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Summary. In this paper we introduce new local a-posteriori error indica-
tors for the Galerkin discretization of three-dimensional boundary integral
equations. These error indicators are efficient and reliable for a wide class
of integral operators, in particular for operators of negative order. They are
based on local norms of the computable residual and can be used for con-
trolling the adaptive refinement. The proofs of efficiency and reliability are
based on the result that the Aronszajn-Slobodeckij ngrmj sy (given

by a double integral for a non-integerc R~ \ N) is localizable for certain
functions. Neither inverse estimates nor saturation properties are needed. In
this paper, we extend the two-dimensional results of a previous paper to the
three-dimensional case.
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1 Introduction

Many problems in physical and engineering sciences can be formulated as
boundary value problems for partial differential equations in a dorain
R?, and many boundary value problems can be translated into boundary
integral equations defined on the surfate= 9f2 (see for example [30],
[9] and [21, Sect. 8]).

Boundary integral equations are considered in the abstract form

(1.1) Au = g on I
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with a given right-hand sidgy and with a bounded and bijective integral
operator A of order 2a € R. For A, we distinguish the following two
cases

(1.2) A:HYI) - H*I), a>0,
(1.3) A:HP?Y) - HI), s>0, acR,

where H(I") is the Sobolev space of orderc R .

For the Galerkin discretization of problem (1.1), we introduce a mesh
A on I' and a finite dimensional Galerkin trial spage= G, consist-
ing of piecewise polynomials associated with the méshThere are three
possibilities to improve the corresponding Galerkin solutigne G, . The
h-version improvesug by refining the mesh and using piecewise polyno-
mials with a fixed degree® . The p-version fixes the mesh and improves
ug by increasing the polynomial degreein the elements. Thép-version
combines bothh-refinement andy-refinement. Adaptive strategies are re-
quired, if the discretization erraf := ug — u is not uniformly distributed
over the meshA . In this case, we want to refine (in the sensehefor
p-refinement) only the elements with large local error.

In general, adaptive refinement is controlledibgal a posteriori error
indicators(or briefly (local) error indicatorsye, }._, , where{e, }_, are
local quantities associated with the elements of A . Their definition is
based on the discrete solutiar and they estimate

n n
(1.4) CHIN"e2 < Jug—u® < D el
v=1 v=1

with || - | = || - || ey inthe case (1.2) and] - || = || - || zs+2a(p) in the
case (1.3). Local error indicators are calietiable if they satisfy the upper
estimate in (1.4) with a constaiit”® independent of., A and the local
polynomial degrees, and they are calkfticientif they satisfy the lower
estimate in (1.4) with a constadt®’/ independent of:, A and the local
polynomial degrees.

In practice, local error indicators are used in the following way for con-
trolling the adaptive strategy:

Adaptive refinement process:

— Compute the discrete solution; € G .

— Compute the error indicatorge, }7_, . If they are not exactly com-
putable, then compute approximatiofis of ¢, .

— Stop the refinementiff""'_, £2 is small enough.
Otherwise, mark all elements of\ associated with largé, . Decide

for every marked element if it is ah-element orp-element. Refine



Adaptive boundary element methods 469

the markedh-elements geometrically and increase the local polynomial
degree in all marked-elements. This generates a new Galerkin trial
spaceG associated with a new mesh . Start this process again with
the enriched Galerkin spac.

For finite element methods (FEM), adaptive refinement controlled by
local error indicators has been the subject of many papers in recent years.
However, for boundary element methods (BEM), the nonlocal character of
the integral operator and the nonlocal Sobolev spaces cause difficulties in the
mathematical derivation of local error indicators. Hence, only a few authors
have investigated local posteriorierror estimates of the form (1.4): heuris-
tically motivated error indicators and numerical results were presented in
[14] for hp-methods and in [3] forh-methods. Reliable local error indi-
cators were introduced for example in [26,27,33,34,31,7,4,5,23,8,29] for
the h-version and in [6] for thehp-version.

For BEM, the proof of efficiency is problematic: [4] shows efficiency only
for uniform meshes, and [23] show efficiency and reliability only for uniform
meshes and under the additional assumption of a saturation condition. For
the direct boundary element method, an efficient and reliable global error
estimatore (with C¢//¢2 < |Jug —u||> < C¢e?) is proposed in [29] and
the adaptive mesh refinement is controlled by reliable local error indicators
{e,}"_, which satifye? < >""'_, 2. The other cited papers do not have
any efficiency results.

For Galerkin discretization with stable multiscale bases (e.g., wavelet
bases) we referto [11]. There, an efficient and reliable error estimate similar
to (1.4) is developed but with considerably more tharrror indicators.

Asymptotically exact error indicators, i.e.,

Zgzl 53 1

—ev=lr for hy — 0,
||Ug - UHLQ(F)

are presented in [13] for arbitrary meshes and for integral operators of the
second kindA = I — K : L*(I') — L*(I') with a compact operator
K :L*(I') — L*(I).

For more general operators, we presented in [15-17] local error indi-
cators for the Galerkin discretization, which are reliable for shape regular
meshes (see Remark 3.7, suitable for adaptive refinement) and efficient for
arbitrary meshes. In the cited papers, the results were only formulated for
the h-version, but they also hold for thigp-version. The efficiency could be
shown only for integral operatord : H*(I") — H~*(I') with o > —1
(i.e., in particular for the case (1.2)).

In [19], we presented two error indicators for the case (1.3) (which in-
cludes operatorsA : H*(I') — H~%(I") of negative ordera < 0).

The first indicators are efficient for arbitrary meshes and reliable for shape
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regular meshes, and the second indicators are efficient for shape regular

meshes and reliable for arbitrary meshes. Both error indicators are based on

the computable residual := Aug — g and can be used for controlling the

adaptive refinement as described above. The results in [19] were only shown

for the two-dimensional case, whefé = 912 is a curve inR2. The aim

of this paper is to extend the results of [19] to the three-dimensional case.
We emphasize that inverse estimates or saturation properties are not

needed, either in this paper or in [15-17,19]. To our knowledge these are

the first approaches for integral operators of the first kind witlefficient

and reliable local error indicatorge, }}'_, , which avoid inverse estimates

and saturation properties.

The proofs of efficiency respectively reliability in this paper and in
[19] are based on localization results for the Aronszajn-Slobodeckij norm
Il - lzrs(ry of non-integer orders . These localization results are not only
useful for adaptive boundary element methods, they also can be used to
show inverse estimates for non-uniform meshes (see [12]). Moreover, they
are interesting in their own right. Therefore, we present one of them in the
following.

In this paper, letl” be the Lipschitz boundary of a bounded and simply
connected domair2 C R?. For s € (0,1) and I'" C I" the Aronszajn-
Slobodeckij norm is given by

ooy = 01320 + 01m

with the semi-norm

[v(€)
(1.5) El /,/, € — ,,7’2+23 dfd

More details about the norm definition can be found after (3.1). We also
denote|| - || s(r+) as “double integral norm” because of (1.5).

Onthe surfacd™, we introduce amesh as a partition ofl” into closed
and possibly curved triangular elementss A, i.e., I' C U{r| T € A}
(details are givenin Sect. 2). The set of nodal points of the reshdenoted
by N, . For a mesh poing € N, , we introduce the neighbourhood

(1.6) Wy = U{TGA]qET}QF.
For k € Ny, the global norm| - || 7=y is additive, i.e.,

@7 Aol = Dol foranyve HNI).
TENA
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This property fails to hold for the double integral norm of non-integer order:
more precisely, fors € (0,1) and forv € H*(I") , we have

ol = S I0l2e) + ol
TEN

where

v(n)]?
(18) |U|§{6(F) = Z/ ’5 77|2+20- dfdn

2
- ZMHS(T) + Z// € — 77|2+20| dg dn

TEA

= p(v,A)

Unfortunately, itis not even possible to estimate the perturbing igrmA)
in (1.8) interms of>"__ 1 ”UH%{S(T) (see [18, Satz 3.1)).

Nevertheless, itis possible to localize the global nd sy (i.e., to
estimateHrH%{s(F) by a sum of local norms) for certain functions
H*(I'), if one replaces the partition\ of I' by the overlapping sets
{wq}qen, with small overlap zones. In Sect. 3 and 4, we will show: for

€ (0,1)U (1,2), thereis a constant’ such that the estimate

(1.9) ey < C Y rlFrey)
qeENA

holds for all shape regular meshés and for any functionr € H*(I")
which is orthogonal to a minimal set of finite element functions. The constant
C in (1.9) depends only om, on a lower bound: for the angles ofA and

on the smoothness of the finite element functions. In Sect. 5 we will apply
(1.9) to the Galerkin residual := Aug — g € H*(I") which is orthogonal

to the Galerkin trial spac¢ .

An outline of this paper is as follows. In Sect. 2, we describe in detail the
surface I, its parametrizations and the megh. The localization of the
double integral norm (1.9) will be proven fere (0,1) in Sect. 3 and for
s € (1,2) in Sect. 4. Based on the analysis in Sect. 3 and 4, we introduce in
Sect. 5 reliable and efficient error indicators for the Galerkin discretization
of problem (1.1) for the case (1.3).

2 The surface I' and the finite element spaces

Throughout this paper we assume thdtis a Lipschitz boundary (i.e.,
I' e C%1) and thatI" is parameterized by the surface of a polyhedron
I' C R3 via a bijective mapping
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’y:fj%F.

The closed and plane polygonal faces i6f are denoted byP, ..., Py
(e, I'= ugglpu). We assume that and its inversey~! are Lipschitz
continuous and that the restriction$p# are two times differentiable (i.e.,
vlp, € C?). Then, the smooth and closed surface compongnts= v(P,,)
have pairwise disjoint interior and satisfy = UL, I’, . Without loss of
generality, each facé’, can be identified with a polygonal closed set in
R?. Then, the surface integral of a measurable function I" — R is
defined by

JEGLIEED M RN

p=1""tu

with the Gram determinant,, := det(<8i7,8j7>)§7j:1 of the differen-
tiable function~|p, . We assume tha€,, is bounded, i.e., there are con-

stantsC;, C > 0 with
(21) Cq < /Gulx) < Cg forallze P, pe{l,...,M}.
Furthermore, letC’r be a Lipschitz constant with the following property

< Cp foral z,ye P,, pe{l,...,.M}.
[z =y #

For a closed and connected polygonal 82 R? we introduce an admis-
sible meshA p which is a collection of closed trianglé8 C D satisfying
the following propertiesD = U{T'|T € Ap} andthe intersectiof N7’

of each distinct paifl’, 7" € A\ p is either empty or a common vertex or a
common edge of both elemenis and 7" . The set of nodal points of the
mesh Ap is denoted byNj , . For a mesh poinp € A, and for an
elementT € Ap, we introduce the neighbourhood (see Figure 2.1)

wp=U{T"eAp| peT’} and

(2.3)
wr=U{T" e Ap| T'NT # 0}

and the distance
(2.4) dr = diSt(T,D\wT) > 0

Forpe{l,...,M},let A, be an admissible mesh aff, consisting
of closed planar triangle§’ C P, and let Ay, be the corresponding set
of mesh points. We assume that the mes{mégt}fyzl fit together in the
following sense: for any nodal poiptof A, which satisfiep € 0P,NJF,
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K7
v

Fig. 2.1. w, and wr

(p,le{1,...,M}, n#1), we have thap is also a nodal point of\; .
This assumption implies that

(2.5) AN = {r=~T)| Telr,, pe{l,...,M}}

is an admissible mesh (consisting of curvilinear triangles) on the sufface
The mesh size of\ is defined by

(2.6) ha = max diam(T).

TEA

As in Sect. 1, let\, be the set of nodal points of the megh, and the
neighbourhoodv, C I' of ¢ € N, is defined in (1.6). For an element
T € /A, we introduce the neighbourhood

(2.7) we= J{FealPnr£0 C T
and the distance

(2.8) d. = dist(t, ' \w;) > 0
(where d, is the distance irR?).

The following definitions introduce piecewise polynomials and special
finite element space&’ (D) and H{*(I") for m € {0,1,5,6} on D C
R? and on the surfacé.

Definition 2.1 Let D C R? be a closed and connected polygonal set and
let Ap be an admissible mesh abr.

a) The space of piecewise polynomials associated With is denoted by
Pn,(D) :={v:D — R | v|ris polynomial forallT € Ap}.

Since flexible local polynomial degrees are important/iprmethods, we
introduce on any elemerif’ € Ap a local polynomial degree; € Ny
and define for the degree “vector§ = (é1)ren,, € NOAD the space

B} (D) := {v€Pr,(D)| vly has degree< ép forall T € Ap}.
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For m € No, let B{’ (D) := B (D), where§ = (67)recn,, is the
constant degree vector withy = m .

b) The characteristic function of an elemefit € Ap is denoted by
oD SR,
c)For p € Na, , we |ntroduce<p[ . D = Rasthe piecewise linear and
continuous hat function characterized b&” (p)=1 andsupp(go][ﬁ) = Wp.
Moreover, we introducapf} : D — R as the Argyris element (see [10,
Theorem 2.2.11]) characterized by the following conditiomg*.] (p) =1,

goE’] (p’) vanishes in the other mesh pointse Nx , \ {p}, its derivatives

of order k£ € {1,2} vanish in all mesh pointp’ € Ax,, and its normal

derivatives also vanish in the midpoints of all edges of the mesh.
Argyris elements are locally polynomials of degfe®n any element of

the meshA , and globally C''-functions. The support o,fa;[?] IS wy, (due
to the above mentioned conditions).

dLetT € Ap and |etp0,p1,p2 be the vertices of the trianglé'. Then,
we define the bubble functiopT D — R by 90[6] = 38(phl 02

Wheregog, l'is the hat functionintroduced in c). This bubble functionis locally
a polynomial of degre& on any element of the megh,, and globally a
C'-functions with support iril".

e) The finite element spack" (D) C B (D) is defined by

H' (D) = spcm{go[Tm]}TeAD for m € {0,6}

and
HED(D) = span{ap][jm]}peNAD for m € {1,5}.

Definition 2.2 Let A be a mesh on the surfadé (asin (2.5)) and letp ,
the corresponding mesh on the planar fakg for p € {1,...,M}.

a) The space of piecewise polynomials associated witis denoted by

P.(I") :={v: "= R | vor~|ris polynomial forallT € A,
andpe{l1,...,M}}.

For a degree “vector” § = (0;),en € NOA , we define

BPO(I') := {v e B\(I") | vo~|r has degree< 4, forall 7 € A,
wherer =~(T) with T e A, pe{1,...,M}}

and analogously we havé™(I") for m € Ny.
b)For pe{1,...,M}, T €A, andp e Ny, let

PP SR for me {0,6) and Q"R for m e {1,5}
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be the finite element functions introduced in Definition 2.1. We introduce
for the surface element := ~(7) € A and the surface nodal point

q :=v(p) € N, the finite element functiong™ : ' — R (m € {0,6})
and & . I 5 R (m e {1,5}) by

(2.9) olrl(g) == ¢fM@) and B(e) = of(a)
for € =~(z), zel.
c¢) The finite element spacH™"(I") C P/*(I") is defined by
H™I) = span{®™ . cn C P™I")  for m e {0,6}
and
H™I) = span{®™}en, € B™(I)  for me {1,5}.

The spaceH?(I") consists of discontinuous function#]!(I") con-
sists of continuous functions, anll*(I"), m € {5,6}, consists ofC*-
functions.

We end this section with two lemmata which will be needed for the
localization of the double integral norm.

Lemma 2.3 For A > 0 and for all y € R? and ¢ > 0, we have
(2.10) / ly—x| 2 Mde < =,
R?\B.(y) A

where B.(y) C R? is the ball with radiuse centred aty .

The elementary proof of Lemma 2.3 only uses polar coordinates. Aresult
similar to (2.10) also holds for the two-dimensional manifdld

Lemma 2.4 For )\ > 0 there is a constant’, (only depending om\ and
on the geometry of ') such that

/ lz—¢72 M de < Cye* forall zeR3 andalle >0,
I'\B:(2)

where B.(z) is now the ball inR3.

The proof of Lemma 2.4 can be found in [21, Lemma 8.2.4]. The only
assumption needed for the proof is that the Lipschitz boundaiy almost
everywhere differentiable.
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3 Localization of the norm || - || gs(ry for s € (0,1)
For s € (0,1) and I'" C I", the double integral norm is given by

(3.1) ey = olliocrny + [olFre(ry

with
ol = loldag = / o(€)[? d
- Z / (1@)[2/C(x) da
YT mPH

and with the semi-norm

2
oty = [, [ dea

vy V(Y 2
Z / / L (x ()’53)2?;’ \/mdx\/m(y)dy.

uym=1

with P‘u’[v = ")/71(1—1/) N P,u-

There are other possibilities to define the Sobolev norm of non-integer
order s. One could define the global norih- || sy, for s € Ryo \ N,
for example, by means of the growth of the Fourler transform or by means
of interpolation theory. All these global norms are equivalent (see, e.g., [2],
[22, Theorem 8.5]). The local double integral notn || zs(pry, I" C T’
(given by (3.1)), the local Fourier norm (given as the minimal norm of an
extension) and the local interpolation norm are also equivalent, but with
equivalence constants depending Bh

The norm definition via (3.1) has an important advantage in comparison
to the other definitions: the local double integral nofim || s+ is ap-
proximately computable using quadrature rules, whereas the local Fourier
norm and the local interpolation norm are not computable.

The aim of this section is to prove the localization of the double integral
norm (1.9) fors € (0,1). The proof consists of two main steps. In a first
localization step, the global norifv|| sy (v € H*(I")) is estimated by a
sum of local semi-norms and weighted lodzl-norms (see Corollary 3.3).

In a second step, the perturbing weighted loE&inorms will be estimated
by Poincae-type inequalities (see Lemma 3.8).

In the estimations of this section, we try to determine the constants as
exactly as possible. If these constants are known exactly then the reliability
constantC"® in the upper estimate of (1.4) is also known. Exact knowledge
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of the reliability constantC™® is important for the stopping criterion in
the adaptive mesh refinement process and for evaluating the quality of the
Galerkin solutionug .

Lemma 3.1 Let s € (0,1). Then, we have for any function € H*(I")
and all meshes\ on I' (see (2.5)) that

32) ol <Z[// ‘MS S dedy

TEA
Facy, d;%nvnizm]

(33) <3 oy + 40 3 A0l

qeENA TEN

wherew,, w, and d, are introduced in (1.6), (2.7) and (2.8) and where
(s, isthe constant introduced in Lemma 2.4 (only depending and ).

It is essential in the proof of Lemma 3.1 that the séts },ca;, form
an overlapping covering of".

Proof. Using the abbreviation®, := U{7'| 7' € A with TN7' =0} =
I'\ inn(w;) and

lv(€)
/’/” /l/// |£ 77|2+23 déd for F/,F//QF,

we obtain

(3.4) [Wlfrery = /F/F - TGZ%/T/F
UL+ L]
where

@8) [ [ = [ [ 1w -t i dgay
< 2 [wP( [ 1e-nt )y
2 [ u@R( [ 1€ a2 an)ag

=: 2 JT,l + 2 JT72 .
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First, we show that

Z ']T,l = Z JT,2 .

TEA TEA

For that, we infer with the characteristic functiogp_. of D,

PRI [ w@rE( [ e —nie an)ac
= X [ @R ( [ 16—l an)ae

TEA
_ v 2 L 1—2-2s
A (TEZAXDT@)/TM W22 dn ) de
=:f(€)
(3.6) = > [ @ FE)de.
envT

Let 7' € A be fixed and let be an interior point ofr’ . Then, we obtain
forany r € A

) = 1if¢eD,=u{r"| " e withrn7" =0}
XD-\S) = 1 0 otherwise

_J1ifrne =0

1 0 otherwise

This implies for f given in (3.6) and for any interior poirg of 7’ that

1O = X [l e = [ e-ntag,

TEA T D‘r
nT/=0

Inserting this into (3.6) shows

_9_9g 3.5
Sa = 3 [@F ([ ematFan)ae ST g,
TeA ren’T Do ren
which yields together with (3.4) and (3.5) that

BN ol < S [/T/WTMJTJ]

TEA

= S[[ Lo frwr( [ e-ara)an].
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The definitions of D, andd, implythat D, C I'\ B,_(n) foranyn € 7.
This together with Lemma 2.4 leads to

3.8 —n7 g < —n|722 4
(3.8) /Dng W dE < /p\Bm'{ 022 dg

L.2.4 L
< Cheds

Hence, assertion (3.2) follows from (3.7) and (3.8). The assertion (3.3) fol-
lows from

SI-xfl=x s L%/ ]

Tlen qENA 7,7 Cw
TﬂT/;é@

where the inequality is a direct consequence of the following fact: for any
7,7 € A with 7 N7/ # () there is at least one nodal poigte N, with
7,7 Cwy. O

Analogously to Lemma 3.1, one can estimate the semi-norm
|- |g=(py for D C R%.

Lemma 3.2 Let s € (0,1) and let D C R? be a closed and connected
polygonal set. Then, we have for any functione H*(D) and all admis-
sible mesheg\p on D that

| |2 Z )|2d d _|_4jd—23|| ||2
Ol or \x—y\2+28 el

TeAD
39 < > |wlie, . i = Y A el
pENAD TGAD

wherew, , wr and dr are introduced in (2.3) and (2.4).

The proofs of Lemma 3.1 and 3.2 only distinguish in (3.8), where one
has to use Lemma 2.3 instead of Lemma 2.4.

As a consequence of Lemma 3.1 we obtain

Corollary 3.3 Let s € (0,1). Then, we have for any functione H*(I")
and all meshes\ on I' that

—v 2
(3.10)  [vllFsy <D [/T/w Md{dn

TEA

+obe d;%nvri%]

(3.11) <Y olhrg) + O D A7 vlFen

qENA TEA
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with a constantC’>¢ independent o and A . More precisely,C*¢ is an
upper bound ofh?* + 4Csy, , where Cy; is given by Lemma 2.4.

For further estimates ofv|| ;s , it would be useful if one could esti-
mate the perturbation termgQSHUH%z(T) on the right-hand side of (3.10)
and (3.11) in the following way

(312) d;28HUH%2(T) < const HUH%IS(T’)7

where 7’ is a small neighbourhood of with a constant independent of
v € H*(I") and independent of shape regular meshesUnfortunately,
(3.12) does not hold for arbitrary functions the constant functiom = 1
is a simple counterexample since

d;qufnizﬁ) - d;QSare%(r) e

||v\|HS(T,) area(t’)

One can show (3.12) only for functions € H#*(I") which satisfy some
additional conditions. In the following Lemmata we will show an estimate
similar to (3.12) for functions) € H*(I") being orthogonal to certain finite
element functions.

area(t’)
area(T)

is bounded.

Lemma3.4 Let S C R? be a polygonal domain. Then, we obtain for
€ (0,1) and any functionw € H*(S) that
(3.13)
1 diam(S)?*2s
2
< - -
[wllZes) < 2 area(S) [l S)+area ‘/

Let T C R? be atriangle. Then, we obtain for any functienc H*(T)

‘ 2

1 .
(3.14) lwllp2(ry < ;dmm(T) w51y

provided that [, w(z) dz = 0.
Estimate (3.14) is denoted as the Poigdaequality in [25] and [24].
Proof. The proof of (3.14) is given in [25] for convex domaifis. Using

lw(z) —w(y)|* = wz)? +w(y)? — 2w(z)w(y) for z,y € S, we obtain,
taking J := [, w(z)dz, that

//|w ()2 da dy
// V2 dzdy + // dxdy—Q/Sw( )/Sw(y)dyd:c

—_——
=J

= 2 area(S) /w(x)2 de — 2.J%.
S
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Hence, (3.13) follows from

|w(z) — w(y)l?

2area(S)ulfags -2 = [ [ g

|SU _ y|2+25 dr dy
sJs ————

< diam(S)2+2s
< di (S)2+25 | ‘2
< aram w Hs(S) * 0

In the following let A be a mesh on the surfade (as in (2.5)) and let
2\, the corresponding mesh on the planar fd¢e (identified with with a
polygonal closed set ifR?) for p € {1,...,M}.

Lemma 3.5 Let m € {0,1,5,6}. Then, forT € A, and p € Nj,,

[m] [m]

the finite element functiop;.~ : P, — R respectivelyp, ™~ : P, — R
(introduced in Definition 2.1) satisfies

(3.15) / 11— oM (@)2de < (1—CEF)area(T) for m € {0,6}
T

and

(3.16)/ |1 — goj[om] (2)Pdz < (1—CEFYarea(w,) form € {1,5}

with the constants

27 % T 257 T8 T 5¢
These estimates holds for arbitrary meshgg in the casem € {0,1,6} .
For m = 5, we have the following restriction for the mesh: the ratio of
the length of neighbouring edges has to be bounded. More precisely, (3.16)
holds form =5 if
(3.17) lp — a : lp — b < 5
lp—0l " |p—a
for any mesh pointg, a, b € N, which describe an element &, .

CFF = 1, CFE = 1 FE 3 FE _ 2

Proof. (i) For m = 0, (3.15) follows from [, |1 — ol (2)|2 da: = 0 (since

gogE’] is the characteristic function df").

(i) For m € {1,6}, we use some properties of barycentric coordinate
functions. Letpo, p1, p2 € N, be the vertices of the triangl& , then the
hat functionswélj] coincide with the barycentric coordinate functioisg.
Thus, by [10, Exercise 4.1.1], we have for any= (v, v1,12) € N} that

(3.18)

14 14 vV 2V'V'V'
R

(2+V0+V1 + 19)!

area(T) .
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Hence, (3.15) follows form = 6 from
2

2
[n-cera = [ [ (g a
T T
(3.18)

24 2 (43
) o 6% 12
= (-2 ety

< <1 — %) area(T) .

Now, let m =1 and letT’ € A, such thatT’ C w,. Then,py :=p is
one vertex of7” and we have

/Tll—w;[a”?dw = //1—2s01[ulo]+(<ﬁ;[33)2dw
(3.18) 2 22
= (1 - 25 + E)area(T’)

1
= 3 area(T’) ,

)area(T)

which yields
[ h-sbten 5 fn-stin
“p T'EN, r
T’gwp
— 1 T/
=3 Z area(T")
T'eAy
T’gwp

= (1 - %)area(wp) .

(iif) The proof form = 5, which is relatively long and technical, is given
in the appendix. O

As consequence of Lemma 3.4 and 3.5, we obtain the following Lemma.

Lemma 3.6 Lets € (0,1), m € {0,1,5,6} andletCL¥ be the constant
given by Lemma 3.5.
a) For T'e A, , we have

ol 1 diam(T)**?s w2
AT = 2CFE  grea(T) H=(T)

(3.19)

for any functionw € H*(P,) which satisfiesw L <p[Tm] with m € {0,6}.
b) For p € N, we have

1 diam(wy)?t?

2 2
(320) HwHLQ(wp) < 207Fr;E area(wp) ’w‘Hs(wp)
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[m]

for any functionw € H*(P,) which satisfiesv L ¢, with m € {1,5}.
For m =5, A, has to satisfy additionally assumption (3.17).

Proof. In order to prove (3.19) and (3.20) in one step, we introduce

SO[m] — 80[1731} form € {O, 6} and
goz[,m} form € {1,5}

T form € {0,6}

._ mly —
S = supp(p"™) = {wp form e {1,5} -

Due to (3.13), we have

(3.21)
9 1 diam(S)**2s 1 / 2
< - —F s .
[wllZ2s) < 2 area(S) wlires) + area(S) ‘ Sw(x) da )

Sincew L ™  we obtain
2
2= | [u@-gm@)de [ < - e ol
L.3.5

< (1-CRP)area(S) [wZa(s) -
Inserting this into (3.21) yields

[[w]|? < 1diam(S)T>
L2S) = 2 area(S)

and thus

wlFesy + (1= CRP) wlli2s)

diam(S)*+2s

1
FE 2 2
O Il = 5 = ca(sy Wlhew) -

Remark 3.7

a) We will consider in the following so-calledhape regulameshesA
with non-degenerated angles. Therefore, we introduce for0 , the family
of meshes

(3.22) M (') := {A]| A isameshon asin(2.5)ands
is a lower bound of all angles
of Ay, pe{l,...,M}}.

For m = 5, we have to tighten the definition 081, (") by assuming that
meshesA € M, (I") satisfy additionally (3.17).
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b) There is a constan€:"** (only depending onx and I") with the

following properties: For any shape regular meshe M, (I") and the

corresponding mesi\, on P, (p € {1,...,M}), we have
(3.23) diam(T)? , dz'amQ(T)2 ’ diam(T)? < (Cohare
area(T) ds. d2

for all elementsT” € A, with 7:=~(T') C I" and with d, introduced in
(2.8). Moreover, we have

diam(wp)?  diam(w,)?  diam(wy)?

(3.24) < C:hape

area(wp) dz, ’ dz2
for any nodal pointp of A, and forallT ¢ A, with T" C w, and

7:=v(T),wherew, isintroducedin (2.3). The consta@t" " increases
for decreasings .

c) Shape regular meshes with non-degenerated angles are suitable for adap-
tive mesh refinement, since they may contain small elements as well as large
elements.

d) The constaniC"*"* will be used in the following Lemma 3.8 (where

a Poincag type inequality similar to (3.12) will be shown for functions

v € H*(I'") which are orthogonal taH*(I"), m € {0,1,5,6}) and in
Theorem 3.9 (where the localization of the double integral norm will be
shown). For the case: € {0, 6} , we only need tha€s"** is characterized

by (3.23), and the characterization by (3.24) is only needed for the case
m € {1,5} . The formulations would be more precise if one would introduce
two constantsCE"*¢ and C*"**¢ | where C*"° (respectivelyC*"*** )
satisfies (3.23) (respectively (3.24)). Then, Lemma 3.8 and Theorem 3.9
hold for evenm with CZ%“pe and for oddm with Cjﬁ“pe (instead of

ape

csharey. Only to simplify the notation, we use one constat* ¥ .

Now, we are in position to prove a Poinéaype inequality similar to
(3.12).
Lemma3.8 For s € (0,1), m € {0,1,5,6} and x > 0, there is a
constantC%7,"c with

(3.25) DA Plliagy < CER D ol
TEA qeNA

for all shape regular meshe& € M, (I") with sufficiently small mesh size

(i.e., hn < hg) and for any functionv € H*(I") which is orthogonal to

H™(I"). The constant is explicitly given by
2 (C:hapeclg)lJrs 6(;

poinc __ < : —
(3.26) C¥E = - CTE 2, with ¢, {

1 for odd m
3 for evenm

)
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where CEE - cghare Cqs, Cq and Cr, are the constants given by
Lemma 3.5, Remark 3.7, (2.1) and (2.2).

Proof. (i) First, letm € {1,5}.Let p € {1,...,M} and letq € N,
be an interior mesh point of, (i.e., w; C I},). Then, the corresponding
parameter pointp := v~ '(q) € N, is an interior point of P, (i.e.,
p¢oP,)andw, =y *(w,).By v L H™(I'), we have

(327) O = <U, QS([]mbLQ(F)
= [ #0(@) o6(@) /Gulo) da
Wi N o’
(2.9) SOLM](Z') =: w(z)

= (w, W;[jm]>L2(PH) .

[m]

Sincew L ¢, ', we may apply (3.20) and obtain

S d el = 3 [ pO@)E Gl de

TeA reA ¥ H(7)
TCwq TCwq
—2s 2 1
= Z d; / |w(z)|* ——= dx
= Y1) Gu(z)
TCwq
2.1)
(3.28) < GG D A il )
TEN
TCwq
(3.24) -1 shape\s j: —2s 2
< Cg (CR)° diam(wp) ™™ |lwllfz2(,)

(3.20) (C’,ﬁhape)S diam(wp)?

< 2,
- 2CFEC. area(wp) [l (wn)
(3.24) )
(3.29) < Crlwlgsg,)
. (Cghareyi+s . . .
with the constantC := “S&rr~5— . Since the Gram determina6t, is
m =G

differentiable onP, , we have

[ WEE - Vaut, o

’fL‘ _ y|2+2s

(3.30) max max sup
pef{l,...,M} PENA, zew,
pgOPy,

with a constans only depending on/” and independent of. Hence
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(3.31)

2
\w’Hs(wp)

= [ [ o= a2 @)y Gulo) — o) Gl P da dy

p v Wp
< 2v(v(@) 12 [V Gul(z) =/ GuW)? + 2Gu(y) [v(v(2) —v(v(¥)[?
(3.30)
< 2 02/ [v(y(x))|? da

2
Y\Y
+ 2/ / ‘x _ y‘2+2§ ))‘ Gﬂ(y> dz dy
Wp JWp

2 20y 2CCE2s
S o H””L?(wwp»*TG’”'Hs (@)

(2 1)

Combining (3.29) and (3.31), we have with the constafjs= % and

20,C%25¢C,
Cy:= ==L ~¢ & ¢
=G

(332) D a7 [ollia < CsllvlFa,) + Calvlheq,

TEA
TCwq

S CshZ Y d7P |ollfaiy + Calolfe,)

TEA
TCwq

For a meshA with sufficiently small mesh size (such th@gh?® < %),
we obtain

Z . HUH%%T) < 20y \Uﬁqs(w )

TEA
TCwq

and therefore
M

DI L A S S SO e 1908

TEA pn=1 g€Np TEA
wqCIy TCwq

201 Y [olheq, s

qeNA

IN

IN

which shows assertion (3.25) for the casec {1,5} .

(i) Now, letm € {0,6}.LetT € A,letpe {1,...,M} with 7 C
I, andletT :=~~1(7) € A, .Fromv L H™(I') we infer (analogously
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to (3.27)) thatw L gpl}"] for the functionw := (v o) - /G, . Hence, we
may apply (3.19) and obtain (similar to (3.28)) that

(3:33) ;% [vl3,) < Cldr ™ Wiy 1)

(3.19) 1 diam(T)\2s diam(T)?
2 \
< sercgd ) arcaimy Mhem
(3.23 ) 9

< Crlwlgs e Cr wlis

with the constantC; introduced after (3.29). Since the Gram determinant
G, is differentiable onP, , we deduce (analogously to (3.31))

20
9 2 2
(3.34) |wlfpeip < <. 1oz 2y (1)) +

My

For a meshA with sufficiently small mesh size (such thagh?® < %),
we infer from (3.33) and (3.34) (analogously to (3.32)) that

A% ol 22y < 2Ca |vlfe
and therefore

Z d;2s||UH%2(T) < 204 Z 0% ()

TEN TEN

204 > 2 ol

qGNA TEA
TCwq

2 2
300 2 ol

qeNA

IN

IA

O

The combination of Corollary 3.3 and Lemma 3.8 leads to the following
localization of the double integral norm which is the aim of this section.

Theorem3.9For s € (0,1), m € {0,1,5,6} and x > 0 there is a
constantC = C(s,m, k) with

[ollFrsry < C Y 10lhs
qENA

for all shape regular meshes € M, (I") andforany functionv € H*(I")
which is orthogonal toH(I") . The constantC' is explicitly given by
C = 1+ Cleegroine - where Cl° is an upper bound of?* + 4Cs;

S,M,K

and whereC?%' and C,, arethe constants given by (3.26) and Lemma2.4.
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Analogously to Theorem 3.9, one can localize the ndjrm| sy for
D C R%.

Theorem 3.10Let s € (0,1), m € {0,1,5,6} and x > 0. Let D C R?

be a closed and connected polygonal set. Then, we have for all shape regular
meshesAp € M, (D) on D (where M, (D) is defined analogously to
(3.22) by a minimal angle condition) and for any functiane H*(D)

which is orthogonal toH" (D) that

—2s) 112 (Chreytts 2
(335 Y dPluliar < g D Wl
TeAp m PENA
and
27 (CShap€)1+s
(3:36) [lwllFs(p) < <1+W >l
m PENA

with the constant<CZ® and C2""° given in Lemma 3.5 and Remark 3.7.

Proof. The proof of (3.35) is considerably simpler then the proof of (3.25)
since no Gram determinants has to be treated. (3.36) is a direct consequence
of (3.9) and (3.35). O

4 Localization of the norm || - || s () for s € (1,2)

For s € [1,2),decomposedas= 1+o with o € [0,1),andforD C R?,
the norm|| - || zs(p) is defined by

(4.1) lwlliemy = Y, [wlinm
ke{0,1}U{s}

with the semi-normgw|go(py := [Jwl[z2(py and
wlinpy = 10wli2py + 102wl 72p)

(where 9w is the partial derivative%”j) and for o > 0 with
2
wlFe(py = Z |0jw] %0 (py

(Ojw)( 2
Z//' )0 QW 4,

The norm|| - [|zs(p) is also fors € (1,2) localizable.




Adaptive boundary element methods 489

Theorem4.1lets =1+ 0 € (1,2),let x > 0 and let D C R? be a
closed and connected polygonal set. Then, we have for all shape regular
meshesAp € M, (D) on D and for any functionw € H*(D) which is
orthogonal to HY (D) that

(4.2) lwlFrepy < C > 1wl
PENA

with the constant

C = Cls.n) = (1 N hA2D> (1 n 47T(Céh;pe)1+a>’

where C2"P¢ is given in Remark 3.7.

Proof. Because ofw L HED(D) , we have [, w(z)dr =0 forall T
Ap and obtain thereforefw||.2(p) < %diam(T)‘w’Hl(T) (see (3.14)).
Hence

2

hA
@3 lwldep < (1+ 22) 10wl + 10wl )

Fromw L HR (D) we infer by partial integration thaljw 1 HA (D).
Applying (3.36) to the right-hand side of (4.3) (with{” = 1) shows
assertion (4.2). O

This localization result also holds for the notn|| sy on the surfacd”.

Theorem4.2For s = 1+ 0 € (1,2) and k > 0, there is a constant
C = C(s,r) with

(4.4) lolFsry < C Y [0l
ISHYN

for all shape regular meshes € M, (I") andforany functionv € H*(I")
which is orthogonal toH?(I") .

The definition of the norm| - || sy on a closed and smooth surface
I' = 00 € 0 is rather involved fors > 1, since one needs a system of
overlapping parametrizations faf and a subordinated partition of unity
(see [32, Chap. 4.2] for the details). The proof of (4.4) in [18] needs special
parametrizations which take into account that the meshes on the overlapped
parameterized parts df have to fit together. Therefore, this proof is con-
siderably more complicated then the proof of (4.2). Hence, we omit here the
proof of (4.4) and refer to [18].
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5 Local error indicators

In this section, we will apply the localization of the double integral norm to
develop reliable and efficient error indicators for the Galerkin discretization
of boundary integral equations.

The global norm|| - || 51y, for s > 0, is abbreviated by - || . For
negatives < 0, we defineH*(I") to be the dual space éf ~*(I") with the
dual norm

[v(w)]
lolls = lWollmsry = olla—sqy = sup
weH () llwl| s
w

For s € R, the L?(I")-scalar product< ;0 ¢ 2( ) x L2(I') — R can
be extended to the dual form, .)o : H*(I") x H—*(I") — R by

(v, w)o = (v, w2y = {;U((;; :; iig

for ve H¥(I"),w € H™*(I") .
In the following, we consider a bijective and continuous operator
(5.1) A:H™22(I) - HN(I'), s€0,2], a €R,

of order 2«.. For a given right-hand sidg € H*(I"), we search for the
solutionu € H*2%(I") of the equation

(5.2) Au = g onlI.
An important example for (5.2) is an integral equation with the operator

i 1
dr Jp |z — ¢

(5.3) Au(z) = u(§) d for zel .
The corresponding integral equation is related to the interior and exterior
3-dimensional Laplace problem if? with Dirichlet boundary condition.
The operatorA in (5.3) is the single-layer potential of the Laplacian and it
satisfies ) )

A:H =2(I')—> H=2(I),

i.e., we are in the situation of (5.1) with= J anda = —3 (see, e.g., [9]).

The abstract problem (5.2) is equivalent to the following variational
problem: findu € H*+2%(I") such that

(54)  (Au,v)r2ry = (9,v)r2(1) forall ve H™*(I) .
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For the discretization of problem (5.4), &t be a mesh onl” (see (2.5))
and letG = G, C H*"?*(I") be a finite dimensional Galerkin trial space
associated with\ . Then, the Galerkin formulation of problem (5.4) reads:
find an approximate solutiong € G such that

(5.5) (AUQ,Ug>L2(p) = <g,Ug>L2(p) for all Vg € g.

In the following, letw € H**2*(I") be the solution of problem (5.2)
(and (5.4)), and letug € G be the Galerkin solution of problem (5.5). Our
aim is to estimate the unknown discretization error

e = ug—u € H*"*(I)
by computable local quantities. The residual
= Ae = Aug—g € H’(I)

is computable after the calculation of € G and local quantities of will
be used to control the adaptive refinement.

Since A : H*T2%(I") — H*(I') is assumed to be an isomorphism, we
find constantsC?, C57 > 0 such that for allv € H*72%(I") the estimate

56) O | Avlfrery < lollfreery < G I AVIEr

is satisfied The constants are given(bif”) ! = || A||7,, (1) Ho+2e () @D
= [IA7 3 o201y o () - BY (5.6), we obtain

G.7) Oy < llelfozary < G Il

For s = k € No, the global norm||r| ;«, is additive (see (1.7)) and
therefore we have

58) CF D lrlfiwey < lelfrezary < CF Y lrlimen
TEA TEA

The estimate (5.8) means that the local quantii@s|| ;) }-ea of the
residualr are reliable and efficient error indicatorsinthe case k € Ng.
Such an approach was treated in [28].

In [20], the following approach was proposed foe (0,1) : the double
integral norm is not additive but satisfies

IrlFery = D A2

TEA
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X2 = /!r |2d£+// (&) = r(ml® ‘HQS " dedn

for s € (0,1). This shows

CF YN < lelforzagry < C5F Y A2,
TEA TEA

with

i.e., the quantitied \; } .c» are reliable and efficient error indicators in the
cases € (0,1) . Unfortunately,\- has only partially local character.

We are able to improve this approach using the localization of the double
integral norm presented in Theorem 3.9 and 4.2.

Theorem 5.1 Let s = k+ o with k € {0,1} ando € (0,1).Leta € R
and let A : H*2%(I") — H*(I') be an isomorphism. Le§ = G, C
H**2%(I") be a finite dimensional trial space associated with a mésh
satisfying H*(I") € G C B.(I') with m € {0,1,5,6} inthe cases €
(0,1) and withm = 0 in the cases € (1,2). (Examples forG are given
below in Remark 5.3.)

Then, we obtain for any solution € H*"2%(I") and for all meshesA\
with the corresponding set of mesh points the following estimate for
the Galerkin errore € H™2%(I"):

5.9 CYT Y el < elfinagy < C DY e,

GENA qeENA

wheree, := |r|gs(,,) is alocal double integral semi-norm of the residual
r € H*(I"). The efficiency of the error indicator§e,},cn; (i-€., the
lower estimate in (5.9)) holds for arbitrary meshes, and the reliability (i.e.,
the upper estimate in (5.9)) holds for shape regular meshes M, (I")

with x > 0. The constantgs¢// | ¢! in (5.9) are independent af , A

and G, they are explicitly given by

S,mM,K

1
Oeff — gcfp and Crel — Crel(sjm’ H) _ Cop (1 + Cloc Cpoznc)’

where C7, CP, Clec and CL% are the constants given by (5.6), The-
orem 3.9 and Lemma 3.8, has local character, since fos € (0,1), we

have
53 = ‘r|12LIS( // |2+2a dfd
Wq v Wq
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Proof. We show (5.9) fors € (0,1), the proof fors € (1,2) is similar
(and uses Theorem 4.2 instead of Theorem 3.9 for the upper estimate). With

the abbreviation|r, [, == [5 [ru % dédn, for ', 1" C I,
we obtain

(5.10) > Irffw,) < D D] / = 3%//r
7 Jwg Ten” T

qENA gENA TEA
TCwq

67 3

< By < o lellFrs+2a(ry »

which shows the lower estimate in (5.9). For the proof of the upper estimate
in (5.9), let A € M,(I') be shape regular mesh. The Galerkin residual
r = Aug — g is orthogonal tog (because of (5.5)). This implies, together
with H™(I") C G, thatr L H(I"). Hence, we may apply Theorem 3.9

to » and obtain

G11) el < 1+ CRCE D Il -
v=1
The upper estimate in (5.9) follows from (5.11) and (5.7). O

In [19], we present numerical experiments for two-dimensional prob-
lems wherel” = 912 is a curve inR?. These numerical results confirm
the theoretical results of Theorem 5.1 that the so-called efficiency index

NI sg/||e||Hs+a(p) is bounded from above and below by constants

independent ofu and A . They also demonstrate that the error indicators
{eq}qen,. are a proper tool to control the adaptive mesh refinement since
the discretization errors decrease in a very efficient way.

In the case (1.3) (i.e.A : HP2¥(I') — HS(I'), a € R, s > 0),
the residualr € H*(I") is a function and Theorem 5.1 shows that local
H? semi-norms ofr are efficient and reliable error indicators.

In the case (1.2) (i.,e.A : H*(I') —» H “(I'"), o > 0), the operator
A can be interpreted in a broader sense as a differential operator and the
residualr := Aug —g € H=*(I") = (H*(I'))" is a functional. For this
case, we considered in [15-17] error indicators, that were introduced and
investigated by Balika and Rheinboldt in [1] for FEM. We showed in [15-
17] that these Baliika-Rheinboldt error indicators (BR error indicators) are
also efficient and reliable for BEM in the case (1.2). The BR error indicators
are local quantities of- and they can be interpreted as lodd® norms
of the residualr € H=(I") .

Hence, in both cases local (semi-)norms of the residual are efficient and
reliable error indicators for Galerkin boundary element methods.
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The error indicators(e, } e, introduced in Theorem 5.1 are efficient
for arbitrary meshes and reliable for shape regular meshes. Shape regular
meshes are suitable for adaptive mesh refinement, since they may contain
small elements as well as large; the minimal angle condition only restricts
the shape of an element not its size.

For error indicators, the reliability is more important then the efficiency.
Due to our analysis in Sect. 3 and 4, we can also introduce error indicators
{é;}re~ Which are reliable for arbitrary meshes and efficient for shape
regular meshes.

Theorem 5.2 Let s € (0, 1) . Using the same assumptions and notation as
in Theorem 5.1, then we obtain for any solutior H*+2(I") and for all
meshesA the following estimate for the Galerkin errerc H*+2(I'):

5.12)  CYH D "er < elforeagy < O &7
TEN TEA

/ / ,M " dgdn + e

€, is alocal quantity the residuat . The reliability of the error indicators
{é:}ren holds for arbitrary meshes and the efficiency holds for shape
regular meshes\ € M, (I") with x > 0. The constant&>*// and C"¢
in (5.12) are independent af, A and G, they are explicitly given by
. cP .
celf = — L and Crel = O max{1,Clc}.
3(1+ CLo)

with

The reliability constantC"™ of the error indicators {é:}ren is better
than the reliability constantC™® of the indicators{e,},en; introduced
in Theorem 5.1.

Proof. The upper estimate in (5.12) follows from
) 5.7 op 1 19
lel oy < Cs ||r|rHs s

(3.10)
< Cop Z /T/JJ |2+20 dfd + Cloc d—2aH HL2 7—):|

< oY max{l,Céoc} Zéf
TEA

For the proof of the lower estimate in (5.12), l&t € M, (I") be a shape
regular mesh. The Galerkin residual= Aug — g is orthogonal toG and
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consequently orthogonal t&/*(I") . Hence, we may apply Lemma 3.8 to
r and obtain

. (3.11) Cop
Zsf < Z |T‘§{U(wq) + Zd72 HTH%Z(T)v

TEA qENA TEA
L38 oznc
< 1 + Cgm K Z |7“|HS
qENA
(5.10)

3
< 1+ Omn) o lelreraary - ]
1

Remark 5.3In Theorems 5.1 and 5.2, we assume for the Galerkin trial space
G that
(5.13) H™I') € G C B(I') with me{0,1,5,6}.

For m € {0,1}, G might be for example a space of piecewise polyno-
mials with inter-element smoothness of order— 1, i.e., G := B(I") N
C™YI) (C~YI') := L*(I')) with an arbitrary local degree vectdr=
(0;)ren € N5 (see Definition2.2). Fom € {5,6}, G := B3 (I')NC(I")

is also an example. The reliability constantin Theorem 5.1 and the efficiency
constant in Theorem 5.2 depend en in (5.13). This is no restriction for

the hp-method sincen describes only the inter-element smoothnes§ pf

the local polynomial degrees if € NOA are not restricted byn .

AcknowledgementsThe author would like to thank Professor Jinchao Xu, Penn State Uni-
versity, for fruitful discussions concerning Lemma 3.1.

A Appendix

In this appendix, we prove Lemma 3.5 fot = 5. For that, letT" € A,
with 7' C w, . Then, p is one vertex ofl", let a, b be the other vertices. In
order to prove (3.16) forn = 5, it is sufficient to show that

3
A — 12 -2
(A.1) / 11— |7dx < (1 25)area(T),

provided that (3.17) holds. Since Argyris elements are independent of trans-
lation, we assume without loss of generality that 0, i.e., (8) ,a,b are

the vertices ofI". Let 7' be the reference triangle with verticcé%) , (é) ,

(0> and consider the linear and bijective transformationT" — T,

1
V) = (e )T = e (SGon )
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with the rotation@Q = (_01 é) .Then,¥(a) = (é) and ¥ (b) = (?) .

For the construction of the Argyris eIeme@éf] on T', we compute the
corresponding finite element function dn, i.e., we computey : T — R
such thatgol[?] (x) = ¢(¥(x)) forall z € T'. Then, we obtain

(A.2) /u ol (z |da:—/1— N |2dx
|det (@) /|1 z)|*dz

Qb|/|1— 2)|%d

= 2area(T / 11— p(z)2da .

Since normal derivatives change under affine transformations (see [10, page
85]), ¢ does not coincide with the Argyris element @h But the 21 condi-

tions for the computation oobgﬂ on 7' can be transformed into conditions
for . The following 18 conditions fOKp[B]

Plp) = 1 0) =1, ¢fl(a) = lP(b) =0,
(071052l () =0 forall x € {p,a,b}, v € N} with |v] € {1,2}

can be transformed directly into the following conditions for

20 =1, ¢(3)=¢(}) =0,
(A3) N 1 0
(01052¢) () =0 forall z e {0, (0) (1)} ,
v € N2 with |v| € {1,2}.
The condition for the normal derivative in the midpoint of the edgsh|
of T is transformed in the following way: since the outer normal direction
n : 0T — R? coincides on[a,b] with cQ(b — a), wherec € R is a
constant, we obtain for the normal derivative
(Onpy ) (3(a+1))
= (#p)) (3(a+0)) - n(3(a+b)
=c(@oW)(3(a+1b) Qb —a)
c@’@(a(a +0) - ¥(z(a+b) -QOb-a)
%,_/

1 (@7t
(a,Qb) \ —(Qa)T
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FAN - (ST with 1= (})

<a Qb> —(Qa,Q(b—a))
=T Qb AR (||Z||z )
gpy LI = (@01 GD) + [Jal’ — (. B(@:2)(3D)].

Consequently, the conditio(ﬁncpz[f])(%(a + b)) = 0 is equivalent to

(A4) [b]* = (@.5)](219)(31) + [la]* = (a,0)](22)(3T) = 0.

Analogously, the condition for the normal derivative in the midpoint of the
edge(p,a] = [0,a] Of T, i.e., (&Lgo}[,])( a) = 0, is equivalent to

(A.5) (@, b)(219)(5(y)) — lal*(@20)(5(5)) = 0

and the condition for the normal derivative in the midpoint of the e{dgé]
of T, i.e, (811(,01[75])( b) = 0, is equivalent to

(A.6) B (019)(5(})) — (a,0)(80)(5(})) = 0.

The 21 coefficientse,, v = (v1,10) € Ng with |v| < 5, of the local
polynomial
Z cpx{tes? for z e T

IIEN%

lv|<5

can be computed by means of the 21 equations in (A.3), (A.4), (A.5), (A.6).
Solving this equation system with coefficients depending«, |5/> and
(a,b) (by MAPLE) shows that

A

p(x) = 1-10af — 3082 afay — 30450  aag — 1025 + 152

CE
+ 6048 g, 1 302D EIP NP 12,2 | o a8) 08
+ 155 — 627 — 30420 ajly, — 3plellet 2L lap ol I 5,2
_ 3p2lal*a, b)ﬂﬁl lgfll b)—lal?[b? 222 — 30(&]2)3:1@4 — 62
MAPLE calculations also show that
/ 11— @(z)2de
- (70<“’ UL UL WL M L 679).
2772\ |af? b jal* [bf* |af*[b]>
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Without loss of generality, leth| < |a| and letx € [0, 1] such that|b| =
k|a| . Then, we obtain (using als@, b) < |a||b])

(A7) /|1— o)[de < 2772(7()(!{4— 1) +6(I<2+%> +688)
=:I(k).

Assumption (3.17) implies tha% < k. Since I(t) decreases monotone
in ¢ € [0,1], we obtainI(x) < I(}). This together with (A.2) and (A.7)
yields

/T\l—goz[?](xﬂzdx < 2area(T)I(3) < (1-2)area(T).

25

(S

This shows (A.1) and completes the proof of Lemma 3.5foe=5. O
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