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Summary. The saturation assumption asserts that the best approximation
error in H} with piecewise quadratic finite elements is strictly smaller than
that of piecewise linear finite elements. We establish a link between this as-
sumption and the oscillation gf = — Aw, and prove that small oscillation
relative to the best error with piecewise linears implies the saturation as-
sumption. We also show that this condition is necessary, and asymptotically
valid providedf € L2.
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1. Introduction

The saturation assumptiois widely used in a posteriori error analysis of
finite element methods [1, Ch. 5], [2], [3]. It asserts, in its simplest form,
that the best approximation erro¥ (u — us)||, of a functionu € HE(£2)
with quadratic finite elements is strictly smaller than that with linear finite
elements|V(u — u1)l|,, namely,

(1.1) IV(u—ug)]l < al|V(u—w)lq

for a suitable constant € (0, 1). Throughout this paper we assume tf?as
a bounded polyhedral domainitf, which coincides with its finite element
decomposition; we also use the notation|?, := [ [v]* for w C 0. If
T denotes gyraded shape-regular partition of? of size hx, andulz,u%
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stand for the finite element subspacesHf({2) consisting of piecewise
linear and piecewise quadratic functions, respectively, thems are the
Ritz projections ofu onto such spaces, that is

(1.2) uy, € Uk / V(u—ug) -Vo=0, Voecik
9]

The assumption (1.1) becomes truehas— 0, for functionsu € W (£2)

with s —2 > dmax(1/p—1/2,0) in dimensiord as a consequence of stan-
dard interpolation theory, provided a non-degeneracy condition holds (see
Sect. 4). However, sincd’s (2) ¢ H**¢(£2) with ¢ > 0, such a regularity

is never present for elliptic problems with singularities for which adaptive
mesh refinement is required. Even though it is generally believed to be valid
asymptotically, (1.1) is not known to hold under any reasonable assumptions
on the underlying functiom which still allow for singularities. Iﬁ% is en-
riched with cubic bubbles, anfl= — Au is piecewise constant ove&r, then

(1.1) is shown in [3] as a by-product of the equivalence between residual
and hierarchical error estimators. However, the proof of [3] is indirect and
does not shed light either on the sizenofior on existence ak under more
realistic conditions orf. Moreover, a simple counting argument reveals that
(1.1) cannot be valid in general on any refinement level [3, Proposition 2.2],
but does not explain what makes (1.1) fail.

In this paper we discuss the validity of (1.1) and disclose a close relation
with data oscillation. Since (1.1) is about approximability in #Hg(2)-
norm, it is natural to considef = —Aw as datum in this discussion. We
further assume

(1.3) f e Ly().

For each interior node; of T, we have a canonical basis functipne ull
and corresponding star; := supp(¢;). We denote byf; := |w;| ! I, f
the mean value of in w;, and definalata oscillationto be the quantity

(1.4) osc(f, %) : (Zth Il )

We prove in Sect. 3 the following sufficient condition for the validity of
(1.2):

Theorem 1.1. There exists a constaiit < p; < 1 solely depending on
shape regularity of, but independent af and f, such that if

(1.5) os¢(f, %) < plIV(u—wu)llg

holds, ther(1.1)is valid witha := (1 — ;?)/2.
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For simplicity, we prove Theorem 1.1 in two dimensions, but comment
in Remark 3.5 about the minor modifications for higher dimensions. We
note that (1.5) is asymptotically valid &g | 0, and we explore this matter
in detail in Sect. 4. Alternatively, (1.5) can be replaced by the more practical
condition (3.9) which does not involvedirectly (see Remark 3.4). In Sect. 2
we exhibit an elementary example showing that (1.5) is anecessary condition
for (1.1). This also demonstrates that (1.1) may not in general be valid in the
preasymptotic regime, when the oscillationsfadire not yet well resolved
by <.

2. Counterexamples

The purpose of this section is twofold. We give an explicit example violating
(1.1) and the same time argue about its connection with data oscillation. Let
the domain be the squafe= (0, 1)2, the partitior¥ have one interior node,

and the forcing functiorf bepiecewise constarfsee Fig. 1). By symmetry,

it easily follows that

(2.1) /f¢>:0 Vo € Uk % — up = up =0,
2

which violates (1.1). We realize that the oscillationsfadit the star level,

in the sense of (1.4), are responsible for this outcome. Since the counterex-
ample is rather elementary, we conclude that we could not expect in general
the saturation assumption to be valid in fhreasymptotic regimehat is
whenever data oscillation has not yet been resolved by the siéBt we

might still expect that onc& becomes fine enough to detect the structure
of f, then (1.1) should hold.

Fig. 1. Functionf and meslt of counterexample 1

In Sect. 3 we establish this conjecture upon quantifying the size of data
oscillation. In Sect. 4 we prove that (1.1) is always valid in @lsgmptotic
regimeprovidedf € Lo(f2) andu satisfies a non-degeneracy condition.
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The notion of data oscillation (1.4) is not completely local since the stars
w; overlap slightly. The counterexample of Fig. 1 shows thatiihigossible
to reduce this notion to the element level since the element oscillAtiofy
of f is zero; herefy := |T'|~* [.. f stands for the mean value g¢fin the
elementl’ € T. One may wonder whether enriching the sp&gewith
cubic bubbles, as in [3], and redefining

(2.2) osca(£.9) = (X0 Ints - fli3) .
Tex
might lead to a statement similar to Theorem 1.1. To explore this idea con-
sider the counterexample of Fig. 2 with enriched spﬁéefor which (2.1)
still holds due to the symmetry gf. We realize again the link between size
of (2.2) and (1.1), which is further investigated in Remark 3.6.
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Fig. 2. Functionf and meskt of counterexample 2

3. Validity of the saturation assumption

In this section we prove the main result of this paper, namelystiall data
oscillation implies the saturation assumptidfor simplicity, the result is
derived in two space dimensions but it is valid in any dimension.

Even though the saturation assumption is a basic issue in approximation
theory, the technique used here comes from a posteriori error analysis. In
fact, it consists of exploiting orthogonality to relate the erfovgu — us)||
and||V(u —u1)l|, via ||V (u2 — u1)||,, and then showing a lower bound
for ||V (uz — u1)l, interms of| V(u — u1)|| . This entails deriving precise
expressions for interior and jump residualsstars We split the argument
into several steps.

3.1. Orthogonality

Sinceus is the orthogonal projection of onto 4% with the scalar product
of Hj(£2), we deduce thaf, V(u—us) - Vo = 0 for allv € 4%. Therefore
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Uy — U € 5.1% is perpendicular ta — uy, andu —u; = (u—wug)+ (uz —uq)
satisfies the orthogonality (Pythagoras) relation
B IV —u)lh = IV(u—u2)lg+ [V (uz — w1

We conclude that to prove the saturation assumption (1.1), it suffices to
establish alower bound gV (us — u1)||, interms of|| V(v — )|/ ,. This

is possible at the expense of an additional term involving the oscillation of
f,and is shown below. But before we prove an elementary upper bound of
|V (u — u1)|, in terms of residual estimators.

3.2. Upper a posteriori bound

We intend to express the usual upper a posteriori bound with the interior
residual accumulated by stars instead of by elements. The following estimate
is well-known [1, Ch. 2]

IV (= un)lify < Ca( Y IR0+ D InfI)-

Se6 Te%

Here, & denotes the set of all interior sides. We recall thatlenotes an
interior star andf; indicates the mean value ¢fin w;. Since any element
of T belongs at most to 3 starsIR¥, we can replace the interior residual by

S nfl < e IRSI2, < (DD IfI, + DI = £I2,)-
TeX % A 7
The above two estimates together give rise to the modified upper bound

(32) [[V(u—wu)llf <
Co ST IRRIIG + ST IRfIZ, + S Ih(f = FI2,).
Se6 7 %

We conclude thatto prove (1.1) we need to bound the jump and interior resid-
uals, the first two terms on the right hand side of (3.2)}|BY{us — u1)]| (.

3.3. Local estimate of jump residuals

For any sideS let wg be the union of the elements that meetSa&nd let

s € il% be the canonical functions with degree of freedom at the midpoint
of S. Using Simpson’s rule, integration by parts, and the equationf¢in

this order), we obtain for any interior side

2
Shsls = / Jsos = — | V- Vs
S ws

(3.3)
_ /w (Vw2 —w) - Vs — fids + (fi — Nos);
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here it is crucial that/s is constant. Consequently, squaring and recalling
that

(3.4) Vsl <C, 9sllugs il < Chi,

as well ashs|| Js||% = \|h1/2J||§, we end up with the local estimate

35) 117275 < G5 (9 (w2 = w2, + IRLIZ, + I0(F = £, )-

3.4. Local estimate of interior residuals

This is the key estimate which relatgs f;|,, with ||V (uz2 — u1)]|,, . The

proof entails deriving a sharp relation for the jump residuals in terms of
piecewise linear and piecewise quadratic functions. To this end, itis essential
to work on stars because on these sets there is a natural relation between
interior and jump residuals for piecewise linear finite elements. A similar
idea was used in [8] to remove the saturation assumption.

Let z; be an interior nodep; € ull be the corresponding nodal basis
function andw; be its star. Denote b, the set of interior sides§' in w;.
Sinceg; is piecewise linear, the trapezoidal rule combined with the equation
for u; implies

% Z hsJs = Z /Js¢i=/ Vuy - Vo
(3.6) Se6; se6; 7 e
1
=— y foi = _gfi|wi| + /a)i(fi = )i

We now repeat this calculation for quadratics, namgdye 2. Adding
(3.3) for all sidesS in &;, we obtain

s Y hsss=-5 Y [ o

Seq; Se6; ws

£33 [ (Ve —w)-Vos+(fi= Pos).

SES; ws

Since

> [ os=5 3 tosl =l

SE@Z‘ SEG»;
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we readily deduce

2 2
(37) 3 D hsls=—3filwi
Seq;

-2 (V(u1 —u2) - Vos + (f - fz‘)<f>s>.

Ses; ws

Examining (3.6) and (3.7) reveals the main idea of the proof: the jump
residual can be eliminated, thereby giving an expression for the interior
residual in terms oV (u2 — u1) and data oscillation. In fact, we get

flod =3 3 [ (Vs —w) Vs

Se6; ws

H(fi— Dos) +6 [ (= £y

Wi

Since eaclug is only counted twice in the above sum, in light of (3.4) we
obtain the crucial local upper bound

(38) [hfill, < Clfllil < G5 (IV (2 — un)l, + I5(F = F)l,)-

Proof of Theorem 1.1WWe now collect the above estimates. We first note that
combining (3.5) with (3.8) yields the local estimate

2
SR+ Infil?, < € (19 (a2 = w)I2, + IRCF = £)I2,).
SeG;

Inserting this bound into (3.2), and using the finite overlapping property of
stars, gives

19— )l < Co IV (uz — )3 + ose(f, T2).

In view of (3.1) and the small oscillation assumptionc(f,¥) <
p||V(u — 1)l , we thus end up with

IV (u—uz)l[g < (1= Cg ) IV (u —ur) | + osc(f, T)°
<1 =G+ 1) V(=)

The asserted estimate (1.1) follows from choogifg= (2Cs) ! anda? =

1 — 12. Note that both: anda are quantities which solely depend on shape
regularity of T; the argument carries over even for highly refined meshes
though.
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Remark 3.1.It is worth stressing once more that the chief idea of the proof

is to work on stars, which are viewed as basic cells for piecewise linear
approximation. This gives rise to the link between interior and jump residual
of (3.6), which would not be possible otherwise.

Remark 3.2.Suppose that quadratics over a mg&ghwith mesh-sizéd are
replaced by linears over a uniformly refined mé&sh;, obtained froni

via two bisections. The number of degrees of freedom and their location is
the same for both spacéis; andu}{/z. The question thus arises whether or

not4?, could be replaced bgl}{/Q in the above construction and argument.

The example of Fig. 3, introduced in [7], shows that the answer is in general
negative.

/ﬂ\\
a N
%5 } N4
/ 1 AN
// \ \\
Ty 1 TH/Q: é _____ /N
N ‘ 7/
AN /
AN 2 | /3
N ‘ 7/
A
N/

Fig. 3. Example withf = 1 andug = up/».

Let Ty andTy/, be the uniform meshes depicted in Fig. 3dete Ul
be the canonical basis function ov&y;, and letf = 1. Itis easy to see that

ug = UH/2 = ¢1/12,

whence

IV(u—um)llg = [IV(u—unp)l,

which violates (1.1). We may thus wonder what goes wrong in the above
argument which seems to extend to this situation as well. What happens
is that in trying to eliminate the jump residuals from (3.6) and (3.7), the
interior residuals also cancel out, thereby providing no useful information.
Quadratics do indeed encode finer information than refined linears

Remark 3.3.Suppose that ;;/,, obtained fronft; by two bisections, is
replaced by aed refinement‘s}{ﬂ of all triangles around:; [9, Ch. 4]

(see left picture in Fig. 4). Then the inequality (1.1) can be established for
up = uyg andug = u’H/2 with the given technique. The same happens

for three consecutive bisectiofi%,/2 of Ty because the basis functions of
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Fig. 4. Meshes produced by red refinemen@of and three bisections &f .

T}m are contained in the resulting (and richer) finite element spaﬁgpzf

(see right picture in Fig. 4).

Remark 3.4.1t is perhaps useful in the context of a posteriori error estima-
tion, to express data oscillation fineness (1.5) in a computable fashion, that is
without referring to the unknown functian We thus propose the following
computable alternative to (1.5):

(3.9) osc(f,T) < ju[|h!/2 T -
To see that this implies (1.5), we resort to the lower bound for the error
1h2 1l < Ci [V (u = )|l + Ca0se( f, ),
which simply arises from dropping the interior residual in the usual lower
bound [9]. Hence
pC
= IVu—uw)llg = plIV(u—wu)lp,
(1— iCs) ! ?
for a suitably small value g, still solely depending on mesh geometry.

osc(f,%) <

Remark 3.5.To extend the proof of the main result to dimensibr» 2, a

few minor modifications are necessary: we must check how (3.6) and (3.7)
change. Letv; be the star corresponding to an interior nadeT” € ¥ a
d-simplex contained iw;, andS be a (closed) side df containing the node

x;. Instead of (3.6), we now have

1 1
@10 37 ISls =~y + | i e

On the other hand, to deal with quadratics we first recall the quadrature rule
overT which uses the + 1 verticesv; of 7" and thed(d + 1) /2 midpoints
of edges; of T" as quadrature points:

d+1 d(d+1)/2

o= s (Le-dsw+ X o)

i=1 =1
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This formula is exact for quadratics. Let be the quadratic function which
is 1 at thel — 1 midpoints of (closed) edges Sfcontainingz;, and vanishes
at the vertices of" as well as the remaining midpoints of edges/ofWe
note thatps vanishes odw; and thusps € 2. The quadrature rule gives
rise to the following substitute for (3.7)

A(d — 1) . 8(d-1) .
d(d+1) S%sus— (d+ 1)(d+2)f’| il

(3.11) + Z / V UQ — u1 -Vogs + (f f)(bg)

Se6;

Since we can still eliminate the jump residual between (3.10) and (3.11) and
obtain a representation formula for the interior residual, fodal 2, then
the proof continues as above.

Remark 3.6.Let U% denote the space of piecewise quadratic polynomials
u% enriched with cubic bubble§r}rex; recall thatby = A\ A2As is the
product of the three barycentric coordinate§of <. Letv, € U% be the
finite element solution.

The presence of the additional bubble degree of freedom per element
simplifies the above argument to a large extend. First, we observe that we
have

(3.12) f / frbr = / V(vy —u1) - Vbr +/(fT — )br,
because, Vu, - Vor = — [, Auiby = 0. This implies, instead of (3.8),

@13 Ihfrl < (19— u)l + IR - f1)I3).

On the other hand, ibg = T U T5, then (3.3) becomes

2
ghst = [ V(vg—u1)-Ves — ; /T (fT,-¢S - (fr, — f)¢s)-

ws

(3.14)

SlncefT fros =
(3.14) in terms oiV(vQ — ul) plus data oscnlatlon. Consequently, instead
of (3.5), we obtain

2
(3.15)  [1275 < (190 — un)l, + S IR0 — ).
=1
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If osca(f,T) is now defined as in (2.2), then combining (3.13) with (3.15)
we deduce the fundamental estimate

19 (= )y < Ci(IV (02 = w) Iy + osea(f, %)?),

and the argument proceeds as in the proof of Theorem 1.1. We have thus
derived the following more local version of Theorem tiere existg: < 1
such that

osca(f, %) S p|[V(u—w)llg =
IV(u—=w2)lo < (1= )|V (u—u)l|g-

4. Asymptotics

We finally consider the generic situation in which baetland a sequence
of meshest satisfy thenon-degeneracproperty:there exists a constant
A > 0 independent of such that

(4.1) IV (u~ug)lg > Ahs,

whereu1T is the Ritz projection onté)llT andh« is the largest mesh-size of
T. This is guaranteed, for instance| ##?u(x)| > C > 0 for all = in a fixed
regionw of {2, where the local mesh-size is of ordey, namelyhr > Chx;
in particular, thisis valid providett f () > C' > Oforall z € w. Therefore,
(4.1) is not a very restrictive condition in practice.

We first show that, as asserted in the introduction, the saturation as-
sumption (1.1) is valid a&s | 0 providedu € W;(§2) with s — 2 >
dmax(1/p —1/2,0). Since

t:=min (s — 1 —dmax(1/p—1/2,0), 2) > 1,

standard approximation theory in Sobolev spaces [4, Theorem 16.2], to-
gether with (4.1), yields

IV (u = u2) || 1y(2) < CIR*Dull g, 2) < Chig
< ORIV (u = u)l| Ly ()
We next prove the asymptotic validity of (1.5). To this end, we use a
simple density argument fof € Ly(£2). Givene > 0, let ¢ be a smooth

approximation off satisfying||f — ¢|,, < e. Since the mean valug
satisfies| fil|,, < ||, for all interior starsu;, we have

I = filly, < IF = @l + ¢ = dill, + (& = Fill,
<2f = o, + ChillVel,,
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whence, making use of the finite overlapping property of stars,

(4.2)  osc(f, D)2 <hED |f — fill2, < Chi(e + hg) = o(h3).

Combining (4.1) with (4.2), we deduce that (1.5) is valid forfalk Lo (£2)
provided the mesh-siZe; < h, is sufficiently small. The size of the thresh-
old h. depends on bothandf. Thisimplies the saturation assumption (1.1).

For f € Lo(£2), however, the ratio(hz) /hs may tend to zero extremely
slowly for the validity of (1.4) in practice. If € H5(2) with0 < s < 1,
thenosc(f, %) < Chlgs and the asymptotic regime could be reached with
practical meshes. Note that< 1/2 allows for discontinuous right-hand
sidesf.
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