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Summary. We prove numerical stability of a class of piecewise polynomial
collocation methods on nonuniform meshes for computing asymptotically
stable and unstable periodic solutions of the linear delay differential equa-
tion g (t) = a(t)y(t) + b(t)y(t — ) + f(t) by a (periodic) boundary value
approach. This equation arises, e.g., in the study of the numerical stability
of collocation methods for computing periodic solutions of nonlinear de-
lay equations. We obtain convergence results for the standard collocation
algorithm and for two variants. In particular, estimates of the difference
between the collocation solution and the true solution are derived. For the
standard collocation scheme the convergence results are “unconditional”,
that is, they do not require mesh-ratio restrictions. Numerical results that
support the theoretical findings are also given.

Mathematics Subject Classification (199&5L60

1 Introduction

We study in this paper the stability of piecewise collocation for computing
periodic solutions to linear systems of delay differential equations (DDES),

(1) y(t) = a()y(t) + o)yt — ) + f(1),
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wherea, b and f are periodic with period 1 and > 0 is a fixed delay. We
rewrite (1) as

2 9(t) = a@®)y(t) + b(t)y((t — 7)mod 1) + f(¢), ¢ € [0, 1],

and solve fory € C[0,1] givena,b € C2[0,1] and f € C?[0,1]. The
“circulant” (periodic) space€’*[0, 1] are defined as

CE0,1] = {y € C*([0,1],R") |y (0) =y (1), j =0,... K},
and, for matrix-valued functions,
CE[0,1] = {y € C*([0,1],R™") [yY)(0) = y)(1), j =0,...,k}.

We consider the standard collocation algorithm, and two variants. Un-
der appropriate assumptions we prove stability of the collocation method
and obtain an estimate of the difference between the collocation solution
and the true solution of (2). We follow the approach in [8] (and references
therein), which gives convergence results using only elementary analytical
techniques. Moreover, for the standard collocation algorithm our conver-
gence results are “unconditional”, that is, they do not require mesh-ratio
restrictions. Unconditionally convergent methods are desirable for “diffi-
cult” problems, where adaptive meshes are essential, and where the ratio
of the largest mesh interval to the smallest mesh interval can be large.
Such problems include singularly perturbed equations, relaxation oscilla-
tions, “bursting” periodic orbits, near-homoclinic periodic orbits, etc. An
example of a near-homoclinic periodic orbit is given in Sect. 5.

DDEs can be seen as an intermediate step between ordinary differential
equations (ODEs) and partial differential equations (PDESs). Like ODEs,
DDEs are formulated in a finite dimensional space; like PDEs, DDEs in-
herently define infinite dimensional systems. As such, DDEs allow more
powerful modelling than ODEs, yet are at the same time more tractable
than PDEs. Our results (and that of others) show that DDEs indeed retain
some, but not all, of the computational tractability of ordinary differential
equations.

The analysis in this paper is intended to provide a theoretical support for
using collocation methods in bifurcation software, specifically for the con-
tinuation of periodic solutions, as done in AUTO for ordinary (non-delay)
differential equations. Hence, our practical interest is in the continuation of
periodic solutions of systems of autonomous nonlinear DDEs. However, to
avoid cumbersome details without loss of essential features in the proofs,
we avoid the use of a phase condition. Moreover, from the general stability
theory for discretizations of nonlinear operator equations, see for exam-
ple [20], it follows that it is sufficient to study the numerical stability and
convergence properties of the discrete method applied to the type of linear
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problems obtained by linearization. Furthermore, we restrict the analysis
to systems of first-order DDEs with one delay. Extension to higher order

systems and systems with multiple delays can easily be carried out along
the same lines.

Relatively little work has been done on developing numerical contin-
uation software for periodic solutions of DDEs, and, more generally, for
functional differential equations. The software package XPPAUT [13] has
some capabilities for delay equations, but this does not include continu-
ation of periodic solutions. Certain numerical continuation schemes have
been developed, see for example [15,10, 28] and a first generally available
continuation package has recently appeared [11]. For more progress in this
direction see [14,24,12].

A number of collocation schemes for functional differential equations
have been investigated for boundary value problems fivitte defectsee
[21] for a precise definition and [26, 6,4] for results of this type. A solution
profile of a functional differential equation is uniquely determined if one
provides an initial function segment. In boundary value problems of finite
defect, the initial function segment is given, up to a finite number of degrees
of freedom; and the boundary condition applies in afinite dimensional space.
Periodic solutions of DDEs cannot be found using such a scheme. In (2)
we have circumvented the infinite dimensional initial condition (or, rather,
boundary condition) using the modulo operation for the delayed argument.

Our presentation is structured as follows. We first treat the standard col-
location scheme, introduced in Sect. 2. Stability and convergence estimates
of this scheme are obtained in Sect. 3. In Sect. 4 we analyze two variants of
the standard collocation scheme, each using a different interpolation scheme
to evaluate the delayed argument. Some numerical results are presented in
Sect. 5. Section 6 contains concluding remarks.

2 Piecewise polynomial collocation
Write Equation (2) as
(Ly)(t) = 4(t) — a®)y(t) — b(t)y((t — 7)mod 1) = f(1),
3) t€l0,1],
wherea, b € C2[0,1], f € CY[0,1] andL : CL[0,1] — €20, 1], We will
also consider the homogeneous problem
(4) Ly =0, y € C¢[0,1],

which we assume to only admit the zero solution.
Introduceamesh={0 =ty <t; <...<ty=1},withh; =t;;1—
t; and|h| = max; h;. To each mesh poirtt, j = 0,...,J — 1, associate a
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polynomialp; (or, more accurately, ;, to indicate the dependence b)of
degreen or less, with coefficients iR™. Think of the subinterval;, ¢;1]

asthedomainagf;,j =0,...,J—1.Letp, = {p; 3’;01 and for each fixed
meshh let ]3,;” denote the space of alj, satisfying the matching conditions
(5) pi(tjt1) = pjr1(tjp1), 3=0,...,J =2,
and
(6) ps-1(ts) = po(to)-
Hencep), € P belongs taC?[0, 1].
Define
(7) IFull = max  max  max [p\(1)].

1=0,....k j=0,....J =1 t€[t; tj41]
Correspondingly, fop € C*[0,1] andp), € 13,7“,

8 Dy, — = max max max 0 t) — pO (1)l
®)  lIph —plls = max  ma J—ltehpw+ﬂ|p] (t) = (1)]

The collocation equations fgi, € ]3,;“ are,

pilcji) —aleji)pi(cii) — b(cji)pr, . ((cji — T)mod 1) = f(cjq),
) i=1,. o m, =0, .. J—1,

where for eacly thec;; are distinct points int;,¢;11], and wherek; ; is
chosen such thdt;; — 7)mod 1 € [tg;,, tx, ,+1]- We shall assume that
the collocation points; ; are locally semi-uniform, in accordance with the
definition below.

Definition 2.1 The collocation points:;; are said to belocally semi-
uniform if min; ;, [cj:, — ¢ji,| > Ko h; for some constank, that is
independent of and h.

This assumption is satisfied for most reasonable choices of the collocation
points, for example, for Gauss points and for uniformly distributed points.

Note that semi-uniformity of the collocation points does not impose any
restriction on the mesh.

3 Stability results

First, we adapt a lemma from [8].

Lemma 3.1 Let {h”}>° , be a sequence of meshes with| — 0 asv —

oo. For eachv let pj» € 13,73, ll7rv|l1 = 1. Then there is a subsequence
{Pwi }32, and a functionp € C2[0, 1], such that||pj= — pllo — 0 as

k — oo.
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This lemma is similar to Lemma 2.1 in [8]. In fact, it is a simple, special
case, except for the extra matching condition (6) that ensures periodicity of
p. Also, in the current setting, the lemma follows almost directly from the
Ascoli Theorem [27, Sect. 9.8].

Theorem 3.1 Let the homogeneous problem (4) only admit the zero solu-
tion. Leta,b € CU[0,1] and f € C?[0,1]. Assume that the collocation
points are locally semi-uniform. Then there exist positive const&nésmd

8, such that the collocation equations admit a unique solufipre P/,

and such that

(10) [Phll1 < K max | feja)l,
wheneveth| € (0, 0].
Proof. The proof of this theorem consists of three parts.

(). If (9) does not have a unique solutiph € ]3[[‘ for all small || then,

sincedim ]3,’;‘ = nmJ equals the number of equations in (9) and
since (9) can be interpreted as a linear system of equations, we can
find a sequence of meshés”}°>° , with |h¥| — 0 asv — oo and
correspondingy, € ﬁg’j,with |Phv |1 = 1, such thap},. satisfies the
homogeneous equations corresponding to (9). By Lemma 3.1 there
is a subsequencgy,» }52; and a functionp € C?[0, 1], such that

|7y — pllo — 0 asv — oo. Using the collocation equation we will
show in part (iii) that in facp € C1[0, 1], and thatp is a nontrivial
solution of the homogeneous problem (4). This contradicts the first
assumption of the theorem.

(i). Assuming for the moment the existence of a unigiydor all suffi-
ciently small|k|, there remains the problem of establishing the bound
(10). If (10) does not hold then we can find a sequence of meshes
{h"}52,, with |h¥| — 0 asv — oo and for each mesh quantities
{f"(cjs)} with max;; | f¥(c;:)| — 0 asv — oo, such that the cor-
responding unique solutig,. € 13,;’3, of (9) has||pr|l1 = 1. Asin
(i), using Lemma 3.1 there is a subsequefige } 5 ; and a function
p € CY[0,1], such that|py» — pllo — 0 asv — oco. Again we claim
thatp is nontrivial and satisfies the homogeneous equations (4).

(iif). What remains to be proved in (i) is a special case of the completion
of (ii). Hence, we only give details for the latter. Lete [0, 1] and
consider the subsequence and its limit found previously. For each
letj, be suchthat € [t;,,¢;,+1]. Sincep;, is a polynomial of degree
at mostm — 1 we can write

(11) pj, (s ZQbJU, $)Pi, (¢ i)
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where for eacty, the functions{v;, ;(¢)}", denote the Lagrange
interpolating polynomials for the points:;, ;}7,. Abbreviatej =
Jus i =4, ¢ =¢ji, § = (s —7)mod 1 andé; = (¢; — 7) mod 1
where¢; € [t, tp+1]. Note thatk depends onj, and:. Then

[95(5) = als)p(s) — b(s)p(3)

(using (11))

> wil(s)pjlei) — a(s)p(s) — b(s)p(3)
i=1

D i) {f¥ (ci) + alei)ps(ei) + blei)pe (@)}
i=1

—als)p(s) — bs)p()
iwxs)f"(ci) +la
Zw@ (ci)pr(@)
. Z@ui(s)f”(ci) n iwxs) (a(s)p(5) — ale:)ps(cr) ‘
il ~ blem(@) ‘
e
<m K, max|f (cji) y+Klz|a (s) — a(ci)pj(cs)|

=1

(12) +K, Z [b(s)p(8) — b(ci)pr (@)

(using (9))

Z@Z)z Cz p] Cz

IN

In the final inequality,

Klz

> max max it
K(?)n 1 = i te[t thrﬂW)Jﬂ( )|7

is independent of the mesh, due to the semi-uniformity of the col-
location points (cf. Definition 2.1). This final expression becomes
arbitrarily small asr — oo. This is a consequence of the choice of
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f¥ and the convergence @f,~ to p. Hencepy, ;, (s) converges to
a(s)p(s)+b(s)p((s—7)mod 1). Infact, this convergence is uniform
in s. Indeed, we have,

la(s)p(s) — a(ci)pj(ci)|
< la(s)[(|p(s) = p(ci)| + |p(ci) — pj(ei)l)
+lpj (ci)lla(s) — al(ci)],
and

[b(s)p(5) — blci)pr (@)
< [p(3)[b(s) = b(ci)| + [b(ci)[(|p(5) — p(&)
+[p(é) — pr(C)]).

Thus uniform convergence follows from the boundedness and conti-
nuity (and thus also the uniform continuity) ef b, andp; from the
fact ||pjv||1 = 1 and from the uniform convergence gf- to p (by
Lemma 3.1).
Let p;,. denote the (at mesh points discontinuous) derivativg,of
Using the uniform convergence established above we have

/ Py (s)ds — / a(s)p(s) + b(s)p((s —7)mod 1)ds — 0 as
0 0

vV — OQ.

Upon integration it follows that (because of the continuitypf),

Phv (t) — P (0) — /0 a(s)p(s) + b(s)p((s — 7)mod 1)ds — 0 as
v — 00.

Taking the limit we obtain

p(t) — p(0) — /0 a($)p(s) + b(s)p((s — ) mod 1)ds = 0.

Thisimplies in particular thatis continuously differentiable do, 1].
Differentiation gives

(13) p(t) — a(t)p(t) — b(t)p((t — ) mod 1) =0,

and in particulap(0) = p(1). HenceLp = 0, p € CL[0,1]. Using
(13) in (12), and recalling that already,» — pllo — 0 as v — oo,
we have

|lPh — pll1 = 0as v — oo.

Since||py,v||1 = 1 for all v this implies thap # 0 and a contradiction
has been arrived at. 0



634 K. Engelborghs, E.J. Doedel

Note the importance of the factthat the interpolation formula (1,

i.e., that the derivative of the local polynomial at angan be expressed in
terms of the derivatives of the polynomial at the local collocation points.
Without this property it would be difficult to establish stability; in fact such

a scheme may not be stable, even on uniform meshes. In particular, the local
interpolation property does not hold if the approximating spaces are required
to have higher thag® continuity. C! continuity can be accommodated in

the proof, provided that the mesh points are included as collocation points
(using e.g. Gauss-Lobatto points), i.e., provided the smoothness arises from
collocation.

Having established the existence of a unique collocation solution for
sufficiently small|h|, we can investigate its limit as the mesh is refined.
This limit is, of course, a solution of the inhomogeneous equation (3), as
will be shown below. From a Fredholm Alternative principle for periodic
solutions of delay equations, it follows that the inhomogeneous equation
(3) has a unique solution if the homogeneous problem (4) admits only the
zero solution. (See [21] for a very general result of this type.) We note that
Theorem 3.1 does not actually rely on this principle. Also, as is clear from the
proof, Theorem 3.1 remains validffis replaced by a sequence of functions
fn, in fact, if f is replaced by a sequence of pointwise valfigg; ;). We
exploit this fact below for a sequence of valugéc; ;).

Let p;, be the solution of the collocation equations (9). L&t =
{pj 3’;01 wherep; is a polynomial of degres: which interpolates the exact
solutiony(z) of (3) at them + 1 points{tj%};’lo in [t;,tj+1]. Note that
1 = 0 andi = m correspond to interval end points. The additional points

t;ri,1=1,...,m — 1are distinct points (unrelated to the collocation
points) in(t;,t;+1). Thenp), satisfies the matching conditions (5), (6) and,

from Lagrange interpolation,

ym (1)

RSV for some
m !

y(t) — p;(t) = rj(t)d;(t) = r;(t)
(14) £(t) € (tj,tj41),

with r;(t) = [, (¢t — tﬂ%) andt € [t;,tj11]. If yism + 1+ k times
continuously differentiable thedy(¢) in (14) isk times continuously differ-
entiable, as follows from the Newton divided difference representation of
rj; see [19].

Let{h =pn — Pn € f’,’L". Then we define thical truncation errorsas
the values of the collocation equations (9) applieéhw.e.,

(15) 7h(cji) = &i(esa) — alcja)&j(esi) — b(cji)ér,, ((¢ji — 7) mod 1).
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Using the collocation equations (9) and the DDE (3), we have

Th(cji) = f(eji) — (pi(cjqi) — aleji)pile;q)
—b(cji)pry ((cji — 7)mod 1))
= y(cji) — pileja) — aleji)(y(eji) — pileji))
(16) —b(cji)(y((cji — T)mod 1) — pg;, (¢ — 7) mod 1)).

If y is sufficiently differentiable then it follows from elementary estimates
of the error in an interpolation polynomial and its derivative (cf. (14)) that

(¢ji) (|h|™), regardless of the choice of the collocation
points.

The local truncation errors will be used to derive an estimate on the
errory(t) — pr(t). Note that the approximate solutiph of (9), and hence
the errory(t ) P (t), does not depend in any way on the p0|t}t§ iy

i=1,. — 1. However, thet . s can be used as a device to show

that for a class of special choices of the collocation points the estimate for
|7h(c;,i)| can be somewhat improved. This class of collocation points can
be characterized as the points in(t;,t;+1) wherer; vanishes, for any
choice oftj+l,z' =1,2,...,m— 1. Forexample, ifn = 2, taking[—1, 1]

as “reference interval”, we have(t) = (t + 1)(t — t1/2)(t — 1). To get
symmetrically placed collocation points get, = 0. We find that*(c) = 0

if c = £1/4/3, i.e., the Gauss points. Note, however, that choices other
thant, , = 0, and its corresponding collocation points, can be used to get
the extra order of accuracy in the local truncation error. Below we verify in
general that the special class of collocation points that gives higher order
accuracy includes Gauss points.

Theorem 3.2 Assumey € C™+2(0,1]. If the ¢;; are the roots of then-
th degree Gauss-Legendre orthogonal polynomial with respgef,to 1],
then it is possible to choose thjeJri-, 1 =1,...,m — 1inthe definition of

p; such thatmax; ; |7,(cj;)| = O(|h|™+1).

Proof. We know that the divided differencg;(¢) is smooth ify € C/2
[0, 1]. From (14) and (16) it then follows that

max |7 (¢)| = max [j(c;i) = p(esa)| + OAI™ )
= max 175(cji)d;(cji) +1j(csi)d;(csa)l

+O(|h™*h),
(17) = max 175 (csi)dj(cji)] + O(|h™ ).
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By differentiating the generating function and the fundamental recurrence
formula, itis easy to obtain the following formula for theth degree Gauss-
Legendre polynomiaP,, (cf. [19]),

1

(18) P (t) = 1

(P (t) — B (2)).

In our case the interval under consideratiorjtist;1]. The polynomial
Ppt1(t) — Py—1(t) then has roots &t, ¢, 1, and atn — 1 distinct points in
(tj,tj+1),sinceitis orthogonal tdy, . . ., Py, —2. Thus, ifwe choose the addi-
tional pointstj+i- ,i=1,...,m—1lasthen—1rootsofP,,1(t)—Pp,—_1(t)
thenr;(t) is, in fact, a scalar multiple a®,,, 1 (t) — P,—1(t). Hencer; is a
scalar multiple of>,, (¢), and therefore; is zero at the roots of,,,(¢), i.e. at
the Gauss collocation points. From (17) we then hawve; ; |7,(c;:)| =
O([h[™+1). 0

We can now use Theorem 3.1 and Theorem 3.2 to derive the following
convergence result.

Theorem 3.3 Let the homogeneous problem (4) only admit the zero solu-
tion. Lety be the (unique) solution of (3), and assume thdtand f are
sufficiently smooth, so thgte C™ 1[0, 1]. Also assume that the colloca-
tion points are locally semi-uniform. Then there exists positive constants
ando such that, wheneveh| € (0, J],

t) — o5 ()] < Clh|™.
tgl[gff]!y() pr(t)] < Chl

Moreover, ify € C™+2[0,1] and if the collocation points are chosen to be
Gauss points then

max [y(t) — pi(t)| < C|p™ .
te(0,1]

Proof. We havemax; ; |7,(c; )| < Ca|h|™", wheres = 0 in general, but

o = 1 for special choices of the collocation points, including Gauss points
(cf. Theorem 3.2). The consta@t does not depend onandh, when|h|

is small enough. Now

(19) ly(t) — pn(B)] < y(t) — pr(t)] + [Pn(t) — Dr(t)].

The first term can be estimated from the local interpolation error. The second
term can be estimated using Theorem 3.1, wittas a sequence of right-
hand-side functiong},. (We can think of ther,(c;;) in (15) as defining a
piecewise linear, hence continuous, function.)



Stability of piecewise polynomial collocation 637

We have

max max |y(t) — pi(t)| < Cslh|™ ! + K max |7,(c;;))|
J o teltytita] It

(20) < C3)h|™ T 4 K Cy|h|™ .

This givesO(|h|™) or O(|h|™*1) convergence depending on |

4 Collocation variants

Two variants of collocation scheme (9) can be found in the literature oninitial
value problems for delay differential equations; see [12, Sect. 4] or [5,17,
23,16]. One motivation to study different representations of the delayed
argument is the well-known superconvergence phenomenon for ordinary
differential equations, which gives higher order accuracy at the mesh points;
see [7]. Superconvergence is generally lost for DDEs. A second motivation
arises from stiff initial value systems of DDEs, see [17,18]. The delayed
argument is, for both variants, obtained by interpolatiop;obver several
intervals. This representation is not local, in the sense mentioned earlier.
However, we can still prove stability, provided we introduce local mesh-
ratio restrictions (as introduced in [18]). Note that no mesh-ratio restriction
are required for the standard collocation scheme (9).

The collocation scheme (9) is replaced by the following equation,

pj(cji) — aleji)pi(cji) — bleji)gsi((eji — 7)mod 1) = f(cji),
(21) i=1,...,m, j=0,...,J —1,

whereg; ; is a polynomial that approximates the delayed argument in terms
of appropriate values gf;, (two specific choices will be given below). Let

¢ represent the set of polynomiajg;, i = 1,...,m,j = 0,...,J — 1.

We require the following property of the polynomiajs.

Definition 4.1 Let {h”}>2, be a sequence of meshes witl| — 0 as

v — oo. Letpyy € f’;ﬂ be a sequence of piecewise polynomial functions on
these meshes. Then the correspondjagobtained fronp},. ) are said to be

a consistent representation of the delayed argurfi@anid only if whenever
P — pllo — 0 for somep € C2[0, 1] with uniformly bounded derivatives,
i.e., [Pl < @, Vv, for someR, then

max |gre ji((chr ji — T)mod 1) = p((enr ji — 7) mod 1) = 0

asv — oo. In other words, the delayed representation converges uniformly
over the collocation points to the delayed limitigpf € P,
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Corollary 4.1 Theorem 3.1 remains valid for collocation variants of the
type (21) provided the polynomiads form a consistent representation of
the delayed argument.

Proof. Part (i) and Part (ii) of the proof of Theorem 3.1 remain unchanged
(the polynomialsy, ;; are uniquely defined in terms of the valugpfat an
appropriate number of points). For Part (iii) we find that (12) is replaced by,

1Pj(s) — a(s)p(s) — b(s)p(3)|

<mK1max|f (¢4) \+K1Z|a (5) — alci)pj(ci)
=1

(22) +K12 16(s)p(8) — b(ci)q;i(E)| -

which convergences uniformly to zero under the above additional assump-
tion of consistent representation of the delayed argument. The remainder of
the proof remains unchanged. a

Note that, in some sense, stability of the scheme remains valid because the
noncompact interpolation does not appear in the highest derivative. How-
ever, in order to meet the assumption of consistent representation of the
delayed argument we will need local mesh-ratio restrictions.

First, we state two specific possibilities f@y;. Let (c;;, — 7) mod 1 €
[thy ths1]-

— Interpolation through mesh pointg;; interpolateg’ at

(23) tk—rs tk—?"-f—la s tk-‘rl—l, tk‘-i—l

with » + 1 = mg andr > 0,1 > 0 chosen such that,; — tx_,| is
minimal.
— Equistage interpolation; ; interpolateg’ at

(24) Ch—ryi> Ch—r+1,is - + - » Chl—1,i» Chtl,i

with r + 1 = mg4 andr > 0, [ > 0 chosen such thaty.; ; — cx—,;| IS
minimal.

Hereg; ; is allowed to interpolatg outside [0,1], using periodic extension
of the mesh points, collocation points apiitself.

For equistage interpolation, the second index of the collocation points,
1, corresponds to the second indexgoin terms of the associated Runge-
Kutta method this means that, in each equation, only stage values of the
same index are used. In view of this correspondence, we require that, for this
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case, the collocation points are determined from a set of digtiicication
parameters{c;}7", in [0, 1],

(25) Cj,i:tjﬁLCi(thrl*tj), i=1,....m, j=0,...,L —1.

and correspondingy = min,; |¢; — ¢;|. This (natural) restriction is nec-
essary for technical reasons further on.
For the variants (23), (24) we prove the following corollary.

Corollary 4.2 Let {h”}>2, be a sequence of meshes wjitt{| — 0 as
v — oo and with

L 1R,
(26) — <2 <H  j=0,...,0-2 —<-"L<H,
H = hi, H hY

whereH isindependentof. Letpy,. € 13,73 be a sequence of piecewise poly-
nomial functions on these meshes. Then, the correspoggin@btained
from p),») form a consistent representation of the delayed argument if it is
defined using interpolation through interval points (23), or, using equistage
interpolation (24) with (25).

Proof. Suppos€|p,r — pllo — 0 for somep € C?[0, 1] with uniformly
bounded derivatives,

D1 < Q, Vv, for some Q.
Let s;, I = —r,...,s denote the interpolation points gf ;, and lety,

Il = —r,...,s denote the associated Lagrange interpolation polynomials.
Abbreviatec = (¢;; — 7) mod 1. We then have

0n(@) = > i(@)pn(si)
l=—7r

= > i@ @Bn(@) + x1)
(27) = (@ + Y hi@x

with

(28) il < Q(mg + 1)[A].
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Furthermore, in the case of interpolation through interval points, we have,
for somek,

@l = ] 5—tk+j!/ I Iteer — tesl

j:—T,j#l J:_T’]#l
s—1 mq+1 mg—+1
q
< [ in hpy;
> Z k+j / (j:_rg.l.?s—l k+]>
Jj=-r
(29) <(14+H+H*+ ... +H s ymatl

Similarly, for equistage interpolation,

S S
@ = TI 16— crisl / 1T Jersei —crrsa

j:‘fd#l jzfrJ#l
s—1 mg+1 _—
< Z Pkt / <j_g}i.§s_1 hkﬂ-KO)
j=-r
(30) <+ H+H? ..+ H s ymatd gt

The first of these inequalities follows whem > 1, because, in this case,
there always exists at least one collocation point in between collocation
points with the same indexdue to the ordering (25). lf» = 1, then (30)
holds usingky = 3.

Using the bounds (27), (29), (30) and (28), which are independent of
except for the condition (26), it follows that

r%%X‘QhVJJ((Ch”JJ —7)mod 1) — p((¢pv j; — T)mod 1)| = 0
asyv — oo. d

For the local truncation errors we have

Th(cji) = 9(cji) — pi(cja) — alei)(ylejq) — pileji))
(31) =b(cji)(y((¢ji — T)mod 1) — g5 ,((¢j — 7) mod 1)),

wherepy}, is defined as before and whe;j‘éi is a polynomial obtained from
pn asgq;,; was frompy,.

The ponnomialq% interpolatesy;, over several intervals at the bound-
aries of whichgy, is not continuously differentiable. However, we observe
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that (using the notation of Corollary 4.2),

q;4(¢ Zd)z &)pn(st) Z@bl 1)+ e
:Z¢z &)y(s; +Z¢z c)e
z !

The first of these terms ©(|h|™a1) ande; = O(|h|™*!) wheny is suffi-

ciently differentiable (as discussed in Sect. 3). Hence, because the Lagrange
interpolation polynomialg); are uniformly bounded i, i andh under the
mesh-ratio restriction (26) (as shown in the proof of Corollary 4.2), we
obtain

(32) y(@) — (&) = O(|h[™ ) + O(|n™ )
uniform in j, . We can now state the extension of Theorem 3.3.

Theorem 4.1 Let the homogeneous problem (4) only admit the zero solu-
tion. Lety be the (unique) solution of (3), and assume thdtand f are
sufficiently smooth, so that € C™*1[0,1]. Also assume that the collo-
cation points are locally semi-uniform and that the mesh-ratio restriction
(26) holds. Then there exists positive constanendds such that, whenever
|h| € (0,4],
Ol < Clh min{m,mq+1}

tren[gf]!yO Pr(t)] < CIhl ,
wherep;, is the collocation solution of (23) or (24), (25). Moreoveryit
C™+2]0, 1] and if the collocation points are chosen to be Gauss points then

m[g”ﬁ ‘y ) (t)‘ < C‘h|min{m+1,mq+1}.

whereo € {0,1} depends on the choice of collocation points and, in par-
ticular, Gauss points imply = 1. Indeed, Theorem 3.2 concentratesron
which is independent af; ;. Now

y(t) = D ()] < [y(t) = pu()] + |pn(t) — Pa(t)]-
The first term is again a local interpolation error. The second term can be

estimated using Corollaries 4.1 and 4.2.
We have

max max |y(t) — pi(t)| < Cs|h|™ ! + K max |7, (cj4))|
J o tElt)itiqal Jst

Proof. From (32) it follows thatmax;; |7,(cj;)| < Colh|im+omati},

(33) < Cg’h’m—H + KCQ‘h|{m+U7mq+1}'

Assumingm, > m, this givesO(|h|™) or O(|h|™ 1) convergence depend-
ing ono. a
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Fig. 1. Left: Bifurcation diagram of (34). Stable (—) and unstaljle—) branches of
steady state solutions. A Hopf bifurcati¢s and the min and max of the emanating branch
of periodic solutiong- - -). Right: Period along the branch of periodic solutions

5 Numerical results

In [12] an extensive set of numerical tests was used to investigate the be-
haviour of the collocation method (9) and the variants described in the pre-
vious section. The global error results there are consistent with the theorems
in the current paper. Here we present numerical results using an example
in which a homoclinic orbit in a DDE is approximated by a large-period
periodic solution. This example illustrates the importance of unconditional
mesh-ratio results.

Consider the following scalar DDE,

(34) i(t) = Bx(t — 1) — 2%(t).

A bifurcation diagram of (34) is shown in Fig. 1 (left) as a function of the
parametef3. There are two steady state solution branches, namgly=

0 andz(t) = (. The zero steady state branch has a Hopf bifurcation at
8 =~ —1.5708. The emanating branch of periodic solutions approaches a
limiting orbit of infinite period, which is homoclinic to the nonzero steady
state solution ab ~ —1.3387. (Note that while homoclinic solutions and
periodic solutions do not exist in scalar autonomous ordinary differential
equations, they can exist in scalar autonomous DDES.)

The branch of periodic solutions was computed using the first collocation
variant described above, i.e., using the collocation polynomial to represent
the delayed argument. The number of intervals was set to 20 and
the degree tan = 3. Adaptive mesh selection was used as described below
(see [12] forimplementation details). The computed periodic solutions were
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Fig. 2. Left: Profile of the periodic solution, computed usidg= 20, m = 3, atg3 =
—1.3387, T = 10%, as a function of scaled time (upper left) with a blow-up (lower left).
Dots indicate the location of the mesh points. Right: Rightmost characteristic roots of the
nonzero steady state solution for the same parameter values

found to be accurate up to periods of ab@ut 10*. (Accuracy was deter-
mined by comparison to results on much finer meshes.) The period along
the branch is shown in Fig. 1 (right). The computed solution with period

T = 10* at 8 ~ —1.3387 is shown in Fig. 2 (left). The exponential decay
towards and growth away from the steady state on either side of the pulse
were found to be in agreement (up to numerical accuracy) with the leading
characteristic roots of the nonzero steady state solution at the same param-
eter values, as visualized in Fig. 2 (right). The mesh used to compute this
solution is highly nonuniform. Specifically, the ratio of the smallest over the
largest subinterval of the mesh used in Fig. 2 (left) is

minj—o,.. j—1h;j

= 7.1x107°.
man:07_,,7]_1 h]‘

Figure 3 shows the observed dependence of the error,

(35) Ejp = max [z(T't) — pu(t)],
te[0,1]

on | k|, for different approximations to the periodic solutionfat —1.34
with periodT" ~ 8.9809. The results were obtained for the three colloca-
tion variants described above, using equidistant meshes, Gauss-Legendre
collocation points, aner, = m = 3. The figure indicates that the three
variants have indeed the same order of convergengd,™»{m+1.mqa+1})
yet clearly different error constants. The numerically observed orders of
convergence, based on results foe 100, . . ., 150, are given in Table 1.

Adaptive mesh selection was achieved through equidistributing the in-
tegral

1
(36) JAERIOTEr
0
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Fig. 3. Convergence of the collocation solution: the maximal error (35) veigusising
equidistant meshes; = m, = 3, and Gauss-Legendre collocation points. Representation
of the delayed argument: collocation polynomial in the past (left), interpolation through
mesh points (middle), and equistage interpolation (right)

Table 1. Observed orders of convergence for different representations of the delayed ar-
gument, based on computations with= 100, ..., 150, using equidistant meshes, and

mgq = m. Representation of the delayed argument: collocation polynomial in the past (a),
interpolation through mesh points (b), equistage interpolation (c). The upper right number
does not represent a good approximation of the order of convergence due to large variations
in the error for these values of, m, andL

m=my (@ (b) (¢

2 32 31 49
3 40 40 40
4 53 50 51

over the mesh intervals just as in the case of ordinary differential equations
(ODESs) [2]. This strategy was investigated using numerical experiments in
[12] and was found to be quite effective. For ODEs, this approach is based
on the local error estimate

2(Tt) — pp()] = CRT™ max |2 (Ts)| + O(|h™?),
s€[t),tj41]

(37) te [tj>tj+1]'

Below we show results that indicate that formula (37) does not, in general,
hold for DDEs (as was suggested in [12]). By combining equations (19) and
(16) in the case of the standard collocation variant and when using Gauss
points, we obtain the following bound on the error,

—D < (1 K —or (t
o ()~ 0] < (14 K ma (o) + 160 ) ma o(0)~7 (0]
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Fig. 4. Left: 8 = 1.34, T ~ 8.98. Right: T' = 15, 3 ~ —1.3387. From top to bottom:
Profile of the periodic solution; error profile based on an equidistant mesh 3 and Gauss
points; error profile based on an adapted meshs 3 and Gauss points; fourth derivative
of the solution profile

which, using (14), can be rewritten as,

(38)
hm-i—l ( )
1) — — Dl < K J m+1
trél[g,}f} [y (t) = Ph(t)] = j=g-l-?)§*1 ((m—l— 1)! £€[rtrgl'jatf+1] Iy (§)>

where K = 1 + K maxyepo q) (|a(t)| + [b(t)[). The above strategy (36)
therefore optimizes with respect to the (possibly nonstrict) error bound (38).
Figure 4 compares the error profile obtained with an equidistant and with
an adapted mesh for two different solution profiles using the same number
of intervalsJ = 20, m = 3 and Gauss-Legendre collocation points. If a
local error estimate of the kind (37) would be valid, the error profile on an
equidistant mesh would be proportional to the + 1)-derivative. In Fig. 4
(left) there is no such obvious correspondence. Adaptive mesh selection
reduces the maximal error by a factbb. The profile of Fig. 4 (right) is
slightly more difficult. Here, a correspondence between the error profile on
an equidistant mesh and tke: + 1)-derivative seems to exist (indicating
perhaps that the first term in (19) dominates). The mesh selection reduces the
maximal error by a factor3.9. This factor grows as the periodic solutions
approach the homoclinic orbit. In fact, when using an equidistant mesh to
compute the branch shown in Fig. 1 (right), accuracy already breaks down
(rather abruptly) at periods of about 30.
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6 Conclusion

Delay differential equations arise in many applications. Examples include
the modeling of delayed feedback loops in control, memory effects in visco-
elastic fluids, communication with finite transmission times, population
dynamics, physiological delays, etc. Numerical methods for simulation of
DDEs have been studied quite extensively, and there are a number of pub-
licly available packages; see, e.g., [25,29]. Numerical bifurcation analysis
of DDEs by continuation methods is not yet in such an advanced state. A first
continuation package for the bifurcation analysis of steady state and peri-
odic solutions of DDESs (which implements the standard collocation variant
studied in this paper) has only recently appeared [11].

In this paper we have investigated the convergence of piecewise poly-
nomial collocation methods for the computation of periodic solutions of
DDEs with fixed, discrete delays. Periodicity is imposegriori, so that
we deal with (periodic) boundary value problems, rather than initial value
problems. Collocation methods have been very successful in the numerical
bifurcation analysis of periodic solutions in ordinary differential equations,
and are implemented in, e.g., the packages AUTO, CONTENT, COLSYS
and COLDAE; see [9,22,1, 3]. In this paper we have shown that the global
convergence properties of collocation extend to delay equations. We investi-
gated a number of collocation variants studied earlier in the context of DDE
initial value problems. For the standard variant we do not need mesh-ratio
restrictions. We illustrated our findings with numerical results.
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