
Digital Object Identifier (DOI) 10.1007/s002110100319
Numer. Math. (2002) 92: 467–499 Numerische

Mathematik

Localization of the Aronszajn-Slobodeckij norm and
application to adaptive boundary element methods

Part II. The three-dimensional case

Birgit Faermann

Mathematisches Seminar II, Universität Kiel, 24098 Kiel, Germany;
e-mail: bf@numerik.uni-kiel.de

Received March 20, 2000 / Published online November 15, 2001 –c© Springer-Verlag 2001

Summary. In this paper we introduce new local a-posteriori error indica-
tors for the Galerkin discretization of three-dimensional boundary integral
equations. These error indicators are efficient and reliable for a wide class
of integral operators, in particular for operators of negative order. They are
based on local norms of the computable residual and can be used for con-
trolling the adaptive refinement. The proofs of efficiency and reliability are
based on the result that the Aronszajn-Slobodeckij norm‖ · ‖Hs(Γ ) (given
by a double integral for a non-integers ∈ R>0\N ) is localizable for certain
functions. Neither inverse estimates nor saturation properties are needed. In
this paper, we extend the two-dimensional results of a previous paper to the
three-dimensional case.
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1 Introduction

Many problems in physical and engineering sciences can be formulated as
boundary value problems for partial differential equations in a domainΩ ⊆
R
d , and many boundary value problems can be translated into boundary

integral equations defined on the surfaceΓ = ∂Ω (see for example [30],
[9] and [21, Sect. 8]).

Boundary integral equations are considered in the abstract form

Au = g on Γ(1.1)
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with a given right-hand sideg and with a bounded and bijective integral
operatorA of order 2α ∈ R . For A , we distinguish the following two
cases

A : Hα(Γ ) → H−α(Γ ) , α > 0 ,(1.2)

A : Hs+2α(Γ ) → Hs(Γ ) , s ≥ 0 , α ∈ R ,(1.3)

whereHt(Γ ) is the Sobolev space of ordert ∈ R .

For the Galerkin discretization of problem (1.1), we introduce a mesh
� on Γ and a finite dimensional Galerkin trial spaceG = G� consist-
ing of piecewise polynomials associated with the mesh� . There are three
possibilities to improve the corresponding Galerkin solutionuG ∈ G� . The
h-version improvesuG by refining the mesh and using piecewise polyno-
mials with a fixed degreep . The p-version fixes the mesh and improves
uG by increasing the polynomial degreep in the elements. Thehp-version
combines bothh-refinement andp-refinement. Adaptive strategies are re-
quired, if the discretization errore := uG − u is not uniformly distributed
over the mesh� . In this case, we want to refine (in the sense ofh- or
p-refinement) only the elements with large local error.

In general, adaptive refinement is controlled bylocal a posteriori error
indicators(or briefly (local) error indicators){εν}nν=1 , where{εν}nν=1 are
local quantities associated with then elements of� . Their definition is
based on the discrete solutionuG and they estimate

Ceff
n∑
ν=1

ε 2
ν ≤ |||uG − u|||2 ≤ Crel

n∑
ν=1

ε 2
ν(1.4)

with ||| · ||| = ‖ · ‖Hα(Γ ) in the case (1.2) and||| · ||| = ‖ · ‖Hs+2α(Γ ) in the
case (1.3). Local error indicators are calledreliable if they satisfy the upper
estimate in (1.4) with a constantCrel independent ofu , � and the local
polynomial degrees, and they are calledefficientif they satisfy the lower
estimate in (1.4) with a constantCeff independent ofu , � and the local
polynomial degrees.

In practice, local error indicators are used in the following way for con-
trolling the adaptive strategy:

Adaptive refinement process:

– Compute the discrete solutionuG ∈ G .
– Compute the error indicators{εν}nν=1 . If they are not exactly com-
putable, then compute approximationsε̃ν of εν .

– Stop the refinement if
∑n
ν=1 ε̃

2
ν is small enough.

Otherwise, mark all elements of� associated with largẽεν . Decide
for every marked element if it is anh-element orp-element. Refine



Adaptive boundary element methods 469

the markedh-elements geometrically and increase the local polynomial
degree in all markedp-elements. This generates a new Galerkin trial
spaceĜ associated with a new mesĥ� . Start this process again with
the enriched Galerkin spacêG .

For finite element methods (FEM), adaptive refinement controlled by
local error indicators has been the subject of many papers in recent years.
However, for boundary element methods (BEM), the nonlocal character of
the integral operator and the nonlocal Sobolev spaces cause difficulties in the
mathematical derivation of local error indicators. Hence, only a few authors
have investigated locala posteriorierror estimates of the form (1.4): heuris-
tically motivated error indicators and numerical results were presented in
[14] for hp-methods and in [3] forh-methods. Reliable local error indi-
cators were introduced for example in [26,27,33,34,31,7,4,5,23,8,29] for
the h-version and in [6] for thehp-version.

ForBEM, theproofofefficiency isproblematic: [4] showsefficiencyonly
for uniformmeshes, and [23] showefficiencyand reliability only for uniform
meshes and under the additional assumption of a saturation condition. For
the direct boundary element method, an efficient and reliable global error
estimatorε (with Ceffε2 ≤ |||uG −u|||2 ≤ Crelε2 ) is proposed in [29] and
the adaptive mesh refinement is controlled by reliable local error indicators
{εν}nν=1 which satify ε2 ≤ ∑n

ν=1 ε
2
ν . The other cited papers do not have

any efficiency results.
For Galerkin discretization with stable multiscale bases (e.g., wavelet

bases) we refer to [11]. There, an efficient and reliable error estimate similar
to (1.4) is developed but with considerably more thann error indicators.

Asymptotically exact error indicators, i.e.,∑n
ν=1 ε

2
ν

‖uG − u‖2
L2(Γ )

−→ 1 for h� → 0 ,

are presented in [13] for arbitrary meshes and for integral operators of the
second kindA = I − K : L2(Γ ) → L2(Γ ) with a compact operator
K : L2(Γ ) → L2(Γ ) .

For more general operators, we presented in [15–17] local error indi-
cators for the Galerkin discretization, which are reliable for shape regular
meshes (see Remark 3.7, suitable for adaptive refinement) and efficient for
arbitrary meshes. In the cited papers, the results were only formulated for
the h-version, but they also hold for thehp-version. The efficiency could be
shown only for integral operatorsA : Hα(Γ ) → H−α(Γ ) with α > −1

2
(i.e., in particular for the case (1.2)).

In [19], we presented two error indicators for the case (1.3) (which in-
cludes operatorsA : Hα(Γ ) → H−α(Γ ) of negative order2α < 0 ).
The first indicators are efficient for arbitrary meshes and reliable for shape
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regular meshes, and the second indicators are efficient for shape regular
meshes and reliable for arbitrary meshes. Both error indicators are based on
the computable residualr := AuG − g and can be used for controlling the
adaptive refinement as described above. The results in [19] were only shown
for the two-dimensional case, whereΓ = ∂Ω is a curve inR

2 . The aim
of this paper is to extend the results of [19] to the three-dimensional case.

We emphasize that inverse estimates or saturation properties are not
needed, either in this paper or in [15–17,19]. To our knowledge these are
the first approaches for integral operators of the first kind withn efficient
and reliable local error indicators{εν}nν=1 , which avoid inverse estimates
and saturation properties.

The proofs of efficiency respectively reliability in this paper and in
[19] are based on localization results for the Aronszajn-Slobodeckij norm
‖ · ‖Hs(Γ ) of non-integer orders . These localization results are not only
useful for adaptive boundary element methods, they also can be used to
show inverse estimates for non-uniform meshes (see [12]). Moreover, they
are interesting in their own right. Therefore, we present one of them in the
following.

In this paper, letΓ be the Lipschitz boundary of a bounded and simply
connected domainΩ ⊆ R

3 . For s ∈ (0, 1) and Γ ′ ⊆ Γ the Aronszajn-
Slobodeckij norm is given by

‖v‖2
Hs(Γ ′) = ‖v‖2

L2(Γ ′) + |v|2Hs(Γ ′)

with the semi-norm

|v|2Hs(Γ ′) :=
∫
Γ ′

∫
Γ ′

|v(ξ) − v(η)|2
|ξ − η|2+2s dξ dη .(1.5)

More details about the norm definition can be found after (3.1). We also
denote‖ · ‖Hs(Γ ′) as “double integral norm” because of (1.5).

On the surfaceΓ , we introduceamesh� asapartition ofΓ into closed
and possibly curved triangular elementsτ ∈ � , i.e., Γ ⊆ ∪{τ | τ ∈ �}
(details aregiven inSect. 2). Thesetof nodal pointsof themesh� is denoted
by N� . For a mesh pointq ∈ N� , we introduce the neighbourhood

ωq :=
⋃

{τ ∈ � | q ∈ τ} ⊆ Γ .(1.6)

For k ∈ N0 , the global norm‖ · ‖Hk(Γ ) is additive, i.e.,

‖v‖2
Hk(Γ ) =

∑
τ∈�

‖v‖2
Hk(τ) for any v ∈ Hk(Γ ) .(1.7)
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This property fails to hold for the double integral norm of non-integer order:
more precisely, fors ∈ (0, 1) and for v ∈ Hs(Γ ) , we have

‖v‖2
Hs(Γ ) =

∑
τ∈�

‖v‖2
Hk(τ) + |v|2Hs(Γ ) ,

where

|v|2Hs(Γ ) =
∑
τ∈�

∫
τ

∫
Γ

|v(ξ) − v(η)|2
|ξ − η|2+2σ dξ dη(1.8)

=
∑
τ∈�

|v|2Hs(τ) +
∑
τ∈�

∫
τ

∫
Γ\τ

|v(ξ) − v(η)|2
|ξ − η|2+2σ dξ dη

︸ ︷︷ ︸
=: p(v,�)

.

Unfortunately, it is not evenpossible toestimate theperturbing termp(v,�)
in (1.8) in terms of

∑
τ∈� ‖v‖2

Hs(τ) (see [18, Satz 3.1]).

Nevertheless, it is possible to localize the global norm‖r‖Hs(Γ ) (i.e., to
estimate‖r‖2

Hs(Γ ) by a sum of local norms) for certain functionsr ∈
Hs(Γ ) , if one replaces the partition� of Γ by the overlapping sets
{ωq}q∈N� with small overlap zones. In Sect. 3 and 4, we will show: for
s ∈ (0, 1) ∪ (1, 2) , there is a constantC such that the estimate

‖r‖2
Hs(Γ ) ≤ C

∑
q∈N�

|r|2Hs(ωq)(1.9)

holds for all shape regular meshes� and for any functionr ∈ Hs(Γ )
which is orthogonal to aminimal set of finite element functions. Theconstant
C in (1.9) depends only ons , on a lower boundκ for the angles of� and
on the smoothness of the finite element functions. In Sect. 5 we will apply
(1.9) to the Galerkin residualr := AuG − g ∈ Hs(Γ ) which is orthogonal
to the Galerkin trial spaceG .

An outline of this paper is as follows. In Sect. 2, we describe in detail the
surfaceΓ , its parametrizations and the mesh� . The localization of the
double integral norm (1.9) will be proven fors ∈ (0, 1) in Sect. 3 and for
s ∈ (1, 2) in Sect. 4. Based on the analysis in Sect. 3 and 4, we introduce in
Sect. 5 reliable and efficient error indicators for the Galerkin discretization
of problem (1.1) for the case (1.3).

2 The surfaceΓ and the finite element spaces

Throughout this paper we assume thatΓ is a Lipschitz boundary (i.e.,
Γ ∈ C0,1 ) and thatΓ is parameterized by the surface of a polyhedron
Γ̂ ⊆ R

3 via a bijective mapping
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γ : Γ̂ → Γ .

The closed and plane polygonal faces ofΓ̂ are denoted byP1, . . . , PM
(i.e., Γ̂ = ∪Mµ=1Pµ ). We assume thatγ and its inverseγ−1 are Lipschitz
continuous and that the restrictionsγ|Pµ are two times differentiable (i.e.,
γ|Pµ ∈ C2). Then, the smoothandclosedsurface componentsΓµ := γ(Pµ)
have pairwise disjoint interior and satisfyΓ = ∪Mµ=1Γµ . Without loss of
generality, each facePµ can be identified with a polygonal closed set in
R

2 . Then, the surface integral of a measurable functionv : Γ → R is
defined by

∫
Γ
v(ξ) dξ :=

M∑
µ=1

∫
Pµ

v(γ(x))
√
Gµ(x) dx ,

with the Gram determinantGµ := det(〈∂iγ, ∂jγ〉)2i,j=1 of the differen-
tiable functionγ|Pµ . We assume thatGµ is bounded, i.e., there are con-
stantsCG, CG > 0 with

CG ≤
√
Gµ(x) ≤ CG for all x ∈ Pµ , µ ∈ {1, . . . ,M} .(2.1)

Furthermore, letCΓ be a Lipschitz constant with the following property

|γ(x) − γ(y)|
|x − y| ≤ CΓ for all x, y ∈ Pµ

�=
, µ ∈ {1, . . . ,M} .(2.2)

For a closed and connected polygonal setD ⊆ R
2 we introduce an admis-

sible mesh�D which is a collection of closed trianglesT ⊆ D satisfying
the following properties:D = ∪{T |T ∈ �D} and the intersectionT ∩T ′
of each distinct pairT, T ′ ∈ �D is either empty or a common vertex or a
common edge of both elementsT and T ′ . The set of nodal points of the
mesh�D is denoted byN�D

. For a mesh pointp ∈ N�D
and for an

elementT ∈ �D , we introduce the neighbourhood (see Figure 2.1)

ωp :=
⋃{T ′ ∈ �D | p ∈ T ′} and

ωT :=
⋃{T ′ ∈ �D | T ′ ∩ T �= ∅}

(2.3)

and the distance
dT := dist(T,D \ ωT ) > 0(2.4)

For µ ∈ {1, . . . ,M} , let �µ be an admissible mesh onPµ consisting
of closed planar trianglesT ⊆ Pµ and letN�µ be the corresponding set
of mesh points. We assume that the meshes{�µ}Mµ=1 fit together in the
followingsense: for anynodal pointp of �µ whichsatisfiesp ∈ ∂Pµ∩∂Pl
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p

T

Fig. 2.1. ωp and ωT

(µ, l ∈ {1, . . . ,M} , µ �= l ), we have thatp is also a nodal point of�l .
This assumption implies that

� = {τ = γ(T ) | T ∈ �µ , µ ∈ {1, . . . ,M} }(2.5)

is an admissiblemesh (consisting of curvilinear triangles) on the surfaceΓ .
The mesh size of� is defined by

h� := max
τ∈�

diam(τ) .(2.6)

As in Sect. 1, letN� be the set of nodal points of the mesh� , and the
neighbourhoodωq ⊆ Γ of q ∈ N� is defined in (1.6). For an element
τ ∈ � , we introduce the neighbourhood

ωτ :=
⋃

{τ ′ ∈ � | τ ′ ∩ τ �= ∅} ⊆ Γ(2.7)

and the distance
dτ := dist(τ , Γ \ ωτ ) > 0(2.8)

(wheredτ is the distance inR3 ).

The following definitions introduce piecewise polynomials and special
finite element spacesHm

�D
(D) andHm

� (Γ ) for m ∈ {0, 1, 5, 6} on D ⊆
R

2 and on the surfaceΓ .

Definition 2.1 Let D ⊆ R
2 be a closed and connected polygonal set and

let �D be an admissible mesh onD .

a) The space of piecewise polynomials associated with�D is denoted by

P�D
(D) := {v : D → R | v|T is polynomial for allT ∈ �D}.

Since flexible local polynomial degrees are important forhp-methods, we
introduce on any elementT ∈ �D a local polynomial degreeδT ∈ N0

and define for the degree “vector”δ = (δT )T∈�D
∈ N

�D
0 the space

P
δ
�D

(D) := {v ∈ P�D
(D) | v|T has degree≤ δT for all T ∈ �D} .
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For m ∈ N0 , let P
m
�D

(D) := P
δ
�D

(D) , where δ = (δT )T∈�D
is the

constant degree vector withδT = m .

b) The characteristic function of an elementT ∈ �D is denoted by
ϕ

[0]
T : D → R .

c) For p ∈ N�D
, we introduceϕ[1]

p : D → R as the piecewise linear and

continuous hat function characterized byϕ[1]
p (p) = 1 andsupp(ϕ[1]

p ) = ωp.

Moreover, we introduceϕ[5]
p : D → R as the Argyris element (see [10,

Theorem 2.2.11]) characterized by the following conditions:ϕ
[5]
p (p) = 1 ,

ϕ
[5]
p (p′) vanishes in the other mesh pointsp′ ∈ N�D

\ {p} , its derivatives
of order k ∈ {1, 2} vanish in all mesh pointsp′ ∈ N�D

and its normal
derivatives also vanish in the midpoints of all edges of the mesh.

Argyris elements are locally polynomials of degree5 on any element of
the mesh�D and globallyC1-functions. The support ofϕ[5]

p is ωp (due
to the above mentioned conditions).

d) Let T ∈ �D and let p0, p1, p2 be the vertices of the triangleT . Then,
we define the bubble functionϕ[6]

T : D → R by ϕ
[6]
T := 36(ϕ[1]

p0ϕ
[1]
p1ϕ

[1]
p2 )2 ,

whereϕ[1]
pj is thehat function introduced in c). This bubble function is locally

a polynomial of degree6 on any element of the mesh�D and globally a
C1-functions with support inT .

e)The finite element spaceHm
�D

(D) ⊆ P
m
�D

(D) is defined by

Hm
�D

(D) := span{ϕ[m]
T }T∈�D

for m ∈ {0, 6}
and

Hm
�D

(D) := span{ϕ[m]
p }p∈N�D

for m ∈ {1, 5} .
Definition 2.2 Let � be amesh on the surfaceΓ (as in (2.5)) and let�µ

the corresponding mesh on the planar facePµ for µ ∈ {1, . . . ,M} .
a) The space of piecewise polynomials associated with� is denoted by

P�(Γ ) := {v : Γ → R | v ◦ γ|T is polynomial for allT ∈ �µ

and µ ∈ {1, . . . ,M}} .
For a degree “vector” δ = (δτ )τ∈� ∈ N

�
0 , we define

P
δ

� (Γ ) := {v ∈ P�(Γ ) | v ◦ γ|T has degree≤ δτ for all τ ∈ � ,
where τ = γ(T ) with T ∈ �µ , µ ∈ {1, . . . ,M}}

and analogously we havePm� (Γ ) for m ∈ N0 .

b) For µ ∈ {1, . . . ,M} , T ∈ �µ and p ∈ N�µ let

ϕ
[m]
T : Γ̂ → R for m ∈ {0, 6} and ϕ[m]

p : Γ̂ → R for m ∈ {1, 5}
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be the finite element functions introduced in Definition 2.1. We introduce
for the surface elementτ := γ(T ) ∈ � and the surface nodal point

q := γ(p) ∈ N� the finite element functionsΦ[m]
τ : Γ → R (m ∈ {0, 6} )

and Φ
[m]
q : Γ → R (m ∈ {1, 5} ) by

Φ[m]
τ (ξ) := ϕ

[m]
T (x) and Φ[m]

q (ξ) := ϕ[m]
p (x)(2.9)

for ξ = γ(x) , x ∈ Γ̂ .

c) The finite element spaceHm
� (Γ ) ⊆ P

m
� (Γ ) is defined by

Hm
� (Γ ) := span{Φ[m]

τ }τ∈� ⊆ P
m

� (Γ ) for m ∈ {0, 6}

and

Hm
� (Γ ) := span{Φ[m]

q }q∈N� ⊆ P
m

� (Γ ) for m ∈ {1, 5} .

The spaceH0
�(Γ ) consists of discontinuous functions,H1

�(Γ ) con-
sists of continuous functions, andHm

� (Γ ) , m ∈ {5, 6} , consists ofC1-
functions.

We end this section with two lemmata which will be needed for the
localization of the double integral norm.

Lemma 2.3 For λ > 0 and for all y ∈ R
2 and ε > 0 , we have∫

R2\Bε(y)
|y − x|−2−λ dx ≤ 2π

λ
ε−λ ,(2.10)

whereBε(y) ⊆ R
2 is the ball with radiusε centred aty .

Theelementary proof of Lemma2.3 only uses polar coordinates. A result
similar to (2.10) also holds for the two-dimensional manifoldΓ .

Lemma 2.4 For λ > 0 there is a constantCλ (only depending onλ and
on the geometry ofΓ ) such that∫
Γ\Bε(z)

|z − ξ|−2−λ dξ ≤ Cλ ε
−λ for all z ∈ R

3 and all ε > 0 ,

whereBε(z) is now the ball inR
3 .

The proof of Lemma 2.4 can be found in [21, Lemma 8.2.4]. The only
assumption needed for the proof is that the Lipschitz boundaryΓ is almost
everywhere differentiable.



476 B. Faermann

3 Localization of the norm ‖ · ‖Hs(Γ ) for s ∈ (0, 1)

For s ∈ (0, 1) and Γ ′ ⊆ Γ , the double integral norm is given by

‖v‖2
Hs(Γ ′) = ‖v‖2

H0(Γ ′) + |v|2Hs(Γ ′)(3.1)

with

‖v‖2
H0(Γ ′) = ‖v‖2

L2(Γ ′) =
∫
Γ ′

|v(ξ)|2 dξ

=
M∑
µ=1

∫
γ−1(Γ ′)∩Pµ

|v(γ(x))|2
√
Gµ(x) dx

and with the semi-norm

|v|2Hs(Γ ′) :=
∫
Γ ′

∫
Γ ′

|v(ξ) − v(η)|2
|ξ − η|2+2s dξ dη

=
M∑

µ,m=1

∫
Pm,Γ ′

∫
Pµ,Γ ′

|v(γ(x)) − v(γ(y))|2
|γ(x) − γ(y)|2+2s

√
Gµ(x) dx

√
Gm(y) dy .

with Pµ,Γ ′ := γ−1(Γ ′) ∩ Pµ.

There are other possibilities to define the Sobolev norm of non-integer
order s. One could define the global norm‖ · ‖Hs(Γ ) , for s ∈ R>0 \ N ,
for example, by means of the growth of the Fourier transform or by means
of interpolation theory. All these global norms are equivalent (see, e.g., [2],
[22, Theorem 8.5]). The local double integral norm‖ · ‖Hs(Γ ′) , Γ

′ ⊂ Γ
(given by (3.1)), the local Fourier norm (given as the minimal norm of an
extension) and the local interpolation norm are also equivalent, but with
equivalence constants depending onΓ ′ .

The norm definition via (3.1) has an important advantage in comparison
to the other definitions: the local double integral norm‖ · ‖Hs(Γ ′) is ap-
proximately computable using quadrature rules, whereas the local Fourier
norm and the local interpolation norm are not computable.

The aim of this section is to prove the localization of the double integral
norm (1.9) for s ∈ (0, 1) . The proof consists of two main steps. In a first
localization step, the global norm‖v‖Hs(Γ ) (v ∈ Hs(Γ )) is estimated by a
sum of local semi-norms and weighted localL2-norms (see Corollary 3.3).
In a second step, the perturbing weighted localL2-norms will be estimated
by Poincaŕe-type inequalities (see Lemma 3.8).

In the estimations of this section, we try to determine the constants as
exactly as possible. If these constants are known exactly then the reliability
constantCrel in the upper estimate of (1.4) is also known. Exact knowledge
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of the reliability constantCrel is important for the stopping criterion in
the adaptive mesh refinement process and for evaluating the quality of the
Galerkin solutionuG .

Lemma 3.1 Let s ∈ (0, 1) . Then, we have for any functionv ∈ Hs(Γ )
and all meshes� on Γ (see (2.5)) that

|v|2Hs(Γ ) ≤
∑
τ∈�

[ ∫
τ

∫
ωτ

|v(ξ) − v(η)|2
|ξ − η|2+2s dξ dη(3.2)

+ 4C2s d
−2s
τ ‖v‖2

L2(τ)

]

≤
∑
q∈N�

|v|2Hs(ωq) + 4C2s
∑
τ∈�

d−2s
τ ‖v‖2

L2(τ) ,(3.3)

whereωq , ωτ and dτ are introduced in (1.6), (2.7) and (2.8) and where
C2s is the constant introduced in Lemma 2.4 (only depending ons and Γ ).

It is essential in the proof of Lemma 3.1 that the sets{ωq}q∈N� form
an overlapping covering ofΓ .

Proof. Using the abbreviationsDτ := ∪{τ ′ | τ ′ ∈ � with τ ∩ τ ′ = ∅ } =
Γ \ inn(ωτ ) and∫

Γ ′

∫
Γ ′′

:=
∫
Γ ′

∫
Γ ′′

|v(ξ) − v(η)|2
|ξ − η|2+2s dξ dη for Γ ′, Γ ′′ ⊆ Γ ,

we obtain

|v|2Hs(Γ ) =
∫
Γ

∫
Γ

=
∑
τ∈�

∫
τ

∫
Γ

(3.4)

=
∑
τ∈�

[ ∫
τ

∫
ωτ

+
∫
τ

∫
Dτ

]
,

where∫
τ

∫
Dτ

:=
∫
τ

∫
Dτ

|v(ξ) − v(η)|2|ξ − η|−2−2s dξ dη(3.5)

≤ 2
∫
τ
|v(η)|2

( ∫
Dτ

|ξ − η|−2−2s dξ
)
dη

+ 2
∫
Dτ

|v(ξ)|2
( ∫

τ
|ξ − η|−2−2s dη

)
dξ

=: 2 Jτ,1 + 2 Jτ,2 .
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First, we show that ∑
τ∈�

Jτ,1 =
∑
τ∈�

Jτ,2 .

For that, we infer with the characteristic functionχDτ of Dτ∑
τ∈�

Jτ,2
(3.5)
=

∑
τ∈�

∫
Dτ

|v(ξ)|2
( ∫

τ
|ξ − η|−2−2s dη

)
dξ

=
∑
τ∈�

∫
Γ
χDτ (ξ) |v(ξ)|2

( ∫
τ
|ξ − η|−2−2s dη

)
dξ

=
∫
Γ

|v(ξ)|2
( ∑
τ∈�

χDτ (ξ)
∫
τ
|ξ − η|−2−2s dη

︸ ︷︷ ︸
=: f(ξ)

)
dξ

=
∑
τ ′∈�

∫
τ ′

|v(ξ)|2 f(ξ) dξ .(3.6)

Let τ ′ ∈ � be fixed and letξ be an interior point ofτ ′ . Then, we obtain
for any τ ∈ �

χDτ (ξ) =
{

1 if ξ ∈ Dτ = ∪{τ ′′ | τ ′′ ∈ � with τ ∩ τ ′′ = ∅ }
0 otherwise

=
{

1 if τ ∩ τ ′ = ∅
0 otherwise

.

This implies forf given in (3.6) and for any interior pointξ of τ ′ that

f(ξ) =
∑
τ∈�

τ∩τ ′=∅

∫
τ
|ξ − η|−2−2s dη =

∫
Dτ ′

|ξ − η|−2−2s dη .

Inserting this into (3.6) shows

∑
τ∈�

Jτ,2 =
∑
τ ′∈�

∫
τ ′

|v(ξ)|2
( ∫

Dτ ′
|ξ−η|−2−2s dη

)
dξ

(3.5)
=

∑
τ ′∈�

Jτ ′,1 ,

which yields together with (3.4) and (3.5) that

|v|2Hs(Γ ) ≤
∑
τ∈�

[ ∫
τ

∫
ωτ

+ 4 Jτ,1](3.7)

=
∑
τ∈�

[ ∫
τ

∫
ωτ

+ 4
∫
τ
|v(η)|2

( ∫
Dτ

|ξ − η|−2−2s dξ
)
dη

]
.
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The definitions ofDτ anddτ imply thatDτ ⊆ Γ \Bdτ (η) for any η ∈ τ .
This together with Lemma 2.4 leads to∫

Dτ

|ξ − η|−2−2s dξ ≤
∫
Γ\Bdτ (η)

|ξ − η|−2−2s dξ(3.8)

L.2.4≤ C2s d
−2s
τ .

Hence, assertion (3.2) follows from (3.7) and (3.8). The assertion (3.3) fol-
lows from∑
τ∈�

∫
τ

∫
ωτ

=
∑

τ,τ ′∈�
τ∩τ ′ �=∅

∫
τ

∫
τ ′

≤
∑
q∈N�

∑
τ,τ ′⊆ωq

∫
τ

∫
τ ′

=
∑
q∈N�

∫
ωq

∫
ωq

,

where the inequality is a direct consequence of the following fact: for any
τ, τ ′ ∈ � with τ ∩ τ ′ �= ∅ there is at least one nodal pointq ∈ N� with
τ, τ ′ ⊆ ωq . ��

Analogously to Lemma 3.1, one can estimate the semi-norm
| · |Hs(D) for D ⊆ R

2 .

Lemma 3.2 Let s ∈ (0, 1) and let D ⊆ R
2 be a closed and connected

polygonal set. Then, we have for any functionw ∈ Hs(D) and all admis-
sible meshes�D on D that

|w|2Hs(D) ≤
∑
T∈�D

[ ∫
T

∫
ωT

|w(x) − w(y)|2
|x − y|2+2s dx dy +

4π
s

d−2s
T ‖w‖2

L2(T )

]

≤
∑

p∈N�D

|w|2Hs(ωp) +
4π
s

∑
T∈�D

d−2s
T ‖w‖2

L2(T ) ,(3.9)

whereωp , ωT and dT are introduced in (2.3) and (2.4).

The proofs of Lemma 3.1 and 3.2 only distinguish in (3.8), where one
has to use Lemma 2.3 instead of Lemma 2.4.

As a consequence of Lemma 3.1 we obtain

Corollary 3.3 Let s ∈ (0, 1) . Then, we have for any functionv ∈ Hs(Γ )
and all meshes� on Γ that

‖v‖2
Hs(Γ ) ≤

∑
τ∈�

[ ∫
τ

∫
ωτ

|v(ξ) − v(η)|2
|ξ − η|2+2s dξ dη(3.10)

+ C locs d−2s
τ ‖v‖2

L2(τ)

]

≤
∑
q∈N�

|v|2Hs(ωq) + C locs
∑
τ∈�

d−2s
τ ‖v‖2

L2(τ)(3.11)
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with a constantC locs independent ofv and � . More precisely,C locs is an
upper bound ofh2s

� + 4C2s , whereC2s is given by Lemma 2.4.

For further estimates of‖v‖Hs(Γ ) , it would be useful if one could esti-
mate the perturbation termsd−2s

τ ‖v‖2
L2(τ) on the right-hand side of (3.10)

and (3.11) in the following way

d−2s
τ ‖v‖2

L2(τ) ≤ const ‖v‖2
Hs(τ ′) ,(3.12)

where τ ′ is a small neighbourhood ofτ with a constant independent of
v ∈ Hs(Γ ) and independent of shape regular meshes� . Unfortunately,
(3.12) does not hold for arbitrary functionsv : the constant functionv = 1
is a simple counterexample since

d−2s
τ ‖v‖2

L2(τ)

‖v‖2
Hs(τ ′)

=
d−2s
τ area(τ)
area(τ ′)

h�→0−→ ∞ , if area(τ ′)
area(τ) is bounded.

One can show (3.12) only for functionsv ∈ Hs(Γ ) which satisfy some
additional conditions. In the following Lemmata we will show an estimate
similar to (3.12) for functionsv ∈ Hs(Γ ) being orthogonal to certain finite
element functions.

Lemma 3.4 Let S ⊆ R
2 be a polygonal domain. Then, we obtain for

s ∈ (0, 1) and any functionw ∈ Hs(S) that

(3.13)

‖w‖2
L2(S) ≤ 1

2
diam(S)2+2s

area(S)
|w|2Hs(S) +

1
area(S)

∣∣∣ ∫
S
w(x) dx

∣∣∣2 .
Let T ⊆ R

2 be a triangle. Then, we obtain for any functionw ∈ H1(T )

‖w‖L2(T ) ≤ 1
π
diam(T ) |w|H1(T )(3.14)

provided that
∫
T w(x) dx = 0 .

Estimate (3.14) is denoted as the Poincaré inequality in [25] and [24].

Proof. The proof of (3.14) is given in [25] for convex domainsT . Using
|w(x) − w(y)|2 = w(x)2 + w(y)2 − 2w(x)w(y) for x, y ∈ S , we obtain,
taking J :=

∫
S w(x) dx , that∫

S

∫
S

|w(x) − w(y)|2 dx dy

=
∫
S

∫
S
w(x)2 dx dy +

∫
S

∫
S
w(y)2 dx dy − 2

∫
S
w(x)

∫
S
w(y) dy︸ ︷︷ ︸
= J

dx

= 2 area(S)
∫
S
w(x)2 dx − 2 J2 .
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Hence, (3.13) follows from

2 area(S)‖w‖2
L2(S) − 2 J2 =

∫
S

∫
S

|w(x) − w(y)|2
|x − y|2+2s |x − y|2+2s︸ ︷︷ ︸

≤ diam(S)2+2s

dx dy

≤ diam(S)2+2s |w|2Hs(S) . ��
In the following let� be a mesh on the surfaceΓ (as in (2.5)) and let

�µ the corresponding mesh on the planar facePµ (identified with with a
polygonal closed set inR2 ) for µ ∈ {1, . . . ,M} .
Lemma 3.5 Let m ∈ {0, 1, 5, 6} . Then, for T ∈ �µ and p ∈ N�µ ,

the finite element functionϕ[m]
T : Pµ → R respectivelyϕ[m]

p : Pµ → R

(introduced in Definition 2.1) satisfies∫
T

|1 − ϕ
[m]
T (x)|2 dx ≤ (1 − CFEm ) area(T ) for m ∈ {0, 6}(3.15)

and ∫
ωp

|1 − ϕ[m]
p (x)|2 dx ≤ (1 − CFEm ) area(ωp) for m ∈ {1, 5}(3.16)

with the constants

CFE0 = 1 , CFE1 =
1
2
, CFE5 =

3
25

, CFE6 =
2
5
.

These estimates holds for arbitrary meshes�µ in the casem ∈ {0, 1, 6} .
For m = 5 , we have the following restriction for the mesh: the ratio of
the length of neighbouring edges has to be bounded. More precisely, (3.16)
holds form = 5 if

|p − a|
|p − b| ,

|p − b|
|p − a| ≤ 5(3.17)

for any mesh pointsp, a, b ∈ N�µ which describe an element of�µ .

Proof. (i) For m = 0 , (3.15) follows from
∫
T |1−ϕ

[0]
T (x)|2 dx = 0 (since

ϕ
[0]
T is the characteristic function ofT ).

(ii) For m ∈ {1, 6} , we use some properties of barycentric coordinate
functions. Letp0, p1, p2 ∈ N�µ be the vertices of the triangleT , then the

hat functionsϕ[1]
pj coincide with the barycentric coordinate functionsλj .

Thus, by [10, Exercise 4.1.1], we have for anyν = (ν0, ν1, ν2) ∈ N
3
0 that

(3.18)∫
T
ϕ[1]
p0 (x)ν0 ϕ[1]

p1 (x)ν1 ϕ[1]
p2 (x)ν2 dx =

2 ν0! ν1! ν2!
(2 + ν0 + ν1 + ν2)!

area(T ) .



482 B. Faermann

Hence, (3.15) follows form = 6 from∫
T

|1 − ϕ
[6]
T (x)|2 dx =

∫
T

[
1 − 36

(
ϕ[1]
p0ϕ

[1]
p1ϕ

[1]
p2

)2
]2

dx

(3.18)
=

(
1 − 2 · 36 24

8!
+ 312 2 (4!)3

14!

)
area(T )

≤
(
1 − 2

5

)
area(T ) .

Now, let m = 1 and letT ′ ∈ �µ such thatT ′ ⊆ ωp . Then, p0 := p is
one vertex ofT ′ and we have∫

T ′
|1 − ϕ[1]

p |2dx =
∫
T ′

1 − 2ϕ[1]
p0 + (ϕ[1]

p0 )2dx

(3.18)
=

(
1 − 2

2
3!

+
22

4!

)
area(T ′)

=
1
2
area(T ′) ,

which yields ∫
ωp

|1 − ϕ[1]
p |2dx =

∑
T ′∈�µ
T ′⊆ωp

∫
T ′

|1 − ϕ[1]
p |2dx

=
1
2

∑
T ′∈�µ
T ′⊆ωp

area(T ′)

=
(
1 − 1

2

)
area(ωp) .

(iii) The proof form = 5 , which is relatively long and technical, is given
in the appendix. ��

As consequence of Lemma 3.4 and 3.5, we obtain the following Lemma.

Lemma 3.6 Let s ∈ (0, 1) , m ∈ {0, 1, 5, 6} and letCFEm be the constant
given by Lemma 3.5.

a) For T ∈ �µ , we have

‖w‖2
L2(T ) ≤ 1

2CFEm

diam(T )2+2s

area(T )
|w|2Hs(T )(3.19)

for any functionw ∈ Hs(Pµ) which satisfiesw ⊥ ϕ
[m]
T with m ∈ {0, 6} .

b) For p ∈ N�µ we have

‖w‖2
L2(ωp) ≤ 1

2CFEm

diam(ωp)2+2s

area(ωp)
|w|2Hs(ωp)(3.20)



Adaptive boundary element methods 483

for any functionw ∈ Hs(Pµ) which satisfiesw ⊥ ϕ
[m]
p with m ∈ {1, 5} .

For m = 5 , �µ has to satisfy additionally assumption (3.17).

Proof. In order to prove (3.19) and (3.20) in one step, we introduce

ϕ[m] :=

{
ϕ

[m]
T form ∈ {0, 6}

ϕ
[m]
p form ∈ {1, 5} and

S := supp(ϕ[m]) =
{

T form ∈ {0, 6}
ωp form ∈ {1, 5} .

Due to (3.13), we have

(3.21)

‖w‖2
L2(S) ≤ 1

2
diam(S)2+2s

area(S)
|w|2Hs(S) +

1
area(S)

∣∣∣ ∫
S
w(x) dx

∣∣∣2︸ ︷︷ ︸
=: J2

.

Sincew ⊥ ϕ[m] , we obtain

J2 =
∣∣∣ ∫
S
w(x)(1 − ϕ[m](x)) dx

∣∣∣2 ≤ ‖1 − ϕ[m]‖2
L2(S) ‖w‖2

L2(S)

L. 3.5≤ (1 − CFEm ) area(S) ‖w‖2
L2(S) .

Inserting this into (3.21) yields

‖w‖2
L2(S) ≤ 1

2
diam(S)2+2s

area(S)
|w|2Hs(S) + (1 − CFEm ) ‖w‖2

L2(S)

and thus

CFEm ‖w‖2
L2(S) ≤ 1

2
diam(S)2+2s

area(S)
|w|2Hs(S) . ��

Remark 3.7

a) We will consider in the following so-calledshape regularmeshes�
with non-degenerated angles. Therefore, we introduce forκ > 0 , the family
of meshes

Mκ(Γ ) := {� | � is a mesh onΓ as in (2.5) andκ(3.22)

is a lower bound of all angles

of �µ , µ ∈ {1, . . . ,M} } .
For m = 5 , we have to tighten the definition ofMκ(Γ ) by assuming that
meshes� ∈ Mκ(Γ ) satisfy additionally (3.17).
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b) There is a constantCshapeκ (only depending onκ and Γ ) with the
following properties: For any shape regular mesh� ∈ Mκ(Γ ) and the
corresponding mesh�µ on Pµ (µ ∈ {1, . . . ,M} ), we have

diam(T )2

area(T )
,

diam(T )2

d2
T

,
diam(T )2

d2
τ

≤ Cshapeκ(3.23)

for all elementsT ∈ �µ with τ := γ(T ) ⊆ Γ and with dτ introduced in
(2.8). Moreover, we have

diam(ωp)2

area(ωp)
,

diam(ωp)2

d2
T

,
diam(ωp)2

d2
τ

≤ Cshapeκ(3.24)

for any nodal pointp of �µ and for all T ∈ �µ with T ⊆ ωp and
τ := γ(T ) , whereωp is introduced in (2.3). The constantC

shape
κ increases

for decreasingκ .

c) Shape regularmesheswith non-degenerated angles are suitable for adap-
tivemesh refinement, since theymay contain small elements as well as large
elements.

d) The constantCshapeκ will be used in the following Lemma 3.8 (where
a Poincaŕe type inequality similar to (3.12) will be shown for functions
v ∈ Hs(Γ ) which are orthogonal toHm

� (Γ ) , m ∈ {0, 1, 5, 6} ) and in
Theorem 3.9 (where the localization of the double integral norm will be
shown). For the casem ∈ {0, 6} , weonly need thatCshapeκ is characterized
by (3.23), and the characterization by (3.24) is only needed for the case
m ∈ {1, 5} . The formulationswould bemoreprecise if onewould introduce
two constantsCshapeκ,0 and Cshapeκ,1 , whereCshapeκ,0 (respectivelyCshapeκ,1 )
satisfies (3.23) (respectively (3.24)). Then, Lemma 3.8 and Theorem 3.9
hold for evenm with Cshapeκ,0 and for oddm with Cshapeκ,1 (instead of

Cshapeκ ). Only to simplify the notation, we use one constantCshapeκ .

Now, we are in position to prove a Poincaré type inequality similar to
(3.12).

Lemma 3.8 For s ∈ (0, 1) , m ∈ {0, 1, 5, 6} and κ > 0 , there is a
constantCpoincs,m,κ with∑

τ∈�
d−2s
τ ‖v‖2

L2(τ) ≤ Cpoincs,m,κ

∑
q∈N�

|v|2Hs(ωq)(3.25)

for all shape regular meshes� ∈ Mκ(Γ ) with sufficiently small mesh size
(i.e., h� ≤ h0 ) and for any functionv ∈ Hs(Γ ) which is orthogonal to
Hm

� (Γ ) . The constant is explicitly given by

Cpoincs,m,κ =
2
cm

(Cshapeκ C 2
Γ )1+sCG

CFEm C2
G

with cm =
{

1 for odd m

3 for evenm
,(3.26)
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where CFEm , Cshapeκ , CG , CG and CΓ , are the constants given by
Lemma 3.5, Remark 3.7, (2.1) and (2.2).

Proof. (i) First, let m ∈ {1, 5} . Let µ ∈ {1, . . . ,M} and let q ∈ N�
be an interior mesh point ofΓµ (i.e., ωq ⊆ Γµ ). Then, the corresponding
parameter pointp := γ−1(q) ∈ N�µ is an interior point ofPµ (i.e.,
p /∈ ∂Pµ ) and ωp = γ−1(ωq) . By v ⊥ Hm

� (Γ ) , we have

0 = 〈v, Φ[m]
q 〉L2(Γ )(3.27)

=
∫
ωp

Φ[m]
q (γ(x))︸ ︷︷ ︸

(2.9)
= ϕ

[m]
p (x)

v(γ(x))
√
Gµ(x)︸ ︷︷ ︸

=: w(x)

dx

= 〈w,ϕ[m]
p 〉L2(Pµ) .

Sincew ⊥ ϕ
[m]
p , we may apply (3.20) and obtain∑

τ∈�
τ⊆ωq

d−2s
τ ‖v‖2

L2(τ) =
∑
τ∈�
τ⊆ωq

d−2s
τ

∫
γ−1(τ)

|v(γ(x))|2
√
Gµ(x) dx

=
∑
τ∈�
τ⊆ωq

d−2s
τ

∫
γ−1(τ)

|w(x)|2 1√
Gµ(x)

dx

(2.1)
≤ C−1

G

∑
τ∈�
τ⊆ωq

d−2s
τ ‖w‖2

L2(γ−1(τ))(3.28)

(3.24)
≤ C−1

G (Cshapeκ )s diam(ωp)−2s ‖w‖2
L2(ωp)

(3.20)
≤ (Cshapeκ )s

2CFEm CG

diam(ωp)2

area(ωp)
|w|2Hs(ωp)

(3.24)
≤ C1 |w|2Hs(ωp)(3.29)

with the constantC1 := (Cshape
κ )1+s

2CFE
m CG

. Since the Gram determinantGµ is
differentiable onPµ , we have

max
µ∈{1,...,M}

max
p∈N�µ
p/∈∂Pµ

sup
x∈ωp

∫
ωp

|√Gµ(x) − √
Gµ(y)|2

|x − y|2+2s dy ≤ C2(3.30)

with a constantC2 only depending onΓ and independent of�. Hence



486 B. Faermann

(3.31)

|w|2Hs(ωp) =

=
∫
ωp

∫
ωp

|x − y|−2−2s |v(γ(x))
√
Gµ(x) − v(γ(y))

√
Gµ(y)|2︸ ︷︷ ︸

≤ 2 |v(γ(x))|2 |
√
Gµ(x)−

√
Gµ(y)|2 + 2Gµ(y) |v(γ(x))−v(γ(y))|2

dx dy

(3.30)
≤ 2C2

∫
ωp

|v(γ(x))|2 dx

+ 2
∫
ωp

∫
ωp

|v(γ(x)) − v(γ(y))|2
|x − y|2+2s Gµ(y) dx dy

(2.1)
(2.2)

≤ 2C2

CG
‖v‖2

L2(γ(ωp)) +
2CGC2+2s

Γ

CG
|v|2Hs(γ(ωp)) .

Combining (3.29) and (3.31), we have with the constantsC3 := 2C1C2
CG

and

C4 := 2C1C
2+2s
Γ CG

CG∑
τ∈�
τ⊆ωq

d−2s
τ ‖v‖2

L2(τ) ≤ C3 ‖v‖2
L2(ωq) + C4 |v|2Hs(ωq)(3.32)

≤ C3h
2s
�

∑
τ∈�
τ⊆ωq

d−2s
τ ‖v‖2

L2(τ) + C4 |v|2Hs(ωq) .

For a mesh� with sufficiently small mesh size (such thatC3h
2s
� ≤ 1

2 ),
we obtain ∑

τ∈�
τ⊆ωq

d−2s
τ ‖v‖2

L2(τ) ≤ 2C4 |v|2Hs(ωq)

and therefore

∑
τ∈�

d−2s
τ ‖v‖2

L2(τ) ≤
M∑
µ=1

∑
q∈N�
ωq⊆Γµ

∑
τ∈�
τ⊆ωq

d−2s
τ ‖v‖2

L2(τ)

≤ 2C4
∑
q∈N�

|v|2Hs(ωq) ,

which shows assertion (3.25) for the casem ∈ {1, 5} .
(ii) Now, let m ∈ {0, 6} . Let τ ∈ � , let µ ∈ {1, . . . ,M} with τ ⊆

Γµ and letT := γ−1(τ) ∈ �µ . From v ⊥ Hm
� (Γ ) we infer (analogously
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to (3.27)) thatw ⊥ ϕ
[m]
T for the functionw := (v ◦ γ) · √Gµ . Hence, we

may apply (3.19) and obtain (similar to (3.28)) that

d−2s
τ ‖v‖2

L2(τ) ≤ C−1
G d−2s

τ ‖w‖2
L2(γ−1(τ))(3.33)

(3.19)
≤ 1

2CFEm CG

(diam(T )
dτ

)2s diam(T )2

area(T )
|w|2Hs(T )

(3.23)
≤ C1 |w|2Hs(T )C1 |w|2Hs(T )

with the constantC1 introduced after (3.29). Since the Gram determinant
Gµ is differentiable onPµ , we deduce (analogously to (3.31))

|w|2Hs(T ) ≤ 2C2

CG
‖v‖2

L2(γ(T )) +
2CGC2+2s

Γ

CG
|v|2Hs(γ(T )) .(3.34)

For a mesh� with sufficiently small mesh size (such thatC3h
2s
� ≤ 1

2 ),
we infer from (3.33) and (3.34) (analogously to (3.32)) that

d−2s
τ ‖v‖2

L2(τ) ≤ 2C4 |v|2Hs(τ)

and therefore∑
τ∈�

d−2s
τ ‖v‖2

L2(τ) ≤ 2C4
∑
τ∈�

|v|2Hs(τ)

≤ 2
3
C4

∑
q∈N�

∑
τ∈�
τ⊆ωq

|v|2Hs(τ)

≤ 2
3
C4

∑
q∈N�

|v|2Hs(ωq) .

��
The combination of Corollary 3.3 and Lemma 3.8 leads to the following

localization of the double integral norm which is the aim of this section.

Theorem 3.9 For s ∈ (0, 1) , m ∈ {0, 1, 5, 6} and κ > 0 there is a
constantC = C(s,m, κ) with

‖v‖2
Hs(Γ ) ≤ C

∑
q∈N�

|v|2Hs(ωq)

for all shape regularmeshes� ∈ Mκ(Γ ) and for any functionv ∈ Hs(Γ )
which is orthogonal toHm

� (Γ ) . The constantC is explicitly given by

C = 1 + C locs Cpoincs,m,κ , whereC locs is an upper bound ofh2s
� + 4C2s ,

andwhereCpoincs,m,κ andC2s are theconstantsgivenby (3.26)andLemma2.4.
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Analogously to Theorem 3.9, one can localize the norm‖ · ‖Hs(D) for
D ⊆ R

2 .

Theorem 3.10 Let s ∈ (0, 1) , m ∈ {0, 1, 5, 6} and κ > 0 . Let D ⊆ R
2

be a closed and connected polygonal set. Then, we have for all shape regular
meshes�D ∈ Mκ(D) on D (whereMκ(D) is defined analogously to
(3.22) by a minimal angle condition) and for any functionw ∈ Hs(D)
which is orthogonal toHm

�D
(D) that

∑
T∈�D

d−2s
T ‖w‖2

L2(T ) ≤ (Cshapeκ )1+s

6CFEm

∑
p∈N�D

|w|2Hs(ωp)(3.35)

and

‖w‖2
Hs(D) ≤

(
1 +

2π (Cshapeκ )1+s

3 sCFEm

) ∑
p∈N�D

|w|2Hs(ωp)(3.36)

with the constantsCFEm and Cshapeκ given in Lemma 3.5 and Remark 3.7.

Proof. The proof of (3.35) is considerably simpler then the proof of (3.25)
since no Gram determinants has to be treated. (3.36) is a direct consequence
of (3.9) and (3.35). ��

4 Localization of the norm ‖ · ‖Hs(Γ ) for s ∈ (1, 2)

For s ∈ [1, 2) , decomposedass = 1+σ with σ ∈ [0, 1) , and forD ⊆ R
2 ,

the norm‖ · ‖Hs(D) is defined by

‖w‖2
Hs(D) :=

∑
k∈{0,1}∪{s}

|w|2Hk(D)(4.1)

with the semi-norms|w|H0(D) := ‖w‖L2(D) and

|w|2H1(D) := ‖∂1w‖2
L2(D) + ‖∂2w‖2

L2(D)

(where∂jw is the partial derivative∂w∂xj ) and for σ > 0 with

|w|2Hs(D) :=
2∑
j=1

|∂jw|2Hσ(D)

=
2∑
j=1

∫
D

∫
D

|(∂jw)(x) − (∂jw)(y)|2
|x − y|2+2σ dx dy .

The norm‖ · ‖Hs(D) is also fors ∈ (1, 2) localizable.
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Theorem 4.1 Let s = 1 + σ ∈ (1, 2) , let κ > 0 and letD ⊆ R
2 be a

closed and connected polygonal set. Then, we have for all shape regular
meshes�D ∈ Mκ(D) on D and for any functionw ∈ Hs(D) which is
orthogonal toH0

�D
(D) that

‖w‖2
Hs(D) ≤ C

∑
p∈N�D

|w|2Hs(ωp)(4.2)

with the constant

C = C(s, κ) =
(
1 +

h 2
�D

π2

)(
1 +

4π (Cshapeκ )1+σ

3σ

)
,

whereCshapeκ is given in Remark 3.7.

Proof. Because ofw ⊥ H0
�D

(D) , we have
∫
T w(x) dx = 0 for all T ∈

�D and obtain therefore‖w‖L2(T ) ≤ 1
π diam(T )|w|H1(T ) (see (3.14)).

Hence

‖w‖2
Hs(D) ≤

(
1 +

h 2
�D

π2

)
(‖∂1w‖2

Hσ(D) + ‖∂2w‖2
Hσ(D)) .(4.3)

From w ⊥ H0
�D

(D) we infer by partial integration that∂jw ⊥ H1
�D

(D).
Applying (3.36) to the right-hand side of (4.3) (withCFE1 = 1

2 ) shows
assertion (4.2). ��

This localization result also holds for the norm‖·‖Hs(Γ ) on the surfaceΓ .

Theorem 4.2 For s = 1 + σ ∈ (1, 2) and κ > 0 , there is a constant
C = C(s, κ) with

‖v‖2
Hs(Γ ) ≤ C

∑
q∈N�

|v|2Hs(ωq)(4.4)

for all shape regularmeshes� ∈ Mκ(Γ ) and for any functionv ∈ Hs(Γ )
which is orthogonal toH0

�(Γ ) .

The definition of the norm‖ · ‖Hs(Γ ) on a closed and smooth surface
Γ = ∂Ω ∈ C1,0 is rather involved fors > 1 , since one needs a system of
overlapping parametrizations forΓ and a subordinated partition of unity
(see [32, Chap. 4.2] for the details). The proof of (4.4) in [18] needs special
parametrizations which take into account that the meshes on the overlapped
parameterized parts ofΓ have to fit together. Therefore, this proof is con-
siderably more complicated then the proof of (4.2). Hence, we omit here the
proof of (4.4) and refer to [18].
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5 Local error indicators

In this section, we will apply the localization of the double integral norm to
develop reliable and efficient error indicators for the Galerkin discretization
of boundary integral equations.

The global norm‖ · ‖Hs(Γ ) , for s ≥ 0 , is abbreviated by‖ · ‖s . For
negatives < 0 , we defineHs(Γ ) to be the dual space ofH−s(Γ ) with the
dual norm

‖v‖s = ‖v‖Hs(Γ ) := ‖v‖H−s(Γ )′ = sup
w∈H−s(Γ )

w �=0

|v(w)|
‖w‖−s .

For s ∈ R , theL2(Γ )-scalar product〈., .〉0 : L2(Γ ) × L2(Γ ) → R can
be extended to the dual form〈., .〉0 : Hs(Γ ) × H−s(Γ ) → R by

〈v, w〉0 := 〈v, w〉L2(Γ ) =
{
w(v) if s ≥ 0
v(w) if s < 0

for v ∈ Hs(Γ ), w ∈ H−s(Γ ) .

In the following, we consider a bijective and continuous operator

A : Hs+2α(Γ ) → Hs(Γ ) , s ∈ [0, 2] , α ∈ R ,(5.1)

of order 2α . For a given right-hand sideg ∈ Hs(Γ ) , we search for the
solution u ∈ Hs+2α(Γ ) of the equation

Au = g on Γ .(5.2)

An important example for (5.2) is an integral equation with the operator

Au(x) =
1
4π

∫
Γ

1
|x − ξ| u(ξ) dξ for x ∈ Γ .(5.3)

The corresponding integral equation is related to the interior and exterior
3-dimensional Laplace problem inΩ with Dirichlet boundary condition.
The operatorA in (5.3) is the single-layer potential of the Laplacian and it
satisfies

A : H−
1
2 (Γ ) → H

1
2 (Γ ) ,

i.e., we are in the situation of (5.1) withs = 1
2 andα = −1

2 (see, e.g., [9]).

The abstract problem (5.2) is equivalent to the following variational
problem: findu ∈ Hs+2α(Γ ) such that

〈Au, v〉L2(Γ ) = 〈g, v〉L2(Γ ) for all v ∈ H−s(Γ ) .(5.4)
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For the discretization of problem (5.4), let� be a mesh onΓ (see (2.5))
and letG = G� ⊆ Hs+2α(Γ ) be a finite dimensional Galerkin trial space
associated with� . Then, the Galerkin formulation of problem (5.4) reads:
find an approximate solutionuG ∈ G such that

〈AuG , vG〉L2(Γ ) = 〈g, vG〉L2(Γ ) for all vG ∈ G .(5.5)

In the following, let u ∈ Hs+2α(Γ ) be the solution of problem (5.2)
(and (5.4)), and letuG ∈ G be the Galerkin solution of problem (5.5). Our
aim is to estimate the unknown discretization error

e := uG − u ∈ Hs+2α(Γ )

by computable local quantities. The residual

r := Ae = AuG − g ∈ Hs(Γ )

is computable after the calculation ofuG ∈ G and local quantities ofr will
be used to control the adaptive refinement.

SinceA : Hs+2α(Γ ) → Hs(Γ ) is assumed to be an isomorphism, we
find constantsCop1 , Cop2 > 0 such that for allv ∈ Hs+2α(Γ ) the estimate

Cop1 ‖Av‖2
Hs(Γ ) ≤ ‖v‖2

Hs+2α(Γ ) ≤ Cop2 ‖Av‖2
Hs(Γ )(5.6)

is satisfied. The constants are given by(Cop1 )−1 = ‖A‖2
Hs(Γ )←Hs+2α(Γ ) and

Cop2 = ‖A−1‖2
Hs+2α(Γ )←Hs(Γ ) . By (5.6), we obtain

Cop1 ‖r‖2
Hs(Γ ) ≤ ‖e‖2

Hs+2α(Γ ) ≤ Cop2 ‖r‖2
Hs(Γ ) .(5.7)

For s = k ∈ N0 , the global norm‖r‖Hk(Γ ) is additive (see (1.7)) and
therefore we have

Cop1
∑
τ∈�

‖r‖2
Hk(τ) ≤ ‖e‖2

Hs+2α(Γ ) ≤ Cop2
∑
τ∈�

‖r‖2
Hk(τ) .(5.8)

The estimate (5.8) means that the local quantities{‖r‖Hk(τ)}τ∈� of the
residualr are reliable and efficient error indicators in the cases = k ∈ N0 .
Such an approach was treated in [28].

In [20], the following approachwas proposed fors ∈ (0, 1) : the double
integral norm is not additive but satisfies

‖r‖2
Hs(Γ ) =

∑
τ∈�

λ2
τ
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with

λ2
τ :=

∫
τ
|r(ξ)|2 dξ +

∫
τ

∫
Γ

|r(ξ) − r(η)|2
|ξ − η|1+2s dξ dη

for s ∈ (0, 1) . This shows

Cop1
∑
τ∈�

λ2
τ ≤ ‖e‖2

Hs+2α(Γ ) ≤ Cop2
∑
τ∈�

λ2
τ ,

i.e., the quantities{λτ}τ∈� are reliable and efficient error indicators in the
cases ∈ (0, 1) . Unfortunately,λτ has only partially local character.

We are able to improve this approach using the localization of the double
integral norm presented in Theorem 3.9 and 4.2.

Theorem 5.1 Let s = k + σ with k ∈ {0, 1} and σ ∈ (0, 1) . Let α ∈ R

and let A : Hs+2α(Γ ) → Hs(Γ ) be an isomorphism. LetG = G� ⊆
Hs+2α(Γ ) be a finite dimensional trial space associated with a mesh�
satisfyingHm

� (Γ ) ⊆ G ⊆ P�(Γ ) with m ∈ {0, 1, 5, 6} in the cases ∈
(0, 1) and withm = 0 in the cases ∈ (1, 2) . (Examples forG are given
below in Remark 5.3.)
Then, we obtain for any solutionu ∈ Hs+2α(Γ ) and for all meshes�
with the corresponding set of mesh pointsN� the following estimate for
the Galerkin errore ∈ Hs+2α(Γ ) :

Ceff
∑
q∈N�

ε2
q ≤ ‖e‖2

Hs+2α(Γ ) ≤ Crel
∑
q∈N�

ε2
q ,(5.9)

whereεq := |r|Hs(ωq) is a local double integral semi-norm of the residual
r ∈ Hs(Γ ) . The efficiency of the error indicators{εq}q∈N� (i.e., the
lower estimate in (5.9)) holds for arbitrary meshes, and the reliability (i.e.,
the upper estimate in (5.9)) holds for shape regular meshes� ∈ Mκ(Γ )
with κ > 0 . The constantsCeff , Crel in (5.9) are independent ofu , �
and G , they are explicitly given by

Ceff =
1
3
Cop1 and Crel = Crel(s,m, κ) = Cop2 (1 + C locs Cpoincs,m,κ) ,

whereCop1 , Cop2 , C locs and Cpoincs,m,κ are the constants given by (5.6), The-
orem 3.9 and Lemma 3.8.εq has local character, since fors ∈ (0, 1) , we
have

ε2
q = |r|2Hs(ωq) =

∫
ωq

∫
ωq

|r(ξ) − r(η)|2
|ξ − η|2+2σ dξ dη .
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Proof. We show (5.9) fors ∈ (0, 1) , the proof for s ∈ (1, 2) is similar
(and uses Theorem 4.2 instead of Theorem 3.9 for the upper estimate). With

the abbreviation
∫
Γ ′

∫
Γ ′′ :=

∫
Γ ′

∫
Γ ′′
|r(ξ)−r(η)|2
|ξ−η|2+2σ dξ dη , for Γ ′, Γ ′′ ⊆ Γ ,

we obtain∑
q∈N�

|r|2Hs(ωq) ≤
∑
q∈N�

∑
τ∈�
τ⊆ωq

∫
τ

∫
ωq

≤ 3
∑
τ∈�

∫
τ

∫
Γ

(5.10)

≤ 3 ‖r‖2
Hs(Γ )

(5.7)
≤ 3

Cop1
‖e‖2

Hs+2α(Γ ) ,

which shows the lower estimate in (5.9). For the proof of the upper estimate
in (5.9), let � ∈ Mκ(Γ ) be shape regular mesh. The Galerkin residual
r = AuG − g is orthogonal toG (because of (5.5)). This implies, together
with Hm

� (Γ ) ⊆ G , that r ⊥ Hm
� (Γ ) . Hence, we may apply Theorem 3.9

to r and obtain

‖r‖2
Hs(Γ ) ≤ (1 + C locs Cpoincs,m,κ)

n∑
ν=1

|r|2Hs(ωq) .(5.11)

The upper estimate in (5.9) follows from (5.11) and (5.7). ��
In [19], we present numerical experiments for two-dimensional prob-

lems whereΓ = ∂Ω is a curve inR
2 . These numerical results confirm

the theoretical results of Theorem 5.1 that the so-called efficiency index√∑
q∈N� ε2

q

/
‖e‖Hs+α(Γ ) is bounded from above and below by constants

independent ofu and � . They also demonstrate that the error indicators
{εq}q∈N� are a proper tool to control the adaptive mesh refinement since
the discretization errors decrease in a very efficient way.

In the case (1.3) (i.e.,A : Hs+2α(Γ ) → Hs(Γ ) , α ∈ R , s ≥ 0 ),
the residualr ∈ Hs(Γ ) is a function and Theorem 5.1 shows that local
Hs semi-norms ofr are efficient and reliable error indicators.

In the case (1.2) (i.e.,A : Hα(Γ ) → H−α(Γ ) , α > 0 ), the operator
A can be interpreted in a broader sense as a differential operator and the
residualr := AuG − g ∈ H−α(Γ ) = (Hα(Γ ))′ is a functional. For this
case, we considered in [15–17] error indicators, that were introduced and
investigated by Babǔska and Rheinboldt in [1] for FEM.We showed in [15–
17] that these Babuška-Rheinboldt error indicators (BR error indicators) are
also efficient and reliable for BEM in the case (1.2). The BR error indicators
are local quantities ofr and they can be interpreted as localH−α norms
of the residualr ∈ H−α(Γ ) .

Hence, in both cases local (semi-)norms of the residual are efficient and
reliable error indicators for Galerkin boundary element methods.
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The error indicators{εq}q∈N� introduced in Theorem 5.1 are efficient
for arbitrary meshes and reliable for shape regular meshes. Shape regular
meshes are suitable for adaptive mesh refinement, since they may contain
small elements as well as large; the minimal angle condition only restricts
the shape of an element not its size.

For error indicators, the reliability is more important then the efficiency.
Due to our analysis in Sect. 3 and 4, we can also introduce error indicators
{ε̂τ}τ∈� which are reliable for arbitrary meshes and efficient for shape
regular meshes.

Theorem 5.2 Let s ∈ (0, 1) . Using the same assumptions and notation as
in Theorem 5.1, then we obtain for any solutionu ∈ Hs+2α(Γ ) and for all
meshes� the following estimate for the Galerkin errore ∈ Hs+2α(Γ ) :

Ĉeff
∑
τ∈�

ε̂ 2
τ ≤ ‖e‖2

Hs+2α(Γ ) ≤ Ĉrel
∑
τ∈�

ε̂ 2
τ ,(5.12)

with

ε̂ 2
τ :=

∫
τ

∫
ωτ

|r(ξ) − r(η)|2
|ξ − η|2+2σ dξ dη + d−2σ

τ ‖r‖2
L2(τ) .

ε̂τ is a local quantity the residualr . The reliability of the error indicators
{ε̂τ}τ∈� holds for arbitrary meshes and the efficiency holds for shape
regular meshes� ∈ Mκ(Γ ) with κ > 0 . The constantŝCeff and Ĉrel

in (5.12) are independent ofu ,� and G , they are explicitly given by

Ĉeff =
Cop1

3(1 + Cpoincs,m,κ)
and Ĉrel := Cop2 max{1, C locs } .

The reliability constantĈrel of the error indicators{ε̂τ}τ∈� is better
than the reliability constantCrel of the indicators{εq}q∈N� introduced
in Theorem 5.1.

Proof. The upper estimate in (5.12) follows from

‖e‖2
Hs+2α(Γ )

(5.7)
≤ Cop2 ‖r‖2

Hs(Γ ) ≤
(3.10)
≤ Cop2

∑
τ∈�

[ ∫
τ

∫
ωτ

|r(ξ) − r(η)|2
|ξ − η|2+2σ dξ dη + C locs d−2σ

τ ‖r‖2
L2(τ)

]
≤ Cop2 max{1, C locs }

∑
τ∈�

ε̂ 2
τ .

For the proof of the lower estimate in (5.12), let� ∈ Mκ(Γ ) be a shape
regular mesh. The Galerkin residualr = AuG − g is orthogonal toG and
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consequently orthogonal toHm
� (Γ ) . Hence, we may apply Lemma 3.8 to

r and obtain∑
τ∈�

ε̂ 2
τ

(3.11)
≤

∑
q∈N�

|r|2Hσ(ωq) +
∑
τ∈�

d−2σ
τ ‖r‖2

L2(τ) ,

L.3.8≤ (1 + Cpoincs,m,κ)
∑
q∈N�

|r|2Hs(ωq)

(5.10)
≤ (1 + Cpoincs,m,κ)

3
Cop1

‖e‖2
Hs+2α(Γ ) . ��

Remark 5.3In Theorems 5.1 and 5.2, we assume for theGalerkin trial space
G that

Hm
� (Γ ) ⊆ G ⊆ P�(Γ ) with m ∈ {0, 1, 5, 6} .(5.13)

For m ∈ {0, 1} , G might be for example a space of piecewise polyno-
mials with inter-element smoothness of orderm − 1 , i.e., G := P

δ
� (Γ ) ∩

Cm−1(Γ ) (C−1(Γ ) := L2(Γ ) ) with an arbitrary local degree vectorδ =
(δτ )τ∈� ∈ N

�
0 (seeDefinition2.2). Form ∈ {5, 6} , G := P

δ
� (Γ )∩C1(Γ )

is also an example. The reliability constant in Theorem5.1 and the efficiency
constant in Theorem 5.2 depend onm in (5.13). This is no restriction for
the hp-method sincem describes only the inter-element smoothness ofG ,
the local polynomial degrees inδ ∈ N

�
0 are not restricted bym .

Acknowledgements.The author would like to thank Professor Jinchao Xu, Penn State Uni-
versity, for fruitful discussions concerning Lemma 3.1.

A Appendix

In this appendix, we prove Lemma 3.5 form = 5 . For that, letT ∈ �µ

with T ⊆ ωp . Then,p is one vertex ofT , let a, b be the other vertices. In
order to prove (3.16) form = 5 , it is sufficient to show that∫

T
|1 − ϕ[5]

p |2dx ≤
(
1 − 3

25

)
area(T ) ,(A.1)

provided that (3.17) holds. Since Argyris elements are independent of trans-

lation, we assume without loss of generality thatp = 0 , i.e.,
(

0
0

)
, a, b are

the vertices ofT . Let T̂ be the reference triangle with vertices
(

0
0

)
,
(

1
0

)
,(

0
1

)
and consider the linear and bijective transformationΨ : T → T̂ ,

Ψ(x) :=
1

a1b2 − a2b1

(
b2 −b1

−a2 a1

)
x =

1
〈a,Qb〉

(
(Qb)T

−(Qa)T

)
x
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with the rotationQ =
(

0
−1

1
0

)
. Then,Ψ(a) =

(
1
0

)
and Ψ(b) =

(
0
1

)
.

For the construction of the Argyris elementϕ[5]
p on T , we compute the

corresponding finite element function on̂T , i.e., we computêϕ : T̂ → R

such thatϕ[5]
p (x) = ϕ̂(Ψ(x)) for all x ∈ T . Then, we obtain∫
T

|1 − ϕ[5]
p (x)|2dx =

∫
T

|1 − ϕ̂(Ψ(x))|2dx(A.2)

=
1

|det(Ψ ′)|
∫
T̂

|1 − ϕ̂(x)|2dx

= |〈a,Qb〉|
∫
T̂

|1 − ϕ̂(x)|2dx

= 2 area(T )
∫
T̂

|1 − ϕ̂(x)|2dx .

Since normal derivatives change under affine transformations (see [10, page
85]), ϕ̂ does not coincide with the Argyris element on̂T . But the 21 condi-
tions for the computation ofϕ[5]

p on T can be transformed into conditions

for ϕ̂ . The following 18 conditions forϕ[5]
p

ϕ[5]
p (p) = ϕ[5]

p (0) = 1, ϕ[5]
p (a) = ϕ[5]

p (b) = 0,

(∂ν11 ∂ν22 ϕ[5]
p )(x) = 0 for all x ∈ {p, a, b} , ν ∈ N

2
0 with |ν| ∈ {1, 2}

can be transformed directly into the following conditions forϕ̂

ϕ̂(0) = 1, ϕ̂
(

1
0

)
= ϕ̂

(
0
1

)
= 0,

(A.3)
(∂ν11 ∂ν22 ϕ̂)(x) = 0 for all x ∈

{
0,

(
1
0

)
,
(

0
1

)}
,

ν ∈ N
2
0 with |ν| ∈ {1, 2} .

The condition for the normal derivative in the midpoint of the edge[a, b]
of T is transformed in the following way: since the outer normal direction
n : ∂T → R

2 coincides on[a, b] with cQ(b − a) , where c ∈ R is a
constant, we obtain for the normal derivative

(∂nϕ[5]
p )(1

2(a + b))

= (ϕ[5]
p )′(1

2(a + b)) · n(1
2(a + b))

= c (ϕ̂ ◦ Ψ)′(1
2(a + b)) · Q(b − a)

= c ϕ̂′(Ψ(1
2(a + b))) · Ψ ′(1

2(a + b))︸ ︷︷ ︸
= 1

〈a,Qb〉

(
(Qb)T

−(Qa)T

) ·Q(b − a)
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=
c

〈a,Qb〉 ϕ̂
′(1

21I) ·
(
〈Qb,Q(b−a)〉
−〈Qa,Q(b−a)〉

)
with 1I := (1

1)

=
c

〈a,Qb〉 ϕ̂
′(1

21I) ·
( |b|2−〈a,b〉
|a|2−〈a,b〉

)
=

c

〈a,Qb〉
[
[ |b|2 − 〈a, b〉](∂1ϕ̂)(1

21I) + [ |a|2 − 〈a, b〉](∂2ϕ̂)(1
21I)

]
.

Consequently, the condition(∂nϕ
[5]
p )(1

2(a + b)) = 0 is equivalent to

[ |b|2 − 〈a, b〉](∂1ϕ̂)(1
21I) + [ |a|2 − 〈a, b〉](∂2ϕ̂)(1

21I) = 0 .(A.4)

Analogously, the condition for the normal derivative in the midpoint of the
edge[p, a] = [0, a] of T , i.e., (∂nϕ

[5]
p )(1

2a) = 0 , is equivalent to

〈a, b〉(∂1ϕ̂)(1
2(1

0)) − |a|2(∂2ϕ̂)(1
2(1

0)) = 0(A.5)

and the condition for the normal derivative in themidpoint of the edge[0, b]
of T , i.e., (∂nϕ

[5]
p )(1

2b) = 0 , is equivalent to

|b|2(∂1ϕ̂)(1
2(0

1)) − 〈a, b〉(∂2ϕ̂)(1
2(0

1)) = 0 .(A.6)

The 21 coefficientscν , ν = (ν1, ν2) ∈ N
2
0 with |ν| ≤ 5 , of the local

polynomial

ϕ̂(x) =
∑
ν∈N2

0
|ν|≤5

cν x
ν1
1 xν22 for x ∈ T̂

can be computed by means of the 21 equations in (A.3), (A.4), (A.5), (A.6).
Solving this equation system with coefficients depending on|a|2, |b|2 and
〈a, b〉 (by MAPLE) shows that

ϕ̂(x) = 1 − 10x3
1 − 30 〈a,b〉|a|2 x

2
1 x2 − 30 〈a,b〉|b|2 x1x

2
2 − 10x3

2 + 15x4
1

+ 60 〈a,b〉|a|2 x
3
1 x2 + 302|a|2〈a,b〉+2|b|2〈a,b〉−|a|2|b|2

|a|2|b|2 x2
1 x

2
2 + 60 〈a,b〉|b|2 x1x

3
2

+ 15x4
2 − 6x5

1 − 30 〈a,b〉|a|2 x
4
1 x2 − 30 |a|

2〈a,b〉+2|b|2〈a,b〉−|a|2|b|2
|a|2|b|2 x3

1 x
2
2

− 302|a|2〈a,b〉+|b|2〈a,b〉−|a|2|b|2
|a|2|b|2 x2

1 x
3
2 − 30 〈a,b〉|b|2 x1x

4
2 − 6x5

2 .

MAPLE calculations also show that∫
T̂

|1 − ϕ̂(x)|2dx

=
1

2772

(
70

〈a, b〉
|a|2 + 70

〈a, b〉
|b|2 + 6

〈a, b〉2
|a|4 + 6

〈a, b〉2
|b|4 + 9

〈a, b〉2
|a|2|b|2 + 679

)
.
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Without loss of generality, let|b| ≤ |a| and letκ ∈ [0, 1] such that|b| =
κ|a| . Then, we obtain (using also〈a, b〉 ≤ |a| |b| )∫

T̂
|1 − ϕ̂(x)|2dx ≤ 1

2772

(
70

(
κ +

1
κ

)
+ 6

(
κ2 +

1
κ2

)
+ 688

)
(A.7)

=: I(κ) .

Assumption (3.17) implies that15 ≤ κ . Since I(t) decreases monotone
in t ∈ [0, 1] , we obtainI(κ) ≤ I(1

5) . This together with (A.2) and (A.7)
yields∫

T
|1 − ϕ[5]

p (x)|2dx ≤ 2 area(T ) I(1
5) ≤ (1 − 3

25) area(T ) .

This shows (A.1) and completes the proof of Lemma 3.5 form = 5 . ��
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