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Summary. A numerical scheme for the controlled semi-discrete 1-D wave
equationis considered. We analyze the convergence of the boundary controls
of the semi-discrete equations to a control of the continuous wave equation
when the mesh size tends to zero. We prove that, if the high modes of the
discrete initial data have been filtered out, there exists a sequence of uni-
formly bounded controls and any weak limit of this sequence is a control for
the continuous problem. The number of the eliminated frequencies depends
on the mesh size and the regularity of the continuous initial data. The case
of the HUM controls is also discussed.
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1 Introduction

The start point of our study is the boundary controllability of the 1-D wave
equation: giver?” > 2 and(u®,u') € L?(0,1) x H~1(0,1) there exists a
control functionv € L2(0, T') such that the solution of the equation

u' —ug, =0 forze(0,1), t>0
u(t,0) =0 fort >0
1) u(t,1) =wv(t) fort >0
u(0,7) = u%(z) forxz € (0,1)
v (0,2) = ul(x) forz € (0,1)

Partially supported by Grant PB96-0663 of DGES (Spain) and Grants 143/2001 and 906/4
of CNCSIS (Romania)
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satisfies
2 w(T, ) =4 (T,-) = 0.

By’ we denote the time derivative.

This problem has been studied and solved some decades ago and sev-
eral approaches are now known. The moments theory is one of the oldest
and most successful (see, for instance, [1] and [11]). More recent, Hilbert
uniqueness method (HUM) offered a different and a very general way to
solve this and multi-dimensional similar problems (see, for instance, [10]).

In the last years many works have dealt with the numerical approxi-
mations for the control problem (1)-(2). For instance, in [4], [6] and [5],
by using HUM, some numerical algorithms have been proposed. In these
articles a bad numerical behaviour of the approximate controls has been
observed. This phenomenon is due to the high frequency components of the
discrete solution and a biharmonic Tychonoff regularization procedure has
been given in order to avoid it.

This paper studies a finite-difference space discretization of equation (1).
As we shall see, the main problem of the numerical algorithms we have just
mentioned (bad behaviour of the discrete high modes) is still a characteristic
ofthis case. Our analysis will be based on the filtering of the high frequencies
of the initial data.

Letus consider firsh € N*, asteph = ﬁ and an equidistant division
oftheinterval(0,1),0 =z < 21 < ... < any < xy41 = 1, withz; = jh,
0<j<N+L

We introduce the following finite-difference semi-discretization of (1):

u;-’(t) . u‘7-+1(t)+u_7};21(t)—2u.i(t) =0 for1l < ] < N’ t>0

UN_H(t) = Uh(t) fort >0
uj(O):u?, u;:u]l fori<j<N

and we study the following controllability problem: givéhi > 0 and
(ug’,u})lngN € C2?N, there exists a control functian, € L?(0,T) such
that the solution: of (3) satisfies

4) ui(T) = u;(T) =0,Vj=1,2,...,N.

System (3) consists dY linear differential equations withv unknowns
u1, ug, ..., un. u;(t) is an approximation of the solutianof (1) in (¢, x;),
provided thai(u, u})1<;j< v approximates the initial datuu®, u').

It is not difficult to see that the controllability problem we have just ad-
dressed has a positive answer. Moreover, as we shall see later on, explicit
discrete controlg;, can be provided. Our interest is to study when is the
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sequencéuvy, )~ a good approximation of a control of the continuous prob-
lem (1). The first question we address is the boundedness of the sequence
of the controls.

It is by now well known that, generally, the sequer{eg);~¢ is not
bounded inZ.2(0, 7). In order to explain the causes of this phenomenon we
introduce the following Fourier decomposition of the initial datlift(h) =
(uf, uj)1<j<n Of (3):

5) U(h) = ) an(h)2"(h)
In|<N
n#0
where(@" (h)),,, <~ is the family of2 NV orthonormal eigenvectors of the ma-

trix of the systeﬁo(3). Letals@\,)1<|n<n be the family of the eigenvalues
of (3). Full details will be given in Sect. 3.
As we shall prove later on in the paper, to control the high eigenmodes
of U%(h), a control with an exponentially increasitig —norm is needed.
For instance, it7°(h) = @~ (h), any controky, satisfies

(6) llvnll r20.) = C exp(VN)

where(C' is a constant not depending 6n

Hence, it seems impossible to find a sequence of uniformly bounded
controls(vy,)no for (3) if U°(h) contains high eigenmodes.

Moreover, we shall prove that in any Sobolev space there exist initial
data(u®, u') such that the following natural choice & (h)

(7) u? = uo(jh), u} = ul(jh), 1<j<N

does not ensure the uniformly boundedness of the controls.

As we have said before, this phenomenon is due to the fact that the
numerical schemaintroduces spurious high frequency vibrations that are not
observed in the continuous problem. More precisely, as it was pointed out
in [7] (see also [5]), the differences between the discrete and the continuous
systems become significant for the modes of orde¥ of

The choice of an appropriate approximat(m@, u})lSjSN for the initial
datum(u®, u') of (1) reveals to be crucial if one wants to ensure the existence
of a bounded sequence of contréig );,~o.

Since the existence of high eigenmodes in the initial ddtiiih) has this
unwanted effect on the discrete controls, it seems natural to look for discrete
approximations ofu, u') in which the high frequencies have been filtered
out. More precisely, we shall consider ttiat(h) has been chosen of the
following form
8) U%(h) = ) ap(h)®"(h)

[n|<M
n#0
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wherelM depends onthe size ofthe space étep N+L1 and onthe regularity
of the initial datum of the continuous problem.

We shall prove that, by considerii@ (1) like in (8) with M < /N,
there exists a sequence of bounded contfols;~ for (3). Moreover, if
(u®, u!) has a sufficient amount of analyticity, one can chabse- N and
no filtering is needed. In this case, the discretization (7) can be used and
guarantees the existence of a bounded sequence of discrete controls. All
these results are true for control tiniEBssufficiently large but independent
of N.

In [7] it was proved that uniform boundary observability can be obtained
for the adjoint homogeneous system corresponding to (3), if the short wave
length components of the solutions are eliminated. This result ensures the
existence of a sequence of uniformly bounded controls which led to zero the
projection of the solution of (3) over a space generated by low frequency
eigenvectors. Our approach is different in the sense that we eliminate from
the very beginning the short wave length components of the initial datum
and we prove the existence of a sequence of uniformly bounded controls for
the solutions of (3). Moreover, our analysis gives more information on the
behaviour of the controls corresponding to the high frequencies.

The rest of the article is organized in the following way: In Sect. 2 we
prove some estimates for the biorthogonal families to the set of complex
exponentialgeti?), s These estimates will offer bounds for the discrete

controls. In Sect. 3 some general results for the semi-discrete system (3) are
given. A moments problem is deduced and some inequalities for the adjoint
equation are proved. In Sect. 4 the main results on the boundedness of the
controls are given and some convergence results are also proved. Finally,
in the last section, we discuss the existence of unbounded controls and we
analyze the case of HUM controls.

2 Estimates for the norm of a biorthogonal family

Let us consider the sequenck;) ;<x Where); = Zsin (”h) As we
J#0
shall see in the following sectlo(‘n,)\ )i;1<~ are the eigenvalues of the semi-
i#0

discrete problem (3).
Inthis section we construct an explicit biorthogonal sequ ) <N
0

to the family of complex exponentialg*i?), < in L2(—T,T) and we

estimate the norm of the elements of this b|orthogonal sequence.
We recall that{©,,),.. < v is & biorthogonal sequence fo/) ; < in
J#0

m=#0
L2(~T,T) if
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T
9 / Om(t)e*idt = 8.y, Ymy,n = +1,4£2, ..., £N
-T

(see [1] and [12]).
Since (e%i?) ;- v is a finite family of exponential functions, it follows

immediately that t(ﬁlere are infinitely many biorthogonal families. Neverthe-
less, since we are interested on the dependence of these biorthogonals on
N, it is not easy to give precise estimates for the norm of the elements of
them.

In the next Theorem we shall construct an explicit biorthogonal and we
shall evaluate the norms of its elements.

Theorem 2.1 If T > 0 is sufficiently large, there exists a sequence
(Om)m|<n» biorthogonal inL?(—T, T') to the family of complex exponen-

m=#0
tials (e“jt) i<, Such that
770

A |2
102y < Clomlexp (a5 ) for
(10) m=+1,+2 ... +N

whereC and « are two positive constants which do not dependroand
N.

Remark 1As we shall see, Theorem 2.1 provides a biorthogonal set for any
T > 0. However, for the estimates (10) we need a tithsufficiently large

(but independent of the discretized problem). An estimaté@’foan be also
obtained from the proof.

Remark 2Let us remark that Theorem 2.1 implies that there exists a

biorthogonal sequend®.,,,),,.,<~, Such that
m=#0

1) Omllizrry < C'Aml, form = £1,+2, ., +VN
whereC’ is a constant which does not dependén

Remark 3From Theorem 2.1 it follows that

(12)
1@mllr2—r) < C'|Am| exp(/|Aml), form = +1,4+2,...,+N

whereC’ anda/ are two positive constants which do not depend\van
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Proof. Let us first define, for eachn such that m |< N andm # 0,
o T(z=Am) \ 2V
B z—An sin —— 77
én(2)=| 11 o\ ( T(z—Am) )
iN

In|<N
n#0,m

sin LZZ)"") ?

4

Each functiort,,, has the following properties:

e &, Is an entire function

o {m(An) = 0pm, Vn| < N,n#0

® &m(2) € L2(—00,00)

e &, isofthe exponential type at mdkti.e. there exists a constaf, > 0
such that, for alk > 0, we have

16 (2)] < Ape Tl vz e C.

We introduce now the Fourier transform&jf
1 [ ;
(14) Om(z) = Dy /_OO Em(z)e™ " dx.

We shall show tha{®,,} .. <~ is the biorthogonal sequence we are
looking for. e

From the properties of,,, by using Paley-Wiener Theorem, it follows
that®,,(t) has compact support ja-7, T), it belongs toL?(—7, T) and

T
/ O ()t = £ (M) = Oy ¥In| < N, 1 £ 0.
-7

It follows that (O, ) ,.<~ is a biorthogonal sequence {e*»'},, _ .

Our next objective is fo estimate the norm@®f,. From Plancﬁ(érel’s
Theorem we have

(15) V2T || O |2~ = €m 1 12(—00,00) -

Hence, to estimate the norm 6%,,, we have to study the norm ¢f, in
L?(—00,00). We have

” Em ||%2(7oo,oo)
2N 2
Y e H T — A sin T(ZVA*”) sin 7T(1Z’\m) "
B W A= T )
n;é()_,m
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~ [ 11 1 / =
B | )\m - )\n |2 —00

[n|<N

n#0,m

2
sin T(Z\?‘m) 2N sin szkm) 2
X H (= An) T(@—Am) T (@A) dz
s w :

Let us first evaluate the constant

(16) n) =11 |)\m_1)\n|2

In|<N
n#0,m

Lemma 2.1 The following estimates hold:
: h
M) 3 (N) = 4cos’ ("52) [Tj<n rip-

n#0,m
| cos( m2h ) sin(mmh)|?

(i) n(N) < hZ2AN—2(NT)

Proof. First of all remark that

M= Am| = +
| ==

4 _
sin <n 4m7rh> cos <n—zm7rh> ' .

Let us now evaluatg] ., <n | Am — An |-
n#0,m

Forl < m < N, we obtain

H ’)‘m_/\n|

[n|<N
n#0,m

o

sin (”;mmﬂ I

cos (n —Z mwh) ’ .

In|<N In|<N
n#0,m n#0,m
But
. n—m
| | sin < Wh)‘
In|<N
n#0,m
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sin <(m _4k)7rh> ’

m+1<k<N —N—1+m<k<—N
. (kmh . [ kmh
= H Sin <4) H S1n (4) ‘
1<k<N 1<k<N—m
k#m
. ((E+m)Th
« TI |sn ( m |

N4+1-m<k<N

On the other hand

IT |cos <”+m7rh) ‘
4
[n|<N
n-+m
cos < 1 7rh> ‘ H

n#0,m

- 10

—m<n<—1

N—m+1<n<N

cos @
4

1<n<N-m

I

1
mﬂh)‘ H

N |cos (75" 0<k<m-—1 1<k<N-m
kmh (m+k)rh
H cos (4) ‘ H cos <4 > '
m+1<k<N N+1-m<k<N
1 <k7rh> <k7rh) ’
=~ cos | — cos [ —
|COS (mTﬂh)‘ OEEN 4 1§k:£[\/—m 4
(k+m)mh
X H cos <4 .
N+1-m<k<N
Hence, we obtain
22N -1 . (krh
H [ Am = An |= hQNfl‘cos (mT”h)} H o <2>‘
[n|<N 1<k<N
n#0,m k#m

w51

1<k<N-m
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sin @
2

Let us now remark that

10 Sin<(k+;n)7rh>'_ Nﬁ"

N+1-m<k<N k=N+1

1
= mrh ‘ H
2 1

}cos Shem

- 1

}COS mgh ‘ NA41—m<k<N

It follows that, forl < m < N,
22N 1

Am = An | =

H | = h2N=1| cos (2h) sin(mrh)|
2

< 11

In|<N
s | ——
2
1<k<N

n#0,m
On the other hand, £ N < m < —1, we have

IT 1A=

In|<N
n#0,m
4\ 2Nt . n—m n-+m
= (h) 1_<IN s1n< 1 7Th> 1_<IN cos (47Th)‘
L’;iam (e
2N-1 . —n+m —n—-m
= sin Twh H cos Tﬂ'h
[n |<N [n|<N
'n.:,ﬁ()m n#0,m
4) n (2= )
= - sin | ———=7h
n#0,—m

x ] |eos (”Jri_m)whﬂ

In|<N
n#0,—m
22N—1
- H [ Aem = Ao = omy mah o
In|<N h | cos (%) sin(mmh)|
n#0,—m

2
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It follows that, for eachm| < N, m # 0, we have

22N71
II 1=l = 555 mrh o
i R2N=1| cos (™) sin(mmh)|
n#0,m
2
. (kmh
a7 X H sm( 5 >‘

1<k<N

By taking into account thak;, = 2 sin (%2%) (i) follows immediately
from (17).

On the other hand, by taking into account thiat(42) > kh, (i) can

be obtained directly from (i) and the proof of Lemma 2.1 finishes. O

Let us now evaluate the integral

)= [ TL@-)

[n|<N
n#0,m

2

(18) N\ T T Am) da-

AN 4

If 0 < § < 1is a positive sub-unitary number we have thatN) =
Iy + I, where

sin LEZ=Am) w sin L@=2Am) !

L = H (x — An) AN 4 dz
' |z—Am|<SNT " T(@—Am) T(z—Am) ’
ml< [n|<N IN 1

n#0,m
2
sin LEZ=Am) w sin L@=Am) !

I, = H (z—\p) AN 4 dz
i |z—Am[>6N7T " T(z—Am) Tla—Am) '
mlZ In|<N IN 1

n#0,m

We shall evaluate each of the two integrals. For the second integral we
have

Lemma 2.2 For T > 0 sufficiently large but independent &f there exists
a positive constant’; > 0, which does not dependent 8f, such that

(19) Y (N)I2 < Cy.
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Proof.
2
H sin T(:B4—A?\m) N sin T(IZ)\m) 4
I, = / (l‘ - )\n) — — dr
|2—Am|> N7 <N T(IM\?\m) T(x4/\m)
n#0,m
< (4N)4N/ H z— A\, |2 1 .
— T4N [o—Am|>0N7 |1 T—Am| |T—Aml?
nqﬁa,m

But, for anyz such thatx — A\,,| > N7, we have

T — A |z — Am| + [ A — Al 2N7 2
<l4+ — <14 -
2 — o T S e

T — Am

It follows that,

(AN)N < 2)4N -2 / 1
L< (145 S
TN 0 |z—Am|>6 N ‘I‘ - /\m‘Q

2(4N)*N < 2>4N -2
+ .
)
Moreover, from the second estimate of Lemma 2.1, by using Stirling’s
formula, it follows that

~ SN7T4N 5

Y1 (N)Ia < exp[BN — 4N In(T)]

whereg is a positive constant independent/éf

Hence, forT' > 0 sufficiently large (but independent &f), there exists
a positive constant';, independent ofV, such thaty; (N) > < Cy and the
proof of the Lemma finishes. O

The estimates for the first integral are more laborious. Let us first remark
that

2
o T(=2m) ANV o T(r=2m) |4
I N H )\ ) BIHT S1n ] d
1= - (&= An T(@—Am) Tam) | ¢
|—Am |<SN= In|<N N 7
n;éa,m
2
9 T — Ay
ey II
[n|<N |$_)\m|§6N7r In|<N n
n#0,m n#0,m
. T(z=Am) ANV . T(z=2m) |4
S11 AN S11n 1
X dx.
T(z—Am) T(x—Am)
IN 1
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We denote by the integral

T — A\ 2
Is = 11
|[2—Am|<INT In|<N n
n#0,m
— AN | | _ 4
sin T(xM\?‘m) sin T(x4)‘m)
X dx.

T(z—Am) T(z—Am)

4N 4

The following result holds

Lemma 2.3 For T' > 0 sulfficiently large but independent df there exist
two positive constant§’y, andC's, which do not dependent a¥, such that

16/ A |2

(20) I3 < (ColAm)? +C3)e™ N

AN
_ i Ta=dm)

Proof. We evaluate first the terﬂr?‘r;wigfvm‘ ,
TG Xn]

Let us first remark that, there exists> 72 such that

sinx

(21)

1
<1-=2% V]|z|<m.
x a

From (21) it follows that, for‘%’ < m, we have

_ AN 4N
sin% <[ 1 (T(z—Xn)\>
T(z—Am) - o a AN
4N
2
= exp <4N1n (1 1 (W) >>
a
2
< oxp <4N <—i (T ) ))
T%(z — Am)?
= oxp |- 4aN
Hence,
(22)
. T(z—Am) |4V 2 2
sin =7 Tz = Am) —_— AN
T(ﬂ;v)‘m) < exp< o |z — A | < 5
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On the other hand,

|‘fM’ > 7, it follows that

sin T(Z\;\’") w 1
T | S Treo BV S < exp(—4N In(7)).
N ‘74]\,’“ ’
Hence,
. T(x=An) |4V
sin AN
(23) ﬁ < exp(—4N In(n)), if |[x — A | > 7
IN
Let us now pass to evaluate the prod{it, <y |~ n =
n#0,m
—\_, we have that
n#0,m

In the abové indicates that the indelxn| has been skipped.

We shall consider

Casel:'m < N.
We first remark that

the casgs| < JN and|m| > §N.

N
2 2
I~
2
AL
N/2
2 2 2 Y2
x2_A?V+l—‘m| H’ e =X | |® )‘N-i-l—n
5 )
ANG1-|ml )‘721 )‘?\H—l -n
_ if N even
(N-1)/2
2 2 2 _ 2
x2_/\?\1+17\m| x2_>‘%N+1)/2 H’ == A% )‘N-i-l—n
p) 2 ’
ANF1—|m] AN 1) /2 A2 )‘?V—&—l—n
if N odd.

Since, for|j| > &

, we have thafl’ < |\;| < N, it follows that

2 2
)‘N+1 |m| )‘(N+1)/2
max )\2 )\2
N+1—|m| (N+1)/2
26mN Nr)?
< (20mN)° + (Nm) = 4n2(462 + 1) < 2072,

(3)°



736 S. Micu

Hence,

e - 2 22{%]’ e A

H A2 ‘_(W)H< A2 AXt1on )

N
oot I ([P (7)o e (3
T () || cos? (50)
_oont T (|FLm et g (1) o (551 )
jiz sin® (#5) 7 cos? (252)

Since|z — Am\ < dNmand|\,| < N~ it follows that |z| < 20w N.
Hence, ifd < 4 , there existgy e N*, p < ﬂ and a real number with
p <z <p+1suchthat? = 7 sin? (2Z2). We obtain that

H Tr — )\n
An
In| <N
n#0,m
\:E—{— Am H/ sin?(nmh) — sin?(z7h)
- |)\m| sin?(nmh)

N

4 Al H sin? q [2]/ - sin?(z7h)
o sin? nept1 sin?(nmh)

N

\:r + A H <sm (p+ 1)7h] 1) E ]/ <1 B sin2(p7rh)>
Al sin?(nmh) e sin?(n7h)
x4 A H/ sin[(p+ 1 — n)mh]sin[(p + 1 + n)wh]
B |)\m| sin?(n7h)

" H/ sin[(n — p)wh]sin[(n + p)7h]

neptl sin?(nmh)

|z 4+ A sin?(|m|7h)
— Al [sin[(p = [m])wh] sin[(p + [m[)mh]|
P sin[(p + 1 — n)wh]sin[(p + 1 + n)wh)
8 H sin?(nmh)

n=1
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3] . :
" sin[(n — p)wh]sin[(n + p)7h]
nzl;[H sin?(nmh)
|z + A | v sin[(p + 1 — n)wh]sin[(p + 1 4 n)7h]
= 2 nl_Il sin?(nwh)
y 5] sin[(n — p)wh]sin[(n + p)7h] .
=1 sin?(nmh)

But

H sin[(p+ 1 — n)wh]sin[(p + 1 + n)wh|

n=1
(3]
2
H [(n — p)wh]sin[(p + n)mh]
n=p+
2p+1 [5]-» [5 ]+
= Hsm krh) H sin(kmh) H sin(kmh) H sin(kwh)
k=p+2 k=1 k=2p+1
%] [%]-» [2]+»
(2p + 1)h] E
= Sslfln{ ppjl :h Hsm kmh) H sin(kmh) H sin(kmh)
= (510
[5] [5]-» [5]+»
§2Hsin(kz7rh) H sin(kmh) H sin(kmh).
k=1 k=1 k=[X]+1
It follows that
]3] 5+
$+)\n 4 1 .
<4 m — kmh
H 3 < 4007% |z + A IH e p— ]I[ sin(kmh)
L/l k=[5 ]-pt1 [F]+1

.
sin k)mh
= 4007t |z 4 A H m
i[5

Takin_g into account that < (p + k)mh < 7 and since the function
h(x) = *2* is decreasing ofv, 7|, it follows that

sin[(p + k)mh] bt k
sin(kwh) — k

737
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and hence, since < N we obtain that

]
T — A p+k
< 40074 Am —
11 . < 40074z + A }“[ ;
i o[-
]
< 40074z + A exp In (1+ %)
(4] pr
5] »
< 4007* m =
<4007% |z + A\p,| exp Z ?
k=[5 ]-p+1
) Sl
< 4007% |2 + A\, | exp / —dy
[¥)p1 v
N
1
= 4007t |z 4 A exp [ pIn ]\][2] *
(3] -p+1
p
= 4007t |z 4 A exp [ pIn | 1 +
[5]-p+1
4 p?
<4007 |z + Ay | exp
[5]-p+1
4 2
< 40074 |2 + A exp (ﬁ)
4 42
<4007z + A | exp /-
Hence,
- An 42
(24) H a S < 4007t |z + | exp <]a\cr> .
i

From (22) and (24) it follows that

4N 4

2 . T(z—Am) T(z—Am)
/ H T — A\ sin — n —— = i
4N A T(z—Am) T(z—Am)
|2—=Am|< =7 In|<N n IN 1

n#0,m

T%(z — Am)? 822
< 4007 A |2 UL LLZE —
< 4007 /x—Amg‘“{ﬁ |z 4+ A |“ exp ( N exp | —
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sin LIZ)‘”) !
T(z—Am)
4

X dx

16 Am |2

< 4007te™ N |z + Am|?
4N
|x7Am|§T"

4

. T(z—Am
X exp _TQ(x — Am)? n 16(z — A\n)?) |sin % .
4aN N T(%/\m)
Hence, forT' > 0 sufficiently large, we get that
4N
|z —Am | <20 e An T(z4—1\?\m) T(z;)\m)
n#0,m
4
< 4007463 plsm e
N
- m |2 — Ay | < AT ‘:B—i— m‘ T(QEZA ) z
< 40074
sin L@=Am) *
x (2lz — Al +2X7,) 1 d
/lx—Am|s4NT“ " ™| TezAm)

16 Am |2

< (ChIAml? + Ch)e ™ F

whereC’, andC% are two positive constants which do not depend\oand

m.
On the other hand (23) implies that

2

/ 1>
AESa=Am[<oN= | S oy n
n#0,m
T(m=m) ANV o T(a=2m) |4
Sin S1n
AN 4 dx
T(z—Am) T(x—Am)
4N 4

< 40071'4/ |z + A |?
A <lz—Am|<6NT
T(z—Am)

S11 1
T($_>\7n)
4

4

dx

x exp (—4N In(r)) exp (8]@2)

4 16 Am |2 9
< 4007%e” N |z + A\,
A <Je—Am|<ONT

739
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_ 4
sin L@=Am) 4’\’”)

T(z—Am)
4

dx

16(z ]—me)2>

X exp <—4N In(m) +

16[Am |2

< 4007te™ N / |z + Ap?
A <|z—Am|<6NT

T(z—/\m)
4
T(.Z’ Am)
4

4
dx.

x exp (—4N In(r) + 166%w 2N)

Sinced can be made arbitrarily small we obtain that

2
/ T — Ay
ANE oA |<ONT | 2o | An
n#0,m
cT(z=m) ANV o T(a—2m) [4
SIDT Sin 1 d
i
T(z—Am) T(z—Am)
4N 4
2 T(z—Am) |*
4 16| Am | 2 sin 1
AT <z —Apn | <N 5
16\Am\2

(C” ‘Am’ + C77 )

whereC”, andC” 3 are two positive constants which do not depend\on
andm.
It follows that

2
7 / T — A\p
3= 11
ANE oA |<ONT | 2o An
n#0,m
. T(z—Am) |4V T(x—Am) |
" sin =5 n —= =" i
T(x—Am) T(z—Am)
iN 1
2
T — A\
+ II |~
‘fom‘Szlgw |n\<N n
n#0,m
s T(z=Am) |4V | . T(z—Am) |*
in =7 sin ——; p
N T @) T(@—Am) x
N 1
1b|)\m|

(CQ|/\m| +Cg)
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whereC> andC'; are two positive constants which do not dependvoand
m.

Case ll:m > 0 N.
This case is much simpler than the previous one since we have that

[Anl
In|<N In|<N
n#0,m n#0,m

SN+ 4(N +1)
<
=11 2[n|

[n|<N
n#0,m

<4N)2N71

m

(N1)2

IN

§ ’)\m|e32N

8 Am |2
< [ Amle” V.

It follows that

- [
|[t—Am|<INT H

[n|<N
n#0,m

4N

T — Ay 2

n

4
dx

. T(z—Am)

S0 TN

T(z—Am)
4N

sin T(‘r;’\m)
T(z—Am)
4

16[Am |2

< 25N7|\pl2e™ ¥

16 Am |2

S (CQ’)\m‘Z + Cg)e N

whereCy andC'; are two positive constants which do not depend\oand
m.
The proof of the Lemma is now complete. O

We are able now to conclude the proof of Theorem 2.1. Indeed we have

27T‘|@mH%2(—T,T) = H‘SmH%Q(—oo,oo)

= Nn(NL+n(NE | [ AP

[n|<N
n#0,m
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Relation (i) from Lemma 2.1 implies that

n) | I] Pl | <4

[n|<N
n#0,m

and the proof of the Theorem finishes by taking into account the estimates
from Lemmas 2.2 and 2.3. [ ]

Remark 4The explicit biorthogonal family©,,,),,., <y may not have mini-

: . m#0 -
mal norm. Of course, there exists an unique biorthogonal of minimal norm
which belongs to the space generatec(eb?jt) 1<~ - HOwever, itis not easy

370

to evaluate its norm.

Theorem 2.1 gives a biorthogonal sequer{€,,),,, <, to the family

m#0

of complex exponential{e“jt%‘g with the property that the norms of
J#0
the element$O,,) ..~ increase polynomially withn. Note also that

the norms of all themgl%ments of the biorthogonal family depenak difut

do not depend explicitly oV. Nevertheless, fom large, these norms can
have an exponential growth. In the following Theorem we show that in any
biorthogonal family there are elements with exponentially big norms.

Theorem 2.2 Let (1) <n biorthogonal to{e*«*} . _y in L2(—T,T).
. m . nF
Then there exists a posm\(}e consta@tsnot depending Oom\f, such that

(25) 1o N2z > CaeVY.

Proof.In order to prove the theorem some arguments from [3] will be used.
We shall give the proof in several steps.

Step 1:Let us define the following sequence of functions

T .
(26) Tm(2) = /T Ym(t)e™dt, |m|< N, m+#0.

From Paley-Wiener Theorem it follows that, is an entire function of
exponential type at mo§t. Moreover,

(27) | Tm(@) IS V2T || w21y, Ve €R.

Sincer,, is a function of exponential type it follows from Hadamard’s
Factorization Theorem that

(28) Tm(2) = azPe’? H <1 — Z) o2/ %

z
zr€EE k
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where E is the set of the zeros, of 7,,, with z;, # 0, E = {z;, € C |
Tm(zk) = O, Zk 7& 0}

From the definition of the functiomn,, it follows that7,,(\,) = dm n.
Therefore{\, : | n [< N, n #0,n# m} C E.LetE' = {\,
N, n # 0, n # £m} and define the polynomial function

(29) = 11 ™ __ ™

In|<N
n#0,£m

Let us now define function,,, (=) by

(30) qu(Z) =

The functiong,, has the following properties:

e is an entire function of exponential type at m@st
b ¢m(>\m) =1
i Tm(z) = Pm(z)¢m(z)
Letus defingpy : C — C, ¢n(2) = on(An — 2). Evidently,py is
an entire function such thaty (0) = 1.

Step 2:In this step we shall give some estimates|féty (Ay — z) |.

AN — 2 — A —z
In|<N-1 N In|<N-1
n#0 n#0

where

4 N N —
,un:An)\N:cos< +n7rh>sin< 4n7rh), 0 <|n|] < N.

(31)

Let us now denote by; = yy_; = 7 sin (]Zh) sin (W) for1 <

Jj <2N —1,j # N and putyy = 0. Evidently, the sequende;),<;<-n—1
J#N

is increasing and

Py —2)= ] Z—

Vj
1<j<2N -1
J#EN

Now, if = € C is such thaf = |< N, there existp € {0,1,..., [§]}
such thatz| € [vp, vp1].
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We obtain that

v — 2 v — 4
Pvow=2l= I == 11 =
J

Sz Ml g

JEN
> 11 [zl — v 1 vi — |2
-2 vj vy
1<5<p p+1<j<2N-—1
JEN
v, — V; Vj — Vpti
> H Yp—Vj H Vi — Vptt

1SJ§p_1 p+2<j<2N -1
J#FN

« <|Z’ — Vp Up+1 — |Z|> '
Up Vp+i

But

I 2 %= q] AN—j = AN-p

v; — AN—j

1<j<p1 Vi 1<j<p1 AN T AN
sin <(p_i)ﬂh) cos ((QN_jz;_p)ﬂh>

- | ith gy (Gt2)eh
1<j<p—1 s1n< )sm( 1

(g

sin

J . (j+2)7h
1<j<p—1 S (f

if;i?, sin (%)

T IIpELsin (B2h)

On the other hand

[ 2ot [ MWy
Ui AN — AN—j
p+2<j<aN—1 J p+2<j<2N -1 N N=3
J#FN i#N
. i—p—1)7h ON—j—p—1)7h
2Nflsm((] p4 s >cos(( j4p I )
- Jmh\ o (G+2)7h
i=pta sin ( 7 ) sin (T
J#FN
2N-1 gin (Ofpzlhh) sin ((]erig)ﬂh)

o jmh : (G+2)mh
iept2 sin ( ) sin (f

i#EN
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sin (foh) sin <(N+42)7rh>

 sin (M) sin (M)

4 4

It sin (42) [2Y5042 sin ()
ip—;i4 sin (kﬂh) 2N21\1f p— 1sm( e )

We obtain that

== 11 =™
" I/j I/j
1<j<p—-1 p+2<j<2N -1
JEN
. . N+2)wh
sin (—Nzh) sin <7( +4 L )

sin ((N—p4—1)7rh) sin (N+p+3)7rh)

sin (%) sin ( ) sin ( p+3)”h)

i (Y iy (CEEDRY iy ()
Th

2N +p+2 sin (kT)

X

k=2N-+2 Sill (W)
16 N(N +2) p+3
T IN-p-1)(N+p+3)(p+1)(p+2)(2p+3)

It follows that

16 N(N +2) p+3
™ (N -p-—1)(N+p+3)(p+1)(p+2)(2p+3)

Z| — Uyl — |z
XC| pml\»_
Vp Up+1
Now, sincep < ﬁ and sincepy, < 7, we obtain that there exists a

positive constan€’' > 0 independent ofV such that

|Pn(AN — 2)| >

(32)
2
|IPn(An —2)| > C | min {||z| —vy]}| , VzeCwith|z| <N.
1<]<#21<]V_

i _ 4o (krhy oo ((2p43)Th
Since|vp1 — vp| = 7 sin (%5%) sin (%) > 2ph we can chose

r € [Vp, Vp41] Such that

(2] = 1) (1 — |2]) = (Ph)2, V= € Cwith [2] = r.
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Step 3:From (26) and (32) we obtain that

. 2T TImz _
v ) = [ =1 < Lol
N(AN — 2
C |min,<; <oy 1{|[2] — v}
FEN
(33) Vz € C, |z| < N.

We shall show that (33) is not possible unléssy || grows rapidly with
N.
Let us first recall the following result (see [9], p.21):

Theorem A: Let f(z) be holomorphic in the circlé z |< 2eR (R > 0)

with f(0) = 1 and lety € (0,3¢). Then inside the circl¢ z [< R, but
outside of a family of excluded circles the sum of whose radii is not greater
than4nR, we have

(34) (] f(z) ) > — (2 +ln (;’;)) In(M;(2¢R))

whereM(2eR) = | I‘Ti%XR | f(2) |.

We apply this result to the functiany which satisfies the hypothesis of
Theorem A. It follows that, for alR > 0 andn € (0, 3¢),

(] on(z) ) > —2 (2 +In <§’;>> In(M,, (2¢R)).

(35) VzeC, |z|<N

outside of a set of circles the sum of whose radii is not greater4h&n
Let us denote by = 2 (2 +1n (g’—;)) > 1and chose) € (0, 55).
From Theorem A we obtain that there existse [—R, — %] such that

(36) In(| o (z0) [) > —d1In (M, (2¢R)) .
On the other hand, from (33),

lon(z0)| = [oN (AN — T0)|

1
(37) < V2T || YN llr2(-rm) [ PyOw —20) |
But, sincex is a negative number,
v +laol _ Y v+ |ao]
|Pn(AN — 20)| = H injo > H injo > |zo| VM.

1<j<2N-—1
J#EN

j=1
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Hence, from (36) and (37), we obtain that there existe [—R, —Z]
such that

(38) In (V2T || ¥ llza(-rz)) > [VN]In(jao]) = 61n (M, (2¢R)) .

We chose nowR. If S = {Nﬂ we consider? > 0 such that

Vs+1 + Vs

(39) 2eR = =

It follows that
(|) minlgjingl{‘2€R — I/]|} = w Z %
J#EN
(i) VN <S(S+2)h<R<ZS(S+2)h< VN

Hence,

\/ﬁN262eRT||wNHL2 o
(40) My (2eR) = max | on(2) I< O HCED,

From (40) and (38) the following estimate is obtained
(140 n (V2T || o llprm)
N2
> [VN]In(|zo|) — 20T R — In <C’>

>[¢Nlon<f>_2@Thgﬁ__h%ﬂm<i?>>'

Taking into account thaf/ N < R < %zx/ﬁthe proof finishes. m

3 Controllability results

In this section we consider a sequence of semi-discrete systems correspond-
ing to a continuous wave equation and we study some of the controllability
properties of these systems.

The starting point of our study is the following boundary control problem:
givenT > 2 and (u°,u') € L?(0,1) x H~1(0,1) there exists a control
functionv € L?(0,T) such that the solution of the equation

u — Uz =0 forz € (0,1), t>0
u(t,0) = fort >0

(
AL 9w 1) = o(t) fort > 0
(
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satisfies
(42) w(T, ) =4 (T,-) = 0.

Itis well known that this problem has a positive answer (see, for instance,
[10]).

We approximate (41) by a sequence of semi-discrete problem8/ et
N*, a steph = N+1 and an equidistant division of the intervél, 1),
O=x0 <21 <..<any <xny1=1Withz; =jh0<j<N+1

Now, we consider the following problem of controllability: givéh> 0
and(ug,u})lgjgzv € C?V, there exists a control functior, € L?(0,T)
such that the solution of

u;-’(t) . u‘7-+1(t)+u_j}:21(t)—2u.i(t) =0 for1 < j<N, t>0

( ) UN_H(t) = Uh(t) fort >0
uj(O):u?, u;:u]l forit<j<N

satisfies

(44) uj(T):ug(T)zo, Vi=1,2,...,N.

System (43) consists @f linear differential equations withy unknowns
UL, Uy ooy UN uj (t) is an approximation fot.(¢, z;), the solution of (1),
prowded that(u], j)lgjgj\[ are an approximation for the initial datum in
(1)

The choice of an approprlate approxmat(m@ )1<J<N for the initial
datum(u®, u') € L?(0,1) x H~1(0, 1) of (1) is very important if we want
to ensure the existence of a bounded sequence of cofitiglg.o. This
problem will be studied in detail in Sect. 4. The next two paragraphs are
devoted to the study of the elementary properties of (43).

3.1 Analysis of the homogeneous problem

The controllability of (43) is directly related to the properties of the cor-
responding homogeneous adjoin problem. Therefore we introduce now the
following system

j /(¢ wJ+1( )+wjhgl(t)*2wj(t) =0 for1 < j < N, t>0
(45) § wo(t) = wny1(t) =0 fort >0
(O)—w0 w]—w]l forl<j<N

which represents the adjoint of (43).
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In order to write (45) in an abstract Cauchy form, we define the matrix
Ah c MNxN(R)

2 =10 0 ... 0 0

-1 2 -1 0 ..... 0 0

1 0 -1 2 —1..... 0 0
Av=gs | T
0O 0 0 0 ... 2 —1

0O 0 0 0 ... -1 2

If we denote by (t) = (w1 (t), wa(t), ..., wx (t))T, system (45) can be
written as

(46) W (t) + AW (t) = 0, fort >0
W(0) =W°, w'(0) = W',
whereW" = (w)1<j<y andW! = (w})i<j<n.

Finally, if we putZ = (W, W’)T, we obtain that (45) is equivalent to

(47) {Z/(t) + Ly Z(t) = 0, fort >0

Z(0) = 20 = (WO, wh)T

whereL;, € Mayxan(R),

0 -1
w-(20).
It follows that (47) is a linear system @fN differential equations of
order one and has an unique solutigre C* ([0, oo), C2V). Hence, (45)

has a unique solutio” € C¥ ([0, 00), C").
The energy of (45) can be defined as

(48) Z [

=0

2
wj+1(t) — w;(t)

+ w;<t>r2]

and represents a discretization of the continuous energy corresponding to (1)

1

1
(49) B0 =5 [ [WOF +ua(o)] o

Itis easy to show that equation (45) is conservative, i.e.

dEy

(50) e

(t) =0,vt > 0.



750 S. Micu

Let us now define irfC2" the following inner product

= fi Jx g g 1
1= - _ _
(F.9)=h | > = 2228 & 5 (higy + fvGn)
k=1

N

(51) 1Y kTN
k=1

wheref = (fi)i1<k<an Y g = (gr)1<k<2n are two vectors front2"V.
Energy (48) can be expressed in terms of the inner product we have just
introduced. In fact we have that

(52) En(t) = 5 (2(1), Z(1))) -

In orderto give a Fourier decomposition of the solutions of (45) a spectral
analysis of the operatdr;, must be done.

Itis well known that the eigenvalues 4§, arev; (h) = ;‘2 sin? (128 5 "1
j < N,andthe corresponding eigenvectorsgiigh) = (sin(jmhk))1<k<n
eRN,1<j <N, (see[8)).

It follows that the eigenvalues df;, arei \,,(h), where

| /\

2 h
Aa(h) = 7 sin(%), ~N<n<N, n#0,

and the corresponding eigenvectors are

iy (e (W) ()
@(h)—<2 _(S;nzh) >_(—(pn(h)>’
_N<n<N, n#o.

We have that

Proposition 3.1 The setof vector@" (h)),, <~ C C?» formsan orthonor-
mal base inf?". i
Proof. We have

(@'(h), 9 ()

. Nz‘:lcos jrh(2k+1)  Iwh(2k + 1) jrh lrh

5 cos 5 + cos 9 COST

N
; wh Imh
+(—=1)7* cos T Jm 5 €08 LI sin(jmhk) sin(lwhk)

2
k=0

k=1
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N .
- [Z (cos Jjrh(2k + 1) cos Irh(2k + 1) +sin(jmrhk) sin(lwhk*))]

2 2
k=1
2N+1 . .
= g [ Z (cos (= j)mhk é)ﬂhk — (=1)* cos (U j)mhk +j2>7rhk>] .
k=1
But
2§1 qrhk 2N +2 if¢g=0
cos =9 1_(_1) . ;
— 2 =17 (2 DT it ge IN*
2N+1 .
qrhk 0 ifg=0
_1)4 — _ :
kZ:O( Jeos =5 {1_(2_1)q if g IN*

Finally it follows that(®'(h),®’(h)) = ¢;; and the proof finishes. m

We can now give a Fourier decomposition of the solutions of (47) in
terms of the eigenfunctions of the operalgy. Hence, if the initial datum
70 = (WO W) of (47) is such that

(53) Z° =" apd"(h)
In|<N
n#0
then the corresponding solutiof(t), is
(54) Z(t) =) ade A" (h).
In|<N
n#0
Let us now prove the following direct inequality for the solutions of (45):

Proposition 3.2 LetT > 0 andw be the solution of (45) if0, T"). Then

(55) /0 '

Proof. The following identity is obtained in [7] by using multiplier tech-
nigues:

dt < 2(T + 2) Ej(0)

L [T '
TEO0) =7 2 [ uh(t) = whia(0F e+ X
=0

(56) =;/OT

0
2

wn(®)|” 4

h




752 S. Micu

where

Let us evaluate now

1
2

[NIES

(B

N
Xnl <h | D Jwjf?

2
Wi+l — Wi—1
)

1

]
5(’“’]-5-1 w]] + wj — wji— 1‘)

<
I

[SIE
N[

Mz

N
<h (Dl
j=1

<.
Il
—

=
=

Mz

wj+1

N
<h| D gl
j=1

< Ep(t).

e fef)

<.
Il
-

From (56) it follows that

dt < TE,(0) + 2Ey(t)

and the proof finishes. |

The following inverse inequality for the solutions of (45) will be also
used in the control problems:

Proposition 3.3 LetT > 0 and (w, w;) be the solution of (45) in0, 7"
with the initial data given by (53). Then

(57) S pulad)? < 0/ ‘

In|<N
n#0

where (pm)|m|<N are any positive weights such that, (©,,),,.<~ iS

m#0
biorthogonal |nL2(0 T') to the family of complex exponentlé&Am ) Im|<N»
then e

Om|?
(58) S pmomll ¢

cos? (757 =
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Proof. Let us first remark that

2
T 2 T PPN
wn (t) / "
—=| dt = a, sin(nwh)| dt
/0 h 0 7;1\/ 24 sm "gh)
n#0
2
T .
= / Z plelrt| dt,
O Jinisn
n#0
whereb? = —i cos (2 2h) al.

Let now(©,,).. < be a biorthogonal (0, T') to the family of com-
m=#£0
plex exponenﬂals{ A t) ;j1<n- We have that
J#0

2

T
bo,|* = / Om(t) | D e | dt
0 nl<N
n#0
wn ()

dt.
h

9 T
<l1Bulltzom |

Letnow(py ). <~ be positive weights such that (58) is satisfied. It follows
n#0
that

S lahon = 3 1P <c/

In|<N In|<N
n#0 n#0

Remark 5If (6,,), sy is the explicit biorthogonal given by Theorem 2.1,
we obtain that (57) |s true for anfy,, )|,,<~ such that

n#0

2

S
59 N .
(59) > pn—— -

In|<N
n#0

It follows that the weights from (57) corresponding to the low frequen-
cies have a polynomial decay whereas the ones corresponding to the high
frequencies have to have an exponential decay.
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3.2 A moments problem

We go back nowtothe controllability problem mentioned in the Introduction.
Let N € N*, asteph = N+1 and an equidistant division of the interval
(0,1),0 =29 <21 < ... <Ny < xn41 = L Withz; = jh, 0 < 5 <
N + 1.
We study the following problem of controllability: giveh > 0 and
(u¥,uj)1<j<n € C*V, there exists a control function, € L*(0,T') such
that the solution; of

U;-/(t) _ uj+1(t)+“jh721(t)*2uj(t) =0 for1l < ] < N, t>0

60 uo(t) =0 fort >0

(60) uNH(t) = vp(t) fort >0
uj(O):u?, u;:u]l forli<j<N

satisfies

(61) ui(T) = uj(T) =0, ¥j =1,2,...,N.

By using the notations of the previous Sect. (60) can be written in the
following matriceal form

Z'(t) + LpZ(t) = Bp(uvn(t)), fort >0
(62) 2(0) = 29
whereZ? = (u9,u;)1<;j<n is the initial datum ands;, (vs(t)) = 7z (0, ...,

0, v, ()T € C?V,
First of all we have the following characterization of the controllability
of (60):

Proposition 3.4 Problem (60) is controllable iff for any initial datug® =
(ug-),ujl-)lngN € C?N there existsy, € L?(0,T) such that

1 T
-0 i
(63) h Z u —u; w]) h/o v(t)wpn(t)dt
1<j<N
for any vector( )1<]<N € C*V andw solution of the homogeneous

adjoint system (45)

Proof. Indeed, let us conside(nu?,wjl)lgjgv e C2VN and letw be the
solution of the homogeneous adjoint system (45). By multiplyingjthie
equation of (60) byw;, 1 < j < N, integrating by parts and adding all the
relations we get that

5 / (100, - 2O a0 =200

1<j<N
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=0 Y (Wtymi(t) — u (b)),

1<j<N
s / (u] ! (8)dt wj+1(t)+wjh—21(t)—2wj(t)uj(t)dt>
1<5<N
T
=06 3 @O0 - wOTO] - 55 [ wbwvo
1<j<N

=0.

Hence, (60) is controllable iff, ;. v (u}(T)w;(T) —u; (T)w}(T)) =

0forall (wf, w})i<j<n € C2N andw solution of the homogeneous adjoint
system (45). The proof finishes. [ |

Let us introduce now the following notation

<U"W%>=h Z (ugﬁjl- - u}@?)
1<j<N

whereU? = ( ?, })1<]<N S C2N andw9 = (w?,wjl)lgjgj\[ S C2N,

Remark 61f ¢"(h) are the eigenvectors of the operakgra straightforward

calculation gives that that
< &F(h), 8" (h) >= Lh
2 sin ("g )

Indeed we have
(0" (1), 2" (h))

1
—h Z <— sin(kmjh)sin(nmwjh) — W sin(kmjh) sm(mr]h)) .

n

1<j<N
But, since
Z sin(kmjh)sin(nmjh)
1<G<N
1 . .
=3 Z (cos ((k —n)jmh) — cos ((k + n)jmh))
1<j<N

and, forq € Z*,

Z cos (qjmh) = {0_ !f q odd

1 if g even
1<j<N

the result follows immediately. [ |
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Our aim is to transform the initial control problem in to an equivalent
moments problem. This can be done easily by using Proposition 3.4 and the
Fourier decomposition of the solutions of (45).

Proposition 3.5 System (60) is controllable iff for any initial datutif =
> ini<w Bn®™(h) of (60) there exists;, € L2(0,T) such that
n#0

(64) /th(t)e_i’\"tdt: (=1)"h —— B3, —-N<n<N,n#0
0 sin(nwh) " - '

Proof. From Proposition 3.4 it follows that (60) is controllable iff for any
initial datumU° there existsy, € L?(0,T) such that (63) holds fofw},
wjl.)lngN = ZO = @n(h), —-N S n S N, n 7& 0.

Remark that, iZ® = &"(h), then the corresponding solution of (47) is
Z(t) = '@ (h) and thereforevy = (—1)"* sLe*nt sin(nwh).
) Moreover, ifU0 = 37, <y 529" (h), by using Remark 6, it follows
that

0 0 o @k n _ IBn . — i -
(U0, W) = 37 B (B (), 8"() ) = 7 in (225 W
|k|<N
k#0
Hence, giverU® = 7, <y 3.9"(h), there existey, € L*(0,T)
such that (63) holds fofwf, w;)i<j<y = Z° = &"(h), -N < n <
N, n # 0ifand only if there exists;, € L?(0,T) such that (64) is satisfied
and the proof finishes. |

Remark 7From the previuos Proposition it follows that one necessary and
sufficient condition for the controllability of the initial datut?® = &™(h)
is to find a control function® € L?(0,T) such that

T . 0 if
(65) / vmoe“ntdt:{ camy (T
0

sin(mmh) if n = m.

Remark that the contrali* is orthogonal inL2(0,T) to the family of
complex exponentialge—'*%) | . and it is not orthogonal to~*»!. m

n#0,m

In the view of the previous remark, a control can be easily obtained
by constructing a biorthogonal sequer@&n)‘m‘w to the sequence of the

complex exponentialges*) ;< v in L?(0,T),
§#0

For any initial datuml/° a controlv;, can be constructed with the aid
of the biorthogonal sequence from Sect. 2 and the control problem (60) has
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a positive answer. Nevertheless, we are interested on the behaviour of the
norm of these controls whelN goes to infinity.

The estimates for the norm of the biorthogonal sequence we have con-
structed in Sect. 2 will give bounds for the norm of the contiglsin this
way we shall be able to say when an uniformly bounded sequence of controls
(vn)n>0 Can be obtained.

4 Convergence results

The aim of this section is to show the conditions in which one can obtain
controls for the continuous system (41) as limits of controls of the corre-
sponding semi-discrete problems (43). In this section the controlXimid
be considered sufficiently large (but independent of the discretized problem)
such that estimate (10) from Theorem 2.1 holds.

Let (u®,u') € L%(0,1) x H~1(0,1) be the initial datum of (41). We
consider thatu’, »!) has a Fourier decomposition

(66) (u®,ut) = Z anP"
n#0
where®” are the eigenfunctions of (41)

() = <n}” §in(n7r:n)) .

— sin(nmx)

Since®" are orthonormal inF{(0,1) x L?(0, 1), it follows that (u°
ul) € L2(0,1) x H7Y(0,1)iff 32,40 1455 < oc.

The next step is to chose the initial datum of the semi-discrete problem
(43) as an approximation ¢f.°, ') in such way to ensure the boundedness
of the sequence of contro(sy,),~o. In order to do this, let us first cut-off
the Fourier series (66) at the ranfje € N:

UM7 UM E anéﬁn
In|<M
n#0

The numbeM = M (N) depends oV (in factlimy_,.o M = oc) and
also depends on the regularity of the initial datum we have considered. As
we shall see later on, if the initial data are analytic we can ciddse N
(Theorem 4.2). If the initial data are less regular, for instandé0, 1) N

H(0,1) x HL(0,1), we have to chos/ < [\/ﬁ} (Theorem 4.1).

Let us now denote b$"(h) € C2V the discretization of the eigenfunc-
tion @™

- 1 T
(67) P"(h) = < sin(nmjh), —sin(mrjh))

nmi 1<j<N
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We consider now as initial datum for the semi-discrete equation (43) the
following discretization ofu9,, ul,):

(68) ( 9, ]1)1<]<N =Uy = Z an®"(h).
|7L\;A1
n#0

Note that, ifM — oo whenN — oo, we have that/) — (u°,u').

Remark tha@”(h) is similar to the eigenvectors of the operatgy but
it is not identical % has been replaced l;&u) We consider this approx-
imation since in some cases (initial data with a finite number of modes, for
instance) it is easier to obtain. Nevertheless, S(W?Euj 1<j<nN € C?V,
we can write it in the following way

(69) (uf, ujicjen = Y an(h)®"(h),
|n|§]\/f
n#0

where®™(h) are the eigenvectors of the operafgr which form an or-
thonormal basis ifC?" .
It is easy to show that

_fo if |n| > M
(70) an(h)—{é@;Jrl)an 2 (22 —1)a_, if |n| < M.

nm

In the next paragraph we discuss the boundedness of the sequence of
controls corresponding to (43).

4.1 Uniformly bounded controls

We can prove now the existence of a bounded sequence of controls for the
semi-discrete problem.

Theorem 4.1 Let us suppose that the initial datum of (41) is such that

(71) > an| < o0
n#0

and let us conS|de(uJ, J)lngN given by (68) with\f = [\/N} . There

exists a controb,, of the semi-discrete problem (43) such that the sequence
(vn)n>o is bounded in.2(0, T').
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Proof. Let (O, )\m\<N be the biorthogonal sequence Ir? (—%, L) to

{ePnt} v constructed in Theorem 2.1. From Proposition 3.5 we obtain
n#0

that that

_1\n+1
(72) wn(t) = We_“\ 2a,(h)On(t —
[n|<M
n#+0

T
3)

is a control for (43). It follows that

h
(73) ||UhHL2 0,T) |Z<:M mmn( )’ HQ Hm@g )
n#0

From the estimates for the norm &f, given by Theorem 2.1 it follows
that there exists a constaftindependent ofV such that

lvrllzz0ry < C Z |an(h)
Inl<M
n#0

and the boundedness of the controls is proved. |
For sufficiently analytic initial data the following result holds:

Theorem 4.2 Let us suppose that the initial datum of (41) is such that
|an| 2

74 ———" <

(74) % cos ("“h)

and letus conS|de(ruj U D1<j<n givenby (68) withi/ = N. There exists a
control vy, of the semi-discrete problem (43) such that the sequénge-.o
is bounded inZ.2(0, T).

Proof. Let v, be the control given by (72). From (73) and the estimates for
the norm of@,,, given by Theorem 2.1 it follows that

h

< .
lonlizom < D fmeyylan( 1€allz
"z
1 An |2

<D an(h)| —mgme N
In|<N Cos (Th)
n#0

The proof finishes by taking into account that (74) holds. [ |

Remark 8 Theorem 4.2 shows that sufficiently analytic data have always
uniformly bounded controls. Hence, in this case, it is not necessary to filter
the high frequencies like in Theorem 4.1.
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Since the sequence of contrdts, ), given by Theorem 4.1 or Theorem
4.2 is bounded i.?(0, T') there exists a subsequence, denoted in the same
way, andv € L?(0,7T) such thaty, — v in L?(0,T) whenh — 0. In the
next Theorem we show thatis a control for the corresponding continuous
problem.

Theorem 4.3 1f v € L?(0,T) is a weak limit of the sequence of bounded
controls(vy)y, given by Theorem 4.1 thenis a control for the continuous
problem (41).

Proof. Indeed, like in the case of the semi-discrete problem, it is easy to
prove thaty € L2(0,T) is a control for (41) iff

T 1
(75) / v(t)wy(t, 1)dt = <u1,@0>H_1 o / uwt
0 ’ 0

for any (w®, w!) € H}(0,1) x L?(0,1) andw the solution of the adjoint
equation

W —wgp =0 forz € (0,1), t>0
(76) < w(t,0) =w(t,1) =0 fort >0
w(0,7) = w'(z), w'(0,2) = w!(x) forz € (0,1).

Let us remark that it is sufficient to show that (75) is verified only for
(w®, wh) = &", n € Z*, the eigenfunctions of the wave operator.

Indeed, from the continuity of the linear forrh: H{ (0,1) x L2(0,1) —
C,

T 1
0,1 - 1 -0 01
A(w”,w ):/0 v(t)wy(t, 1)dt — <u , W >H,17H(% —i—/o uw
it follows that (75) holds for anyw®, w!') € H(0,1) x L?(0,1) iff it is

verified by a basis of the spaég! (0,1) x L2(0,1).
By consideringw®, w') = #", we obtain that is a control for (41) iff

nm

(77) /T v(t)e "t = (=)™ an, Yn #0.
0

Note that this is the moments problem for the continuous system (41)
similar to (64) from Proposition 3.5.

From the fact thaty, is a control for the discrete problem we have from
Proposition 3.5 that

(=D)"h

nh7 _NS §N7 .
Sin(mrh)a (h) " n#0

(78) /0 ' vp(t)e Antdt =
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Taking into account that, for eache Z,
ei)\n(h)t —y o™ in L2(O,T)

and
h 1
sin(mrh)an(h) o
whenh tends to zero, by passing to limit in (78), it follows thasatisfies
(77).
Hence, the limib is a control for the problem (41) and the proof finishes.
|

In the next Theorem we also prove that the solutions of the discrete
problem converges to a solution of the continuous problem.

Let us first define, for eaci = (uy,ug,...,usn), W = (wy,ws, ...,
won) from C2V, the duality product

N

<U, W> = hZ(uijﬂ- — UNJrj@j).
j=1

Remark that-, -) is a bilinear and continuous application and

[Ull-1 = sup [(U,W)]

weC2N
IW]=1

defines a norm i€V (the dual norm of| - ||).

Remark 9From Remark 6 we obtain that

. 1
<¢J,q§l> =5

Hence,

) ) 1
|®7]|-1 = sup ‘<Q§J,W>} = —.

wee2N ’ j‘
W [=1
Let nowU(t) = (u1(t),...,un(t), u)(t), ..., uly(t)) be the solution of
the non homogeneous wave equation

(79)

U' + LyU = By(v)
{U(O) =U"Y

The following property of the solution of (79) is a direct consequence of
Proposition 3.2.
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Proposition 4.1 If U is the solution of (79) then there exists a positive
constantC, independent o, such that

(80) U@ < CUU° -1 + ol z20my), ¥ € [0,T].

Proof. Indeed, like in Proposition 3.4, it easy to show thais solution of
(79) iff
t
@) (W) - UO.We) = [ mad
0
for any vectoriv? € C?V and W solution of the homogeneous adjoint
system (45).
It follows that

(0. W) < (UOIW0 Flolion ([ “ZV))) |

Now, taking into account the direct inequality (55) we obtain that there
exists a positive constant, not depending oV, such that

(U@, WO < (1U°-1 + lollzz o)) Wl

for any vectoriV? € C2¥ and W solution of the homogeneous adjoint
system (45).

Inequality (80) follows now from the definition of the norjn- || and
the conservation of the energy of solutions of (45). [ |

We consider now that, from the sequence of bounded contigls,o,
we have extracted a subsequence, denoted in the same way, sughthat
whenh — 0in L2(0,T).

Let also(U(h))~o be the sequence of initial data which approximate
UY, the initial datum of the continuous problem, aid(h, t));~o the solu-
tions of the discrete problem (79) with initial datuif¥ (k) and controky,.

We have that

Ut)=>_ an(t)d”
n#0
Uh,t) =Y an(h,t)®"(h).

[n|<N
n#0

The following theorem gives a result of convergencelofh, -)) to
U(-).
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Theorem 4.4 Let (U(h,t))n~0 be the family of solutions of the discrete
problem (79) with initial datuni/°(h) and controlv,. Then, by extracting
a suitable sequende — 0, we may guarantee that

an(h7') N an() ; 00 .
(82) < " >|n§N (m>n#0 in L0, T 0%).

n#0

Proof. First of all let us remark that, B7°(h) = 3, . ay, (7)®" (h), then

0 h 2
jomR, = Y |
Inl<N
n#0

n

Hence, the sequend@’(h)), _ is uniformly bounded in the norm

|| - |I=1 and(vp,) 0 is also uniformly bounded ih?(0, 7). From Proposition
4.1, itfollows that U (h, -) )~ is uniformly bounded in the norip- || _; and

consequentl><(“*3(h")> In|<N is uniformly bounded inL>°(0, T'; £2).
" n:ZO h>0
We obtain that there exists a subsequence, denoted in the same way, and

(Bn)nso € L=(0,T; ¢2) such that

an(h, - S e
(“), = G 0,738
n N0
whenh — 0.

We have only to show that, (¢) = a:if{)1 for eachn # 0, and the proof
finishes.

LetdefineZ(t) = =, .o B (t)nm®". We have thaZ € L>(0, T; L* x
H~1) and we shall show thaf (t) = U(t).

In order to do this, let us remark that, singé¢h, -) is solution of (79),
we have that

W) W ww) = 5 [ vom

for any vectoriV? € C2¥ and W solution of the homogeneous adjoint
system (45).
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TakingW? = ¢"(h) we obtain that

an(h,t)  a(h) 1/'E —
An An h Jo

is true for anyjn| < N, n # 0.
Passing to the limit one obtains that

ﬁa<t>—-ﬁn<o>::jﬁ (—1)"Hio

which is equivalent to

(Z°, ") — (Z(t),d") = /0 (—1)"Miv(s)ds

forany|n| < N,n # 0.
It follows thatZ(¢) is the solution of the controlled continuous problem
and the proof finishes. |

5 HUM controls

The construction of a sequence of uniformly bounded controls in the previ-
ous sections was done by using the explicit biorthogonal sequence
(Om )|m\<N for the family of complex exponentiai@*~?) .. -~ given by

m#0

Theorem 2.1.

Hilbert Uniqueness Method (HUM) provides another possibility to ob-
tain controls, based on the use of the solutions of the adjoint problem.

For each discrete problem (43) (with initial datd) let ¢;, denote the
HUM control.

We recallthat;, = 4> whereZ = (z;(t), 2}(t))1<;< is the solution of
the homogeneous adjoint problem (45) with initial datawherez? ¢ C2V
minimizes the coercive, continuous and strictly convex functional

0 Ty )2 0 1170
®3) 7w = [ 5] @ - w.we)
whereW? = (w9, w})i<j<n € C*N andW = (w, w') is the solution of
(45).

Moreover,(y, is characterized by the following two properties:

() ¢n= %" whereZ = (z;(t), 25(t))1<j<n is a solution of (45).
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(i) ¢, satisfies

(84) h Z (ug —uw /Ch wn(t

1<G<N
for any vecto?? = (w9, wj)1<j<n € C*V andw solution of (45).

It is well known that the HUM contra{}, is of minimal L?—norm (see
[10]). From the uniform boundedness results we have obtained in the pre-
vious section we obtain that, under the hypothesis of Theorem 4.1 or of
Theorem 4.2, the sequence of the HUM controls for the semi-discrete prob-
lems is uniformly bounded.

In the next subsection we show that, in any Sobolev space, there exists
initial data such that, if the hypothesis of Theorem 4.1 are not satisfied, the
sequence of HUM controls is not bounded.

5.1 Unbounded controls

Let us first define the following space of initial data

V= {UO Zan@” Z ]an|2e‘5\/ﬁ < oo}

n#0 n#0

wheree is a positive number sufficiently small.
In V we define the norm

1
1> and”|| = (Z \f>

n#0 n=#0

V is a normed vector space aWwdC H™(0,1) x H™~1(0,1) for any
m > 1.

Theorem 5.1 There exists at least one elem¢af, «.!) in V, such that the
sequencé(,)n~o of the HUM controls for the discrete equation (43) with
initial data (u?,u})1<j<n given by (68) withM/ = N is unbounded in

7
L%*(0,T).

Remark 10The main difference between Theorems 5.1 and 4.1 is thatin the
former the high frequencies of the initial data are not filtered (we consider
thatM = N). In this case there exists regular initial data which do not have
a sequence of discrete controls uniformly boundefii(0, T').
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Proof. Suppose that any initial datd’ = (u°, u!) from V has the property
that the sequenc(e;h)h>0 of the HUM controls for the discrete equations
(43) with initial data(u?, u})1< ;<N given by (68) with\/ = N is bounded
in L2(0,7).

For eachV € N* we define the operatdiy : V — L?(0, 7)) such that

J? J)

Tn(U%) = Gy

whereh = N+1 and(}, is the HUM control for the discrete equation (43)

with initial data(u],u])1<]<N given by (68) withM = N.
It is easy to see thdtl'v)y>1 is a sequence of linear and continuous

operators. Moreover, for eagi’ € V, we have that
HTN(UO)”LQ(O,T) = [¢ullr20,r) <00, VN > 1.

From the Banach-Steinhaus Theorem it follows that the operaioese
uniformly bounded. Hence, there exists a const@nt 0, not depending
on N, such that

(85) TNl w20y < C, VN > 1.

For eachV ¢ N let us now considel’® = &%, the N —th eigenfunction
of the wave operator. The discrete initial data are:

U%h) = 5 (?V]jr - 1> &N (h).

By taking into account the characterization of any control given by Propo-
sition 3.5, we obtain that the HUM contrdi,(t) = an¢n(t — 2) where

(¥n)1<nj<nN iSI? biorthogonal feguence for*) ) jpj<n in L2(=%, L)
anday = 2(;31)@:) ( + 1) e 2,
The estimate from Theorem 2.2 and (85) give that

Coe¥N < YNl 2z 1
< 4I¢ul2 0y = 1T (U] 20y < CeVN.

This is impossible it is small enough. We have obtained a contradiction
and the proof finishes. [ |
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5.2 Convergence of the HUM controls

LetU° = (u", u') be an initial data for (41) and let us now suppose that the
hypothesis of Theorem 4.1 or of Theorem 4.2 are fulfilled.

Since, in this case, there exists a sequence of uniformly bounded discrete
controls, it follows that the sequence of the HUM contr§{$,);~o, is also
bounded. Hence, there exists a subsequence, denoted in the same way, which
converges weakly i?(0,T) to an element € L%(0,T).

Let Zo(h) be the initial datum which gives the HUM contrgl (i.e.

Cn = %, whereZ = (z,2) is the solution of the adjoint system (45) with
the initial datumZz°(h)).

We have that

Theorem 5.2 The functiort € L%(0, T) is the HUM control of the contin-
uous wave equation with the initial dat’.

Proof. First of all let us remark that, like in Theorem 4.3, it follows tljat
is a control for the continuous problem (41) with initial datat. Hence,
it satisfies

1
(86) / C(t)wy(t,1)d < 1’0>H1,H3_/0 Tk

for any (w°, w!) € H}(0,1) x L?(0,1) andw the solution of the adjoint
equation

W — Wy =0 forz € (0,1), t>0
(87) ¢ w(t,0) =w(t,1) =0 fort >0
w(0,7) = w'(z), w'(0,2) = wl(x) forz € (0,1).

Let us now remark that, #,.(¢, 1) is the HUM control for the continuous
wave equation (41) (which corresponds to an initial dafeftre H}(0,1) x
L?(0,1)), then

T
(88) /0 (C(t) — pa(t))Wa(t, 1)dt = 0

for any (w°, w!) € H}(0,1) x L?(0,1) andw the solution of the adjoint
equation (87).

Let us now remark that, from the observation inequality given by Propo-
sition 3.3, the sequend&’(h)),~o converges in a weak norm (with expo-
nential weighs) to an elemeit’. The sequencé&,)s~o Will converge in
the sense of distributions to the normal derivatiyét, 1) of the solution of
system (41) with initial datung®.

It follows that ¢(t) = z.(¢,1). Since¢ € L%*(0,T) we obtain that
z:(-,1) € L%(0,T) and, consequentlyy® = P € HZ(0,1) x L2(0, 1).

Now, from (88), by takingv = z — p, it results that = p,.(¢) and the
proof finishes. [ |
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