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Summary. The virtual control method, recently introduced to approximate
elliptic and parabolic problems by overlapping domain decompositions (see
[7-9]), is proposed here for heterogeneous problems. Precisely, we address
the coupling of an advection equation with a diffusion-advection equation,
with the aim of modelling boundary layers. We investigate both overlapping
and non-overlapping (disjoint) subdomain decompositions. Inthe latter case,
several cost functions are considered and a numerical assessment of our
theoretical conclusions is carried out.
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1. Introduction

Domain decomposition methods provide a well consolidated approach for
an efficient solution of boundary-value problems. On one hand, they allow
to devise parallel algorithms by reducing the original problem to a sequence
of “independent” subproblems in smaller and simpler subdomain, see [3,
13,12].

On the other hand, subdomain splitting is an interesting path towards
multiphysics, i.e. the use of mathematical models based on different kind of
partial differential equations to address physical problems of heterogeneous
nature in different subregions of the given computational domains. This
approach is given the name heterogeneous domain decomposition: for an
introductory presentation see, e.g. [12, Ch. 8].
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In the framework of advection-diffusion equations with boundary-layer
solutions, heterogeneous domain decomposition methods, with disjoint sub-
domains, have been proposed and analyzed in [4,5,11].

In this article, heterogeneous methods for advection-diffusion equations
are proposed in the context of virtual control-problems. Virtual control is
a powerful technique that has been introduced in domain decomposition
method with overlapping subdomains to treat “homogeneous” problems,
either elliptic and parabolic (see [7-9]).

In this paper, virtual control is used to achieve interface continuity for
both cases of overlapping or non overlapping (disjoint) subdomains. The
discussion (and analysis) is carried out on the differential problem, however
the theoretical conclusions that are drawn are assessed and verified at the
finite dimensional level afterwards.

A particularly interesting corollary of our theory is that in the non over-
lapping case the results obtained in this paper, through minimization of a
suitable cost functional, are coherent with those of [5] (and reported in [12,
Ch. 8]), that were achieved by a singular perturbation theory.

This paper is organized as follows.

In Sect.2 we set up the domain decomposition problem in the over-
lapping situation. In Sect. 3 the virtual control method is introduced and a
convergence result is proven. In particular, the cost functionals are shown
to tend to zero when the viscosity coefficient tends to zero. Section 4 is
dedicated to 2D numerical results assessing the theoretical analysis given in
Sect. 3. These results are obtained by the spectral element method (which is
equivalent tg-finite elements). When overlapping domains are considered,
entire spectral elements are overlapped. In Sects. 5 and 6 we consider the
non overlapping situation; the analysis on several cost functionals is given,
and both 2D and 1D numerical results are shown.

2. Overlapping situation

We consider a two-dimensional domaih Remarks concerning the one-
dimensional particular case will be made later. We adopt the following no-
tation (see Figs.1 and 2 for two possible examplég):and (2, are two
subdomains of? such that

(1) Qz@luﬁg,ﬁlﬁﬁg#ﬁ,
(2) I'=00=171UIy,

3) 0y =11US1, 00 =15U85s.
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Fig. 1. A decomposition of the domaif? by two overlapping subdomains

Fig. 2. Another decomposition a2, this time by “imbedded” subdomains

Note thatl; N Iy # 0 in the case of Fig. 1, whered3 N I = () in the case
of Fig. 2 (indeed, in Fig. 2 = 0 andI} = 912).
We define the differential operators

(4) Ly = div(b-) + by, Ly = —vA + div(b-) + by,

wherer = const > 0, b andb, are given data that satis(%divb + bo) >
1o for a suitable constanty > 0.
The global Dirichlet problem if2 is

Lgu:finQ,
u=g onl,

(5)

a problem which admits a unique solution under “reasonable” hypotheses
on the dataf, g, b andby, hypotheses that there is no need to present here.
Our decoupling of problem (5) is based on two steps:

1. the classical domain decomposition where we address the same differ-
ential problem (5) in botl{2; and(2s;

2. the possibility of using irf?; the simplest operatak, instead of the
global operatol.», this is what we call heterogeneous domain decom-
position (the homogeneous corresponds to uging (2; as well).

Remark 1The heterogeneous decomposition is for instance motivated by
the presence of boundary layers arising from (5) wh@&small compared

to |b| or |bg|. Itis then more natural to take f@?, a strip around™ and for

(21 an inner domain as described in Fig. 2.
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Remark 2All that follows is completely general, i.e. applies to any decom-
positions{2 = 2, U ... U {2, with arbitrary operators.

3. The virtual control method

Let us define
Ip = {x| x € I, b(x) -n(x) <0},
Sip = {x| x € S1, b(x) -n(x) < 0},

wheren denotes the outward unit normal vector on the boundary at hand.
The heterogeneous decomposition is formulated through two unknown
functions\; and )\, as follows:

Liup = f in {2,
(6) uy =g onlp,
ur = A; onSip,

Louz = f in {2,
(7) U2 =4¢g onFQ,
Ug = A9 ON SQ,

where)\; is thefirst virtual control In the case where
(8) Sip=10

no virtual control is introduced, as there is no need to prescribe any boundary
data onS; for problem (6). Thesecond virtual controls A,. The virtual
controlsA; and\, are chosen so that andus “adjust” in the best possible
way onf2; N §2.

The solutionu; (respectivelyus) of (6) (respectively (7)) is a function
of A; (resp.)\2) (with the exception of case (8)); = wu;(\;).

Remark 3Although we are focusing here on the Dirichlet boundary con-
ditions, accounting for other boundary conditions (Neumann’s or mixed)
would not introduce extra difficulties.

To express the “adjustment”, in the framework of (virtual) control theory,
we introduce the “cost” functional

1

(9) J(M,A2) = B /Q . (u1(A1) — uz(A2))? da,

and consider the minimization problem:

10 inf A1, A2).
(10) )\III}AZJ( 1,A2)
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Remark 4 (The homogeneous decomposi&on)he homogeneous decom-
position, one keeps; in (21, i.e. one considers; to be given now by

Louy = f in {2,
(11) up =g onlh,
U1 :)\1 0nSl,

and we consider again (9), (10).

Inthat casénf)y, », J(A1, A2) = 0, whichis achieved by taking; equal
to the restriction (trace) ofy; of the space where the solutiamf (5) belongs
to.

Remark 5We have not made precise the space where the virtual controls
should be chosen. In the heterogeneous decomposition, this is not a simple
matter in the infinite dimensional (continuous) case, as we now explain.

Let us consider problem (10). The solutien(resp.uz) of (6) (resp. (7))
is
Ul :u[l)—l—vl,uQ :u8+v2,

where, fori = 1,2 u{ depends on the dafaandg whereasy; depends on
A; as follows

Ly =f in,u=g onlip,ud=0 onSip,
Livi =0 in{, v1=0 onlip,vi=XA onSip,

and analogously

Lzung in927u(2):g OnF27u(2):0 OnSQ,
Lovy =0 inQQ, v =0 OnFQ,’UQ:)\Q OnSQ.

Then

(12) J(A1,A2) = %Q()\l,)\z) + L(A1, A2),

where the quadratic functiondl is given by

(13) Q) = [ (o) s,
21N

while £ is an affine functional. Consequently, if the functionare smooth
enough, one can define a semi-norm

(14) 1AL A2} = (Q(A1, A2))M2,

on the space of A1, A2 }.
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Actually, this is anorm We prove it in the case of Fig. 1. Indeed, if
Q(A1,\2) = 0, thenv; = vy = v in 21 N 2. Therefore,Lov — Liv =
—vAv=0in2; N2 andv =00nad(2, N 2)NT.

Moreover, sincd.1v = 0in £1 N §2,, taking (formally) this equation to
the boundary, one finds

ov

(15) (b-n)5- = 00nd(2 N 2N

Therefore if there exist&' C 9(£2; N £25) N I", with measX’ # 0, with
(16) b-n=0o0nx,

the Cauchy data af are zero od(£2; N 22) N X, andAv = 0in 2, N {2
so thatv = 0in 21 N {2, by the unique continuation theorem. Thgn= 0
and)q = 0, thus (14) is a norm.

Different arguments are needed in the case of Fig. 2.

Therefore if all data are smooth enough, and if (16) holds trife] ()4,
A2) admits a solution in the space ok;, A2} obtained by completion for
the norm (14).

Remark 6 The abstract space obtained by completion is "very large”, but of
course this pointis irrelevant when using finite dimensional approximations,
provided discrete versions of uniqueness theorems hold true.

Indeed, although our numerical results are in full agreement with the
theoretical conclusions drawn on the differential problem, the proof of the
unigueness theorem at the finite dimensional level would require separate
investigation.

Remark 7The previous proof can be carried out also in the case of Neumann
boundary condition oA ({2, N {22) N I". On the other hand, the same proof
does not apply (in general) whén- n = 0 on ({2, N 23) N I". However,

(14) can still be proven to be a norm by ad-hoc argument in some special
circumstances (cf. Remark 4.1 below). In any case, we didn’t experience
any difficulty with our numerical algorithms (cf. Sect. 4.1).

Remark 8 Assume thatS;p = 0. Thenv; = 0 so thatvy = 0in 2; N 2.

But Lyve = 0in 25, SO that by the unique continuation theoresn= 0 in

(25, hencels = 0 and the same remarks as above apply. See Sect. 4.1 for
numerical results about this situation.

Remark 9In the 1D case let us consider the operafors = (bu), + bou,

Lou = —vug, + (bu), + bou, whereb andb, are constant. This case is
degenerate, sin@¥ {2, N f22) N I" does not make sense and the above proof
is not valid anymore. Ih < 0 on S7, thenv; is defined as above and
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v1 = vg = vin 21 N2 impliesd?vy /dz? = 0in 2, N 2. SinceLavy = 0
in §25, d?vy/dx?® = 0in 21 N 25 implies thatvy = 0 henceX, = 0. Then
v1 = 0in 21 N 25 hence\; = 0.
If b > 0 on Sy, there is no virtual controh; again and one finds that
A1 = 0. Numerical results for the 1D case are given in Sects. 4.4 and 4.5.

Let us prove now the following result.
Theorem 1 If we set

(17) B(v) = inf J(h,ho)

and if we letv — 0, all other data being fixed, then

(18) ¢(v) - 0asv — 0.

Proof Let us denote by, (resp.ug) the solution of
Lou, = finf2,u, =gonlr,

(resp.Liug = fin £2,ug = gon I'p). We define

Ao = trace ofu, on S,

(19) A1 = trace ofug on Sip

(no )\ isintroduced ifS1p = 0). Thenuy = u,, in 25, u; = ug on 2, and
therefore

1
J(1, X)) = 5 /Q . (wu, — ug)?dz,
1 2

Hence (18) follows, since, — ug in L2(£2) (in particular). O

Numerical evidence for this result is given in Sect. 4 (see Figs. 3,4, 6,7
and 8).

4. Numerical experiments for the overlapping case

The approximation of the boundary-value problems in (6) and (7) is done
by using conformal spectral elements (see [1,10]), whérdenotes the
polynomial degree used in each direction of each element. The overlapping
region contains entire elements, in general one spectral element along the
direction of the overlapping.

In order to minimize the cost functional (9) we use, for convenience, the
Principal Axis Method (see [2]), more efficient optimisation methods being
used in [6].
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Fig. 3. Sip = 0. Test case #1. The overlapfiz N 22 = (.5,.6) x (—1,1). On the left the
spectral elements solution with= 102 is shown. On the overlapping area we have plotted
the arithmetic mean of the two solutionsfih and(2.. On the right picture the maximum
interface errors (22) and the functigr(17) and the error (23) are shown for different values
of the viscosityv

4.1. 2D caseS,p =0

Test case #1\We have considered the following data:

(20) 2= (-1,1)%, 2y = (=1,.6) x (=1,1), 25 = (.5,1) x (—1,1)
(21) b=[1,0]', bp =0, f=1.

We have imposed homogeneous Dirichlet conditions on the vertical sides
of £2 and null normal derivative on the horizontal sidegbfin this case we
haveS;p = (. Spectral elements with polynomial degr&e= 3 in both
directionsz andy are used ift < .99, while in the strip[0.99, 1] x [—1, 1]
spectral elements are used with= 8 along thex coordinate andV = 3
along they coordinate.

In Fig. 3 we show the numerical solution obtained with viscosity-
1073, the maximum interface error

(22) oi(v) = max|uy,y(x) — uzy (x)]

and the error i !-norm with respect to the global elliptic solution, i.e.

23) By = |us — UHHl(Q)

Y

||UHH1(Q)

whereu ; andu are the numerical solutions corresponding to problems (10)
and (5), respectively. Moreover we assess the conclusion of Theorem 1.
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Fig. 4. S1p = (). Test case #2. The overlapfs N 22 = (.5,.6) x (—1,1). Onthe left the
spectral elements solution with= 10~2 is shown. On the overlapping area we have plotted
the arithmetic mean of the two solutionsdh and(2,. On the right picture the maximum
interface errors (22), the functiah(17) and the error (23) are shown for different values of
the viscosityv

Test case #2Another test case with; p = () is obtained with the same data
given in (20)-(21), but now wittf = 0. We have imposed homogeneous
Dirichlet conditions § = 0) on the right vertical side of?, g = 1 on the
left vertical side, and null normal derivative on the horizontal sides. Spectral
elements with polynomial degre€ = 4 are used ifr < .9, while in the
strip [0.9, 1] x [—1, 1] spectral elements are used with= 8 along thez
coordinate andv = 4 along they coordinate.

In Fig. 4 the solution obtained with = 10~2 is shown, together with
the maximum interface errors (22) and the functjo(lL7).

Remark 10In this test caseb - n = 0 on 9(£2; N {2) N " so that the
reasoning that was used in Sect. 3, to prove that (14) is a norm, does not

apply. However, since; = v, = v, we have on one hand thagv; = 0,

i.e. % = 0 so thatv = v(y). Hence,Lsvy = 0 reduces to—ug—zg =0,i.e.

v =cg+Cy, cp, €1 constants

Butv = 0fory = +1impliescy = ¢; = 0, hencev = 0 and (14) isa norm
in this case as well.

Test case #3Ne considered the following data:

2= (-1,1)2 2, = (-1,0) x (-1,0.75),
2 =02\ (-1,-0.25) x (—1,0.5),

b= 1[(1 — )1 +y),—z(d—1+y?)], bp=10"%, f=0.
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Fig. 5. Onthe leftthe domain decomposition used for the test case #3, on the right the vector
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Fig. 6. Sip = (. Test case #3. On the left the numerical solution wite 10~2 is shown.
On the right picture the maximum interface errors (22), the functiq¢a7) and the error
(23) are shown for different values of the viscosity

We have imposed the Dirichlet conditigifz, y) = (1 — y)/2 on the hori-
zontal sides and on the right vertical sidefgfwhile null normal derivative
was prescribed on the left vertical side.

Spectral elements of degréé = 4 are used and the mesh is finer near
to both upper horizontal side and right vertical side. In Fig. 5 the domain
decomposition and the vector fieldare plotted. In Fig. 6 the numerical
solution computed withy = 1072 is shown.
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Fig. 7. Sip = S:. Test case #4. The overlapfi N 2, = (.6,.7) x (—1,1). On the left
the spectral elements solution with= 10~! and with polynomial degre®& = 4 is shown.
On the overlapping area we have plotted the arithmetic mean of the two soluticared
uz. On the right picture the maximum interface errors (22), the funeti¢t7) and the error
(23) are shown for different values of the viscosity

4.2. 2D caseS1p = 51

Test case #AlNe have considered the following data:

(24) 2= (=1,1)?, &1 = (=1,.7) x (=1,1), 25 = (.6,1) x (=1,1)

(25) b=[-1,0]", bp =1, f=1.

We have imposed homogeneous Dirichlet conditions on the right vertical
side of {2 and null normal derivative on the horizontal sidegafin Fig. 7

we show the numerical solution obtained with viscosity= 10~!, the

behaviour of the maximum interface errors (22) and the functiqi?)
versus the viscosity.

4.3.2D caseS1p # 0, S1p € S1

Test case #38Me have considered the following data:
(26) 2 = (—1,1)%, 2, = (—1,.8) x (=1,1), 25 = (.7,1) x (=1,1),
@7) b=1[y, 0" bo=1, f=1.

We have imposed homogeneous Dirichlet conditions on the right vertical
side of(2,g = 1on{—1} x[0, 1] and null normal derivative on the horizontal
sidesof?andon{—1}x(—1,0). Inthiscasewe havg,p, = {.8} x(—1,0).
Along they coordinate the mesh is uniform, while along theoordinate

the mesh is finer near the boundary layer. In Fig. 8 we show the numerical
solution obtained with viscosity = 10~!, the maximum interface errors
(22) and we assess the thesis of Theorem 1.
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Fig. 8. Testcase #551p = {x = .8, —1 <y < 0}, = 10™>. The overlap ig2; N 2, =
(.7,.8) x (—1,1). On the overlapping area we have plotted the arithmetic mean of the two
solutions inf2; and{2,. On the right picture the maximum interface errors (22), the function
¢ (17) and the error (23) are shown for different values of the viscosity

4.4. 1D caseS;p =0

Test case #8Me have considered the following data:

(28) 2=1(0,1), 2, = (0,0.7), 25 = (0.6,1),
(29) blzl,bgzo,fEl,gEO,
henceS;p = 0.

In Fig. 9 the solution of (10) is compared with the global elliptic solution
of (5). Both solutions are computed with spectral elements of diamikter
0.5 and degreeV = 5.

Remark 11We have computed the solution with variolis(spectral poly-
nomial degree) and (elements diameter) and we have observed that the
difference between the solution and the global elliptic solution does not de-
pend onN nor onH, but only on the viscosity coefficient. In particular, this
difference tends to zero when— 0.

4.5.1D caseSip = S5,

Test case #ANe have considered the following data:

(30) 2=1(0,1), 2, = (0,0.7), 25 = (0.6,1).
(31) b1:—1,b0:1,f51,g50,
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Fig. 9. Test case #6. Coupling with overlapping with= 10~ andv = 1072. The
overlapping is2; N2, = (0.6,0.7). On the overlapping area we have plotted the arithmetic
mean of the two solutions if?; and(2.. On the right picture the maximum interface errors
(22), the functionp (17) and the error (23) are shown for different values of the viscosity
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Fig. 10. Test case #7. Coupling with overlapping with= 10" andv = 102. The
overlapping is2: N 22 = (0.6, 0.7). On the overlapping area we have plotted the arithmetic
mean of the two solutions if?; and(2,. On the right picture the maximum interface errors
(22), the functionp (17) and the error (23) are shown for different values of the viscosity

107

We have thats; = Sp.

In Fig. 10 we report the solution of (10) for= 10~! andv = 1072,
computed with spectral elements of diametee= 0.5 and degreeV = 4.
Moreover the numerical behaviour ofv) (17) and the maximum interface
errors (22) are shown.

Remark 12In all cases considered above, the method provides the expected
(correct) results in the sense thdy) — 0 asv — 0.

5. The non overlapping situation

We consider now the situation represented in Fig. 11 which refers to the case
where{? is partitioned into two disjoint subdomains whose interfac§.is
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Fl FZ

Fig. 11. A disjoint partition of{?2

We defineuy in 21 by

Liuy = fin £2q,
(32) up =g onlip,
up = A1 onsSp,

whereSp = {x € S| b(x) - n(x) < 0}, n being the unit normal vector on
S directed fromf(2; to (2.

Remark 13If Sp = 0, there is no condition o8 and no virtual control is
attached ta; . This situation in somewhat paradoxical, however, one should
notice that in this cas# is an outflow boundary for the advection problem
(32).

We then definess in {25 by

Loug = fin {2,
(33) up =g ONnly,
Ug = A9 ons.

Remark 14The situation described above corresponds to the heterogeneous
case. If we takd.; = L in (32) (andl'1p = I, Sp = 5), we are dealing
with the homogeneous case.

We want now to choosa = {\, A2} so thatu; andus "adjust” in the

best possible way o1§. Contrary to the overlapping case where there is
“reasonable uniqueness”of the adjustment functional, several cases have
to be considered in the non overlapping case. The natural functionals to
introduce are the following ones (their properties are analyzed below):

1
(34) Ji(, o) = 5 /S(ul — ug)?ds,
whereu; = u;();) is the solution of (32) or (33);

(B5)  J2(A1,A2) = ;/S(Ul — up)?ds + ;/9(¢1 — ¢2)%ds,
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where
(36) ¢1 = —b-nujons,
(37) ¢2 =vn-Vus —b-nuyons;
finally,
1
(38) T ha) = 5 /S(qﬁl — by)2ds.

We want now to analyze the respective advantages of (34), (35) and (36).
We proceed as in Sect. 2, and introdug@nduvs by

Livy =0 in Ql,
(39) v1 =0 onlip,
v1 = A1 On SD;

Lgvg =0in QQ,
(40) ve =0 only,
V9 = Ay ON S.

We note that
(41) if Sp = 0 thenv; = 0 and no)\; is introduced.

Then
T\ = %Qi()\) FLO), i=1,2.3, A= {\1\a],

where/L; is an affine functional of\, while

(42) Qi) = /S (o1 — v2)?ds,
(43) Q2(\) = /S (o1 — v)2ds + /S (61— go)2ds,

(4) Qs(\) = /S (61— ¢9)2ds,

whereg, andg, are defined in (36) with; replaced by;.
There will beexistencef A achievinginf J;(\), possibly in a very large
"abstract” space, and if all data are smooth, provided that

(45) (Qi()))*/? is a norm on the space af
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where) is smooth enough. Then one introduces the completion ok'the
for the above norm and it is in this space that thé.J; is achieved. Of
course all these spaces reduce to finite dimensional spaces for the numerical
approximations introduced hereafter, but it is essential@hdte a norm.

Let us examine now the three cases.
The expressiof); (\)/2.

If Sp =0, (41) thenv; = 0 so that ifQ,(\) = 0thenvy =0o0nS, i.e.
Ao = 0. Therefore,

(46) if Sp =0, Q1(\)"/?isanorm

and we can expect this functional to lead to interesting numerical results.
If Sp # 0, then@; (\)'/?is nota norm and the numerical approximation
are of dubious value. This will be confirmed by the numerical results (cf.
Fig. 14, 15).
The expressiof)s(\)!/2.
We assume thatp + 0, since otherwise; (\)'/? is already a norm, so
a fortiori Q2(\)'/2 is a norm. IfQy(\) = 0 then bothw; = v, andg; = ¢
on S. Thereforen - Vuy = 0 on S (notice thatp; — ¢ = —vn - Vo).
But this boundary condition used in (40) shows that= 0 in {25, so that
A2 = 0. Then,u; = 0 on S, so that\; = 0.
Thus, the expressiof)z(\)!/? is a norm. We can therefore expect the
minimization ofJ;(\) to lead always to reasonably good results as our
numerical tests will confirm.

The expressiof)s(\)/2.
We have
(47) if Sp=0, Qs3(\)?isanorm.

Indeed, inthat case; = 0 and@s(\) = 0 implies thatp; = ¢, which thus
reduces t@, = 0. This boundary condition, together with (40), implies that
A2 = 0 hence (47) follows.

If Sp # 0, it seems dubious tha@s(\)'/? is a norm (in fact there are
examples where it is not a norm, cf. Remark 16 below), so that the use of
J3(A) is not recommended.

Remark 15The heterogeneous coupling for the advection-diffusion prob-
lem (5) proposed in [4] reads as follows (see also [12], pag. 289):

Liuy = f in {2y,
Loug = f in (2,
(48) u;=g¢g on I;, i=1,2,
U1 = ug ON SD,
¢1 = ¢ 0n S.
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This coupled system is obtained by a perturbation analysis as the limit of
the original problem (5) when the viscous coefficieris going to zero in
.

The corresponding solution will be referred to as lie¢erogeneous so-
lution.

Remark 16There is a more straightforward (but less systematic) way of
deriving a priori properties af, Jo, Js.

Let us begin with/;, and let us assume first thélp #+ (. Then, given
A1 (reasonably) smooth oip, (32) defines a function, in £2,. Then one
can defineus by (33) where); is equal to the trace af; on S. With this
choice, J1 (A1, A2) = 0 and this can be achieved infinitely many ways
As observed before]; is not going to be a “good ” functionagxcept if
Sp = 0. In that case.; is uniquely defined (na; is introduced) and there
is aunique way to achieve/; = 0.

If we consider now/s, the same comments can be appliedS#if £ 0,
one starts with an arbitrary (smooth) functidn and one defines, as
the solution ofLoug = fin £25, us = g on Iy and ¢, (given by (37))
= vn-Vu; —b - -nu; onS. ThenJs = 0 and this can be achieved in
infinitely many waysexcept ifSp = 0 in which case there is uniqueness.

Similar arguments do not apply B as defined in (35). But if we replace
Jo by its variantJ} (cf. (53) hereafter) then the problem id§ admits a
unique solution whicleoincideswith the heterogeneous solution introduced
in Remark 15 above.

6. Numerical experiments for the non overlapping case

6.1. 2D caseSp =0

Test case #1 without overlapping/e have considered the data (21), with
(49) 2= (-1,1)% 2, = (-1,.6) x (=1,1), 25 = (.6,1) x (—1,1).

In this case we havép = (). We have imposed homogeneous Dirichlet
conditions on the vertical sides ¢? and null normal derivative on the
horizontal sides of?.

In Fig. 12 we show the numerical solution obtained by minimizihg
Jo and.J3, and the solution of (48) when= 5 - 102,

The 3 functionals give satisfying results (see Fig. 12).

We denote by: s, the solutions ofnf J;, for i = 1, 2, 3 respectively and
by ux. the heterogeneous solution of (48).
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Fig. 12. Test case #1 without overlappinfp = (. The solution ofinf .J; (top left), the

solution ofinf J» (top right), the solution oinf J3 (bottom left) and the heterogeneous
solution (48) (bottom right)

10° 107 107
v

Fig. 13. Test case #1 without overlapping. The quantifigév) (50) versus the viscosity.
We haveSp = ()
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Fig. 14. Test case #4 without overlappin§.= Sp. The solution ofmin J; (top left), the
solution ofmin J> (top right), the solution ofnin .J3 (bottom left) and the heterogeneous
solution (bottom right). A non uniform mesh with polynomial deghée= 4 is considered.
Note that ther-axis has been reversed in these pictures

In Fig. 13 we show the quantities:

2 g, — wnel 2o \
J; — Uhe B

j=1 ”uheH%{l(_Qj)

6.2. 2D caseSp = S

Test case #4 without overlapping/e have considered the data (25) with
(51) 2=(-1,1)% 21 =(-1,.7) x (=1,1), 22 = (.7,1) x (=1,1).

In this case we hav8p = S.
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We have imposed homogeneous Dirichlet conditions on the right vertical
side of(2 and null normal derivative on the horizontal sidegbfin Fig. 14
we show the numerical solution obtained by minimiziig J; and Js,
and the heterogeneous solution (48) (the last two solutions do coincide) for
v = 10~!. The solutions obtained by minimizing both and.J; depend
strongly on the initial guess. The numerical results of Fig. 14 referte .2
and)\y = .8.

We have computed the errfb (v) (see (50)) for = 10~1, 1072, 1073,
In all the cases we have obtaing&d(v) ~ 10713,

6.3.2D casef) +# Sp C S

Test case #5 without overlapping/le have considered the data (27) with
(52) 2= (_17 1)27 = (_17 8) X (_17 1)7 2 = (87 1) X (_17 1)

In this case we havep = {.8} x (—1,0).

We have imposed homogeneous Dirichlet conditions on the right vertical
side off2,g = 1on{—1} x [0, 1] and null normal derivative on the horizontal
sides off2 and on{—1} x (—1,0).

We define a variant of the cost functional (35) as follows:

1

(53) Jé()\l, Az) = 2/5 (u1 — 'LLQ)QdS + % [9((251 — ¢2)2d8.

The associated quadratic functional is
(54) QAW = [ (o= wds+ [ (01 6a)%s
Sp S

wherewv; andwv, are the solutions of (39) and (40). It is easy to see that
[Q5(N\)]Y/2 is a norm. In fact, as we have already pointed out in Remark 16,
the infimum of.J;, is achieved for the heterogeneous solution (48).

In Fig. 15 we show the numerical solution obtained by minimizihg
Jo, Js, J5 and the heterogeneous solution (48)for 10~2. We note that
the solution obtained by minimizing;, and the heterogeneous solution (48)
coincide (in agreement with our general remarks). Obviously, the algorithms
used here and those used in [12] are totally different, so that we obtain a
further validation of our analysis.

6.4. 1D numerical results without overlapping

We note that, for 1D problems, whénn = b; > 0 we haveSp = (. In this
case the interface conditions in (48) ensure the continuity of the flux solely,
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/
%

b

Fig. 15. Test case #5 without overlapping. The signkof n changes along = {z =

.8, —1 < y < 1}. The solution corresponding to the minimizationoin J; (top left), the
solution corresponding to the minimizationmtn J; (top right), the solution corresponding

to the minimization ofnin J5 (medium left), the solution corresponding to the minimization
of min J3 (medium right) and the heterogeneous solution (48) (bottom left). A non uniform
mesh with polynomial degre®y = 5 is considered



262 P. Gervasio et al.

08 T T T 1.0

08
086

06 |

S 04 3
04
e—— hoterogenoous solution| *——» heterogeneous solution
J P— J1
02} [
3 02| fo—o Jg
—— global elliptic solution | —— globat elliptic solution
00 . . " 0.0 L L L L
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 08 1.0
T T

Fig. 16. Test case #6 without overlappin§p = (. The viscosity is» = 10™* (left) and
v = 1072 (right). In £2; the solutions computed by minimizing , J» and.Js coincide and
the jump across the interface is independenyVodnd H

i.e. p2 = ¢1 on S. Therefore, the natural candidate for the minimization
problem is the functionals.

Otherwise, wherb - n = b; < 0 we haveS = Sp. In this case the
interface conditions in (48) ensure the continuity of both the solutigr<
uo) and the fluxesgs = ¢1) on S. It follows that the natural candidate for
the minimization problem is the functiond.

Test case #6 without overlapping/e have considered the data (29) with
(55) 2 =(0,1), 21 = (0,0.6), 25 = (0.6, 1).

In Fig. 16 we show the numerical results foe= 10! andv = 1072. The
multidomain solutions have been computed with one spectral element of
degreeN = 6in 2; = (0,0.6) and six spectral elements of degi¥e= 6

in 25 = (0.6, 1), while the global elliptic solution has been computed with
one spectral element of degrde= 50.

Remark 17WhenSp = 0, if we assess the quality of the heterogeneous
solution by measuring the jump of the solution across the inteffdge=
ugg — uq)s, We conclude that minimizing is better than minimizing/,
and.J; (see Fig. 16 and Table 1). Otherwise, if we measure the jump of the
flux across the interfac@]|s = ¢9)5 — ¢15, we conclude that minimizing
Js is better than minimizing/; and.J, (see Fig. 16 and Table 1).

From Fig. 16 we observe that the solution obtained by minimizing
and the heterogeneous solution (48) coincide, as previously pointed out.

Test case #7 without overlappiriginally we have considered the data (31)
with

(56) 2 =(0,1), 2, = (0,0.6), 25 = (0.6,1).
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Table 1. Test case #6 without overlapping. 1D caSg. = (. The jump of the solution and
of the flux on the interface, relative to the numerical solutions of Fige 6~ 2.2204¢ — 16
denotes the floating point machine accuracy

v=10" [u] [¢] v=10"? [u] [¢]

min Jq EM 8.1342e-2 min Jy EM 1.0000e-2
min J> 4.0664e-2  3.9919e-2 min Jp 5.0000e-3  4.9999e-3
min J3 7.9852e-2 €M min J3 1.0000e-2 €M
global ell.  0.0000e+0 0.0000e+0 global ell.  0.0000e+0 0.0000e+0
heterog. 7.9852e-2 €M heterog. 1.0000e-2 €M

1.0 T T T T 1.0

08 T

08 T
06

0.6

04 0.4

| | ¢ heterogeneous solution
o Jl
o0 J2

---- J3

| [——= heterogeneous solution
— Jq

o—o J.
=
00 00 L

0.0 02 0.4 0.6 08 1.0 ) 02 0.4 0.6 08 1.0
T x

02 0.2

Fig. 17. Test case #7 without overlappinfp = S. The viscosity isv = .1 (left) and
v = .01 (right), The discretization is: 1 spectral element of deg¥ee- 6 in £2, = (0,0.6)
and 6 spectral elements of degi¥e= 6 in 2. = (0.6, 1). The initial guess i8° = [.5,.7]

The numerical solutions for = 10~ andv = 102 are shown in
Fig. 17. We observe that those solutions obtained by minimiZinandJ;
depend on the initial guesé and are not reliable.

We have computed the errBk (1) (see (50)) for = 101, 1072, 1073,
In all the cases we have obtaingg(rv) ~ 10713,
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