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Summary. We present symmetric collocation methods for linear differen-
tial-algebraic boundary value problems without restrictions on the index or
the structure of the differential-algebraic equation. In particular, we do not
require a separation into differential and algebraic solution components. In-
stead, we use the splitting into differential and algebraic equations (which
arises naturally by index reduction techniques) and apply Gaul3-type (for
the differential part) and Lobatto-type (for the algebraic part) collocation
schemes to obtain a symmetric method which guarantees consistent ap-
proximations at the mesh points. Under standard assumptions, we show
solvability and stability of the discrete problem and determine its order of
convergence. Moreover, we show superconvergence when using the com-
bination of Gaul3 and Lobatto schemes and discuss the application of inter-
polation to reduce the number of function evaluations. Finally, we present
some numerical comparisons to show the reliability and efficiency of the
new methods.

Mathematics Subject Classification (199&5L10

1 Introduction

In this paper, we consider symmetric collocation methods for the solution of
linear differential-algebraic boundary value problems (BVPSs) with variable
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coefficients
(1.1) E(t)j:(t) = A(t)z(t) + f(t) forallt el
1.2) Cx(t)+ Dx(t) =1,

wherel = [t,f] C R is a closed intervalE, A € CY(I,R™"), f €
CY(I,R™), C,D € R¥™" r ¢ R d < n is the number of inherent dif-
ferential equations and > 1 is the well-defined differentiation index (see,
e. g., [6]) of the DAE (1.1). A solution is required to be if©'! (I, R").

Under these assumptions, the index reduction techniques of [11,13] can
be applied to obtain an equivalent DAE of index one. Note that these tech-
nigues can be performed numerically at any desired paint. Thus, for the
construction and analysis of numerical methods we are allowed to assume
that (1.1) already has differentiation index one. Moreover, the reduced sys-
tems obtained in this way have the special structure that the differential and
the algebraic equations are separated. The methods we present in this paper
exploit this special structure. As consequence, their application to higher
index problems turns out to be more efficient than that of other collocation
methods, although these can be applied to the reduced problem, too (see the
discussion in [16] and the numerical comparisons below).

The main problem when using standard symmetric collocation schemes
for the discretisation of (1.1), (1.2) is that in general the number of param-
eters and the number of conditions is unbalanced. For example, one gets
an over-determined discrete problem when using Gauf3 collocation and re-
quiring all approximations at mesh points to be consistent (cp. [4]). On the
other side, one gets an under-determined discrete problem when using Lo-
batto collocation (cp. [5]). The reason for this can be seen in the choice
of the discrete solution space. In a correct formulation of (1.1) in terms of
a Banach space operator (see, €. g., [8,12]), the differential and algebraic
solution components have different smoothness requirements for continu-
ous inhomogeneities. But this is not reflected in the discrete solution space
when we look for piecewise polynomial solutions of a certain degree for all
components. Thus, in most approaches the DAE (1.1) is required to have
separated differential and algebraic components of the unknown function
(e. 9., (1.1) is required to be semi-explicit, cp. [2,3]), or that it can easily
be transformed into such a form (e. g., by requiring thahel £(t) does
not depend o, cp. [5,7]). But this means a significant restriction of the
class of treatable problems. One possibility to overcome this restriction is
the use of Radau-type collocation (cp. [15, 16]). The drawback there is that
these schemes are not symmetric thus showing undesirable effects in certain
(symmetric) applications.

The approach we will discuss in this paper is based on the observation
thata correct Banach space formulation can also be given when we require all
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solution components to have the same smoothness while the components of
the inhomogeneity belonging to the differential and algebraic parts of (1.1)
have different smoothness requirements. Since standard index reduction
techniques (see, e. g., [11]) yield a reduced system where we can distinguish
between these parts, we do not need torestrict the class of treatable problems.
In particular, the methods we introduce here combine a Gaul3-type scheme
with & knots for the differential part with a Lobatto-type scheme Wit

1 knots for the algebraic part.

The paper is organised as follows. In Sect. 2 we state some basic prop-
erties of DAEs that are obtained by index reduction techniques. In Sect. 3
we discuss solvability and convergence properties for the combination of
Gaul-type and Lobatto-type schemes including superconvergence for the
combination of Gaul3 and Lobatto schemes. To improve the efficiency of the
presented methods we include interpolation techniques in Sect. 4. Finally we
present some numerical comparisons in Sect. 5 and give some conclusions
in Sect. 6.

2 Basic results

Given a BVP of the form (1.1), (1.2), application of the index reduction
techniques of [11, 13] yields a DAE

(2.1) E(t)i(t) = A(t)x(t) + f(1)

with ) R A
(5] a-[4]. -
E= ’ A = n ) = r )
{ 0 A d fo
and block-sizesi anda = n — d. This equation has index one and is
equivalentto (1.1) in the sense that the solution sets are identical. Moreover,

the special structure of the reduced DAE allows to distinguish between
d differential equations

Ei(t)i(t) = A (t)a(t) + fi(t)
anda algebraic equations
0= As()z(t) + fa(t).

For the development of the symmetric collocation methods, we assume
without loss of generality that the DAE is in reduced form (2.1). The hats
are omitted for simplicity of notation.

The main tool in the proofs of Sect. 3 is the transformation of (1.1) to a
canonical form (see [10]). For more details, see [15].
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Proposition 2.1 For E, A € C*(I, R"*") asin (2.1), there exist point-wise
nonsingularP € Ck~1(I, R"*"), Q € C*(I, R"*") such that

2.2) PEQ — ﬁfg] . PAQ - PEQ = [8;’] .

In particular, P has the special structure

P= [Pél gﬂ with Pp1(t) € R Ppy(t) € R, Poy(t) € R¥*%
Moreover, there exist; € C*(I, R**¢) with point-wise full column rank
and A>T, = 0.

If in addition f € C*~1(I,R"), thenz € C*~1(I, R") for every solutione
of (1.1).

Applying the transformation of Proposition 2.1 to the boundary condition
(1.2) yields matrices
(23) [011 012] = CQ(D 5 [DH Dlg] = DQ@) .

In terms of the transformed problem (2.2) (where differential and alge-
braic parts are decoupled), we can characterise the well-posedness of the
considered problems as follows.

Proposition 2.2 The boundary value problem (1.1), (1.2) is uniquely solv-
able if and only ifC; + D11 € R%*? is nonsingular.

Throughout the paper we use

n

lyll = max Juil, IV]]:= @gi}lym
‘7:

as norms for vectorg € R™ and matricey” € R™*", respectively.

3 Symmetric collocation methods

The aim of the collocation methods is to construct piecewise polynomials as
numerical approximations to the BVP solution. For this we choose meshes

(3.1 Tit=thg<t1<---<ty=t

with mesh widthsh; := t;11 —¢; (¢ =0,...,N — 1) and a maximum
width h := max h;. We use two schemes (a Gaul3-type one and a Lobatto-
type one, respectively, see, e. g., [9, Ch. IV] for details on Gaul? and Lobatto
schemes)

(3.2) O<pp<--<pp<l, O0=09<---<op=1
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to subdivide the intervalg;, ;1] by collocation points (fof = 0, ..., N —
1)

(3.3) tij = t; + hip; forj=1,...,k,

(3.4) Sij:ti+hi0j forj=0,...,k.

Then we compute a piecewise polynomialof degreek (i. .,z ; :=
Tr|[t;.t.,] @r€ polynomials of degreg), which is determined by the follow-
ing set of conditions:

(3.5) Ei(tij)an,i(tij) = A1(tij)zri(tij) + f1(tij)
(3.6) 0 = Aa(8ij)xri(sij) + fa(sij)

foralli, j, i. e., the differential part of the DAE is satisfied at all collocation
pointst;; and the algebraic part at all collocation poisfs respectively,

(3.7) Tg(ti)* (-%'w,i—l(ti) — xm-(ti)> =0
fori=1,...,N —1,i. e, the differential part of is continuous, and
(3.8) Czro(to) + Drr n_1(tn) =T,

i. e., the boundary condition is fulfilled.
Altogether (3.5)—(3.8) yield

Nkd+ N(k+1)a+ (N - 1)d+_d = N(k+ 1)n
BC

~
collocation continuity

conditions. Since each of th¥ polynomial pieces is described lay+ 1
parameters of dimensian, we have the same number of unknowns. Note
also that the consistency of. at all mesh pointg; is already implied by
the collocation conditions (3.6), sinegy = ¢y ands;, = t;41 fori =
0,...,N—1.

The following proposition shows that not only the differential part (as
required by (3.7)) but the whole piecewise polynomialis continuous, if
it satisfies the conditions (3.5)—(3.8).

Proposition 3.1 Let the collocation conditions
0= Aa(si—1k)Tri-1(Si—1,k) + f2(Si—1k)

be fulfilled. Then the following conditions are equivalent{fer 1,..., N —

1):

i) To(t;)* (fﬂﬂ,ifl(ti) - Cﬁwz(tz)) =0, 0= Aa(sio)r,i(si0) + f2(si0)
ZZ) xw,i—l(ti> = 5U7r,z'(ti)-
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Proof. The claim follows directly from the observation that by construction

e

is nonsingular. O

In the following we use conditions ii) instead of i). The “missing” col-
location conditiorD = Ax(tg)x«(to) + f2(to) is considered together with
the boundary condition.

We use Lagrange interpolation polynomials according to the points

(80, %i0), - - - » (Sik, xix) tO represent the pieces ;, i. e.,
k t t k T g
(3.9)  axri(t) = ZleLl < hi )  Luln)= H o —0oj
1=0 Jj=0
J#

Definingvj; := Lj(p;) anduj; := Li(p;) forl =0,...,k, j =1,...,k,
we get

k

K
riltiy) = 75 Y v, Teiltiy) = Y upmi,  Ti(si) = i -
1=0 1=0

If we set (forj,l =1,...,k)

o5 - k T —
(3.10) w;y :=/0 Lrydr, Lir):= [] o

m=1 PL= Pm
m#l

then we see that’ := (v;;);; is regular withV=! = (w;;);,. Finally we
introducez y := zno = Tz N—1(tN).

Summarizing the discussion and using the notation introduced above, the
collocation method reduces to the solution of the system of linear equations
(withj=1,...,kandi=0,...,N — 1)

k k
(311) hiz Z'Ulel(tij)xil — Z Ulel (tij)xil = fl(tij) 5
=0 =0

(3.12) —As(sij)xij = fa(siz)
(3.13) Tik — Tit1,0 = 0,
(3.14) Czoo + Dzno =T,

(3.15) —As(to)roo = f2(to) -
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3.1 Solvability of the collocation problems

The examination of system (3.11)—(3.15) according to existence and unique-
ness of solutions is divided into two steps: First we look at the local systems
(fori=0,...,N —1)

Tl
(316) B; = a;xio + b;
Lik
which consist ofthe collocation conditions (3.11) and (3.12)fer1, .. ., k.

Their solvability is examined in Lemma 3.1. The solutions lead to relations
(317) ax=[0---0I|B;'a;- x0 +[0---01] B; 'b;,

=W; =T =:9;

which yield continuity conditions
(3.18) Tit1 = Wiz + gi

that are used instead of (3.13). Representationglfoandg; are given in
Lemma 3.2. In the second step we look at the global system

o
(3.19) Kp| @ | =9n
TN

representing the continuity conditions (3.18), the boundary condition (3.14)
and the consistency condition (3.15) (see (3.22) for the definitiédf,0f;,).
Its solvability is examined in Lemma 3.3.

SettingE; := E1(t;5), Arj = A1(tij), Agj = Aa(sij), f1j := f1(tij)
and fy; := fa(s;;) for selected fixed, the local systems (3.16) are given
by

v v
TrEu —unAn |52En —uizdn

) -
co| BN — uipAn
0

K%
FE —un iz

0

v
B, — uk Ak

0 — Ay,

v
B — upk Ak

c Hék:nxkn

)
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[ =99 En 4 ui0dn | M i1 ]
0 fa1
a; = : e Rk po= | 1| e RF.
— 0 B + uko A1k fik
0 L for

In the following lemma we prove the regularity 8f for sufficiently small
h; using multiplications from the left and from the right, respectively, with

o Pr1(tij) Pra(sij) — y

=1,..,

where P, ) transform the DAE into canonical form (2.2). We also need
reordering of the rows and columns done by multiplication with

(1, 0 00
00 I, 0
Iy 0
(3.20) Uy, == 0 1, € RFnxkn
I, 0
I 0 I, |

Lemma 3.1 Let the smoothness assumptiotis, P € C!, Q € C? be
fulfilled. Define

A} A s - s
A= [ 0 0 ] A= (hi;wlelm)j,mzl,‘..,k (s=12)

and (form =0,...,k, l,j=1,...,k)

(vulor = pr) = 1) (PUELQ) ()

[Gllm GlQm] = _<Ull — 1) (P11 A1Q)(ty) + O(hy), L=m,
Vim(0m — ) (PLE1Q)(t)
—un (P11A1Q) (ta) + O(hi) L#m.

Then the representation

VeI 0

—1
B =T; Uk[ o

-1
] (I + Ai) UL T,
holds, and for sufficiently small; the matrixB; is regular with

VIR 0

Bl =To Uy (I—Az“i‘o(h%))[ 0 -I

|vi e,
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Proof. With 4,, P € C*, Q € C? we can expand

Q(sim) = Q(ta) + O(h;) = Q(ty) + hi(om — p1)Q(ta) + O(h?),
(P12 A2Q)(3:) = (PraA2Q)ti HO(hs) = (P11 BE1Q— P11 A1 Q)tiy +O ().
This leads to

Ym By — upm A
[ Pii(ta) Pria(sip) ] | UO I O (sim)

= 4= (PuEr)(ta)Q(sim) — twim (P11 A1) (ta) Q(sim)
- U;LT (P11 E1Q)(ta) + vim(om — Pl)(PnElQ)(til)

— U (P11 A1Q) (ti) + O(hy)
= Y= [10] + (G}, G}, ] form #1.

Analogously, we get

v
HEy — uyAy
1

[ Pr1(ti) Pra(sq) ] [ Ay ] Q(sir)
= FL(P1iE1)(ti)Q(sa) — un(PriAr) (ta)Q(sa) — (P12A2Q)(si)

= W(PuELQ)(ta) + vu(or — p) (P E1Q) (ti)

—uy(P11A1Q)(t1) — (P1E1Q — PiiA1Q)(ta) + O(hy)
= [10]+[G, Gf] form=1.

By multiplication of B; with Tp from the left andl from the right and
reordering of the rows and columns usitig we obtain
1 1 2
x Vel 0 G G
T LR

with G° := (Gfm) . SinceV is regular withV = = (w;;);, we have

lm

(3.21)

V1ol 0
0o I

} Ui Tp BiToUy, = I + A

with A; as given above. Multiplication with the inverses yields the repre-
sentation ofB;.

Since (for alll, m ands = 1,2) Gj  is bounded forh; — 0, we have
| 4|l = O(h;). ThusI + A; is regular for sufficiently smah; and has the
inverse(I + A;)~! =1 — A; + O(h?) . By this and (3.21) we see tha;
is regular for sufficiently smalk; and thatB; * has the given representa-
tion. O
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Lemma 3.2 If a transformation to canonical form witf) € C? is possible
then the following representations fdr;, g; defined in (3.17) hold:

Wi = Q(tiy1) [I_OFﬂ —(l;}- ]Q(ti)_l with Fj1 = O(h7), Fiz = O(hy),

gi = Q(ti+1) {_(Pﬂf;)(t”l)} with ¢; = O(h;) .

Proof. Using the representation dﬂ‘i‘l given in Lemma 3.1 we compute

WiQ(t:) = [0...01]B;  a;Q(t:)-
With Q(t;) = Q(tu) + O(hi) = Q(tu) — phiQ(tu) + O(h?) we have

[ Pri(ta) Pra(sa) ] [_%?EUO—’— UZOAU] Q(t:)
_ _%(anlQ)(til)+vlop,(P11E1Q)(tu)+ulo(P11A1Q)(til)+O(hz‘)
= e [10] - [GypGR],
hence

. ®I0 G} G2
Uk: Tpa; Q(tz) = _h%- |:7}00 0:| - |: 00 OO:|

with vy := (UIO)Z:I k andGS = (G?O)lzlj_“,k for s = 1,2.

By consideringuy = —V [1 -+ 1]", A% = h; 31 wGyy = O(h) as
in Lemma 3.1 and defining

P (D= 0] 5 [(Qfo)i=k (Af)i=1,. .k
: 0 0| S 0 0 ’

this leads to

/-1 ..
[hzv ®I 0 ] U]: TpaiQ(ti) =1- Az .
0 -1
Applying the next factor of the representation&lfl, we get

O, = (I A O(hf)) (f . A}) = — A, — AT+ 0O(h2)

[107 [AL 4% 12 4L, 01 rorhomy | 5T
10| |al 4z | |sabof [omyomy| | T
=loo|™] o o || "0 "ol o o [T fn-ha

. . . . . . . O O

oo Lo oL o ol Lo ol | o]
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with Fiy := S8 AL+ O(R?), Fio := Ay + O(h3).
Altogether this yields

W;Q(t:) = [0...011B a;Q(t;) = [O...OI]diag(Q(sij))Uin
and hence (since; = t;11)

Wi = Q(ti+1) [I_OF“ _gi } Q(ti)’l.

In order to show that};; = O(h?), we use interpolation of the polynomials
p(t) =1, ¢(t) = t at the pointsr, . .., o, to obtain

. . k:
> o Lolp) =1, > Li(p)=0, > Li(p)om=1.
m=0 m=0 m=0

By inserting the definitions of Lemma 3.1 we see

k k k
D A= hiy wuGly,
m=0

m=0  1=1
k k
= hiZWl( > {Ulm(o'm_pl)(PllElQl)(til)_Ulm(PllAlQl)(til)]
=1 m=0
m#l

+(’Uu(al—m)—1)(P11E1Q1)(til)—(Ull—1)(P11A1Q1)(til)+0(hi)>

k

k
=hi Zwkz< [Z Lin(p)(om — p1) — 1
m=0

=1

(P11 E1Q1)(ta)

=0

k
- [Z Lm(pl) -1

m=0

(P11 A1Q1)(ta) + OU%)) = O(h3)

=0

and therefore i

Fip =) A}, +0(h)=0(h3).
m=0
Looking at the definition oﬂio, it is obvious thatF;, = O(h;).
The representation

Ci

9i = Q(ti+1) |:—<P22f2)(ti+1):| with ¢; = O(hy)
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can be derived analogously by inserting the representatioﬁ;férgiven in
Lemma3.lintgy; = [0--- 0] B; 'b;. O

The global system (3.19) is given Hy;, € RV+Dnx(N+hn gndg,
RV+D? where

r C D 7 ror ]
—As(to) 0 fa(to)
Wo -1 —90
L Wn-1 =1 ] L —9gnN-1

To prove the regularity of(;, and the boundednessﬁ‘f,;lgh, we multiply
from the left and from the right, respectively, with

T} i= diag <[é Pmo(to)} Q) ,Q<tN)1> T, 1= diag (Q(t),

where P, Q transform(E, A) to canonical form (2.2). We also ugéy €
RV (N+1)n which is defined analogously 1@, in (3.20), to reorder
rows and columns. Finally, we set

011 D11 012 D12

I -1 —Fy O

My, = .o ,  Np:i= . . )
I I —Fn_12 0
0
—Fyn O
Dy, = ,
—FNn_110

with Cy1, C10, D11, D12 given in (2.3) andF;, F;» given in Lemma 3.2,

andA; = []\gh ]_V;:| , Ay = |:l())h 8]

Lemma 3.3 The matrixk}, of the global system (3.19) given in (3.22) has
the representation

K, =T"Uy (Ah n Ah) UL TL

For a uniquely solvable BVP (2.1),(1.2) and a smooth transformation func-
tion Q € C?, the matrixkj, is regular for sufficiently smakh with

Kt =T Uy (1 - A7 A+ 0(0)) 47" Uy T
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Furthermore,K,jlgh is bounded by a constant which depends on the data
E, A, f,C, D,r and the transformation functior3 ), but not on the max-
imum mesh width.

Proof. By multiplication withT; from the left andl’. from the right we get
block-wise

[éPm(to)][ Af(t } Qto) = 051 ?ﬂ,
0 Pt H} =B Be]
Q)W) = | .

if we use the representation @f; given in Lemma 3.2. Reordering of the
rows and columns yields

UN Ty Ky T, Uy = Ap + Ay,

and by multiplying with the inverses we get the representatiali of
By Proposition 2.2, the matri¥ := Cy; + D11 is regular, thus\fy, is
regular with inverse

. I Dyy -+ Dpy
S
_ C—Cy :
1 11
Mh = . ) . -
S_l . . . Dy
I -Cyp - =Cny

Using Lemma 3.2, it follows that

N-1
1M, Dyl < 1S~ max{||Coall, [ Duall} - D [1Fn]] = O(h).
——

= _om2)

(3

Since M, is regular, the same holds fot,. We obtain|A;'A,| =
|M; Dy || = O(h), thus Ay, + A, is regular for sufficiently smal and

(Ah + Ah>71 = <I — Aglﬂh + O(h2)>A}:1 .

This proves the regularity ok, and the representation &f, - L
Using

Ci

9i = Q(ti+1) |:_(P22f2)(ti+1):| ;¢ =0(h;), Fa=0(h)
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(see Lemma 3.2) together with the representation&’pf andM; !, the
boundedness d{’,jlgh independent of follows along the lines of the proof
of Lemma 3.3in[16]. O

The existence and uniqueness of solutions of collocation problems (3.5)—
(3.8)is equivalentto the unique solvability of the local systems (3.16) and the
global system (3.19). Thus existence and unigueness follows by combining
Lemma 3.1 (concerning the local systems) and Lemma 3.3 (concerning
the global system). For smooth data, i. B,,A € C?, the existence of a
transformation to canonical form witR € C',Q € C? is guaranteed by
Proposition 2.1.

Theorem 3.1 Consider a uniquely solvable BVP (2.1),(1.2) with smooth
dataFE, A c C?, f € C.For N € Nandk > 1 define a mesh asin (3.1)
and fori = 0,..., N — 1 collocation pointst;;,j = 1,...,k as in (3.3)
ands;j,j7 = 0,...,k as in (3.4), respectively, according to kngts o; as

in (3.2).

Then for sufficiently small mesh widths, ..., hy_1, there exists one
and only one continuous piecewise polynomiabf degreek that satisfies
the collocation conditions (3.5),(3.6), fulfills the boundary condition (3.8)
and is consistent at all mesh poirits

A collocation method is said to be stable, if the approximations:;;
remain bounded (independent of for decreasing mesh widths; (see,
e. g., [1]). In this sense, the symmetric collocation methods (3.11)—(3.15)
are stable, since theg are bounded (see Lemma 3.3) andthesatisfy the
relation

= (@t [ B 0 ) eos o [y

which is similar tox;, = W;x; + g;.

3.2 Convergence results

Inthis section we examine the collocation methods concerning convergence.
Assuming a smooth solution of the BVP, we prove convergence of érder
and for special schemes order+ 1 together with superconvergence of
order2k at mesh points.

Theorem 3.2 Consider a uniquely solvable BVP (2.1),(1.2) with a smooth
solutionz € C*1(I,R™). Let7 be a mesh as in (3.1) with sufficiently
small mesh width&; and use schemgs;,o; as in (3.2). Letr, be the
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unigue solution of the corresponding symmetric collocation method. Then
we have

[ — 2xlloo = Sup lz(t) — 22 (1) = O(R®).

Proof. Interpolation ofx analogous to (3.9) yields

i t—t\ 2D (0,(0) 1
x(t)—zﬂﬁ(su)Lz( " >+ Gt ) E)(t_%)

1=0 t

=:p; (t)

for somed;(t) € [ti, tiy1]. Inserting this representation into the DAE at the
collocation pointg;; ands;; delivers the local system

CC(Sil) Ti1 E . A
B; : =a(t;) +b;— | ¢ |, Tiji= (B = 0 i) (fg)
Jf(Szk) Tik

with B;, a;, b; defined in (3.16). Obviously we have(t;;) = O(hF™) and
¢i(tij) = O(hf), thUSTij = O(hf)

Since the collocation problem is uniquely solvable for sufficiently siall
(i. e., B; is regular), we can solve fat(s;;) = z(t;11). We get that (with
Wi, g; defined in (317))

x(tiv1) = Wix(ts) +9i — 7 -

For the errorr; := [0 --- 0] B! (nj) a representation

)

Jj=1,...,k
_ . ¥i _ k+1
T = Q(tH—l) |: 0 :| y Y= O(hz )
can be derived analogously to that gfgiven in Lemma 3.2. The conti-

nuity, boundary and consistency conditions fdead to the global system
(comparable to (3.19))

0
x(to) o
Ky, : =gnh+Th, Th:=
x(t
(i) TN-1

According to the unique solvability of the collocation problem for suffi-
ciently smallh, the matrix K}, is regular and the difference of the global
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systems forc andzx., respectively, gives

SC(tQ) — X0
(3.23) K, : =Th.

z(ty) — N

Due tor, = O(h**!) we haveK; ', = O(h*) (this can be proved like
the boundedness di'h‘lgh in Lemma 3.3, using ordet + 1 instead of
gi = O(hi)), . e.,

max ||z(t;) — ;]| = O(AY).
Looking at the difference in the local systems we obtain

:L'(Sn) — ;1 Til

(3.24) : = B, (:c(ti) - x) ~B;!
SU(Szk) Lik —o(hk) Tik
)

and hencenax; ||z(s;;) — ;|| = O(h¥).

From this the convergence ordeffor anyt € I can be derived easily by
looking at the differences of the interpolation representations ondzx .,
respectively. O

For special choices of the schemes in (3.2), this result can be improved to
a higher convergence order at mesh poiptso-called superconvergence.

Theorem 3.3 Consider a BVP (2.1),(1.2) with unique solutionLetr be
amesh as in (3.1). Use Gaul3 knéts< pp < ... < p, < 1 and Lobatto
knotsO = oy < ... < 03, = 1 to construct the collocation points;, s;;.
Suppose furthermore that the mesh widthare sufficiently small, such that
the corresponding symmetric collocation method has a unique solution
If the data is smooth, i. e., £, A € C?*1, f € C?*, then
e [la(t;) — il = O(h™).

Proof. By Proposition 2.1, there exigt € C?*,Q € C?**! transforming
the DAE to canonical form (2.2). Since is consistent, the initial value
problemEy = Ay + f, y(t;) = x; is uniquely solvable and the solutien
has a representation (using the transformation (2.2) to canonical form)

[10] (Q(t:) s + f;<Pf><s>ds)] s

(@  (Pufa)()
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The approximationz,. is the solution of the initial value problery =
Ay + (Eir — Axr), y(t;) = z;, and has the form

v — [IO](Q(ti)—la}i-’- LE(P(EiW—AxW))(s)ds)]
@ [ (P A (1)

fort; <t < t;41.Sincer, is consistentatthe mesh point, the difference
of these representationstat ¢;,, gives

i+1 tiv1
(3:25) v(tiv1) — wip1 = Q(tit1 [ft el 40_ Je %(S)ds] )

with functions

¢a = Pii(fi — E1@r + A1xz),  ¢q := Pra(fo + Asxr).

Due to the smoothness of the data, we hayeb, € C?*. Sincex, satisfies
the collocation conditions, the collocation poitys . . . , t;; are zeros oby
ands,, ..., s;; are zeros of,, respectively. From '[hIS follows (see, €. g.,
[15]) the existence of smooth functiong € C*, w, € C*~1 with

k k
Hs_tz] ¢a = HS_SZJ

Taylor expansion yieldso; = ¢4 + O(hY), w, = ¥, + (’)(hf‘l) with
polynomialsy of degree< k — 1 and1), of degree< k — 2, respectively.

By inserting this into (3.25) and using the orthogonality properties of the
Gauf3 and Lobatto schemes (see, €. g., [9, Ch. IV]), we obtain

tist tiv1 k
/t <Z>d(s)ds:/t [was) TL (s — 1) + O03*)] ds

k

1
— hf+1/0 Yalti + hit) [ [ (7 = pj)dr +O(RFETT)
j=1

=0

tit1 tig1 k
[ oatrts = [ [l TLs = )+ 0012 s
¢ t =0

1 k
= hf”/ Yot + hiT H T — oj)dr +O(hH 1.
0
7=0

=0
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Altogether we have

bi = v(tig1) — Tis1 = Q(tit1) |:ftt1+1 oq(s)ds g fttim ¢a(8)d5:|

_ O(th-H) )
Considering a fundamental solutid¥( - , ¢;), i. e., a solution of

BW =AW, Witit) = QM) || Q)

we see that:(t) — v(t) = W(t,t;)(x(t;) — v(t;)) for all t > ¢;. Setting
t = t;4+1, we particularly get

W (tisa, ) ((8) = 21) = altisn) = v(tien) = 2ltisn) = i1 = 64

fori = 0,..., N — 1. This together with the boundary condition and the
consistency condition ity builds the system

C D 0
—As(to) 0 x(to) — wo 0
W(tl,to) -1 = —o

£(tx) — zx 5
i Wity tn-1) —1 | | —éN-1

comparable to (3.23). From this we derive (as in Lemma 3.3)

max [l(t;) — x| = O(*),

since now the inhomogeneity is of ord@(h%**1). O

To show a higher convergence order for a special choice of the schemes,
we need a simple lemma.

Lemma 3.4 For Gaul® knot®) < p; < ... < pr < 1 and Lobatto knots
0=o09<...<o0=1wehave

.k

/]H(T—pl)dTZO, =0, k.
0 =1

Proof. The Gaul’ and Lobatto knots are defined via the zeros of the Legendre
polynomials and their derivatives, respectively. The claim follows directly
from the Legendre differential equation, see, e. g., [9, Ch. I\].
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Corollary 3.1 Under the assumptions of Theorem 3.3 it follows that

max ||z (s;;) — xi5]| = O(hF™2) + O(h?*) fork > 2
J

and
HCE - 337rHoo = O(hk+1) .

Proof. Looking at (3.24) in the proof of Theorem 3.2 and usiri¢} ) —
O(h%) due to Theorem 3.3, it is obvious that we must SlBW (7;;); =
(’)(hf’”) to prove the first assertion. For this we exploit the special choice
of the knots.

The transformation to canonical form yields

Pry(Eri—Aviy) = (PuBQ) Q') — (PdiQ — PuEiQ)(Q ')
=[10] 2(Q ") + (P12A2Q)(Q '4y)
=+ 0T,

when definingp := [10](Q~'4;). For smooth datd, A € C?¢*1, f ¢
C?F we get a smooth solutiom € C?* (see Proposition 2.1), thus the
interpolation error); is smooth. Sinc&) € C?*+1 by Proposition 2.1, it
follows thaty € C2*, in particularp € C**2 for k > 2. By interpolation

of ¢ at the pointg;; and by a Taylor expansion of the interpolation error we
obtain

k t—t . k
> L (5 )etta) = o() LARUGIY |y jr
=1 =1

= @(t) — e ] J(t = ta) + O ™)

E?r

~

1

with the constant := L+ (¢;) and Lagrange polynomials; as in
(3.10). Inserting the definition ab;; given in (3.10) leads to

93
ngz@ it) / ZLZ (ta)dr=5- / ZLl
_él‘¢@ﬁ—é1 Hu—mﬁ+mwﬂ)
A A =1

o; K
_ (P(Sij) — (p(tZ) . Chf/ H(T—pl)dT‘f'O(h?—’_l)
0 =

) a)dt

h;
= O(h ™),
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sinces;;, t; = s;o are zeros of); and thus ofp, and the second term is zero
by Lemma 3.4, respectively. Altogether we have (recalling = (w;;) i)

U;:Tp (7'7;]'> =
J

([Pll(Ellbi - A1¢i)](tij))j ] _ [(‘P(tij) + O(thrl))j]
0 0

N [hV eI 0 :|UkTP(7'”) _h, [(Zz L wip(t zl)) L oMt

0 0

=0(hi*?)

= Bz-_l<Tz'j)j = TQUs (I_Aﬁo(h?)) {h o 01 o ] U’fTP<T”>j

= O(hF"?).

The convergence ordér+ 1 for anyt € I follows now by considering the
difference of the interpolation representationsif@ndz. (cp. end of proof
for Theorem 3.2). O

4 Collocation with interpolation

A drawback of the symmetric methods may be the number of evaluations
of the dataF, A, f needed to construct the matricBs Since we have two
schemeg;, o; and two sets of collocation points;, s;;, we nee® Nk + 1
evaluations instead of only k£ + 1 for conventional collocation.

To overcome this drawback, we can, for smosthd, f € C*+1, inter-
polate the data using the collocation poiats

i t—t; EXF D 0@) £
= E:OL < ) E1(sim) + W WHO(t — Sim)

=pg(t) =wpp(t)

and Ay = pa +a, fi = py + ¥y analogously. If we replacé; (t;;),

Ai(tij), fi(ti;) by pe(ti;), pa(tij), pr(ti;) in the collocation condition

(3.11), we obtain the following problem (Wibh: 0,...,N—1landj =
., k), for which data evaluations at the poistg are sufficient:

k k d
Z [Q;Zl Z uijl(Sim) — Uji Z ’LijAl (Szm) il
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k
(4.1) = Z Ujm f1 (Sim)
m=0
(4.2) —As(sij)Tij = fa(sij)
(4.3) Tik, — Tiv10 = 0
(4.4) CZoo+ DZng = r
(4.5) —As(to)Zoo = fa(to)

For this problem we prove results analogous to Theorem 3.1 (unique solv-
ability), Theorem 3.2 (convergence ordgrand Theorem 3.3 (superconver-
gence of ordeRk).

Theorem 4.1 Consider a uniquely solvable BVP (2.1),(1.2) with solution
and smooth dat&, A € C*+2, f ¢ C*+1 k > 1. For N € Ndefine amesh
masin (3.1) and collocation points; fori =0,...,N -1, =0,...,kas
in (3.4) according to knots; as in (3.2). Use knotg; as in (3.3) to compute
Vim = L}, (pj) anduj,, = L, (p;) (see (3.9) for definition ok,,,).

i) For sufficiently small mesh widths,, ..., hny_1, there exists one and
only one continuous piecewise polynomialof degreek that satisfies
the interpolated collocation conditions (4.1), the collocation conditions
(4.2), fulfills the boundary condition (4.4) and is consistent at all mesh
pointst;.

ii) If the mesh widths are sufficiently small, the symmetric collocation
method using interpolation is of convergence oréer. e.,

lz — 2zl = O(h*) .

i) If we use Lobatto knot§ = o9 < ... < o = 1 and Gaul3 knots
0 < p1 <...<pr < landifthe datafulfillsthe smoothness conditions
E,A e C?**1 f € C?*, then the symmetric collocation method using
interpolation is superconvergent of ordet, i. e.,

N A — 2%k
max [la(t:) - & = O(h*)

for sufficiently smalkh.
Proof. As in Sect. 3, we start by considering local systems
Tin
Bi | | =aiZio+b;
Tk
built of the collocation conditions (4.1),(4.2) (fgr= 1, ..., k). Due to the
interpolation errorgiz 4 ;(ti;) = O(hF™) we have

Bi=Bi+ O, a;=a;+0hF), b =b+0n"
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with B;, a;, b; of the local system (3.16). Applylng Lemma 3.1, we see that
B; is regular for sufficiently smalb; and B;! = B, + (’)(hk“) since
B; ' = O(h;). This yields continuity condltlons

Tiy1,0 = Tik = WiZio + g

with W; = W;+O(hFtY), §; = g:+ O(hF?). Thus we get a global system

with K, = Kj, + O(h*+1Y), g, = gn + O(h*+2) and K}, gy, of the global
system (3.19). Here we apply Lemma 3.3 to achieve iats regular for
sufficiently smallh with

- —1
Kt = (KnlI+0(%)) = (I+O0(M)K; "
From this it follows that
Ki'gn = (I+O(R") Ky (gn + O(h"2)) = K gy, + O(h*)

is bounded independent bf because the same holds 6, * g, Since the
unique solvability of the collocation problem with interpolation is equivalent
to the regularity ofB; (i =0, ..., N — 1) and K}, assertion i) is proved.
Convergence ordér can be proved as in Theorem 3.2.
To prove superconvergence we argue analogously to the proof of Theo-
rem 3.3. Here we define three functions

bd = Pi1(pf — PEZr +Da%r),  ba = Pra(fo+ Asiy),
¢¢ = Pll(wf - wEa?ﬂ' + wA-%ﬂ')

and obtain a local discretisation error

~ ti+1 7 dS—l— tl+1 d8+ tit1
O(tip1)—Tit1=Q(tit1) S Pals ) O St du(s)ds
Due to the collocation conditionssid has zerog;; and gEa has zeross;;,

respectively. The;; are also zeros o;fw,, since they are zeros of the inter-
polation errors. O
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5 Numerical examples

To illustrate the practicability and effectiveness of the described symmetric
collocation methods we present three representative examples. The results
are compared to that of Radau collocation [16] and COLDAE [3].

A MATLAB code for the construction and solution of local systems
(3.16) and global systems (3.19) has been developed, including a simple
strategy for the generation and refinement of the mesh&he package
DGELDA [14] is used for the regularisation of the ddfaA, f at discrete
pointst;;, s;j, thus FORTRAN subroutines for the evaluationtfA, f and
its derivatives up to order — 1 at discrete points are needed. Furthermore,
the data, t, C, D, r are needed as input, and the paraméterk < 5 and
a tolerance for the mesh selection must be chosen.

Asdiscussedin Sect. 4, the symmetric methods 8&&¢ch-1 evaluations
of the dataF, A, f instead ofVk + 1 for Radau collocation, since two sets
ti;, si; of collocation points are used. Besides this, the computational effort
is the same for symmetric and Radau collocation, respectively, because the
local and global systems have the same dimensions and structures. If data
evaluations are expensive, we can apply collocation with interpolation (i. e.,
we solve (4.1)—(4.5)). For the following three examples, we report only
the results of symmetric collocation without interpolation (i. e., solutions
of (3.11)—(3.15)), since we obtained comparably accurate results when we
worked with interpolation.

Example 5.1In order to demonstrate the potential drawbacks of the asym-
metric Radau methods, we consider the ordinary boundary value problem
([1], p. 394)

eu’(t) = =2t (t), w(-1)=-1,u(l)=1

with small parameted < ¢ < 1. The solution isu(t) = erf(¢/\/€), where
the Gaussian error function is defined by

erf(t / —s ds.
f

With Radau collocation, we can compute approximations only for mod-
erate values of, i. e.,e > 1073. Fore = 1073, Fig. 1 shows the errors
u(t;) — ur(t;) of Radau and symmetric collocation, respectively, according
to £ = 5 collocation points per subinterval, five subintervals in the initial
meshes and a tolerant@—* for the mesh refinement. While the mesh that
is generated by the Radau method is much coarser in the right subinterval
[0,1] than in the left halff—1, 0], the result of the symmetric collocation
method is a symmetric mesh and a symmetric approximation.

Fore = 1074,107°,10~%, the Radau method failed, but we got approx-
imations by use of symmetric collocation or COLDAE.
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x 10" Mesh and error of Radau collocation

! ! ! ! ! ! ! ! !
-1 -0.8 —0.6 —-0.4 -0.2 o 0.2 0.4 0.6 0.8 1

x 10°° Mesh and error of symmetric collocation

L L L L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 o 0.2 0.4 0.6 0.8 1

Fig. 1.

Example 5.2The second example is

00 0 -1t 0 el/2
1—t 0|léd=| 0 0 O|z+]| 0 |,te[-5,0]
-1 t 1 0t 1 0

[170]2(=5)+ [041]x(0) =6.

This is an index-two problem withh = 1 differential anda = 2 algebraic
equations. The solution is

a(t) =2 (11, —1 44t +8).

Fork =1, ..., 5 collocation points per subinterval and uniform meshes with
appropriate number of subintervals, we computed approximations using
symmetric collocation, the Radau method and COLDAE.

Since this index-two problem is not semi-explicit, COLDAE can not be
applied directly. The index reduction technique due to [11] is used to obtain
an index-one formulation. But this is not semi-explicit either, thus we need
to transform it into the semi-explicit index-two problem

T =1y, OzEy—/lx—f,

which is of doubled dimension. Furthermore, the consistency condition
Ay(to)z(to) + fa(te) = 0 atty = —5 must be considered as an addi-
tional boundary condition. In other words, this problem can not be attacked
by COLDAE without applying the index reduction and even by doing this,
more computational work in comparison to Radau or symmetric collocation
is needed.
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Table 1. Errors according to uniform meshes for Example 4.2

Symmetric Coll.  Radau Collocation COLDAE
k N err; order err; order err; order
1 50 0.26e-2 0.17 0.28e-2
100 0.65e-3 2.0 0.82e-1 1.0 0.71e-3 2.0
200 0.16e-3 2.0 04le-1 1.0 0.18e-3 2.0
2 20 0.16e-4 0.74e-3 0.18e-4
40 0.10e-5 4.0 0.90e-4 3.0 0.1l1e-5 4.0
80 0.64e-7 40 0.11e-4 3.0 0.71e-7 4.0
3 10 0.39e-6 0.13e-4 0.44e-6
20 0.61e-8 6.0 0.38e-6 5.1 0.68e-8 6.0
40 0.95e-10 6.0 0.12e-7 5.0 0.11e-9 6.0
4 6 0.17e-7 0.43e-6 0.19e-7
12 0.68e-10 8.0 0.34e-8 7.0 0.77e-10 7.9
24 0.26e-12 8.0 0.26e-10 7.0 0.29e-12 8.0
5 4 0.13e-8 0.28e-7 0.14e-8

8 0.12e-11 10.0 0.50e-10 9.1 0.14e-11 10.0

In Table 1 the errorsrr;(N) := maxo<i<n ||z(t;) — ;|| and the cor-
responding orderkg (w) /log(2) are given. We clearly see that

err.
the theoretical superconvergence resdisfor symmetric collocation and
COLDAE, 2k — 1 for the Radau method) can be verified for this example.
We also recognize that not only the orders but also the absolute vaiues
are approximately the same for symmetric collocation and COLDAE, while
the results of the Radau method are less accurate.

Example 5.3For the third example we transform a DAE given in [3, Exam-
ple 1] and obtain

1 —t 0
E(t)= t 1 —t|,
Lp(t)=2 —i(p(t)=2) O
i K— 5 = — Kt (2—-t)k
Ap=| S5 -t-l tho ol b= g7 ,

1
| rt(2-3) P02 o2y /s(p(t)(2—t)—t3+6t—4>

2—
B 3—t
2—t
f(t> =2+ (K+21}27(t21+ 2Y) 2(:2}7(1))2 et;
() — DEL — w(2 + - 2)

with ¢ € [0, 1], parameter € R and a smooth functiop € C'(I, R). The
boundary condition ig;; (0) = 1.
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This problem is of index two and consistsbf 1 differential and: = 2
algebraic equations. We set= 20 and choose

p(t) = — <1 +erf(t\_r21€/3>> , e=107°.

Thus a layer region arourtd= % occurs inp and also in the solution
p(t)

1+t—

+
t
p(t) =g |1 -t - t+ (
+

T2

We examine this problem usirkg= 4 collocation points per subinterval and
five subintervals in the initial meshes. The tolerances for mesh refinement
are chosen such that comparable numi€érsf subintervals in the final
meshes occur. In Table 2 we report these numbérgether with the
errorserr := max ||z(t) — 2, (t)|| measured at 101 equidistant poitits L.

Table 2. Errors for Example 5.3

Symmetric Collocation Radau Collocation COLDAE
tol N err tol N err tol N err

3.107° 69 0.83e-8 1077 68 0.67e-7 100* 66 0.1le-5
107 161 0.21e-9 107° 144 0.10e-8 10~°> 160 0.40e-6

Asin Example 5.2, COLDAE cannot be applied to this problem directly.
Ithasto beregularised and the reduced BVP must be transformed into a semi-
explicit index-two problem of doubled dimension. Thus the application of
COLDAE is more expensive regarding the computational work. Moreover,
the results of COLDAE are less accurate when we compare approximations
obtained with similar numbers of subintervals.

6 Conclusions

In this paper, we have developed symmetric collocation methods for the
solution of linear differential-algebraic boundary value problems as they
occur by index reduction. Thus, in combination with index reduction, we
can solve BVPs of arbitrary index. The key point was to use a Gaul3-type
scheme for the differential part and a Lobatto-type scheme with one more
knot for the algebraic part. We showed that the results known for differential
equations also hold in the case of differential-algebraic equations including
superconvergence for the combination of Gaul3 and Lobatto schemes. In
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order to reduce the number of function evaluations that are needed when
using two different schemes, we introduced interpolation and showed that
the convergence properties are not influenced by this modification. Finally,

we showed the applicability and accuracy of these methods in comparison
to other approaches.
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