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Summary. The saturation assumption asserts that the best approximation
error inH1

0 with piecewise quadratic finite elements is strictly smaller than
that of piecewise linear finite elements. We establish a link between this as-
sumption and the oscillation off = −∆u, and prove that small oscillation
relative to the best error with piecewise linears implies the saturation as-
sumption. We also show that this condition is necessary, and asymptotically
valid providedf ∈ L2.
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1. Introduction

Thesaturation assumptionis widely used in a posteriori error analysis of
finite element methods [1, Ch. 5], [2], [3]. It asserts, in its simplest form,
that the best approximation error‖∇(u− u2)‖Ω of a functionu ∈ H1

0 (Ω)
with quadratic finite elements is strictly smaller than that with linear finite
elements‖∇(u− u1)‖Ω, namely,

‖∇(u− u2)‖Ω ≤ α ‖∇(u− u1)‖Ω(1.1)

for a suitable constantα ∈ (0, 1). Throughout this paperweassume thatΩ is
a bounded polyhedral domain inRd, which coincides with its finite element
decomposition; we also use the notation‖v‖2

ω :=
∫
ω |v|2 for ω ⊂ Ω. If

T denotes agradedshape-regular partition ofΩ of sizehT, andU1
T,U
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stand for the finite element subspaces ofH1
0 (Ω) consisting of piecewise

linear and piecewise quadratic functions, respectively, thenu1, u2 are the
Ritz projections ofu onto such spaces, that is

uk ∈ Uk
T :

∫
Ω

∇(u− uk) · ∇φ = 0, ∀φ ∈ Uk
T.(1.2)

The assumption (1.1) becomes true, ashT → 0, for functionsu ∈ W s
p (Ω)

with s−2 > dmax(1/p−1/2, 0) in dimensiond as a consequence of stan-
dard interpolation theory, provided a non-degeneracy condition holds (see
Sect. 4). However, sinceW s

p (Ω) ⊂ H2+ε(Ω) with ε > 0, such a regularity
is never present for elliptic problems with singularities for which adaptive
mesh refinement is required. Even though it is generally believed to be valid
asymptotically, (1.1) is not known to hold under any reasonable assumptions
on the underlying functionu which still allow for singularities. IfU2

T is en-
riched with cubic bubbles, andf = −∆u is piecewise constant overT, then
(1.1) is shown in [3] as a by-product of the equivalence between residual
and hierarchical error estimators. However, the proof of [3] is indirect and
does not shed light either on the size ofα nor on existence ofα under more
realistic conditions onf . Moreover, a simple counting argument reveals that
(1.1) cannot be valid in general on any refinement level [3, Proposition 2.2],
but does not explain what makes (1.1) fail.

In this paper we discuss the validity of (1.1) and disclose a close relation
with data oscillation. Since (1.1) is about approximability in theH1

0 (Ω)-
norm, it is natural to considerf = −∆u as datum in this discussion. We
further assume

f ∈ L2(Ω).(1.3)

For each interior nodexi of T, we have a canonical basis functionφi ∈ U1
T

and corresponding starωi := supp(φi). We denote byfi := |ωi|−1 ∫
ωi
f

the mean value off in ωi, and definedata oscillationto be the quantity

osc(f,T) :=
( ∑

i

‖h(f − fi)‖2
ωi

)1/2
.(1.4)

We prove in Sect. 3 the following sufficient condition for the validity of
(1.1):

Theorem 1.1. There exists a constant0 < µ < 1 solely depending on
shape regularity ofT, but independent ofu andf , such that if

osc(f,T) ≤ µ ‖∇(u− u1)‖Ω(1.5)

holds, then(1.1) is valid withα := (1 − µ2)1/2.
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For simplicity, we prove Theorem 1.1 in two dimensions, but comment
in Remark 3.5 about the minor modifications for higher dimensions. We
note that (1.5) is asymptotically valid ashT ↓ 0, and we explore this matter
in detail in Sect. 4. Alternatively, (1.5) can be replaced by themore practical
condition (3.9)which does not involveudirectly (seeRemark 3.4). InSect. 2
weexhibit anelementaryexampleshowing that (1.5) is anecessary condition
for (1.1). This also demonstrates that (1.1) may not in general be valid in the
preasymptotic regime, when the oscillations off are not yet well resolved
byT.

2. Counterexamples

The purpose of this section is twofold.We give an explicit example violating
(1.1) and the same time argue about its connection with data oscillation. Let
the domain be the squareΩ = (0, 1)2, the partitionT have one interior node,
and the forcing functionf bepiecewise constant(see Fig. 1). By symmetry,
it easily follows that∫

Ω
fφ = 0 ∀φ ∈ U1

T,U
2
T =⇒ u1 = u2 = 0,(2.1)

which violates (1.1). We realize that the oscillations off at the star level,
in the sense of (1.4), are responsible for this outcome. Since the counterex-
ample is rather elementary, we conclude that we could not expect in general
the saturation assumption to be valid in thepreasymptotic regime, that is
whenever data oscillation has not yet been resolved by the meshT. But we
might still expect that onceT becomes fine enough to detect the structure
of f , then (1.1) should hold.

-1

 1

-1

 1 T :f :

Fig. 1. Functionf and meshT of counterexample 1

In Sect. 3 we establish this conjecture upon quantifying the size of data
oscillation. In Sect. 4 we prove that (1.1) is always valid in theasymptotic
regimeprovidedf ∈ L2(Ω) andu satisfies a non-degeneracy condition.
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The notion of data oscillation (1.4) is not completely local since the stars
ωi overlap slightly. The counterexample of Fig. 1 shows that it isimpossible
to reduce this notion to the element level since the element oscillationf−fT
of f is zero; herefT := |T |−1 ∫

T f stands for the mean value off in the
elementT ∈ T. One may wonder whether enriching the spaceU2

T with
cubic bubbles, as in [3], and redefining

osc2(f,T) :=
( ∑

T∈T

‖h(f − fT )‖2
T

)1/2
,(2.2)

might lead to a statement similar to Theorem 1.1. To explore this idea con-
sider the counterexample of Fig. 2 with enriched spaceV2

T, for which (2.1)
still holds due to the symmetry off . We realize again the link between size
of (2.2) and (1.1), which is further investigated in Remark 3.6.

-1 1

-1

 1

-1  1

-1

 1
T :f :

Fig. 2. Functionf and meshT of counterexample 2

3. Validity of the saturation assumption

In this section we prove themain result of this paper, namely thatsmall data
oscillation implies the saturation assumption. For simplicity, the result is
derived in two space dimensions but it is valid in any dimension.

Even though the saturation assumption is a basic issue in approximation
theory, the technique used here comes from a posteriori error analysis. In
fact, it consists of exploitingorthogonality to relate theerrors‖∇(u− u2)‖Ω
and‖∇(u− u1)‖Ω via ‖∇(u2 − u1)‖Ω, and then showing a lower bound
for ‖∇(u2 − u1)‖Ω in termsof‖∇(u− u1)‖Ω. This entails deriving precise
expressions for interior and jump residuals onstars. We split the argument
into several steps.

3.1. Orthogonality

Sinceu2 is the orthogonal projection ofu ontoU2
T with the scalar product

ofH1
0 (Ω), we deduce that

∫
Ω ∇(u−u2) ·∇v = 0 for all v ∈ U2

T. Therefore
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u2 −u1 ∈ U2
T is perpendicular tou−u2, andu−u1 = (u−u2)+(u2 −u1)

satisfies the orthogonality (Pythagoras) relation

‖∇(u− u1)‖2
Ω = ‖∇(u− u2)‖2

Ω + ‖∇(u2 − u1)‖2
Ω.(3.1)

We conclude that to prove the saturation assumption (1.1), it suffices to
establish a lower bound of‖∇(u2 − u1)‖Ω in terms of‖∇(u− u1)‖Ω. This
is possible at the expense of an additional term involving the oscillation of
f , and is shown below. But before we prove an elementary upper bound of
‖∇(u− u1)‖Ω in terms of residual estimators.

3.2. Upper a posteriori bound

We intend to express the usual upper a posteriori bound with the interior
residual accumulatedby stars insteadof by elements. The followingestimate
is well-known [1, Ch. 2]

‖∇(u− u1)‖2
Ω ≤ C1

( ∑
S∈S

‖h1/2J‖2
S +

∑
T∈T

‖hf‖2
T

)
.

Here,S denotes the set of all interior sides. We recall thatωi denotes an
interior star andfi indicates the mean value off in ωi. Since any element
of T belongs at most to 3 stars inR2, we can replace the interior residual by∑

T∈T

‖hf‖2
T ≤ C

∑
i

‖hf‖2
ωi

≤ C
( ∑

i

‖hfi‖2
ωi

+
∑

i

‖h(f − fi)‖2
ωi

)
.

The above two estimates together give rise to the modified upper bound

‖∇(u− u1)‖2
Ω ≤(3.2)

C2

( ∑
S∈S

‖h1/2J‖2
S +

∑
i

‖hfi‖2
ωi

+
∑

i

‖h(f − fi)‖2
ωi

)
.

Weconclude that to prove (1.1)weneed to bound the jumpand interior resid-
uals, the first two terms on the right hand side of (3.2), by‖∇(u2 − u1)‖Ω.

3.3. Local estimate of jump residuals

For any sideS let ωS be the union of the elements that meet atS and let
φS ∈ U2

T be the canonical functions with degree of freedom at the midpoint
of S. Using Simpson’s rule, integration by parts, and the equation foru2 (in
this order), we obtain for any interior sideS

2
3
hSJS =

∫
S
JSφS = −

∫
ωS

∇u1 · ∇φS

=
∫

ωS

(
∇(u2 − u1) · ∇φS − fiφS + (fi − f)φS

)
;

(3.3)
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here it is crucial thatJS is constant. Consequently, squaring and recalling
that

‖∇φS‖ωS
≤ C, ‖φS‖ωS

, ‖φi‖ωi
≤ Chi,(3.4)

as well ashS‖JS‖2
S = ‖h1/2J‖2

S , we end up with the local estimate

‖h1/2J‖2
S ≤ C3

(
‖∇(u2 − u1)‖2

ωS
+ ‖hfi‖2

ωS
+ ‖h(f − fi)‖2

ωS

)
.(3.5)

3.4. Local estimate of interior residuals

This is the key estimate which relates‖hfi‖ωi
with ‖∇(u2 − u1)‖ωi

. The
proof entails deriving a sharp relation for the jump residuals in terms of
piecewise linear andpiecewise quadratic functions. To this end, it is essential
to work on stars because on these sets there is a natural relation between
interior and jump residuals for piecewise linear finite elements. A similar
idea was used in [8] to remove the saturation assumption.

Let xi be an interior node,φi ∈ U1
T be the corresponding nodal basis

function andωi be its star. Denote bySi the set of interior sidesS in ωi.
Sinceφi is piecewise linear, the trapezoidal rule combinedwith the equation
for u1 implies

1
2

∑
S∈Si

hSJS =
∑

S∈Si

∫
S
JSφi = −

∫
ωi

∇u1 · ∇φi

= −
∫

ωi

fφi = −1
3
fi|ωi| +

∫
ωi

(fi − f)φi.

(3.6)

We now repeat this calculation for quadratics, namelyφS ∈ U2
T. Adding

(3.3) for all sidesS in Si, we obtain

2
3

∑
S∈Si

hSJS = −fi
∑

S∈Si

∫
ωS

φS

+
∑

S∈Si

∫
ωS

(
∇(u2 − u1) · ∇φS + (fi − f)φS

)
.

Since

∑
S∈Si

∫
ωS

φS =
1
3

∑
S∈Si

|ωS | =
2
3
|ωi|



Small data oscillation implies the saturation assumption 7

we readily deduce

2
3

∑
S∈Si

hSJS = −2
3
fi|ωi|(3.7)

−
∑

S∈Si

∫
ωS

(
∇(u1 − u2) · ∇φS + (f − fi)φS

)
.

Examining (3.6) and (3.7) reveals the main idea of the proof: the jump
residual can be eliminated, thereby giving an expression for the interior
residual in terms of∇(u2 − u1) and data oscillation. In fact, we get

fi|ωi| =
9
2

∑
S∈Si

∫
ωS

(
∇(u2 − u1) · ∇φS

+(fi − f)φS

)
+ 6

∫
ωi

(f − fi)φi.

Since eachωS is only counted twice in the above sum, in light of (3.4) we
obtain the crucial local upper bound

‖hfi‖ωi
≤ C|fi||ωi| ≤ C5

(
‖∇(u2 − u1)‖ωi

+ ‖h(f − fi)‖ωi

)
.(3.8)

Proof of Theorem 1.1We now collect the above estimates.We first note that
combining (3.5) with (3.8) yields the local estimate

∑
S∈Si

‖h1/2J‖2
S + ‖hfi‖2

ωi
≤ C

(
‖∇(u2 − u1)‖2

ωi
+ ‖h(f − fi)‖2

ωi

)
.

Inserting this bound into (3.2), and using the finite overlapping property of
stars, gives

‖∇(u− u1)‖2
Ω ≤ C6

(
‖∇(u2 − u1)‖2

Ω + osc(f,T)2
)
.

In view of (3.1) and the small oscillation assumptionosc(f,T) ≤
µ‖∇(u− u1)‖Ω, we thus end up with

‖∇(u− u2)‖2
Ω ≤ (1 − C−1

6 ) ‖∇(u− u1)‖2
Ω + osc(f,T)2

≤ (1 − C−1
6 + µ2) ‖∇(u− u1)‖2

Ω.

The asserted estimate (1.1) follows from choosingµ2 = (2C6)−1 andα2 =
1 −µ2. Note that bothµ andα are quantities which solely depend on shape
regularity ofT; the argument carries over even for highly refined meshes
though.
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Remark 3.1.It is worth stressing once more that the chief idea of the proof
is to work on stars, which are viewed as basic cells for piecewise linear
approximation. This gives rise to the link between interior and jump residual
of (3.6), which would not be possible otherwise.

Remark 3.2.Suppose that quadratics over ameshTH withmesh-sizeH are
replaced by linears over a uniformly refined meshTH/2 obtained fromTH

via two bisections. The number of degrees of freedom and their location is
the same for both spacesU2

H andU1
H/2. The question thus arises whether or

notU2
H could be replaced byU1

H/2 in the above construction and argument.
The example of Fig. 3, introduced in [7], shows that the answer is in general
negative.

1

1

2 3

45

TH : TH/2 :

Fig. 3. Example withf = 1 anduH = uH/2.

LetTH andTH/2 be the uniformmeshes depicted in Fig. 3, letφ1 ∈ U1
H

be the canonical basis function overTH , and letf = 1. It is easy to see that

uH = uH/2 = φ1/12,

whence

‖∇(u− uH)‖Ω = ‖∇(u− uH/2)‖Ω

which violates (1.1). We may thus wonder what goes wrong in the above
argument which seems to extend to this situation as well. What happens
is that in trying to eliminate the jump residuals from (3.6) and (3.7), the
interior residuals also cancel out, thereby providing no useful information.
Quadratics do indeed encode finer information than refined linears.

Remark 3.3.Suppose thatTH/2, obtained fromTH by two bisections, is
replaced by ared refinementT′

H/2 of all triangles aroundx1 [9, Ch. 4]
(see left picture in Fig. 4). Then the inequality (1.1) can be established for
u1 = uH andu2 = u′

H/2 with the given technique. The same happens
for three consecutive bisectionsT′′

H/2 of TH because the basis functions of
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T′
H/2 : T′′

H/2 :

Fig. 4. Meshes produced by red refinement ofTH and three bisections ofTH .

T′
H/2 are contained in the resulting (and richer) finite element space ofT′′

H/2
(see right picture in Fig. 4).
Remark 3.4.It is perhaps useful in the context of a posteriori error estima-
tion, to express data oscillation fineness (1.5) in a computable fashion, that is
without referring to the unknown functionu. We thus propose the following
computable alternative to (1.5):

osc(f,T) ≤ µ̂ ‖h1/2J‖Ω.(3.9)

To see that this implies (1.5), we resort to the lower bound for the error

‖h1/2J‖Ω ≤ Ĉ1 ‖∇(u− u1)‖Ω + Ĉ2 osc(f,T),

which simply arises from dropping the interior residual in the usual lower
bound [9]. Hence

osc(f,T) ≤ µ̂Ĉ1

(1 − µ̂Ĉ2)
‖∇(u− u1)‖Ω = µ ‖∇(u− u1)‖Ω,

for a suitably small value of̂µ, still solely depending on mesh geometry.

Remark 3.5.To extend the proof of the main result to dimensiond > 2, a
few minor modifications are necessary: we must check how (3.6) and (3.7)
change. Letωi be the star corresponding to an interior nodexi, T ∈ T a
d-simplex contained inωi, andS be a (closed) side ofT containing the node
xi. Instead of (3.6), we now have

1
d

∑
S∈Si

|S|JS = − 1
d+ 1

fi|ωi| +
∫

ωi

(fi − f)φi.(3.10)

On the other hand, to deal with quadratics we first recall the quadrature rule
overT which uses thed+ 1 verticesvi of T and thed(d+ 1)/2 midpoints
of edgesei of T as quadrature points:

∫
T
φ ≈ |T |

(d+ 1)(d+ 2)

( d+1∑
i=1

(2 − d)φ(vi) +
d(d+1)/2∑

i=1

4φ(ei)
)
.
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This formula is exact for quadratics. LetφS be the quadratic function which
is 1 at thed−1midpoints of (closed) edges ofS containingxi, and vanishes
at the vertices ofT as well as the remaining midpoints of edges ofT . We
note thatφS vanishes on∂ωi and thusφS ∈ U2

T. The quadrature rule gives
rise to the following substitute for (3.7)

4(d− 1)
d(d+ 1)

∑
S∈Si

|S|JS = − 8(d− 1)
(d+ 1)(d+ 2)

fi|ωi|

+
∑

S∈Si

∫
ωS

(
∇(u2 − u1) · ∇φS + (fi − f)φS

)
.(3.11)

Since we can still eliminate the jump residual between (3.10) and (3.11) and
obtain a representation formula for the interior residual, for alld > 2, then
the proof continues as above.

Remark 3.6.Let V2
T denote the space of piecewise quadratic polynomials

U2
T enriched with cubic bubbles{bT }T∈T; recall thatbT = λ1λ2λ3 is the

product of the three barycentric coordinates ofT ∈ T. Let v2 ∈ V2
T be the

finite element solution.
The presence of the additional bubble degree of freedom per element

simplifies the above argument to a large extend. First, we observe that we
have

fT
|T |
5!

=
∫

T
fT bT =

∫
T

∇(v2 − u1) · ∇bT +
∫

T
(fT − f)bT ,(3.12)

because
∫
T ∇u1 · ∇bT = − ∫

T ∆u1bT = 0. This implies, instead of (3.8),

‖hfT ‖2
T ≤ C ′

5

(
‖∇(v2 − u1)‖2

T + ‖h(f − fT )‖2
T

)
.(3.13)

On the other hand, ifωS = T1 ∪ T2, then (3.3) becomes

2
3
hSJS =

∫
ωS

∇(v2 − u1) · ∇φS −
2∑

i=1

∫
Ti

(
fTiφS − (fTi − f)φS

)
.

(3.14)

Since
∫
Ti
fTiφS = fTi

|Ti|
3 , we can use (3.12) to replace the middle term in

(3.14) in terms of∇(v2 − u1) plus data oscillation. Consequently, instead
of (3.5), we obtain

‖h1/2J‖2
S ≤ C ′

3

(
‖∇(v2 − u1)‖2

ωS
+

2∑
i=1

‖h(f − fTi)‖2
Ti

)
.(3.15)
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If osc2(f,T) is now defined as in (2.2), then combining (3.13) with (3.15)
we deduce the fundamental estimate

‖∇(u− u1)‖2
Ω ≤ C ′

6

(
‖∇(v2 − u1)‖2

Ω + osc2(f,T)2
)
,

and the argument proceeds as in the proof of Theorem 1.1. We have thus
derived the following more local version of Theorem 1.1:there existsµ < 1
such that

osc2(f,T) ≤ µ ‖∇(u− u1)‖Ω ⇒
‖∇(u− v2)‖Ω ≤ (1 − µ2)1/2 ‖∇(u− u1)‖Ω.

4. Asymptotics

We finally consider the generic situation in which bothu and a sequence
of meshesT satisfy thenon-degeneracyproperty:there exists a constant
A > 0 independent ofT such that

‖∇(u− u1
T)‖Ω ≥ AhT,(4.1)

whereu1
T is the Ritz projection ontoU1

T andhT is the largest mesh-size of
T. This is guaranteed, for instance, if|D2u(x)| ≥ C > 0 for all x in a fixed
regionω ofΩ, where the local mesh-size is of orderhT, namelyhT ≥ ChT;
in particular, this is valid provided±f(x) ≥ C > 0 for allx ∈ ω. Therefore,
(4.1) is not a very restrictive condition in practice.

We first show that, as asserted in the introduction, the saturation as-
sumption (1.1) is valid ashT ↓ 0 providedu ∈ W s

p (Ω) with s − 2 >
dmax(1/p− 1/2, 0). Since

t := min
(
s− 1 − dmax(1/p− 1/2, 0), 2

)
> 1,

standard approximation theory in Sobolev spaces [4, Theorem 16.2], to-
gether with (4.1), yields

‖∇(u− u2)‖L2(Ω) ≤ C‖htDsu‖Lp(Ω) ≤ Cht
T

≤ Cht−1
T ‖∇(u− u1)‖L2(Ω).

We next prove the asymptotic validity of (1.5). To this end, we use a
simple density argument forf ∈ L2(Ω). Givenε > 0, let φ be a smooth
approximation off satisfying‖f − φ‖Ω ≤ ε. Since the mean valuefi
satisfies‖fi‖ωi

≤ ‖f‖ωi
for all interior starsωi, we have

‖f − fi‖ωi
≤ ‖f − φ‖ωi

+ ‖φ− φi‖ωi
+ ‖(φ− f)i‖ωi

≤ 2‖f − φ‖ωi
+ Chi‖∇φ‖ωi

,



12 W. Dörfler, R.H. Nochetto

whence, making use of the finite overlapping property of stars,

osc(f,T)2 ≤ h2
T

∑
i

‖f − fi‖2
ωi

≤ Ch2
T(ε+ hT) = o(h2

T).(4.2)

Combining (4.1) with (4.2), we deduce that (1.5) is valid for allf ∈ L2(Ω)
provided themesh-sizehT ≤ h∗ is sufficiently small. The size of the thresh-
oldh∗ dependsonbothuandf . This implies the saturationassumption (1.1).

Forf ∈ L2(Ω), however, the ratioo(hT)/hTmay tend to zero extremely
slowly for the validity of (1.4) in practice. Iff ∈ Hs(Ω) with 0 < s ≤ 1,
thenosc(f,T) ≤ Ch1+s

T and the asymptotic regime could be reached with
practical meshes. Note thats < 1/2 allows for discontinuous right-hand
sidesf .
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