νj − νp+1

νj
=

∏
p+2≤j≤2N−1

j /=N

λN−p−1 − λN−j
λN − λN−j

=
2N−1∏
j=p+2
j /=N

sin
(

(j−p−1)πh
4

)
cos

(
(2N−j−p−1)πh

4

)
sin

(
jπh
4

)
sin

(
(j+2)πh

4

)

=
2N−1∏
j=p+2
j /=N

sin
(

(j−p−1)πh
4

)
sin

(
(j+p+3)πh

4

)
sin

(
jπh
4

)
sin

(
(j+2)πh

4

)
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=
sin

(
Nπh

4

)
sin

(
(N+2)πh

4

)
sin

(
(N−p−1)πh

4

)
sin

(
(N+p+3)πh

4

)

×
∏p+1
k=1 sin

(
kπh
4

)∏2N+p+2
k=2N+2 sin

(
kπh
4

)
∏2p+4
k=p+4 sin

(
kπh
4

)∏2N−1
k=2N−p−1 sin

(
kπh
4

) .
We obtain that∏

1≤j≤p−1

νp − νj
νj

∏
p+2≤j≤2N−1

j /=N

νj − νp+1

νj

=
sin

(
Nπh

4

)
sin

(
(N+2)πh

4

)
sin

(
(N−p−1)πh

4

)
sin

(
(N+p+3)πh

4

)

×
sin

(
πh
4

)
sin

(2πh
4

)
sin

(
(p+3)πh

4

)
sin

(
(2p+2)πh

4

)
sin

(
(2p+3)πh

4

)
sin

(
(2p+4)πh

4

)

×
2N+p+2∏
k=2N+2

sin
(
kπh
4

)
sin

(
(k−p−3)πh

4

)
≥ 16

π5
N(N + 2)

(N − p − 1)(N + p + 3)
p + 3

(p + 1)(p + 2)(2p + 3)
.

It follows that

|PN (λN − z)| ≥ 16
π5

N(N + 2)
(N − p − 1)(N + p + 3)

p + 3
(p + 1)(p + 2)(2p + 3)

×
( |z| − νp

νp

νp+1 − |z|
νp+1

)
.

Now, sincep ≤ N
2 and sincepνp ≤ π, we obtain that there exists a

positive constantC > 0 independent ofN such that

(32)

|PN (λN − z)| ≥ C


 min

1≤j≤2N−1
j /=N

{||z| − νj |}



2

, ∀z ∈ C with |z| ≤ N.

Since|νp+1 − νp| = 4
h sin

(
kπh
4

)
sin

(
(2p+3)πh

4

)
≥ 2ph we can chose

r ∈ [νp, νp+1] such that

(|z| − νp)(νp+1 − |z|) ≥ (ph)2, ∀z ∈ C with |z| = r.
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Step 3:From (26) and (32) we obtain that

| ϕN (z) | =
| τN (λN − z) |
| PN (λN − z) | ≤

√
2T eT Im z ‖ ψN ‖L2(−T,T )

C

[
min1≤j≤2N−1

j /=N

{||z| − νj |}
]2 ,

∀z ∈ C, |z| ≤ N.(33)

We shall show that (33) is not possible unless‖ ψN ‖ grows rapidly with
N .

Let us first recall the following result (see [9], p.21):

Theorem A: Let f(z) be holomorphic in the circle| z |≤ 2eR (R > 0)
with f(0) = 1 and letη ∈ (

0, 3e
2

)
. Then inside the circle| z |≤ R, but

outside of a family of excluded circles the sum of whose radii is not greater
than4ηR, we have

ln(| f(z) |) > −
(

2 + ln
(

3e
2η

))
ln(Mf (2eR))(34)

whereMf (2eR) = max
|z|=2eR

| f(z) |.
We apply this result to the functionϕN which satisfies the hypothesis of

Theorem A. It follows that, for allR > 0 andη ∈ (
0, 3e

2

)
,

ln(| ϕN (z) |) > −2
(

2 + ln
(

3e
2η

))
ln(Mϕm(2eR)),

∀z ∈ C, | z |≤ N(35)

outside of a set of circles the sum of whose radii is not greater than4ηR.
Let us denote byδ = 2

(
2 + ln

(
3e
2η

))
> 1 and choseη ∈ (0, 1

16).

From Theorem A we obtain that there existsx0 ∈ [−R,−R
4

]
such that

ln(| ϕN (x0) |) > −δ ln (Mϕm(2eR)) .(36)

On the other hand, from (33),

|ϕN (x0)| = |φN (λN − x0)|
≤

√
2T ‖ ψN ‖L2(−T,T )

1
| PN (λN − x0) | .(37)

But, sincex0 is a negative number,

|PN (λN − x0)| =
∏

1≤j≤2N−1
j /=N

νj + |x0|
νj

≥
[
√
N ]∏

j=1

νj + |x0|
νj

> |x0|[
√
N ].
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Hence, from (36) and (37), we obtain that there existsx0 ∈ [−R,−R
4

]
such that

ln
(√

2T ‖ ψN ‖L2(−T,T )

)
> [

√
N ] ln(|x0|) − δ ln (Mϕm(2eR)) .(38)

We chose nowR. If S =
[
N

3
4

]
we considerR > 0 such that

2eR =
νS+1 + νS

2
.(39)

It follows that

(i) min1≤j≤2N−1
j /=N

{|2eR − νj |} = νS+1−νS

2 ≥ 1
N

(ii)
√
N ≤ S(S + 2)h ≤ R ≤ π2

4 S(S + 2)h ≤ π2

4

√
N

Hence,

MϕN (2eR) = max
|z|=2eR

| ϕN (z) |≤
√

2TN2e2eRT ||ψN ||L2(−T,T )

C
.(40)

From (40) and (38) the following estimate is obtained

(1 + δ) ln
(√

2T ‖ ψN ‖L2(−T,T )

)
> [

√
N ] ln(|x0|) − 2eδTR − ln

(
N2

C

)

> [
√
N ]

(
ln
(
R

4

)
− 2eδT

R

[
√
N ]

− 1
[
√
N ]

ln
(
N2

C

))
.

Taking into account that
√
N ≤ R ≤ π2

4

√
N the proof finishes.

3 Controllability results

In this section we consider a sequence of semi-discrete systems correspond-
ing to a continuous wave equation and we study some of the controllability
properties of these systems.

Thestartingpoint of our study is the followingboundarycontrol problem:
givenT > 2 and(u0, u1) ∈ L2(0, 1) × H−1(0, 1) there exists a control
functionv ∈ L2(0, T ) such that the solution of the equation


u′′ − uxx = 0 for x ∈ (0, 1), t > 0
u(t, 0) = 0 for t > 0
u(t, 1) = v(t) for t > 0
u(0, x) = u0(x), u′(0, x) = u1(x) for x ∈ (0, 1)

(41)
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satisfies

u(T, ·) = u′(T, ·) = 0.(42)

It is well known that this problemhas a positive answer (see, for instance,
[10]).

We approximate (41) by a sequence of semi-discrete problems. LetN ∈
N

∗, a steph = 1
N+1 and an equidistant division of the interval(0, 1),

0 = x0 < x1 < ... < xN < xN+1 = 1 with xj = jh, 0 ≤ j ≤ N + 1.
Now, we consider the following problem of controllability: givenT > 0

and(u0
j , u

1
j )1≤j≤N ∈ C

2N , there exists a control functionvh ∈ L2(0, T )
such that the solutionu of


u′′
j (t) − uj+1(t)+uj−1(t)−2uj(t)

h2 = 0 for 1 ≤ j ≤ N, t > 0
u0(t) = 0 for t > 0
uN+1(t) = vh(t) for t > 0
uj(0) = u0

j , u′
j = u1

j for 1 ≤ j ≤ N

(43)

satisfies

uj(T ) = u′
j(T ) = 0, ∀j = 1, 2, ..., N.(44)

System (43) consists ofN linear differential equationswithN unknowns
u1, u2, ..., uN . uj(t) is an approximation foru(t, xj), the solution of (1),
provided that(u0

j , u
1
j )1≤j≤N are an approximation for the initial datum in

(1).
The choice of an appropriate approximation(u0

j , u
1
j )1≤j≤N for the initial

datum(u0, u1) ∈ L2(0, 1) × H−1(0, 1) of (1) is very important if we want
to ensure the existence of a bounded sequence of controls(vh)h>0. This
problem will be studied in detail in Sect. 4. The next two paragraphs are
devoted to the study of the elementary properties of (43).

3.1 Analysis of the homogeneous problem

The controllability of (43) is directly related to the properties of the cor-
responding homogeneous adjoin problem. Therefore we introduce now the
following system




w′′
j (t) − wj+1(t)+wj−1(t)−2wj(t)

h2 = 0 for 1 ≤ j ≤ N, t > 0
w0(t) = wN+1(t) = 0 for t > 0
wj(0) = w0

j , w′
j = w1

j for 1 ≤ j ≤ N

(45)

which represents the adjoint of (43).
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In order to write (45) in an abstract Cauchy form, we define the matrix
Ah ∈ MN×N (R)

Ah =
1
h2




2 −1 0 0 ..... 0 0
−1 2 −1 0 ..... 0 0
0 −1 2 −1 ..... 0 0
... ... ... ... ..... ... ...
0 0 0 0 ..... 2 −1
0 0 0 0 ..... −1 2




.

If we denote byW (t) = (w1(t), w2(t), ..., wN (t))T, system (45) can be
written as {

W ′′(t) + AhW (t) = 0, for t > 0
W (0) = W 0, W ′(0) = W 1,

(46)

whereW 0 = (w0
j )1≤j≤N andW 1 = (w1

j )1≤j≤N .
Finally, if we putZ = (W,W ′)T, we obtain that (45) is equivalent to{

Z ′(t) + LhZ(t) = 0, for t > 0
Z(0) = Z0 = (W 0,W 1)T(47)

whereLh ∈ M2N×2N (R),

Lh =
(

0 −I
Ah 0

)
.

It follows that (47) is a linear system of2N differential equations of
order one and has an unique solutionZ ∈ Cω ([0,∞),C2N

)
. Hence, (45)

has a unique solutionW ∈ Cω ([0,∞),CN
)
.

The energy of (45) can be defined as

Eh(t) =
h

2

N∑
j=0

[∣∣∣∣wj+1(t) − wj(t)
h

∣∣∣∣
2

+ |w′
j(t)|2

]
(48)

and represents a discretization of the continuous energy corresponding to (1)

E(t) =
1
2

∫ 1

0

[|u′(t)|2 + |ux(t)|2
]
dx.(49)

It is easy to show that equation (45) is conservative, i.e.

dEh

dt
(t) = 0,∀t > 0.(50)
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Let us now define inC2N the following inner product

(f, g) = h

[
N−1∑
k=1

fk+1 − fk
h

gk+1 − gk
h

+
1
h2 (f1g1 + fNgN )

]

+h

N∑
k=1

fN+kgN+k(51)

wheref = (fk)1≤k≤2N y g = (gk)1≤k≤2N are two vectors fromC2N .
Energy (48) can be expressed in terms of the inner product we have just

introduced. In fact we have that

Eh(t) =
1
2

(Z(t), Z(t))) .(52)

In order to give aFourier decomposition of the solutions of (45) a spectral
analysis of the operatorLh must be done.

It iswell known that theeigenvaluesofAh areνj(h) = 4
h2 sin2( jπh2 ),1 ≤

j ≤ N , and thecorrespondingeigenvectorsareϕj(h) = (sin(jπhk))1≤k≤N
∈ R

N , 1 ≤ j ≤ N , (see [8]).
It follows that the eigenvalues ofLh arei λn(h), where

λn(h) =
2
h

sin(
nπh

2
), −N ≤ n ≤ N, n /= 0,

and the corresponding eigenvectors are

Φn(h) =

(
h

2i sin(nπh
2 )

ϕn(h)

−ϕn(h)

)
=
( 1

iλn
ϕn(h)

−ϕn(h)

)
,

−N ≤ n ≤ N, n /= 0.

We have that

Proposition 3.1 Theset of vectors(Φn(h))|n|≤N
n/=0

⊂ C
2N formsanorthonor-

mal base inCI2N .

Proof.We have

(Φl(h), Φj(h))

= h

[
N−1∑
k=1

cos
jπh(2k + 1)

2
cos

lπh(2k + 1)
2

+ cos
jπh

2
cos

lπh

2

+(−1)j+l cos
jπh

2
cos

lπh

2
+

N∑
k=0

sin(jπhk) sin(lπhk)

]
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=h

[
N∑
k=1

(
cos

jπh(2k + 1)
2

cos
lπh(2k + 1)

2
+sin(jπhk) sin(lπhk)

)]

=
h

2

[
2N+1∑
k=1

(
cos

(l − j)πhk
2

− (−1)k cos
(l + j)πhk

2

)]
.

But

2N+1∑
k=0

cos
qπhk

2
=
{

2N + 2 if q = 0
1−(−1)q

2 if q ∈ IN∗ ,

2N+1∑
k=0

(−1)q cos
qπhk

2
=
{

0 if q = 0
1−(−1)q

2 if q ∈ IN∗ .

Finally it follows that(Φl(h), Φj(h)) = δlj and the proof finishes.

We can now give a Fourier decomposition of the solutions of (47) in
terms of the eigenfunctions of the operatorLh. Hence, if the initial datum
Z0 = (W 0,W 1) of (47) is such that

Z0 =
∑

|n|≤N
n/=0

a0
nΦ

n(h)(53)

then the corresponding solution,Z(t), is

Z(t) =
∑

|n|≤N
n/=0

a0
ne

iλntΦn(h).(54)

Let us now prove the following direct inequality for the solutions of (45):

Proposition 3.2 LetT > 0 andw be the solution of (45) in(0, T ). Then

∫ T

0

∣∣∣∣wN (t)
h

∣∣∣∣
2

dt ≤ 2(T + 2)Eh(0)(55)

Proof. The following identity is obtained in [7] by using multiplier tech-
niques:

TEh(0) − h

4

N∑
j=0

∫ T

0
|w′

j(t) − w′
j+1(t)|2dt + Xh(t)

∣∣∣∣∣∣
T

0

=
1
2

∫ T

0

∣∣∣∣wN (t)
h

∣∣∣∣
2

dt,(56)
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where

Xh(t) = h

N∑
j=1

j

(
wj+1(t) − wj−1(t)

2

)
w′
j(t).

Let us evaluate now

|Xh| ≤ h


 N∑
j=1

|w′
j |2



1
2

 N∑
j=1

(
j
wj+1 − wj−1

2

)2



1
2

≤ h


 N∑
j=1

|w′
j |2



1
2

 N∑
j=1

j2

2
(|wj+1 − wj |2 + |wj − wj−1|2

)
1
2

≤ h


 N∑
j=1

|w′
j |2



1
2

 N∑
j=1

∣∣∣∣wj+1 − wj
h

∣∣∣∣
2

+
∣∣∣w1

h

∣∣∣2 +
∣∣∣wN
h

∣∣∣2



1
2

≤ Eh(t).

From (56) it follows that

1
2

∫ T

0

∣∣∣∣wN (t)
h

∣∣∣∣
2

dt ≤ TEh(0) + 2Eh(t)

and the proof finishes.

The following inverse inequality for the solutions of (45) will be also
used in the control problems:

Proposition 3.3 Let T > 0 and (w,wt) be the solution of (45) in(0, T )
with the initial data given by (53). Then

∑
|n|≤N
n/=0

ρn|a0
n|2 ≤ C

∫ T

0

∣∣∣∣wN (t)
h

∣∣∣∣
2

dt,(57)

where (ρm)|m|≤N
m/=0

are any positive weights such that, if(Θm)|m|≤N
m/=0

is

biorthogonal inL2(0, T ) to the family of complexexponentials
(
eiλmt

)
|m|≤N
m/=0

,

then ∑
|m|≤N
m/=0

ρm
||Θm||2

cos2
(
mπh

2

) ≤ C.(58)
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Proof.Let us first remark that

∫ T

0

∣∣∣∣wN (t)
h

∣∣∣∣
2

dt =
∫ T

0

∣∣∣∣∣∣∣
∑

|n|≤N
n/=0

a0
n

eiλnt

2i sin
(
nπh
2

) sin(nπh)

∣∣∣∣∣∣∣
2

dt

=
∫ T

0

∣∣∣∣∣∣∣
∑

|n|≤N
n/=0

b0ne
iλnt

∣∣∣∣∣∣∣
2

dt,

whereb0n = −i cos
(
nπh
2

)
a0
n.

Let now(Θm)|m|≤N
m/=0

be a biorthogonal inL2(0, T ) to the family of com-

plex exponentials
(
eiλjt

)
|j|≤N
j /=0

. We have that

|b0m|2 =

∣∣∣∣∣∣∣
∫ T

0
Θm(t)


∑

|n|≤N
n/=0

b0ne
iλnt


 dt

∣∣∣∣∣∣∣
2

≤ ||Θm||2L2(0,T )

∫ T

0

∣∣∣∣wN (t)
h

∣∣∣∣
2

dt.

Letnow(ρn)|n|≤N
n/=0

bepositiveweightssuch that (58) is satisfied. It follows

that

∑
|n|≤N
n/=0

|a0
n|2ρn =

∑
|n|≤N
n/=0

|b0n|2ρn
1

cos2
(
nπh
2

) ≤ C

∫ T

0

∣∣∣∣wN (t)
h

∣∣∣∣
2

dt.

Remark 5If (Θn)|n|≤N
n/=0

is the explicit biorthogonal given by Theorem 2.1,

we obtain that (57) is true for any(ρn)|n|≤N
n/=0

such that

∑
|n|≤N
n/=0

ρn
|λn|2

cos(nπh2 )
e

|λn|2
N .(59)

It follows that the weights from (57) corresponding to the low frequen-
cies have a polynomial decay whereas the ones corresponding to the high
frequencies have to have an exponential decay.
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3.2 A moments problem

Wegobacknow to thecontrollability problemmentioned in the Introduction.
LetN ∈ N

∗, a steph = 1
N+1 and an equidistant division of the interval

(0, 1), 0 = x0 < x1 < ... < xN < xN+1 = 1 with xj = jh, 0 ≤ j ≤
N + 1.

We study the following problem of controllability: givenT > 0 and
(u0
j , u

1
j )1≤j≤N ∈ C

2N , there exists a control functionvh ∈ L2(0, T ) such
that the solutionu of


u′′
j (t) − uj+1(t)+uj−1(t)−2uj(t)

h2 = 0 for 1 ≤ j ≤ N, t > 0
u0(t) = 0 for t > 0
uN+1(t) = vh(t) for t > 0
uj(0) = u0

j , u′
j = u1

j for 1 ≤ j ≤ N

(60)

satisfies
uj(T ) = u′

j(T ) = 0, ∀j = 1, 2, ..., N.(61)

By using the notations of the previous Sect. (60) can be written in the
following matriceal form{

Z ′(t) + LhZ(t) = Bh(vh(t)), for t > 0
Z(0) = Z0(62)

whereZ0 = (u0
j , u

1
j )1≤j≤N is the initial datum andBh(vh(t)) = 1

h2 (0, ...,
0, vh(t))T ∈ C

2N .
First of all we have the following characterization of the controllability

of (60):

Proposition 3.4 Problem (60) is controllable iff for any initial datumZ0 =
(u0
j , u

1
j )1≤j≤N ∈ C

2N there existsvh ∈ L2(0, T ) such that

h
∑

1≤j≤N
(u0
jw

1
j − u1

jw
0
j ) =

1
h

∫ T

0
v(t)wN (t)dt(63)

for any vector(w0
j , w

1
j )1≤j≤N ∈ C

2N andw solution of the homogeneous
adjoint system (45).

Proof. Indeed, let us consider(w0
j , w

1
j )1≤j≤N ∈ C

2N and letw be the
solution of the homogeneous adjoint system (45). By multiplying thej-th
equation of (60) bywj , 1 ≤ j ≤ N , integrating by parts and adding all the
relations we get that

∑
1≤j≤N

∫ T

0

(
u′′
j (t)wj(t)dt − uj+1(t) + uj−1(t) − 2uj(t)

h2 wj(t)
)
dt
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= 0 ⇔
∑

1≤j≤N
(u′
j(t)wj(t) − uj(t)w′

j(t))
∣∣T
0

+
∑

1≤j≤N

∫ T

0

(
uj(t)w′′

j (t)dt − wj+1(t) + wj−1(t) − 2wj(t)
h2 uj(t)dt

)

= 0 ⇔
∑

1≤j≤N
(u′
j(t)wj(t) − uj(t)w′

j(t))
∣∣T
0 − 1

h2

∫ T

0
vh(t)wN (t)dt

= 0.

Hence, (60) is controllable iff
∑

1≤j≤N (u′
j(T )wj(T )−uj(T )w′

j(T )) =
0 for all (w0

j , w
1
j )1≤j≤N ∈ C

2N andw solution of the homogeneous adjoint
system (45). The proof finishes.

Let us introduce now the following notation

< U0,W 0 >= h
∑

1≤j≤N
(u0
jw

1
j − u1

jw
0
j )

whereU0 = (u0
j , u

1
j )1≤j≤N ∈ C

2N andW 0 = (w0
j , w

1
j )1≤j≤N ∈ C

2N .

Remark 6If Φn(h) are the eigenvectors of the operatorLh a straightforward
calculation gives that that

< Φk(h), Φn(h) >=
ih

2 sin
(
nπh
2

) .
Indeed we have〈
Φk(h), Φn(h)

〉
= h

∑
1≤j≤N

(
− 1
iλk

sin(kπjh) sin(nπjh) − 1
iλn

sin(kπjh) sin(nπjh)
)
.

But, since∑
1≤j≤N

sin(kπjh) sin(nπjh)

=
1
2

∑
1≤j≤N

(cos ((k − n)jπh) − cos ((k + n)jπh))

and, forq ∈ Z
∗,

∑
1≤j≤N

cos (qjπh) =
{

0 if q odd
−1 if q even

the result follows immediately.
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Our aim is to transform the initial control problem in to an equivalent
moments problem. This can be done easily by using Proposition 3.4 and the
Fourier decomposition of the solutions of (45).

Proposition 3.5 System (60) is controllable iff for any initial datumU0 =∑
|n|≤N
n/=0

βnΦ
n(h) of (60) there existsvh ∈ L2(0, T ) such that

∫ T

0
vh(t)e−iλntdt =

(−1)nh
sin(nπh)

βn, −N ≤ n ≤ N, n /= 0.(64)

Proof.From Proposition 3.4 it follows that (60) is controllable iff for any
initial datumU0 there existsvh ∈ L2(0, T ) such that (63) holds for(w0

j ,

w1
j )1≤j≤N = Z0 = Φn(h),−N ≤ n ≤ N, n /= 0.
Remark that, ifZ0 = Φn(h), then the corresponding solution of (47) is

Z(t) = eiλntΦn(h) and thereforewN = (−1)n+1 i
λn

eiλnt sin(nπh).
Moreover, ifU0 =

∑
0<|n|≤N βnΦ

n(h), by using Remark 6, it follows
that 〈

U0,W 0〉 =
∑

|k|≤N
k /=0

βn

〈
Φk(h), Φn(h)

〉
=

βn i

2 sin
(
nπh
2

) =
i

hλn
βn.

Hence, givenU0 =
∑

0<|n|≤N βnΦ
n(h), there existsvh ∈ L2(0, T )

such that (63) holds for(w0
j , w

1
j )1≤j≤N = Z0 = Φn(h), −N ≤ n ≤

N, n /= 0 if and only if there existsvh ∈ L2(0, T ) such that (64) is satisfied
and the proof finishes.

Remark 7From the previuos Proposition it follows that one necessary and
sufficient condition for the controllability of the initial datumU0 = Φm(h)
is to find a control functionvmh ∈ L2(0, T ) such that

∫ T

0
vmh (t)e−iλntdt =

{
0 if n /= m
(−1)mh
sin(mπh) if n = m.

(65)

Remark that the controlvmh is orthogonal inL2(0, T ) to the family of
complex exponentials

(
e−iλnt

)
|n|≤N
n/=0,m

and it is not orthogonal toe−iλmt.

In the view of the previous remark, a control can be easily obtained
by constructing a biorthogonal sequence(Θm)|m|≤N

m/=0
to the sequence of the

complex exponentials
(
eiλjt

)
|j|≤N
j /=0

in L2(0, T ).

For any initial datumU0 a controlvh can be constructed with the aid
of the biorthogonal sequence from Sect. 2 and the control problem (60) has
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a positive answer. Nevertheless, we are interested on the behaviour of the
norm of these controls whenN goes to infinity.

The estimates for the norm of the biorthogonal sequence we have con-
structed in Sect. 2 will give bounds for the norm of the controlsvh. In this
waywe shall be able to saywhenanuniformly bounded sequence of controls
(vh)h>0 can be obtained.

4 Convergence results

The aim of this section is to show the conditions in which one can obtain
controls for the continuous system (41) as limits of controls of the corre-
sponding semi-discrete problems (43). In this section the control timeT will
be considered sufficiently large (but independent of the discretized problem)
such that estimate (10) from Theorem 2.1 holds.

Let (u0, u1) ∈ L2(0, 1) × H−1(0, 1) be the initial datum of (41). We
consider that(u0, u1) has a Fourier decomposition

(u0, u1) =
∑
n/=0

anΦ
n(66)

whereΦn are the eigenfunctions of (41)

Φn(x) =
( 1

nπ i sin(nπx)
− sin(nπx)

)
.

SinceΦn are orthonormal inH1
0 (0, 1) × L2(0, 1), it follows that (u0,

u1) ∈ L2(0, 1) × H−1(0, 1) iff
∑

n/=0
|an|2
|n|2π2 < ∞.

The next step is to chose the initial datum of the semi-discrete problem
(43) as an approximation of(u0, u1) in such way to ensure the boundedness
of the sequence of controls(vh)h>0. In order to do this, let us first cut-off
the Fourier series (66) at the rangeM ∈ N:

(u0
M , u1

M ) =
∑

|n|≤M
n/=0

anΦ
n

The numberM = M(N) depends onN (in fact limN→∞ M = ∞) and
also depends on the regularity of the initial datum we have considered. As
we shall see later on, if the initial data are analytic we can choseM = N
(Theorem 4.2). If the initial data are less regular, for instance inH2(0, 1) ∩
H1

0 (0, 1) × H1
0 (0, 1), we have to choseM ≤

[√
N
]
(Theorem 4.1).

Let us now denote bỹΦn(h) ∈ C
2N the discretization of the eigenfunc-

tionΦn:

Φ̃n(h) =
(

1
nπ i

sin(nπjh), − sin(nπjh)
)T

1≤j≤N
.(67)
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We consider now as initial datum for the semi-discrete equation (43) the
following discretization of(u0

M , u1
M ):

(u0
j , u

1
j )1≤j≤N = U0

h =
∑

|n|≤M
n/=0

anΦ̃
n(h).(68)

Note that, ifM → ∞ whenN → ∞, we have thatU0
h → (u0, u1).

Remark that̃Φn(h) is similar to the eigenvectors of the operatorLh but
it is not identical ( 1

nπ i has been replaced by
1
λn i

). We consider this approx-
imation since in some cases (initial data with a finite number of modes, for
instance) it is easier to obtain. Nevertheless, since(u0

j , u
1
j )1≤j≤N ∈ C

2N ,
we can write it in the following way

(u0
j , u

1
j )1≤j≤N =

∑
|n|≤M

n/=0

an(h)Φn(h),(69)

whereΦn(h) are the eigenvectors of the operatorLh which form an or-
thonormal basis inC2N .

It is easy to show that

an(h) =
{

0 if |n| > M
1
2

(
λn
nπ + 1

)
an + 1

2

(
λn
nπ − 1

)
a−n if |n| ≤ M.

(70)

In the next paragraph we discuss the boundedness of the sequence of
controls corresponding to (43).

4.1 Uniformly bounded controls

We can prove now the existence of a bounded sequence of controls for the
semi-discrete problem.

Theorem 4.1 Let us suppose that the initial datum of (41) is such that

∑
n/=0

|an| < ∞(71)

and let us consider(u0
j , u

1
j )1≤j≤N given by (68) withM =

[√
N
]
. There

exists a controlvh of the semi-discrete problem (43) such that the sequence
(vh)h>0 is bounded inL2(0, T ).
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Proof. Let (Θm)|m|≤N
m/=0

be the biorthogonal sequence inL2
(−T

2 ,
T
2

)
to{

eiλnt
}

|n|≤N
n/=0

constructed in Theorem 2.1. From Proposition 3.5 we obtain

that that

vh(t) =
∑

|n|≤M
n/=0

(−1)n+1h

sin(nπh)
e−iλn

T
2 an(h)Θn(t − T

2
)(72)

is a control for (43). It follows that

‖vh‖L2(0,T ) ≤
∑

|n|≤M
n/=0

h

| sin(nπh)| |an(h)| ‖Θn‖L2(− T
2 ,

T
2 ).(73)

From the estimates for the norm ofΘn given by Theorem 2.1 it follows
that there exists a constantC independent ofN such that

‖vh‖L2(0,T ) ≤ C
∑

|n|≤M
n/=0

|an(h)|

and the boundedness of the controls is proved.

For sufficiently analytic initial data the following result holds:

Theorem 4.2 Let us suppose that the initial datum of (41) is such that∑
n/=0

|an|
cos

(
nπh
2

)enπ2
< ∞(74)

and let us consider(u0
j , u

1
j )1≤j≤N given by (68)withM = N . There exists a

controlvh of the semi-discrete problem (43) such that the sequence(vh)h>0
is bounded inL2(0, T ).

Proof.Let vh be the control given by (72). From (73) and the estimates for
the norm ofΘm given by Theorem 2.1 it follows that

‖vh‖L2(0,T ) ≤
∑

|n|≤N
n/=0

h

| sin(nπh)| |an(h)| ‖Θn‖L2

≤
∑

|n|≤N
n/=0

|an(h)| 1
cos

(
nπh
2

)e |λn|2
N .

The proof finishes by taking into account that (74) holds.

Remark 8Theorem 4.2 shows that sufficiently analytic data have always
uniformly bounded controls. Hence, in this case, it is not necessary to filter
the high frequencies like in Theorem 4.1.
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Since the sequence of controls(vh)h given by Theorem 4.1 or Theorem
4.2 is bounded inL2(0, T ) there exists a subsequence, denoted in the same
way, andv ∈ L2(0, T ) such thatvh ⇀ v in L2(0, T ) whenh → 0. In the
next Theorem we show thatv is a control for the corresponding continuous
problem.

Theorem 4.3 If v ∈ L2(0, T ) is a weak limit of the sequence of bounded
controls(vh)h given by Theorem 4.1 thenv is a control for the continuous
problem (41).

Proof. Indeed, like in the case of the semi-discrete problem, it is easy to
prove thatv ∈ L2(0, T ) is a control for (41) iff∫ T

0
v(t)wx(t, 1)dt =

〈
u1, w0〉

H−1,H1
0

−
∫ 1

0
u0w1(75)

for any (w0, w1) ∈ H1
0 (0, 1) × L2(0, 1) andw the solution of the adjoint

equation


w′′ − wxx = 0 for x ∈ (0, 1), t > 0
w(t, 0) = w(t, 1) = 0 for t > 0
w(0, x) = w0(x), w′(0, x) = w1(x) for x ∈ (0, 1).

(76)

Let us remark that it is sufficient to show that (75) is verified only for
(w0, w1) = Φn, n ∈ Z

∗, the eigenfunctions of the wave operator.
Indeed, from the continuity of the linear formΛ : H1

0 (0, 1)×L2(0, 1) →
C,

Λ(w0, w1) =
∫ T

0
v(t)wx(t, 1)dt − 〈

u1, w0〉
H−1,H1

0
+
∫ 1

0
u0w1

it follows that (75) holds for any(w0, w1) ∈ H1
0 (0, 1) × L2(0, 1) iff it is

verified by a basis of the spaceH1
0 (0, 1) × L2(0, 1).

By considering(w0, w1) = Φn, we obtain thatv is a control for (41) iff∫ T

0
v(t)e−inπtdt =

(−1)n+1

nπ
an, ∀n /= 0.(77)

Note that this is the moments problem for the continuous system (41)
similar to (64) from Proposition 3.5.

From the fact thatvh is a control for the discrete problem we have from
Proposition 3.5 that∫ T

0
vh(t)e−iλntdt =

(−1)nh
sin(nπh)

an(h), −N ≤ n ≤ N, n /= 0.(78)
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Taking into account that, for eachn ∈ Z,

eiλn(h)t → einπt in L2(0, T )

and
h

sin(nπh)
an(h) → 1

nπ
an

whenh tends to zero, by passing to limit in (78), it follows thatv satisfies
(77).

Hence, the limitv is a control for the problem (41) and the proof finishes.

In the next Theorem we also prove that the solutions of the discrete
problem converges to a solution of the continuous problem.

Let us first define, for eachU = (u1, u2, ..., u2N ), W = (w1, w2, ...,
w2N ) fromC

2N , the duality product

〈U,W 〉 = h

N∑
j=1

(ujwN+j − uN+jwj).

Remark that〈·, ·〉 is a bilinear and continuous application and
‖U‖−1 = sup

W∈C2N

‖W‖=1

|〈U,W 〉|

defines a norm inC2N (the dual norm of‖ · ‖).
Remark 9From Remark 6 we obtain that〈

Φj , Φl
〉

= − 1
λj

δjl.

Hence,

‖Φj‖−1 = sup
W∈C2N

‖W‖=1

∣∣〈Φj ,W〉∣∣ =
1

|λj | .

Let nowU(t) = (u1(t), ..., uN (t), u′
1(t), ..., u

′
N (t)) be the solution of

the non homogeneous wave equation{
U ′ + LhU = Bh(v)
U(0) = U0.

(79)

The following property of the solution of (79) is a direct consequence of
Proposition 3.2.
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Proposition 4.1 If U is the solution of (79) then there exists a positive
constantC, independent ofN , such that

‖U(t)‖−1 ≤ C(‖U0‖−1 + ‖v‖L2(0,T )), ∀t ∈ [0, T ].(80)

Proof. Indeed, like in Proposition 3.4, it easy to show thatU is solution of
(79) iff 〈

U0,W 0〉− 〈U(t),W (t)〉 =
1
h

∫ t

0
v(t)wN (t)dt(81)

for any vectorW 0 ∈ C
2N andW solution of the homogeneous adjoint

system (45).
It follows that

|〈U(t),W (t)〉| ≤

‖U0‖−1‖W 0‖ + ‖v‖L2(0,T )

(∫ T

0

∣∣∣wN
h

∣∣∣2)
1
2


 .

Now, taking into account the direct inequality (55) we obtain that there
exists a positive constantC, not depending onN , such that

|〈U(t),W (t)〉| ≤ (‖U0‖−1 + ‖v‖L2(0,T )
) ‖W 0‖

for any vectorW 0 ∈ C
2N andW solution of the homogeneous adjoint

system (45).
Inequality (80) follows now from the definition of the norm‖ · ‖ and

the conservation of the energy of solutions of (45).

We consider now that, from the sequence of bounded controls,(vh)h>0,
we have extracted a subsequence, denoted in the sameway, such thatvh ⇀ v
whenh → 0 in L2(0, T ).

Let also(U0(h))h>0 be the sequence of initial data which approximate
U0, the initial datum of the continuous problem, and(U(h, t))h>0 the solu-
tions of the discrete problem (79) with initial datumU0(h) and controlvh.
We have that

U(t) =
∑
n/=0

an(t)Φn

U(h, t) =
∑

|n|≤N
n/=0

an(h, t)Φn(h).

The following theorem gives a result of convergence of(U(h, ·))h>0 to
U(·).
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Theorem 4.4 Let (U(h, t))h>0 be the family of solutions of the discrete
problem (79) with initial datumU0(h) and controlvh. Then, by extracting
a suitable sequenceh → 0, we may guarantee that(

an(h, ·)
λn

)
|n|≤N
n/=0

⇀

(
an(·)
nπ

)
n/=0

in L∞(0, T ; B2).(82)

Proof.First of all let us remark that, ifU0(h) =
∑

n/=0 a
0
n(h)Φn(h), then

‖U0(h)‖2
−1 =

∑
|n|≤N
n/=0

∣∣∣∣a0
n(h)
λn

∣∣∣∣
2

=
1
4

∑
|n|≤M

n/=0

∣∣∣∣
(

1
nπ

+
1
λn

)
a0
n +

(
1
nπ

− 1
λn

)
a0

−n

∣∣∣∣
2

≤ C
∑
n/=0

|a0
n|2
n2 < ∞.

Hence, the sequence
(
U0(h)

)
h>0 is uniformly bounded in the norm

‖ · ‖−1 and(vh)h>0 is alsouniformlybounded inL2(0, T ). FromProposition
4.1, it follows that(U(h, ·))h>0 is uniformly bounded in thenorm‖ · ‖−1 and

consequently

((
an(h,·)
λn

)
|n|≤N
n/=0

)
h>0

is uniformly bounded inL∞(0, T ; B2).

We obtain that there exists a subsequence, denoted in the same way, and
(βn)n/=0 ∈ L∞(0, T ; B2) such that(

an(h, ·)
λn

)
|n|≤N
n/=0

⇀ (βn(·))n/=0 in L∞(0, T ; B2)

whenh → 0.
We have only to show thatβn(t) = an(·)

nπ , for eachn /= 0, and the proof
finishes.

Let defineZ(t) =
∑

n/=0 βn(t)nπΦ
n. We have thatZ ∈ L∞(0, T ;L2 ×

H−1) and we shall show thatZ(t) = U(t).
In order to do this, let us remark that, sinceU(h, ·) is solution of (79),

we have that

〈
U0,W 0〉− 〈U(t),W (t)〉 =

1
h

∫ t

0
v(t)wN (t)dt

for any vectorW 0 ∈ C
2N andW solution of the homogeneous adjoint

system (45).



764 S. Micu

TakingW 0 = Φn(h) we obtain that

an(h, t)
λn

− a0
n(h)
λn

=
1
h

∫ t

0
vhϕ

n
N

is true for any|n| ≤ N , n /= 0.
Passing to the limit one obtains that

βn(t) − βn(0) =
∫ t

0
(−1)n+1i v

which is equivalent to

〈
Z0, Φn

〉− 〈Z(t), Φn〉 =
∫ t

0
(−1)n+1i v(s)ds

for any|n| ≤ N , n /= 0.
It follows thatZ(t) is the solution of the controlled continuous problem

and the proof finishes.

5 HUM controls

The construction of a sequence of uniformly bounded controls in the previ-
ous sections was done by using the explicit biorthogonal sequence
(Θm)|m|≤N

m/=0
for the family of complex exponentials(eiλmt)|m|≤N

m/=0
given by

Theorem 2.1.
Hilbert Uniqueness Method (HUM) provides another possibility to ob-

tain controls, based on the use of the solutions of the adjoint problem.
For each discrete problem (43) (with initial datumU0) let ζh denote the

HUM control.
We recall thatζh = zN

h whereZ = (zj(t), z′
j(t))1≤j≤N is the solution of

thehomogeneousadjoint problem(45)with initial dataZ0,whereZ0 ∈ C
2N

minimizes the coercive, continuous and strictly convex functional

Jh(W 0) =
∫ T

0

∣∣∣wN
h

(t)
∣∣∣2 dt − 〈

U0,W 0〉(83)

whereW 0 = (w0
j , w

1
j )1≤j≤N ∈ C

2N andW = (w,w′) is the solution of
(45).

Moreover,ζh is characterized by the following two properties:

(i) ζh = zN
h whereZ = (zj(t), z′

j(t))1≤j≤N is a solution of (45).
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(ii) ζh satisfies

h
∑

1≤j≤N
(u0
jw

1
j − u1

jw
0
j ) =

1
h

∫ T

0
ζh(t)wN (t)dt(84)

for any vectorW 0 = (w0
j , w

1
j )1≤j≤N ∈ C

2N andw solution of (45).

It is well known that the HUM controlζh is of minimalL2−norm (see
[10]). From the uniform boundedness results we have obtained in the pre-
vious section we obtain that, under the hypothesis of Theorem 4.1 or of
Theorem 4.2, the sequence of the HUM controls for the semi-discrete prob-
lems is uniformly bounded.

In the next subsection we show that, in any Sobolev space, there exists
initial data such that, if the hypothesis of Theorem 4.1 are not satisfied, the
sequence of HUM controls is not bounded.

5.1 Unbounded controls

Let us first define the following space of initial data

V =

{
U0 = (u0, u1) =

∑
n/=0

anΦ
n :

∑
n/=0

|an|2eε
√
n < ∞

}

whereε is a positive number sufficiently small.
In V we define the norm

||
∑
n/=0

anΦ
n|| =

(∑
n/=0

|an|2eε
√
n

) 1
2

.

V is a normed vector space andV ⊂ Hm(0, 1) × Hm−1(0, 1) for any
m ≥ 1.

Theorem 5.1 There exists at least one element(u0, u1) in V, such that the
sequence(ζh)h>0 of the HUM controls for the discrete equation (43) with
initial data (u0

j , u
1
j )1≤j≤N given by (68) withM = N is unbounded in

L2(0, T ).

Remark 10Themain difference between Theorems 5.1 and 4.1 is that in the
former the high frequencies of the initial data are not filtered (we consider
thatM = N ). In this case there exists regular initial data which do not have
a sequence of discrete controls uniformly bounded inL2(0, T ).
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Proof.Suppose that any initial dataU0 = (u0, u1) from V has the property
that the sequence(ζh)h>0 of the HUM controls for the discrete equations
(43) with initial data(u0

j , u
1
j )1≤j≤N given by (68) withM = N is bounded

in L2(0, T ).
For eachN ∈ N

∗ we define the operatorTN : V −→ L2(0, T ) such that

TN (U0) = ζh

whereh = 1
N+1 andζh is the HUM control for the discrete equation (43)

with initial data(u0
j , u

1
j )1≤j≤N given by (68) withM = N .

It is easy to see that(TN )N≥1 is a sequence of linear and continuous
operators. Moreover, for eachU0 ∈ V, we have that

||TN (U0)||L2(0,T ) = ||ζh||L2(0,T ) < ∞, ∀N ≥ 1.

From theBanach-Steinhaus Theorem it follows that the operatorsTN are
uniformly bounded. Hence, there exists a constantC > 0, not depending
onN , such that

||TN ||L(V,L2(0,T )) ≤ C, ∀N ≥ 1.(85)

For eachN ∈ N let us now considerU0 = ΦN , theN−th eigenfunction
of the wave operator. The discrete initial data are:

U0(h) =
1
2

(
λN
Nπ

+ 1
)
ΦN (h).

By taking intoaccount thecharacterizationofanycontrol givenbyPropo-
sition 3.5, we obtain that the HUM controlζh(t) = αNψN (t − T

2 ) where
(ψn)1<|n|<N is a biorthogonal sequence for(eiλnt)1<|n|<N in L2(−T

2 ,
T
2 )

andαN = (−1)Nh
2 sin(hπ)

(
λN
Nπ + 1

)
e

iλN T

2 .

The estimate from Theorem 2.2 and (85) give that

C2e
√
N ≤ ||ψN ||L2(− T

2 ,
T
2 )

≤ 4||ζh||L2(0,T ) = ||TN (U0)||L2(0,T ) ≤ Ceε
√
N .

This is impossible ifε is small enough.We have obtained a contradiction
and the proof finishes.
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5.2 Convergence of the HUM controls

LetU0 = (u0, u1) be an initial data for (41) and let us now suppose that the
hypothesis of Theorem 4.1 or of Theorem 4.2 are fulfilled.

Since, in this case, there exists a sequence of uniformly bounded discrete
controls, it follows that the sequence of the HUM controls,(ζh)h>0, is also
bounded.Hence, there exists a subsequence, denoted in the sameway,which
converges weakly inL2(0, T ) to an elementζ ∈ L2(0, T ).

Let Z0(h) be the initial datum which gives the HUM controlζh (i.e.
ζh = zN

h , whereZ = (z, z′) is the solution of the adjoint system (45) with
the initial datumZ0(h)).

We have that

Theorem 5.2 The functionζ ∈ L2(0, T ) is the HUM control of the contin-
uous wave equation with the initial dataU0.

Proof.First of all let us remark that, like in Theorem 4.3, it follows thatζ
is a control for the continuous problem (41) with initial datumU0. Hence,
it satisfies ∫ T

0
ζ(t)wx(t, 1)dt =

〈
u1, w0〉

H−1,H1
0

−
∫ 1

0
u0w1(86)

for any (w0, w1) ∈ H1
0 (0, 1) × L2(0, 1) andw the solution of the adjoint

equation


w′′ − wxx = 0 for x ∈ (0, 1), t > 0
w(t, 0) = w(t, 1) = 0 for t > 0
w(0, x) = w0(x), w′(0, x) = w1(x) for x ∈ (0, 1).

(87)

Let us now remark that, ifpx(t, 1) is the HUM control for the continuous
wave equation (41) (which corresponds to an initial datumP 0 ∈ H1

0 (0, 1)×
L2(0, 1)) , then ∫ T

0
(ζ(t) − px(t))wx(t, 1)dt = 0(88)

for any (w0, w1) ∈ H1
0 (0, 1) × L2(0, 1) andw the solution of the adjoint

equation (87).
Let us now remark that, from the observation inequality given by Propo-

sition 3.3, the sequence(Z0(h))h>0 converges in a weak norm (with expo-
nential weighs) to an elementZ0. The sequence(ζh)h>0 will converge in
the sense of distributions to the normal derivativezx(t, 1) of the solution of
system (41) with initial datumZ0.

It follows that ζ(t) = zx(t, 1). Sinceζ ∈ L2(0, T ) we obtain that
zx(·, 1) ∈ L2(0, T ) and, consequently,Z0 = P 0 ∈ H1

0 (0, 1) × L2(0, 1).
Now, from (88), by takingw = z − p, it results thatζ = px(t) and the

proof finishes.
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