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Summary. We present symmetric collocation methods for linear differen-
tial-algebraic boundary value problems without restrictions on the index or
the structure of the differential-algebraic equation. In particular, we do not
require a separation into differential and algebraic solution components. In-
stead, we use the splitting into differential and algebraic equations (which
arises naturally by index reduction techniques) and apply Gauß-type (for
the differential part) and Lobatto-type (for the algebraic part) collocation
schemes to obtain a symmetric method which guarantees consistent ap-
proximations at the mesh points. Under standard assumptions, we show
solvability and stability of the discrete problem and determine its order of
convergence. Moreover, we show superconvergence when using the com-
bination of Gauß and Lobatto schemes and discuss the application of inter-
polation to reduce the number of function evaluations. Finally, we present
some numerical comparisons to show the reliability and efficiency of the
new methods.

Mathematics Subject Classification (1991):65L10

1 Introduction

In this paper, we consider symmetric collocationmethods for the solution of
linear differential-algebraic boundary value problems (BVPs) with variable
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coefficients

E(t)ẋ(t) = A(t)x(t) + f(t) for all t ∈ I(1.1)

Cx(t) +Dx(t) = r ,(1.2)

where I = [t, t] ⊂ R is a closed interval,E,A ∈ Cν(I,Rn×n), f ∈
Cν(I,Rn), C,D ∈ R

d×n, r ∈ R
d, d ≤ n is the number of inherent dif-

ferential equations andν ≥ 1 is the well-defined differentiation index (see,
e. g., [6]) of the DAE (1.1). A solutionx is required to be inC1(I,Rn).

Under these assumptions, the index reduction techniques of [11,13] can
be applied to obtain an equivalent DAE of index one. Note that these tech-
niques can be performednumerically at any desired pointt ∈ I. Thus, for the
construction and analysis of numerical methods we are allowed to assume
that (1.1) already has differentiation index one. Moreover, the reduced sys-
tems obtained in this way have the special structure that the differential and
the algebraic equations are separated. The methods we present in this paper
exploit this special structure. As consequence, their application to higher
index problems turns out to be more efficient than that of other collocation
methods, although these can be applied to the reduced problem, too (see the
discussion in [16] and the numerical comparisons below).

The main problem when using standard symmetric collocation schemes
for the discretisation of (1.1), (1.2) is that in general the number of param-
eters and the number of conditions is unbalanced. For example, one gets
an over-determined discrete problem when using Gauß collocation and re-
quiring all approximations at mesh points to be consistent (cp. [4]). On the
other side, one gets an under-determined discrete problem when using Lo-
batto collocation (cp. [5]). The reason for this can be seen in the choice
of the discrete solution space. In a correct formulation of (1.1) in terms of
a Banach space operator (see, e. g., [8,12]), the differential and algebraic
solution components have different smoothness requirements for continu-
ous inhomogeneities. But this is not reflected in the discrete solution space
when we look for piecewise polynomial solutions of a certain degree for all
components. Thus, in most approaches the DAE (1.1) is required to have
separated differential and algebraic components of the unknown functionx
(e. g., (1.1) is required to be semi-explicit, cp. [2,3]), or that it can easily
be transformed into such a form (e. g., by requiring thatkernelE(t) does
not depend ont, cp. [5,7]). But this means a significant restriction of the
class of treatable problems. One possibility to overcome this restriction is
the use of Radau-type collocation (cp. [15,16]). The drawback there is that
these schemes are not symmetric thus showing undesirable effects in certain
(symmetric) applications.

The approach we will discuss in this paper is based on the observation
that a correctBanachspace formulationcanalsobegivenwhenwe requireall
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solution components to have the same smoothness while the components of
the inhomogeneity belonging to the differential and algebraic parts of (1.1)
have different smoothness requirements. Since standard index reduction
techniques (see, e. g., [11]) yield a reduced systemwhere we can distinguish
between theseparts,wedonot need to restrict the classof treatableproblems.
In particular, the methods we introduce here combine a Gauß-type scheme
with k knots for the differential part with a Lobatto-type scheme withk +
1 knots for the algebraic part.

The paper is organised as follows. In Sect. 2 we state some basic prop-
erties of DAEs that are obtained by index reduction techniques. In Sect. 3
we discuss solvability and convergence properties for the combination of
Gauß-type and Lobatto-type schemes including superconvergence for the
combination of Gauß and Lobatto schemes. To improve the efficiency of the
presentedmethodswe include interpolation techniques inSect. 4. Finallywe
present some numerical comparisons in Sect. 5 and give some conclusions
in Sect. 6.

2 Basic results

Given a BVP of the form (1.1), (1.2), application of the index reduction
techniques of [11,13] yields a DAE

Ê(t)ẋ(t) = Â(t)x(t) + f̂(t)(2.1)

with

Ê =
[
Ê1
0

]
, Â =

[
Â1

Â2

]
, f̂ =

[
f̂1

f̂2

]
,

and block-sizesd and a = n − d. This equation has index one and is
equivalent to (1.1) in the sense that the solution sets are identical. Moreover,
the special structure of the reduced DAE allows to distinguish between
d differential equations

Ê1(t)ẋ(t) = Â1(t)x(t) + f̂1(t)

anda algebraic equations

0 = Â2(t)x(t) + f̂2(t).

For the development of the symmetric collocation methods, we assume
without loss of generality that the DAE is in reduced form (2.1). The hats
are omitted for simplicity of notation.

The main tool in the proofs of Sect. 3 is the transformation of (1.1) to a
canonical form (see [10]). For more details, see [15].
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Proposition 2.1 ForE,A ∈ Ck(I,Rn×n) as in (2.1), there exist point-wise
nonsingularP ∈ Ck−1(I,Rn×n), Q ∈ Ck(I,Rn×n) such that

PEQ =
[
Id 0
0 0

]
, PAQ − PEQ̇ =

[
0 0
0 Ia

]
.(2.2)

In particular,P has the special structure

P =
[
P11 P12
0 P22

]
with P11(t) ∈ R

d×d, P12(t) ∈ R
d×a, P22(t) ∈ R

a×a.

Moreover, there existsT2 ∈ Ck(I,Rn×d) with point-wise full column rank
andA2T2 = 0.
If in additionf ∈ Ck−1(I,Rn), thenx ∈ Ck−1(I,Rn) for every solutionx
of (1.1).

Applying the transformationofProposition2.1 to theboundary condition
(1.2) yields matrices[

C11 C12
]
:= CQ(t) ,

[
D11 D12

]
:= DQ(t) .(2.3)

In terms of the transformed problem (2.2) (where differential and alge-
braic parts are decoupled), we can characterise the well-posedness of the
considered problems as follows.

Proposition 2.2 The boundary value problem (1.1), (1.2) is uniquely solv-
able if and only ifC11 +D11 ∈ R

d×d is nonsingular.

Throughout the paper we use

‖y‖ := max
1≤i≤n

|yi| , ‖Y ‖ := max
1≤i≤m

n∑
j=1

|yij |

as norms for vectorsy ∈ R
n and matricesY ∈ R

m×n, respectively.

3 Symmetric collocation methods

The aim of the collocationmethods is to construct piecewise polynomials as
numerical approximations to the BVP solution. For this we choose meshes

π : t = t0 < t1 < · · · < tN = t(3.1)

with mesh widthshi := ti+1 − ti (i = 0, . . . , N − 1) and a maximum
width h := maxhi. We use two schemes (a Gauß-type one and a Lobatto-
type one, respectively, see, e. g., [9, Ch. IV] for details on Gauß and Lobatto
schemes)

0 < ρ1 < · · · < ρk < 1 , 0 = σ0 < · · · < σk = 1(3.2)



Symmetric collocation for differential-algebraic BVP 479

to subdivide the intervals[ti, ti+1] by collocation points (fori = 0, . . . , N −
1)

tij = ti + hiρj for j = 1, . . . , k,(3.3)

sij = ti + hiσj for j = 0, . . . , k.(3.4)

Then we compute a piecewise polynomialxπ of degreek (i. e.,xπ,i :=
xπ|[ti,ti+1] are polynomials of degreek), which is determined by the follow-
ing set of conditions:

E1(tij)ẋπ,i(tij) = A1(tij)xπ,i(tij) + f1(tij)(3.5)

0 = A2(sij)xπ,i(sij) + f2(sij)(3.6)

for all i, j, i. e., the differential part of the DAE is satisfied at all collocation
pointstij and the algebraic part at all collocation pointssij , respectively,

T2(ti)∗
(
xπ,i−1(ti) − xπ,i(ti)

)
= 0(3.7)

for i = 1, . . . , N − 1, i. e, the differential part ofxπ is continuous, and

Cxπ,0(t0) +Dxπ,N−1(tN ) = r,(3.8)

i. e., the boundary condition is fulfilled.
Altogether (3.5)–(3.8) yield

Nkd+N(k + 1)a︸ ︷︷ ︸
collocation

+(N − 1)d︸ ︷︷ ︸
continuity

+ d︸︷︷︸
BC

= N(k + 1)n

conditions. Since each of theN polynomial pieces is described byk + 1
parameters of dimensionn, we have the same number of unknowns. Note
also that the consistency ofxπ at all mesh pointsti is already implied by
the collocation conditions (3.6), sinces00 = t0 andsik = ti+1 for i =
0, . . . , N − 1.

The following proposition shows that not only the differential part (as
required by (3.7)) but the whole piecewise polynomialxπ is continuous, if
it satisfies the conditions (3.5)–(3.8).

Proposition 3.1 Let the collocation conditions

0 = A2(si−1,k)xπ,i−1(si−1,k) + f2(si−1,k)

be fulfilled. Then the followingconditionsareequivalent (fori = 1, . . . , N−
1):

i) T2(ti)∗
(
xπ,i−1(ti) − xπ,i(ti)

)
= 0 , 0 = A2(si0)xπ,i(si0) + f2(si0)

ii) xπ,i−1(ti) = xπ,i(ti).
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Proof. The claim follows directly from the observation that by construction[
T2(ti)∗
A2(ti)

]

is nonsingular. 	

In the following we use conditions ii) instead of i). The “missing” col-

location condition0 = A2(t0)xπ(t0) + f2(t0) is considered together with
the boundary condition.

We use Lagrange interpolation polynomials according to the points
(si0, xi0), . . . , (sik, xik) to represent the piecesxπ,i, i. e.,

xπ,i(t) =
k∑

l=0

xilLl

(
t − ti
hi

)
, Ll(τ) :=

k∏
j=0
j �=l

τ − σj

σl − σj
.(3.9)

Definingvjl := L′
l(ρj) andujl := Ll(ρj) for l = 0, . . . , k, j = 1, . . . , k,

we get

ẋπ,i(tij) = 1
hi

k∑
l=0

vjlxil , xπ,i(tij) =
k∑

l=0

ujlxil , xπ,i(sij) = xij .

If we set (forj, l = 1, . . . , k)

wjl :=
∫ σj

0
L̃l(τ)dτ , L̃l(τ) :=

k∏
m=1
m�=l

τ − ρm
ρl − ρm

(3.10)

then we see thatV := (vjl)j,l is regular withV −1 = (wjl)j,l. Finally we
introducexN := xN0 := xπ,N−1(tN ).

Summarizing the discussion and using the notation introduced above, the
collocation method reduces to the solution of the system of linear equations
(with j = 1, . . . , k andi = 0, . . . , N − 1)

1
hi

k∑
l=0

vjlE1(tij)xil −
k∑

l=0

ujlA1(tij)xil = f1(tij) ,(3.11)

−A2(sij)xij = f2(sij) ,(3.12)

xik − xi+1,0 = 0 ,(3.13)

Cx00 +DxN0 = r ,(3.14)

−A2(t0)x00 = f2(t0) .(3.15)
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3.1 Solvability of the collocation problems

Theexamination of system (3.11)–(3.15) according to existence and unique-
ness of solutions is divided into two steps: First we look at the local systems
(for i = 0, . . . , N − 1)

Bi


xi1

...
xik


 = aixi0 + bi(3.16)

whichconsist of thecollocationconditions (3.11)and (3.12) forj = 1, . . . , k.
Their solvability is examined in Lemma 3.1. The solutions lead to relations

xik =
[
0 · · · 0 I ]B−1

i ai︸ ︷︷ ︸
=:Wi

· xi0︸︷︷︸
=:xi

+
[
0 · · · 0 I ]B−1

i bi︸ ︷︷ ︸
=:gi

,(3.17)

which yield continuity conditions

xi+1 = Wixi + gi(3.18)

that are used instead of (3.13). Representations forWi andgi are given in
Lemma 3.2. In the second step we look at the global system

Kh


 x0

...
xN


 = gh(3.19)

representing the continuity conditions (3.18), the boundary condition (3.14)
and the consistency condition (3.15) (see (3.22) for the definition ofKh, gh).
Its solvability is examined in Lemma 3.3.

SettingE1j := E1(tij),A1j := A1(tij),A2j := A2(sij), f1j := f1(tij)
andf2j := f2(sij) for selected fixedi, the local systems (3.16) are given
by

Bi :=




v11
hi

E11 − u11A11
v12
hi

E11 − u12A11 · · · v1k
hi

E11 − u1kA11

−A21 0 0
v21
hi

E12 − u21A12
...

0
...

...
...

...
...

vk1
hi

E1k − uk1A1k
· · · vkk

hi
E1k − ukkA1k

0 −A2k




∈ R
kn×kn ,
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ai :=




−v10
hi

E11 + u10A11

0
...

−vk0
hi

E1k + uk0A1k

0


 ∈ R

kn×n , bi :=




f11
f21
...

f1k
f2k


 ∈ R

kn .

In the following lemma we prove the regularity ofBi for sufficiently small
hi using multiplications from the left and from the right, respectively, with

TP := diag
([

P11(tij) P12(sij)
0 P22(sij)

])
j=1,...,k

, TQ := diag
(
Q(sij)

)
j=1,...,k

whereP,Q transform the DAE into canonical form (2.2). We also need
reordering of the rows and columns done by multiplication with

Uk :=




Id 0 0 0
0 0 Ia 0

Id 0
0 Ia
... ...

Id 0
0 Ia




∈ R
kn×kn .(3.20)

Lemma 3.1 Let the smoothness assumptionsA2, P ∈ C1, Q ∈ C2 be
fulfilled. Define

∆i :=
[
∆1

i ∆2
i

0 0

]
, ∆s

i :=
(
hi

k∑
l=1

wjlG
s
lm

)
j,m=1,...,k

(s = 1, 2)

and (form = 0, . . . , k, l, j = 1, . . . , k)

[
G1

lm G2
lm

]
:=




(
vll(σl − ρl) − 1

)
(P11E1Q̇)(til)

−
(
ull − 1

)
(P11A1Q)(til) + O(hi) , l = m,

vlm(σm − ρl)(P11E1Q̇)(til)
−ulm(P11A1Q)(til) + O(hi) , l �= m.

Then the representation

Bi = T−1
P Uk

[
hiV

−1 ⊗ I 0
0 −I

]−1 (
I +∆i

)
U∗
k T−1

Q

holds, and for sufficiently smallhi the matrixBi is regular with

B−1
i = TQ Uk

(
I − ∆i + O(h2

i )
)[

hiV
−1 ⊗ I 0
0 −I

]
U∗
k TP .
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Proof. With A2, P ∈ C1,Q ∈ C2 we can expand

Q(sim) = Q(til) + O(hi) = Q(til) + hi(σm − ρl)Q̇(til) + O(h2
i ) ,

(P12A2Q)(sil)=(P12A2Q)(til)+O(hi)=(P11E1Q̇−P11A1Q)(til)+O(hi).

This leads to

[
P11(til) P12(sil)

] [ vlm
hi

E1l − ulmA1l

0

]
Q(sim)

= vlm
hi

(P11E1)(til)Q(sim) − ulm(P11A1)(til)Q(sim)

= vlm
hi

(P11E1Q)(til) + vlm(σm − ρl)(P11E1Q̇)(til)

−ulm(P11A1Q)(til) + O(hi)
= vlm

hi

[
I 0

]
+
[
G1

lm G2
lm

]
for m �= l .

Analogously, we get

[
P11(til) P12(sil)

] [ vll
hi

E1l − ullA1l

−A2l

]
Q(sil)

= vll
hi
(P11E1)(til)Q(sil) − ull(P11A1)(til)Q(sil) − (P12A2Q)(sil)

= vll
hi
(P11E1Q)(til) + vll(σl − ρl)(P11E1Q̇)(til)

−ull(P11A1Q)(til) − (P11E1Q̇ − P11A1Q)(til) + O(hi)
= vll

hi

[
I 0

]
+
[
G1

ll G
2
ll

]
for m = l .

By multiplication ofBi with TP from the left andTQ from the right and
reordering of the rows and columns usingUk we obtain

U∗
k TP Bi TQ Uk =

[ 1
hi
V ⊗ I 0
0 −I

]
+
[
G1 G2

0 0

]

with Gs :=
(
Gs

lm

)
l,m

. SinceV is regular withV −1 = (wjl)j,l we have

[
hiV

−1 ⊗ I 0
0 −I

]
U∗
k TP Bi TQ Uk = I +∆i(3.21)

with ∆i as given above. Multiplication with the inverses yields the repre-
sentation ofBi.

Since (for alll,m ands = 1, 2) Gs
lm is bounded forhi → 0, we have

‖∆i‖ = O(hi). ThusI +∆i is regular for sufficiently smallhi and has the
inverse(I +∆i)−1 = I − ∆i + O(h2

i ) . By this and (3.21) we see thatBi

is regular for sufficiently smallhi and thatB−1
i has the given representa-

tion. 	
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Lemma 3.2 If a transformation to canonical form withQ ∈ C2 is possible
then the following representations forWi, gi defined in (3.17) hold:

Wi = Q(ti+1)
[
I−Fi1 −Fi2

0 0

]
Q(ti)−1 with Fi1 = O(h2

i ), Fi2 = O(hi),

gi = Q(ti+1)
[

ci
−(P22f2)(ti+1)

]
with ci = O(hi) .

Proof. Using the representation ofB−1
i given in Lemma 3.1 we compute

WiQ(ti) = [ 0 ... 0 I ]B−1
i aiQ(ti).

With Q(ti) = Q(til) + O(hi) = Q(til) − ρlhiQ̇(til) + O(h2
i ) we have[

P11(til) P12(sil)
] [−vl0

hi
E1l + ul0A1l

0

]
Q(ti)

= −vl0
hi
(P11E1Q)(til)+vl0ρl(P11E1Q̇)(til)+ul0(P11A1Q)(til)+O(hi)

= −vl0
hi

[
I 0

]− [
G1

l0 G2
l0
]
,

hence

U∗
k TP ai Q(ti) = − 1

hi

[
v0 ⊗ I 0

0 0

]
−
[
G1

0 G2
0

0 0

]
with v0 := (vl0)l=1,...,k andGs

0 := (Gs
l0)l=1,...,k for s = 1, 2.

By consideringv0 = −V
[
1 · · · 1 ]∗,∆s

j0 := hi
∑k

l=1 wjlG
s
l0 = O(hi) as

in Lemma 3.1 and defining

Ĩ :=
[
(I)j=1,...,k 0

0 0

]
, ∆̃i :=

[
(∆1

j0)j=1,...,k (∆2
j0)j=1,...,k

0 0

]
,

this leads to [
hiV

−1 ⊗ I 0
0 −I

]
U∗
k TPaiQ(ti) = Ĩ − ∆̃i .

Applying the next factor of the representation ofB−1
i , we get

Θi :=
(
I − ∆i + O(h2

i )
)(

Ĩ − ∆̃i

)
= Ĩ − ∆̃i − ∆iĨ + O(h2

i )

=




I 0
...
...

I 0
0 0
...
...

0 0



−




∆1
10 ∆2

10
...

...
∆1

k0 ∆2
k0

0 0
...

...
0 0



−




∑
∆1

1m 0
...

...∑
∆1

km 0
0 0
...

...
0 0



+




O(h2
i ) O(h2

i )
...

...
O(h2

i ) O(h2
i )

0 0
...

...
0 0



=




∗ ∗
...

...
∗ ∗

I−Fi1 −Fi2
0 0
...

...
0 0



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with Fi1 :=
∑k

m=0 ∆
1
km + O(h2

i ), Fi2 := ∆2
k0 + O(h2

i ).
Altogether this yields

WiQ(ti) = [ 0 ... 0 I ]B−1
i aiQ(ti) = [ 0 ... 0 I ]diag

(
Q(sij)

)
UkΘi

and hence (sincesik = ti+1)

Wi = Q(ti+1)
[
I−Fi1 −Fi2

0 0

]
Q(ti)−1 .

In order to show thatFi1 = O(h2
i ), we use interpolation of the polynomials

p(t) = 1, q(t) = t at the pointsσ0, . . . , σk to obtain

k∑
m=0

Lm(ρl) = 1 ,
k∑

m=0

L′
m(ρl) = 0 ,

k∑
m=0

L′
m(ρl)σm = 1 .

By inserting the definitions of Lemma 3.1 we see

k∑
m=0

∆1
km =

k∑
m=0

hi

k∑
l=1

wklG
1
lm

= hi

k∑
l=1

wkl

(
k∑

m=0
m�=l

[
vlm(σm−ρl)(P11E1Q̇1)(til)−ulm(P11A1Q1)(til)

]

+
(
vll(σl−ρl)−1

)
(P11E1Q̇1)(til)−(ull−1)(P11A1Q1)(til)+O(hi)

)

= hi

k∑
l=1

wkl

([
k∑

m=0

L′
m(ρl)(σm − ρl) − 1

]
︸ ︷︷ ︸

=0

(P11E1Q̇1)(til)

−
[

k∑
m=0

Lm(ρl) − 1

]
︸ ︷︷ ︸

=0

(P11A1Q1)(til) + O(hi)

)
= O(h2

i )

and therefore

Fi1 =
k∑

m=0

∆1
km + O(h2

i ) = O(h2
i ) .

Looking at the definition of∆2
k0, it is obvious thatFi2 = O(hi).

The representation

gi = Q(ti+1)
[

ci
−(P22f2)(ti+1)

]
with ci = O(hi)
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can be derived analogously by inserting the representation forB−1
i given in

Lemma 3.1 intogi =
[
0 · · · 0 I ]B−1

i bi. 	

The global system (3.19) is given byKh ∈ R

(N+1)n×(N+1)n andgh ∈
R

(N+1)n, where

Kh :=




C D
−A2(t0) 0

W0 −I
... ...

... ...
WN−1 −I




, gh :=




r
f2(t0)
−g0
...
...

−gN−1




.(3.22)

To prove the regularity ofKh and the boundedness ofK−1
h gh, we multiply

from the left and from the right, respectively, with

Tl := diag
([

I 0
0 P22(t0)

]
, Q(t1)−1, . . . , Q(tN )−1

)
, Tr := diag

(
Q(ti)

)
,

whereP,Q transform(E,A) to canonical form (2.2). We also useUN ∈
R

(N+1)n×(N+1)n, which is defined analogously toUk in (3.20), to reorder
rows and columns. Finally, we set

Mh :=



C11 D11
I −I

... ...
I −I


 , Nh :=




C12 D12
−F02 0

... ...
−FN−1,2 0


 ,

Dh :=




0
−F01 0

... ...
−FN−1,1 0


 ,

with C11, C12, D11, D12 given in (2.3) andFi1, Fi2 given in Lemma 3.2,

andAh :=
[
Mh Nh

0 −I

]
,∆h :=

[
Dh 0
0 0

]
.

Lemma 3.3 The matrixKh of the global system (3.19) given in (3.22) has
the representation

Kh = T−1
l UN

(
Ah +∆h

)
U∗
N T−1

r .

For a uniquely solvable BVP (2.1),(1.2) and a smooth transformation func-
tion Q ∈ C2, the matrixKh is regular for sufficiently smallh with

K−1
h = Tr UN

(
I − A−1

h ∆h + O(h2)
)
A−1

h U∗
N Tl .
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Furthermore,K−1
h gh is bounded by a constant which depends on the data

E,A, f, C,D, r and the transformation functionsP,Q, but not on the max-
imum mesh widthh.

Proof. By multiplication withTl from the left andTr from the right we get
block-wise[

I 0
0 P22(t0)

] [
C

−A2(t0)

]
Q(t0) =

[
C11 C12
0 −I

]
,[

I 0
0 P22(t0)

] [
D
0

]
Q(tN ) =

[
D11 D12
0 0

]
,

Q(ti+1)−1WiQ(ti) =
[
I−Fi1 −Fi2

0 0

]
,

if we use the representation ofWi given in Lemma 3.2. Reordering of the
rows and columns yields

U∗
N Tl Kh Tr UN = Ah +∆h ,

and by multiplying with the inverses we get the representation ofKh.
By Proposition 2.2, the matrixS := C11 + D11 is regular, thusMh is

regular with inverse

M−1
h =


S−1

...
S−1





I D11 · · · D11
... −C11

...
...

...
...

... D11
I −C11 · · · −C11


 .

Using Lemma 3.2, it follows that

‖M−1
h Dh‖ ≤ ‖S−1‖max{‖C11‖, ‖D11‖} ·

N−1∑
i=0

‖Fi1‖︸ ︷︷ ︸
=O(h2

i )

= O(h).

SinceMh is regular, the same holds forAh. We obtain‖A−1
h ∆h‖ =

‖M−1
h Dh‖ = O(h), thusAh +∆h is regular for sufficiently smallh and(

Ah +∆h

)−1
=
(
I − A−1

h ∆h + O(h2)
)
A−1

h .

This proves the regularity ofKh and the representation ofK
−1
h .

Using

gi = Q(ti+1)
[

ci
−(P22f2)(ti+1)

]
, ci = O(hi), Fi2 = O(hi)
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(see Lemma 3.2) together with the representations ofK−1
h andM−1

h , the
boundedness ofK−1

h gh independent ofh follows along the lines of the proof
of Lemma 3.3 in [16]. 	


Theexistence anduniqueness of solutions of collocation problems (3.5)–
(3.8) is equivalent to theuniquesolvability of the local systems (3.16) and the
global system (3.19). Thus existence and uniqueness follows by combining
Lemma 3.1 (concerning the local systems) and Lemma 3.3 (concerning
the global system). For smooth data, i. e.,E,A ∈ C2, the existence of a
transformation to canonical form withP ∈ C1, Q ∈ C2 is guaranteed by
Proposition 2.1.

Theorem 3.1 Consider a uniquely solvable BVP (2.1),(1.2) with smooth
dataE,A ∈ C2, f ∈ C. For N ∈ N andk ≥ 1 define a meshπ as in (3.1)
and for i = 0, . . . , N − 1 collocation pointstij , j = 1, . . . , k as in (3.3)
andsij , j = 0, . . . , k as in (3.4), respectively, according to knotsρj , σj as
in (3.2).

Then for sufficiently small mesh widthsh0, . . . , hN−1, there exists one
and only one continuous piecewise polynomialxπ of degreek that satisfies
the collocation conditions (3.5),(3.6), fulfills the boundary condition (3.8)
and is consistent at all mesh pointsti.

A collocation method is said to be stable, if the approximationsxi, xij

remain bounded (independent ofπ) for decreasing mesh widthshi (see,
e. g., [1]). In this sense, the symmetric collocation methods (3.11)–(3.15)
are stable, since thexi are bounded (see Lemma 3.3) and thexij satisfy the
relation

xij=
(
Q(sij)

[
I−Fij1 −Fij2

0 0

]
Q(ti)−1

)
xi+Q(sij)

[
cij

−(P22f2)(sij)

]
,

which is similar toxik = Wixi + gi.

3.2 Convergence results

In this sectionweexamine the collocationmethods concerning convergence.
Assuming a smooth solution of the BVP, we prove convergence of orderk
and for special schemes orderk + 1 together with superconvergence of
order2k at mesh points.

Theorem 3.2 Consider a uniquely solvable BVP (2.1),(1.2) with a smooth
solutionx ∈ Ck+1(I,Rn). Let π be a mesh as in (3.1) with sufficiently
small mesh widthshi and use schemesρj , σj as in (3.2). Letxπ be the
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unique solution of the corresponding symmetric collocation method. Then
we have

‖x − xπ‖∞ = sup
t∈I

‖x(t) − xπ(t)‖ = O(hk) .

Proof. Interpolation ofx analogous to (3.9) yields

x(t) =
k∑

l=0

x(sil)Ll

(
t − ti
hi

)
+

x(k+1)(θi(t))
(k + 1)!

k∏
j=0

(t − sij)

︸ ︷︷ ︸
=:ψi(t)

for someθi(t) ∈ [ti, ti+1]. Inserting this representation into the DAE at the
collocation pointstij andsij delivers the local system

Bi


x(si1)

...
x(sik)


 = aix(ti) + bi −


 τi1

...
τik


 , τij :=

[
(E1ψ̇i − A1ψi)(tij)

0

]

withBi, ai, bi defined in (3.16). Obviously we haveψi(tij) = O(hk+1
i ) and

ψ̇i(tij) = O(hk
i ), thusτij = O(hk

i ).
Since the collocation problem is uniquely solvable for sufficiently smallhi

(i. e.,Bi is regular), we can solve forx(sik) = x(ti+1). We get that (with
Wi, gi defined in (3.17))

x(ti+1) = Wix(ti) + gi − τi .

For the errorτi :=
[
0 · · · 0 I ]B−1

i

(
τij

)
j=1,...,k

a representation

τi = Q(ti+1)
[
ϕi

0

]
, ϕi = O(hk+1

i )

can be derived analogously to that ofgi given in Lemma 3.2. The conti-
nuity, boundary and consistency conditions forx lead to the global system
(comparable to (3.19))

Kh


 x(t0)

...
x(tN )


 = gh + τh , τh :=




0
τ0
...

τN−1


 .

According to the unique solvability of the collocation problem for suffi-
ciently smallh, the matrixKh is regular and the difference of the global
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systems forx andxπ, respectively, gives

Kh


 x(t0) − x0

...
x(tN ) − xN


 = τh .(3.23)

Due toτh = O(hk+1) we haveK−1
h τh = O(hk) (this can be proved like

the boundedness ofK−1
h gh in Lemma 3.3, using orderk + 1 instead of

gi = O(hi)), i. e.,

max
i

‖x(ti) − xi‖ = O(hk) .

Looking at the difference in the local systems we obtain
 x(si1) − xi1

...
x(sik) − xik


 = B−1

i ai

(
x(ti) − xi

)
︸ ︷︷ ︸

=O(hk)

−B−1
i


 τi1

...
τik




︸ ︷︷ ︸
=O(hk

i )

(3.24)

and hencemaxj ‖x(sij) − xij‖ = O(hk) .
From this the convergence orderk for any t ∈ I can be derived easily by
looking at the differences of the interpolation representations forx andxπ,
respectively. 	


For special choices of the schemes in (3.2), this result can be improved to
a higher convergence order at mesh pointsti, so-called superconvergence.

Theorem 3.3 Consider a BVP (2.1),(1.2) with unique solutionx. Letπ be
a mesh as in (3.1). Use Gauß knots0 < ρ0 < . . . < ρk < 1 and Lobatto
knots0 = σ0 < . . . < σk = 1 to construct the collocation pointstij , sij .
Suppose furthermore that the mesh widthshi are sufficiently small, such that
the corresponding symmetric collocation method has a unique solutionxπ.

If the data is smooth, i. e., ifE,A ∈ C2k+1, f ∈ C2k, then

max
0≤i≤N

‖x(ti) − xi‖ = O(h2k) .

Proof. By Proposition 2.1, there existP ∈ C2k, Q ∈ C2k+1 transforming
the DAE to canonical form (2.2). Sincexi is consistent, the initial value
problemEẏ = Ay + f , y(ti) = xi is uniquely solvable and the solutionv
has a representation (using the transformation (2.2) to canonical form)

(Q−1v)(t) =

[
[ I 0 ]

(
Q(ti)−1xi +

∫ t
ti
(Pf)(s)ds

)
−(P22f2)(t)

]
, t ≥ ti .
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The approximationxπ is the solution of the initial value problemEẏ =
Ay + (Eẋπ − Axπ), y(ti) = xi, and has the form

(Q−1xπ)(t) =

[
[ I 0 ]

(
Q(ti)−1xi +

∫ t
ti
(P (Eẋπ − Axπ))(s)ds

)
(P22A2xπ)(t)

]

for ti ≤ t ≤ ti+1. Sincexπ is consistent at themeshpointti+1, thedifference
of these representations att = ti+1 gives

v(ti+1) − xi+1 = Q(ti+1)
[∫ ti+1

ti
φd(s)ds+

∫ ti+1
ti

φa(s)ds
0

]
,(3.25)

with functions

φd := P11(f1 − E1ẋπ +A1xπ) , φa := P12(f2 +A2xπ) .

Due to the smoothness of the data, we haveφd, φa ∈ C2k. Sincexπ satisfies
the collocation conditions, the collocation pointsti1, . . . , tik are zeros ofφd

andsi0, . . . , sik are zeros ofφa, respectively. From this follows (see, e. g.,
[15]) the existence of smooth functionswd ∈ Ck, wa ∈ Ck−1 with

φd(s) = wd(s)
k∏

j=1

(s − tij) , φa(s) = wa(s)
k∏

j=0

(s − sij) .

Taylor expansion yieldswd = ψd + O(hk
i ), wa = ψa + O(hk−1

i ) with
polynomialsψd of degree≤ k − 1 andψa of degree≤ k − 2, respectively.
By inserting this into (3.25) and using the orthogonality properties of the
Gauß and Lobatto schemes (see, e. g., [9, Ch. IV]), we obtain

∫ ti+1

ti

φd(s)ds =
∫ ti+1

ti

[
ψd(s)

k∏
j=1

(s − tij) + O(h2k
i )

]
ds

= hk+1
i

∫ 1

0
ψd(ti + hiτ)

k∏
j=1

(τ − ρj)dτ

︸ ︷︷ ︸
=0

+O(h2k+1
i ) ,

∫ ti+1

ti

φa(s)ds =
∫ ti+1

ti

[
ψa(s)

k∏
j=0

(s − sij) + O(h2k
i )

]
ds

= hk+2
i

∫ 1

0
ψa(ti + hiτ)

k∏
j=0

(τ − σj)dτ

︸ ︷︷ ︸
=0

+O(h2k+1
i ) .
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Altogether we have

φi := v(ti+1) − xi+1 = Q(ti+1)
[∫ ti+1

ti
φd(s)ds+

∫ ti+1
ti

φa(s)ds
0

]
= O(h2k+1

i ) .

Considering a fundamental solutionW ( · , ti), i. e., a solution of

EẆ = AW , W (ti, ti) = Q(ti)
[
I 0
0 0

]
Q(ti)−1 ,

we see thatx(t) − v(t) = W (t, ti)(x(ti) − v(ti)) for all t ≥ ti. Setting
t = ti+1, we particularly get

W (ti+1, ti)
(
x(ti) − xi

)
= x(ti+1) − v(ti+1) = x(ti+1) − xi+1 − φi

for i = 0, . . . , N − 1. This together with the boundary condition and the
consistency condition int0 builds the system


C D

−A2(t0) 0
W (t1, t0) −I

... ...
W (tN , tN−1) −I




 x(t0) − x0

...
x(tN ) − xN


 =




0
0

−φ0
...

−φN−1




comparable to (3.23). From this we derive (as in Lemma 3.3)

max
i

‖x(ti) − xi‖ = O(h2k) ,

since now the inhomogeneity is of orderO(h2k+1). 	

To show a higher convergence order for a special choice of the schemes,

we need a simple lemma.

Lemma 3.4 For Gauß knots0 < ρ1 < . . . < ρk < 1 and Lobatto knots
0 = σ0 < . . . < σk = 1 we have

∫ σj

0

k∏
l=1

(τ − ρl)dτ = 0 , j = 0, . . . , k .

Proof. TheGaußandLobatto knots are defined via the zeros of the Legendre
polynomials and their derivatives, respectively. The claim follows directly
from the Legendre differential equation, see, e. g., [9, Ch. IV].	
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Corollary 3.1 Under the assumptions of Theorem 3.3 it follows that

max
j

‖x(sij) − xij‖ = O(hk+2
i ) + O(h2k) for k ≥ 2

and
‖x − xπ‖∞ = O(hk+1) .

Proof. Looking at (3.24) in the proof of Theorem3.2 and usingx(ti)−xi =
O(h2k) due to Theorem 3.3, it is obvious that we must showB−1

i (τij)j =
O(hk+2

i ) to prove the first assertion. For this we exploit the special choice
of the knots.

The transformation to canonical form yields

P11(E1ψ̇i−A1ψi) = (P11E1Q) d
dt(Q

−1ψi) − (P11A1Q−P11E1Q̇)(Q−1ψi)

= [ I 0 ] d
dt(Q

−1ψi) + (P12A2Q)(Q−1ψi)

= ϕ̇+ O(hk+1
i ) ,

when definingϕ := [ I 0 ](Q−1ψi). For smooth dataE,A ∈ C2k+1, f ∈
C2k we get a smooth solutionx ∈ C2k (see Proposition 2.1), thus the
interpolation errorψi is smooth. SinceQ ∈ C2k+1 by Proposition 2.1, it
follows thatϕ ∈ C2k, in particularϕ ∈ Ck+2 for k ≥ 2. By interpolation
of ϕ̇ at the pointstil and by a Taylor expansion of the interpolation error we
obtain

k∑
l=1

L̃l

( t − ti
hi

)
ϕ̇(til) = ϕ̇(t) − ϕ̇(k)(θ(t))

k!

k∏
l=1

(t − til)

= ϕ̇(t) − c

k∏
l=1

(t − til) + O(hk+1
i )

with the constantc := 1
k!ϕ

(k+1)(ti) and Lagrange polynomials̃Ll as in
(3.10). Inserting the definition ofwjl given in (3.10) leads to

k∑
l=1

wjlϕ̇(til) =
∫ σj

0

k∑
l=1

L̃l(τ)ϕ̇(til)dτ= 1
hi

∫ sij

ti

k∑
l=1

L̃l

( t − ti
hi

)
ϕ̇(til)dt

= 1
hi

∫ sij

ti

ϕ̇(t)dt − c
hi

∫ sij

ti

k∏
l=1

(t − til)dt+ O(hk+1
i )

=
ϕ(sij) − ϕ(ti)

hi
− chk

i

∫ σj

0

k∏
l=1

(τ − ρl)dτ + O(hk+1
i )

= O(hk+1
i ) ,



494 P. Kunkel, R. Sẗover

sincesij , ti = si0 are zeros ofψi and thus ofϕ, and the second term is zero
by Lemma 3.4, respectively. Altogether we have (recallingV −1 = (wjl)j,l)

U∗
kTP

(
τij

)
j
=

[(
[P11(E1ψ̇i − A1ψi)](tij)

)
j

0

]
=

[(
ϕ̇(tij) + O(hk+1

i )
)
j

0

]

⇒
[
hiV

−1 ⊗ I 0
0 −I

]
U∗
kTP

(
τij

)
j
=hi

[(∑k
l=1 wjlϕ̇(til)

)
j

0

]
+ O(hk+2

i )

=O(hk+2
i )

⇒ B−1
i

(
τij

)
j
= TQUk

(
I−∆i+O(h2

i )
)[

hiV
−1 ⊗ I 0
0 −I

]
U∗
kTP

(
τij

)
j

= O(hk+2
i ) .

The convergence orderk + 1 for anyt ∈ I follows now by considering the
difference of the interpolation representations forx andxπ (cp. end of proof
for Theorem 3.2). 	


4 Collocation with interpolation

A drawback of the symmetric methods may be the number of evaluations
of the dataE,A, f needed to construct the matricesBi. Since we have two
schemesρj , σj and two sets of collocation pointstij , sij , we need2Nk+1
evaluations instead of onlyNk + 1 for conventional collocation.

To overcome this drawback, we can, for smoothE,A, f ∈ Ck+1, inter-
polate the data using the collocation pointssij :

E1(t) =
k∑

m=0

Lm

(
t − ti
hi

)
E1(sim)

︸ ︷︷ ︸
=:pE(t)

+
E

(k+1)
1 (θ(t))
(k + 1)!

k∏
m=0

(t − sim)

︸ ︷︷ ︸
=:ψE(t)

andA1 = pA + ψA, f1 = pf + ψf analogously. If we replaceE1(tij),
A1(tij), f1(tij) by pE(tij), pA(tij), pf (tij) in the collocation condition
(3.11), we obtain the following problem (withi = 0, . . . , N − 1 andj =
1, . . . , k), for which data evaluations at the pointssij are sufficient:

k∑
l=0

[
vjl
hi

k∑
m=0

ujmE1(sim) − ujl

k∑
m=0

ujmA1(sim)

]
x̃il
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=
k∑

m=0

ujm f1 (sim)(4.1)

−A2(sij)x̃ij = f2(sij)(4.2)

x̃ik − x̃i+1,0 = 0(4.3)

Cx̃00 +Dx̃N0 = r(4.4)

−A2(t0)x̃00 = f2(t0)(4.5)

For this problem we prove results analogous to Theorem 3.1 (unique solv-
ability), Theorem 3.2 (convergence orderk) and Theorem 3.3 (superconver-
gence of order2k).

Theorem 4.1 Consider a uniquely solvable BVP (2.1),(1.2) with solutionx
and smooth dataE,A ∈ Ck+2, f ∈ Ck+1,k ≥ 1. ForN ∈ N define a mesh
π as in (3.1) and collocation pointssij for i = 0, . . . , N−1, j = 0, . . . , k as
in (3.4) according to knotsσj as in (3.2). Use knotsρj as in (3.3) to compute
vjm = L′

m(ρj) andujm = Lm(ρj) (see (3.9) for definition ofLm).

i) For sufficiently small mesh widthsh0, . . . , hN−1, there exists one and
only one continuous piecewise polynomialx̃π of degreek that satisfies
the interpolated collocation conditions (4.1), the collocation conditions
(4.2), fulfills the boundary condition (4.4) and is consistent at all mesh
pointsti.

ii) If the mesh widths are sufficiently small, the symmetric collocation
method using interpolation is of convergence orderk, i. e.,

‖x − x̃π‖ = O(hk) .

iii) If we use Lobatto knots0 = σ0 < . . . < σk = 1 and Gauß knots
0 < ρ1 < . . . < ρk < 1and if thedata fulfills the smoothnessconditions
E,A ∈ C2k+1, f ∈ C2k, then the symmetric collocation method using
interpolation is superconvergent of order2k, i. e.,

max
0≤i≤N

‖x(ti) − x̃i‖ = O(h2k)

for sufficiently smallh.

Proof. As in Sect. 3, we start by considering local systems

B̃i


 x̃i1

...
x̃ik


 = ãix̃i0 + b̃i

built of the collocation conditions (4.1),(4.2) (forj = 1, . . . , k). Due to the
interpolation errorsψE,A,f (tij) = O(hk+1

i ) we have

B̃i = Bi + O(hk
i ) , ãi = ai + O(hk

i ) , b̃i = bi + O(hk+1
i )
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with Bi, ai, bi of the local system (3.16). Applying Lemma 3.1, we see that
B̃i is regular for sufficiently smallhi andB̃

−1
i = B−1

i + O(hk+2
i ) since

B−1
i = O(hi). This yields continuity conditions

x̃i+1,0 = x̃ik = W̃ix̃i0 + g̃i

with W̃i = Wi+O(hk+1
i ), g̃i = gi+O(hk+2

i ). Thus we get a global system

K̃h


 x̃0

...
x̃N


 = g̃h

with K̃h = Kh + O(hk+1), g̃h = gh + O(hk+2) andKh, gh of the global
system (3.19). Here we apply Lemma 3.3 to achieve thatK̃h is regular for
sufficiently smallh with

K̃−1
h =

(
Kh(I + O(hk))

)−1
= (I + O(hk))K−1

h .

From this it follows that

K̃−1
h g̃h = (I + O(hk))K−1

h (gh + O(hk+2)) = K−1
h gh + O(hk)

is bounded independent ofh, because the same holds forK−1
h gh. Since the

unique solvability of the collocation problemwith interpolation is equivalent
to the regularity ofB̃i (i = 0, . . . , N − 1) andK̃h, assertion i) is proved.

Convergence orderk can be proved as in Theorem 3.2.
To prove superconvergence we argue analogously to the proof of Theo-

rem 3.3. Here we define three functions

φ̃d := P11(pf − pE ˙̃xπ + pAx̃π) , φ̃a := P12(f2 +A2x̃π) ,

φ̃ψ := P11(ψf − ψE
˙̃xπ + ψAx̃π)

and obtain a local discretisation error

v(ti+1)−x̃i+1=Q(ti+1)
[∫ ti+1

ti
φ̃d(s)ds+

∫ ti+1
ti

φ̃a(s)ds+
∫ ti+1
ti

φ̃ψ(s)ds
0

]
.

Due to the collocation conditions,̃φd has zerostij and φ̃a has zerossij ,
respectively. Thesij are also zeros of̃φψ, since they are zeros of the inter-
polation errors. 	
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5 Numerical examples

To illustrate the practicability and effectiveness of the described symmetric
collocation methods we present three representative examples. The results
are compared to that of Radau collocation [16] and COLDAE [3].

A MATLAB code for the construction and solution of local systems
(3.16) and global systems (3.19) has been developed, including a simple
strategy for the generation and refinement of the meshesπ. The package
DGELDA [14] is used for the regularisation of the dataE,A, f at discrete
pointstij , sij , thus FORTRAN subroutines for the evaluation ofE,A, f and
its derivatives up to orderν − 1 at discrete points are needed. Furthermore,
the datat, t, C,D, r are needed as input, and the parameter1 ≤ k ≤ 5 and
a tolerance for the mesh selection must be chosen.

Asdiscussed inSect. 4, the symmetricmethodsneed2Nk+1evaluations
of the dataE,A, f instead ofNk+ 1 for Radau collocation, since two sets
tij , sij of collocation points are used. Besides this, the computational effort
is the same for symmetric and Radau collocation, respectively, because the
local and global systems have the same dimensions and structures. If data
evaluations are expensive, we can apply collocation with interpolation (i. e.,
we solve (4.1)–(4.5)). For the following three examples, we report only
the results of symmetric collocation without interpolation (i. e., solutions
of (3.11)–(3.15)), since we obtained comparably accurate results when we
worked with interpolation.

Example 5.1In order to demonstrate the potential drawbacks of the asym-
metric Radau methods, we consider the ordinary boundary value problem
([1], p. 394)

εu′′(t) = −2tu′(t) , u(−1) = −1 , u(1) = 1

with small parameter0 < ε � 1. The solution isu(t) = erf(t/
√
ε), where

the Gaussian error function is defined by

erf(t) =
2√
π

∫ t

0
e−s2 ds.

With Radau collocation, we can compute approximations only for mod-
erate values ofε, i. e., ε ≥ 10−3. For ε = 10−3, Fig. 1 shows the errors
u(ti)−uπ(ti) of Radau and symmetric collocation, respectively, according
to k = 5 collocation points per subinterval, five subintervals in the initial
meshes and a tolerance10−4 for the mesh refinement. While the mesh that
is generated by the Radau method is much coarser in the right subinterval
[0, 1] than in the left half[−1, 0], the result of the symmetric collocation
method is a symmetric mesh and a symmetric approximation.

Forε = 10−4, 10−5, 10−6, the Radau method failed, but we got approx-
imations by use of symmetric collocation or COLDAE.
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Fig. 1.

Example 5.2The second example is
 0 0 0

1 −t 0
−1 t 1


 ẋ =


−1 t 0

0 0 0
0 t2 1


x+


 et/2

0
0


 , t ∈ [−5, 0]

[
1 7 0

]
x(−5) +

[
0 4 1

]
x(0) = 6 .

This is an index-two problem withd = 1 differential anda = 2 algebraic
equations. The solution is

x(t) = et/2(1 − t
2 , −1

2 , t2 + 4t+ 8)∗ .

Fork = 1, ..., 5 collocation points per subinterval and uniformmeshes with
appropriate numbersN of subintervals, we computed approximations using
symmetric collocation, the Radau method and COLDAE.

Since this index-two problem is not semi-explicit, COLDAE can not be
applied directly. The index reduction technique due to [11] is used to obtain
an index-one formulation. But this is not semi-explicit either, thus we need
to transform it into the semi-explicit index-two problem

ẋ = y , 0 = Êy − Âx − f̂ ,

which is of doubled dimension. Furthermore, the consistency condition
Â2(t0)x(t0) + f̂2(t0) = 0 at t0 = −5 must be considered as an addi-
tional boundary condition. In other words, this problem can not be attacked
by COLDAE without applying the index reduction and even by doing this,
more computational work in comparison to Radau or symmetric collocation
is needed.
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Table 1. Errors according to uniform meshes for Example 4.2

Symmetric Coll. Radau Collocation COLDAE
k N erri order erri order erri order

1 50 0.26e-2 0.17 0.28e-2
100 0.65e-3 2.0 0.82e-1 1.0 0.71e-3 2.0
200 0.16e-3 2.0 0.41e-1 1.0 0.18e-3 2.0

2 20 0.16e-4 0.74e-3 0.18e-4
40 0.10e-5 4.0 0.90e-4 3.0 0.11e-5 4.0
80 0.64e-7 4.0 0.11e-4 3.0 0.71e-7 4.0

3 10 0.39e-6 0.13e-4 0.44e-6
20 0.61e-8 6.0 0.38e-6 5.1 0.68e-8 6.0
40 0.95e-10 6.0 0.12e-7 5.0 0.11e-9 6.0

4 6 0.17e-7 0.43e-6 0.19e-7
12 0.68e-10 8.0 0.34e-8 7.0 0.77e-10 7.9
24 0.26e-12 8.0 0.26e-10 7.0 0.29e-12 8.0

5 4 0.13e-8 0.28e-7 0.14e-8
8 0.12e-11 10.0 0.50e-10 9.1 0.14e-11 10.0

In Table 1 the errorserri(N) := max0≤i≤N ‖x(ti) − xi‖ and the cor-

responding orderslog
(
erri(N/2)
erri(N)

)
/ log(2) are given. We clearly see that

the theoretical superconvergence results (2k for symmetric collocation and
COLDAE, 2k − 1 for the Radau method) can be verified for this example.
We also recognize that not only the orders but also the absolute valueserri
are approximately the same for symmetric collocation and COLDAE, while
the results of the Radau method are less accurate.

Example 5.3For the third example we transform a DAE given in [3, Exam-
ple 1] and obtain

E(t)=


 1 −t 0

t 1 −t
p(t)−2 −t(p(t)−2) 0


 ,

A(t)=




κ − 1
2−t

2
2−t − κt (2 − t)κ

κ−1
2−t − t − 1 −tκ−1

2−t − 1 t+ κ − κp(t)
2+t

κt(t2−3)− p(t)−2
2−t 2p(t)−2

2−t −4κ κ
(
p(t)(2−t)−t3+6t−4

)

 ,

f(t)=




3−t
2−t

2 + (κ+2)p(t)+ṗ(t)
t2−4 − 2 tp(t)

(t2−4)2

(p(t) − 2)3−t
2−t − κ(t2 + t − 2)


 et,

with t ∈ [0, 1], parameterκ ∈ R and a smooth functionp ∈ C1(I,R). The
boundary condition isx1(0) = 1.
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This problem is of index two and consists ofd = 1 differential anda = 2
algebraic equations. We setκ = 20 and choose

p(t) = −
(
1 + erf

( t − 1/3√
2ε

))
, ε = 10−5 .

Thus a layer region aroundt = 1
3 occurs inp and also in the solution

x(t) = et
t2+1


1 + t − t2

2−t +
tp(t)
t2−4

1 − t − t
2−t +

p(t)
t2−4

− t2+1
2−t


 .

Weexamine this problem usingk = 4 collocation points per subinterval and
five subintervals in the initial meshes. The tolerances for mesh refinement
are chosen such that comparable numbersN of subintervals in the final
meshes occur. In Table 2 we report these numbersN together with the
errorserr := max ‖x(t)−xπ(t)‖measured at 101 equidistant pointst ∈ I.

Table 2. Errors for Example 5.3

Symmetric Collocation Radau Collocation COLDAE
tol N err tol N err tol N err

3 · 10−9 69 0.83e-8 10−7 68 0.67e-7 10−4 66 0.11e-5
10−11 161 0.21e-9 10−9 144 0.10e-8 10−5 160 0.40e-6

As in Example 5.2, COLDAE cannot be applied to this problem directly.
It has tobe regularisedand the reducedBVPmustbe transformed intoasemi-
explicit index-two problem of doubled dimension. Thus the application of
COLDAE is more expensive regarding the computational work. Moreover,
the results of COLDAE are less accurate when we compare approximations
obtained with similar numbers of subintervals.

6 Conclusions

In this paper, we have developed symmetric collocation methods for the
solution of linear differential-algebraic boundary value problems as they
occur by index reduction. Thus, in combination with index reduction, we
can solve BVPs of arbitrary index. The key point was to use a Gauß-type
scheme for the differential part and a Lobatto-type scheme with one more
knot for the algebraic part. We showed that the results known for differential
equations also hold in the case of differential-algebraic equations including
superconvergence for the combination of Gauß and Lobatto schemes. In
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order to reduce the number of function evaluations that are needed when
using two different schemes, we introduced interpolation and showed that
the convergence properties are not influenced by this modification. Finally,
we showed the applicability and accuracy of these methods in comparison
to other approaches.
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