
Digital Object Identifier (DOI) 10.1007/s002110100301
Numer. Math. (2002) 90: 487–507 Numerische

Mathematik

Improved smoothing-type methods
for the solution of linear programs�

Stephan Engelke, Christian Kanzow

University of Hamburg, Department of Mathematics, Center for Optimization and
Approximation, Bundesstrasse 55, 20146 Hamburg, Germany;
e-mail:{engelke,kanzow}@math.uni-hamburg.de

Received August 9, 2000 / Revised version received September 28, 2000 /
Published online June 7, 2001 –c© Springer-Verlag 2001

Summary. We consider a smoothing-typemethod for the solution of linear
programs. Its main idea is to reformulate the primal-dual optimality con-
ditions as a nonlinear and nonsmooth system of equations, and to apply a
Newton-type method to a smooth approximation of this nonsmooth system.
The method presented here is a predictor-corrector method, and is closely
related to somemethods recently proposedbyBurkeandXuon theonehand,
and by the authors on the other hand. However, here we state stronger global
and/or local convergence properties. Moreover, we present quite promising
numerical results for the whole netlib test problem collection.

Mathematics Subject Classification (1991):65K05

1 Introduction

In this paper we describe an algorithm for the solution of linear programs
given either in primal form

min cTx s.t. Ax = b, x ≥ 0(1)

or in dual form

max bTλ s.t. ATλ+ s = c, s ≥ 0,(2)

whereA ∈ R
m×n, c ∈ R

n, andb ∈ R
m are the given data, andA is assumed

to have full rank throughout this paper. The idea of our algorithm is to solve
the corresponding optimality conditions

� This research was supported by the DFG (Deutsche Forschungsgemeinschaft)
Correspondence to: C. Kanzow

488 S. Engelke, C. Kanzow

ATλ+ s = c,
Ax = b,

xi ≥ 0, si ≥ 0, xisi = 0 ∀i = 1, . . . , n.
(3)

To this end, note that (3) is totally equivalent to (1) and (2) in the sense that
(3) has a solution if and only if (1) or (2) has a solution.

The widely used class of primal-dual interior-point methods follow a
similar idea: They are also based on the optimality conditions (3) and intro-
duce a certain perturbation of (3) depending on a parameterτ > 0:

ATλ+ s = c,
Ax = b,

xi > 0, si > 0, xisi = τ2 ∀i = 1, . . . , n.
(4)

The system (4) is usually called thecentral path conditions, and is parame-
terized here byτ2 instead ofτ just for technical reasons which will become
clear in Sect. 2.

Under certain assumptions, there is a unique solutionwτ = (xτ , λτ , sτ)
of (4) for eachτ > 0. The corresponding mapping

τ �→ wτ

is called thecentral path, and the main idea of interior-point methods is
to follow this central path numerically. This is typically done by applying
Newton’s method to theequationswithin the central path conditions (4),
whereas a suitable stepsize rule takes care of the strict inequality constraints.
In particular, all iterates generated by a primal-dual interior-point method
satisfy the strict inequality constraints.

Smoothing-type methods follow a different approach. The general idea
of these methods is to reformulate the optimality conditions (3) as a system
of equations (not involving any inequalities). Since this system is typically
nonsmooth, it then gets approximated by a smooth system of equations to
which Newton’s method can be applied, see [3,5,11,16] and references
therein for a couple of examples following this pattern.

The method to be presented here follows an idea by Jiang [12] and is
based on a smooth equation reformulation of the optimality conditions (3)
themselves. It is, however, closely related to both smoothing-type methods
and interior-point methods. This will be made clear as soon as we develop
the algorithm in Sect. 2.

The algorithm we present in this paper is quite similar to the predictor-
corrector method recently proposed by Burke and Xu [2], see also [1]. Our
method is also a predictor-corrector method, with the corrector step being
responsible for the global convergence and the predictor step guaranteeing
local fast convergence under suitable assumptions. In fact, our corrector step
is identical to the one by Burke and Xu [2], but we prove a different global

Improved smoothing-type methods for the solution of linear programs 489

convergence result for it using less stringent assumptions.On the other hand,
the predictor step we use here is taken from [9] (and was essentially intro-
duced byChen, Qi and Sun [6]) and can be shown to be locally quadratically
convergent under weaker assumptions than those used by Burke and Xu [2].

We therefore view our algorithmas an improved smoothing-typemethod
due to some better theoretical properties if compared with the method by
Burke and Xu [2]. In addition, it also improves the authors’ previousmethod
[9] due to some stronger global convergence properties. Furthermore, the
numerical results seem to be somewhat better than for the corresponding
method in [9].

This paper is organized as follows: In Sect. 2, we develop our algorithm
and give a detailed statement. The global and local convergence properties
are investigated in Sect. 3. Extensive numerical results are presented in
Sect. 4, and Sect. 5 concludes this paper with some final remarks.

The notation used in this paper is rather standard:R
n denotes then-

dimensional real vector space. Forx ∈ R
n, we use the subscriptxi in order

to indicate theith component ofx, whereas a superscript like inxk is used
to indicate that this is thekth iterate of a sequence{xk} ⊆ R

n. Quite often,
we will consider a triple of the formw = (xT , λT , sT)T , wherex ∈ R

n, λ ∈
R

m, ands ∈ R
n; of course,w is then a vector inRn+m+n. In order to

simplify our notation, however, we will usually writew = (x, λ, s) instead
of using the mathematically more correct formulaw = (xT , λT , sT)T . If
x, y ∈ R

n are any given vectors satisfying the inequalityxi ≥ yi for all
indicesi = 1, . . . , n, we simply writex ≥ y. Finally, the symbol‖ · ‖ is
used for the Euclidean vector norm, whereas‖ · ‖∞ indicates the maximum
norm.

2 Development of algorithm

This section is devoted to the development of our algorithm. To this end, let
ϕ : R

2 → R always denote the minimum function

ϕ(a, b) := 2 min{a, b},

with the factor2 being used here only for cosmetical reasons. Define

Φ(w) := Φ(x, λ, s) :=

A

Tλ+ s− c
Ax− b
φ(x, s)

 ,

where

φ(x, s) := (ϕ(x1, s1), . . . , ϕ(xn, sn))T ∈ R
n.

490 S. Engelke, C. Kanzow

Sinceϕ is an NCP-function, i.e.,

ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0,

the following observation is an immediate consequence of the definition of
the mappingΦ:

w∗ = (x∗, λ∗, s∗) solves(3)⇐⇒ w∗ solvesΦ(w) = 0.

However, the systemΦ(w) = 0 is nonsmooth. Therefore, letϕτ : R
2 → R

denote the smoothed minimum function

ϕτ (a, b) := a+ b−
√

(a− b)2 + 4τ2,

typically called theChen-Harker-Kanzow-Smale smoothing function[4,13,
15], whereτ > 0 is the smoothing parameter. Then define

Φτ (w) := Φτ (x, λ, s) :=

A

Tλ+ s− c
Ax− b
φτ (x, s)

 ,

where
φτ (x, s) := (ϕτ (x1, s1), . . . , ϕτ (xn, sn))T ∈ R

n.

It was observed in [13] that the following equivalence holds:

wτ = (xτ , λτ , sτ) solves(4)⇐⇒ wτ solvesΦτ (w) = 0,

i.e., we obtain a reformulation of the central path conditions as a nonlinear
and smooth system of equations in this way.

So far, we have viewedτ as a parameter. In the sequel, however, it will
sometimes be useful to viewτ as an independent variable. In order to make
this different point of view clear in our notation, let us write

θ(x, s, τ) := φτ (x, s).

Moreover, we will exploit the mappingΘ : R
n × R

m × R
n × [0,∞) →

R
n × R

m × R
n × R defined by

Θ(w, τ) := Θ(x, λ, s, τ) :=

ATλ+ s− c
Ax− b
θ(x, s, τ)

τ

 .

Note that the definition ofΘ(w, τ) is not equal toΦτ (w) since we have
added onemore line. Since the equationΘ(w, τ) = 0 automatically implies
τ = 0, we obtain the equivalence

w∗ = (x∗, λ∗, s∗) solves(3)⇐⇒ (w∗, 0) solvesΘ(w, τ) = 0.

Improved smoothing-type methods for the solution of linear programs 491

In this way we therefore get a reformulation of the optimality conditions (3)
with τ being viewed as an independent variable. This kind of reformulation
goes back to Jiang [12].

For later reference, it will be important to exploit the relation between
Newton’s method applied to the systemΦτ (w) = 0 and applied to the
systemΘ(w, τ) = 0. First consider the systemΦτ (w) = 0, and assume that
wk = (xk, λk, sk) denotes the current iterate andτk > 0 the current value
of the smoothing parameter. Then we define

wk+1 = wk + tk∆wk

for a suitable stepsizetk > 0, where the correction vector∆wk = (∆xk,
∆λk, ∆sk) is a solution of the linear system of equations

Φ′
τk

(wk)∆wk = −Φτk
(wk).

Taking into account the definition ofΦτ , this equation is equivalent to
 0 AT I

A 0 0
Dk

a,τ 0 Dk
b,τ

∆x∆λ
∆s

 =

−A

Tλk − sk + c
−Axk + b
−φτk

(xk, sk)

 ,(5)

where

Dk
a,τ := diag

(
∂ϕτk

∂a
(xk

1, s
k
1), . . . ,

∂ϕτk

∂a
(xk

n, s
k
n)

)
∈ R

n×n

and, similarly,

Dk
b,τ := diag

(
∂ϕτk

∂b
(xk

1, s
k
1), . . . ,

∂ϕτk

∂b
(xk

n, s
k
n)

)
∈ R

n×n.

On the other hand, if we apply Newton’smethod to the systemΘ(w, τ) = 0,
we have to solve an equation like

Θ′(wk, τk)
(
∆w
∆τ

)
= −Θ(wk, τk)

at each iteration, where the derivatives are taken with respect tow andτ .
Hence the above system becomes

0 AT I 0
A 0 0 0
Dk

a,τ 0 Dk
b,τ d

k
τ

0 0 0 1

∆x
∆λ
∆s
∆τ

 =

−ATλk − sk + c
−Axk + b
−θ(xk, sk, τk)

−τk

 ,(6)

where

dk
τ :=

(
∂θ

∂τ
(xk

1, s
k
1, τk), . . . ,

∂θ

∂τ
(xk

n, s
k
n, τk)

)T

∈ R
n.

492 S. Engelke, C. Kanzow

Motivated by similar considerations in the field of interior-point methods
(see, e.g., Wright [18]), we will consider a generalization of the system (6)
and replace the parameterτk on the last line of the right-hand side in (6) by
σkτk for some numberσk ∈ [0, 1], i.e., we solve

0 AT I 0
A 0 0 0
Dk

a,τ 0 Dk
b,τ d

k
τ

0 0 0 1

∆x
∆λ
∆s
∆τ

 =

−ATλk − sk + c
−Axk + b
−θ(xk, sk, τk)
−σkτk

(7)

(the choiceσk = 1 corresponds to (6)).Note, however, thatwedonot replace
τk by σkτk in the definition of the functionθ(x, s, τ). In order to have a
short-hand notation for the linear system (7), we introduce the function

Θσ(w, τ) :=

ATλ+ s− c
Ax− b
θ(x, s, τ)
στ

with the subscriptσ indicating the dependence ofΘ on the parameterσ.
Then the linear system (7) can be rewritten as

Θ′(wk, τk)
(
∆w
∆τ

)
= −Θσ(wk, τk).

Note that this or, equivalently, (7) immediately gives

∆τk = −σkτk.(8)

Replacing this expression into the remaining equations of (7), we obtain
 0 AT I

A 0 0
Dk

a,τ 0 Dk
b,τ

∆x∆λ
∆s

 =

 −ATλk − sk + c

−Axk + b
−θ(xk, sk, τk) + σkτkd

k
τ

 .(9)

Obviously, this can be rewritten as

Φ′
τk

(wk)∆w = −Φτk
(wk) + σkτk

 0

0
dk

τ

 .

This shows that the linear system (7) can be viewed as a perturbation of the
system (5), with the perturbation being active only in the third block row of
the right-hand side.

Based on the notation introduced so far, we next give a precise statement
of our predictor-corrector smoothing method.

Improved smoothing-type methods for the solution of linear programs 493

Algorithm 2.1 (Predictor-Corrector Smoothing Method)

(S.0) (Initialization)
Choosew0 := (x0, λ0, s0) ∈ R

n×R
m×R

n such thatATλ0 + s0 =
c, Ax0 = b, chooseτ0 > 0, selectβ ≥ ‖Φτ0(w

0)‖/τ0, ρ ∈ (0, 1), 0 <
σ̂min < σ̂max < 1, ε ≥ 0, and setk := 0.

(S.1) (Termination Criterion)
If ‖Φ(wk)‖ ≤ ε: STOP.

(S.2) (Predictor Step)
Compute a solution(∆wk, ∆τk) = (∆xk, ∆λk, ∆sk, ∆τk) ∈ R

n ×
R

m × R
n × R of the linear system

Θ′(wk, τk)
(
∆w
∆τ

)
= −Θ(wk, 0).(10)

If ‖Φ(wk +∆wk)‖ = 0: STOP. Otherwise, if

‖θ(xk +∆xk, sk +∆sk, τk)‖ > βτk,
then set

ŵk := wk, τ̂k := τk, ηk := 1,

else computeηk = ρ
k , where#k is the nonnegative integer such that

‖θ(xk +∆xk, sk +∆sk, ρjτk)‖ ≤ βρjτk ∀j = 0, 1, 2, . . . , #k
and

‖θ(xk +∆xk, sk +∆sk, ρ
k+1τk)‖ > βρ
k+1τk,

and set̂τk := ηkτk and

ŵk :=
{
wk if #k = 0,
wk +∆wk otherwise.

(S.3) (Corrector Step)
Chooseσ̂k ∈ [σ̂min, σ̂max], and compute a solution(∆ŵk, ∆τ̂k) =
(∆x̂k, ∆λ̂k, ∆ŝk, ∆τ̂k) ∈ R

n × R
m × R

n × R of the linear system

Θ′(ŵk, τ̂k)
(
∆ŵ
∆τ̂

)
= −Θσ̂k

(ŵk, τ̂k).(11)

Let t̂k = max{ρ
 | # = 0, 1, 2, . . .} such that

‖θ(x̂k + t̂k∆x̂k, ŝk + t̂k∆ŝk, (1− σ̂k t̂k)τ̂k)‖
≤ β(1− σ̂k t̂k)τ̂k.(12)

Setwk+1 := ŵk + t̂k∆ŵk andτk+1 := (1− σ̂k t̂k)τ̂k.
(S.4) (Update)

Setk ← k + 1, and go to Step (S.1).

494 S. Engelke, C. Kanzow

To get a better understanding of the way Algorithm 2.1 works, let us add
a couple of comments. In Step (S.0), we require the starting pointw0 =
(x0, λ0, s0) to be feasible with respect to the linear equationsATλ+ s = c
andAx = b. Since the componentsx0 ands0 do not have to be positive
(like in interior-point methods), it is relatively easy to find such a starting
point.

In the predictor step, we first compute a search direction by solving the
linear system (10). The interesting part about this linear system is the fact
that the right-hand side of (10) is unperturbed with respect toτ , whereas we
use the standard Jacobian of the perturbed functionΘ(w, τ) on the left. This
may be viewed as the counterpart of the affine scaling step typically used as
a predictor in primal-dual interior-point methods, see Wright [18]. Like in
the interior-point setting, this predictor step will eventually guarantee local
fast convergence (under suitable assumptions).

After having computed the search direction in (10), we try to reduce the
smoothing parameterτk as much as possible with the only restriction that
the full step stays within a certain neighbourhood of the central path, cf.
Lemma 3.2 (c) below.

While our predictor step is different from the one used by Burke and Xu
[2] in their smoothing-typemethod, the corrector step in (S.3) coincideswith
the one from [2]. Note that the linear system (11) is precisely the one from
(7) and includes a perturbation on the right-hand side as well. The predictor
step also contains a procedure to reduce the smoothing parameter. This
procedure will guarantee global convergence in the sense thatτk decreases
to zero under mild conditions.

3 Convergence properties

This section investigates the global and local convergence properties of
Algorithm 2.1. To this end, we assume throughout this section that the ter-
mination parameterε is equal to zero, and that Algorithm 2.1 generates an
infinite numberof iterateswk, i.e.,weassume thatwedonot stopafter a finite
number of iterations in a pointwk satisfying the optimality conditions (3).

We first note that Algorithm 2.1 is well-defined.

Lemma 3.1 The following statements hold for anyk ∈ N:

(a) The linear systems (10) and (11) have a unique solution.
(b) There is a uniqueηk satisfying the conditions in Step (S.2).
(c) The stepsizêtk in (S.3) is uniquely defined.

Consequently, Algorithm 2.1 is well-defined.

Improved smoothing-type methods for the solution of linear programs 495

Proof. (a) The structure of the JacobianΘ′(wk, τk) in (6) shows that this
matrix is nonsingular if and only ifΦ′

τk
(wk) is nonsingular. The latter, how-

ever, was noted in [8, Proposition 3.1].
(b) This statement follows from [9, Proposition 3.2] and is essentially due
to Burke and Xu [2].
(c) This result follows from the proof of Theorem 1 in Burke and Xu [2].

��
We next state some simple properties of Algorithm 2.1 to which we will
refer a couple of times in our subsequent analysis.

Lemma 3.2 The sequences{wk} = {(xk, λk, sk)} and{τk} generated by
Algorithm 2.1 have the following properties:

(a) ATλk + sk = c andAxk = b for all k ∈ N.
(b) τk = τ0(1− σ̂0t̂0)η0 · · · (1− σ̂k−1t̂k−1)ηk−1 for all k ∈ N.
(c) ‖θ(xk, sk, τk)‖ ≤ βτk for all k ∈ N.

Proof. (a) Fork = 0, this follows from the choice of our starting point
in Step (S.0). Newton’s method then guarantees that the linear equations
ATλ+ s = c andAx = b are also satisfied for allk ≥ 1.
(b) Step (S.2) of Algorithm 2.1 implies thatτ̂k = ηkτk. The updating rules
in Step (S.3) therefore give

τk+1 = (1− σ̂k t̂k)τ̂k = (1− σ̂k t̂k)ηkτk

for all k ∈ N. This gives the desired formula, see also [2, Theorem 2].
(c) The choice of the starting pointw0 = (x0, λ0, s0) andβ in Step (S.0)
guarantee that we have‖θ(xk, sk, τk)‖ ≤ βτk for k = 0. The updating rules
in Step (S.3) show that this inequality holds for allk ∈ N. ��
The next result is quite simple and will be used in order to show that the
sequence{wk} generated by Algorithm 2.1 will be bounded under certain
conditions.

Lemma 3.3 The sequences{wk} = {(xk, λk, sk)} and{τk} generated by
Algorithm 2.1 satisfy the inequality

‖min{xk, sk}‖∞ ≤ κτk
for all k ∈ N with κ := (2 + β)/2.

Proof. Let θi denote theith component function ofθ, i.e.,

θi(a, b, τ) := a+ b−
√

(a− b)2 + 4τ2.

Then it is easy to see that the inequality

|θi(a, b, 0)− θi(a, b, τ)| ≤ 2τ

496 S. Engelke, C. Kanzow

holds for alla, b ∈ R and allτ > 0. Using Lemma 3.2 (c), it then follows
that

2|min{xk
i , s

k
i }| = |θi(xk

i , s
k
i , 0)|

≤ |θi(xk
i , s

k
i , τk)|+ |θi(xk

i , s
k
i , 0)− θi(xk

i , s
k
i , τk)|

≤ ‖θ(xk, sk, τk)‖+ |θi(xk
i , s

k
i , 0)− θi(xk

i , s
k
i , τk)|

≤ (β + 2)τk

for all k ∈ N and alli = 1, . . . , n. This implies

‖min{xk, sk}‖∞ ≤ κτk
for all k ∈ N, whereκ denotes the constant specified in the statement of our
lemma. ��
We next show that the sequence{wk} generated by Algorithm 2.1 remains
bounded provided that there is a strictly feasible point for the optimality
conditions (3) (i.e., a vector̂w = (x̂, λ̂, ŝ) satisfyingAT λ̂+ ŝ = c, Ax̂ = b
and x̂ > 0, ŝ > 0) and that the initial smoothing parameterτ0 > 0 is
sufficiently small. This boundedness result is similar to one given by Chen
and Ye [7] in the context of box constrained variational inequality problems.

Proposition 3.4 Assume that there is a strictly feasible point(x̂, λ̂, ŝ) for the
optimality conditions (3), and suppose that the initial smoothing parameter
τ0 > 0 satisfies

τ0 <
1
κ

min
i=1,...,n

{x̂i, ŝi},

whereκ := (2 + β)/2 denotes the constant from Lemma 3.3. Then the
sequence{wk} = {(xk, λk, sk)} generated by Algorithm 2.1 is bounded.

Proof. Assume that the sequence{wk} = {(xk, λk, sk)} generated by Al-
gorithm2.1 isunbounded.Since{τk} ismonotonically decreasing, it follows
from Lemma 3.3 that

|min{xk
i , s

k
i }| ≤ ‖min{xk, sk}‖∞ ≤ κτk ≤ κτ0(13)

for all k ∈ N and alli = 1, . . . , n. This obviously implies that there is no
indexi ∈ {1, . . . , n} such thatxk

i → −∞ or ski → −∞ on a subsequence.
Therefore, all components of the two sequences{xk} and{sk} are bounded
from below.

On the other hand, the sequence{wk} = {(xk, λk, sk)} is unbounded by
assumption. This implies that there is at least one componenti ∈ {1, . . . , n}
such thatxk

i → +∞ orski → +∞ on a subsequence since otherwise the two
sequences{xk} and{sk}would be boundedwhich, in turn, would imply the
boundedness of the sequence{λk} as well because we haveATλk +sk = c

Improved smoothing-type methods for the solution of linear programs 497

for all k ∈ N (cf. Lemma 3.2 (a)) and becauseA is assumed to have full
rank.

Now let ŵ = (x̂, λ̂, ŝ) ∈ R
n × R

m × R
n be the strictly feasible point

from our assumption. Then, in particular, we have

AT λ̂+ ŝ = c and Ax̂ = b.

Since we also have

ATλk + sk = c and Axk = b

for all k ∈ N by Lemma 3.2 (a), we get

AT (λ̂− λk) + (ŝ− sk) = 0 and A(x̂− xk) = 0(14)

by subtracting these equations. Premultiplying the first equation in (14) with
(x̂− xk)T and taking into account the second equation in (14) gives

n∑
i=1

(x̂i − xk
i)(ŝi − ski) = (x̂− xk)T (ŝ− sk) = 0.(15)

Wenowassumewithout lossofgenerality that there isat least onecomponent
i such that{xk

i } is unbounded, i.e.,{xk
i }K → +∞ for a suitable subset

K ⊆ N (the argument would be similar if there would exist at least one
componentiwith {ski } being unbounded). Let us define the following index
sets:

Ix := {i | {xk
i }K is unbounded},

Is := {i | {ski }K is unbounded},
Ib := {i | {xk

i }K and{ski }K are bounded}.

Note thatIx is nonempty, whereasIs (andIb) might be empty. Using the
definitions of these three index sets and subsequencing if necessary, we
obtain from (13) that

{xk
i }K → +∞ and ski ≤ κτ0 ∀k ∈ K ∀i ∈ Ix(16)

and

{ski }K → +∞ and xk
i ≤ κτ0 ∀k ∈ K ∀i ∈ Is,(17)

whereas there is a constantc ∈ R such that
∑
i∈Ib

(xk
i − x̂i)(ski − ŝi) ≤ c

498 S. Engelke, C. Kanzow

for all k ∈ K. Using (15) then gives

c ≥
∑
i∈Ib

(xk
i − x̂i)(ski − ŝi)

=
∑
i∈Ix

(xk
i − x̂i)(ŝi − ski) +

∑
i∈Is

(xk
i − x̂i)(ŝi − ski)

for all k ∈ K. However, the right-hand side is unbounded on a subsequence
due to (16) and (17) sincêsi − ski ≥ ŝi − κτ0 > 0 (i ∈ Ix) andx̂i − xk

i ≥
x̂i − κτ0 > 0 (i ∈ Is) in view of our choice ofτ0 > 0. This contradiction
completes the proof. ��

Note that Proposition 3.4 guarantees the boundedness of the iterateswk

provided that the initial smoothing parameter is sufficiently small. On the
other hand, it is interesting to note that Burke and Xu [2] can prove the
boundedness of their iterates under the assumption thatτ0 is sufficiently
large. In fact, Burke and Xu [2] can provide a lower bound for their choice
of τ0 which is known a priori, whereas our upper bound fromProposition 3.4
is, in general, not known. However, the lower bound from [2] could be very
large, and this, in turn, could haveabad influenceon thenumerical behaviour
of the smoothing-type method. — In any case, it should be noted that some
interior-point methods generate bounded iterates under the sole assumption
that the primal and dual linear programs (1) and (2), respectively, are feasible
(rather than strictly feasible).

We next give a global convergence result for Algorithm 2.1. Note that
this result is different from the one provided by Burke and Xu [2]. (They
use an assumption which is even stronger than the one we use for our local
convergence result in Theorem 3.8; on the other hand, the main emphasis
in [2] was to prove a global linear rate of convergence result.)

Theorem 3.5 Assume that the sequence{wk} = {(xk, λk, sk)} generated
by Algorithm 2.1 has at least one accumulation point. Then{τk} converges
to zero.

Proof. Since the sequence{τk} is monotonically decreasing and bounded
from below by zero, it converges to a numberτ∗ ≥ 0. If τ∗ = 0, we are
done.

So assume thatτ∗ > 0. Then the updating rules in Step (S.2) of Algo-
rithm 2.1 immediately give

ŵk = wk, τ̂k = τk, and ηk = 1(18)

for all k ∈ N sufficiently large. Subsequencing if necessary, we assume
without loss of generality that (18) holds for allk ∈ N. Then Lemma 3.2

Improved smoothing-type methods for the solution of linear programs 499

(b) andσ̂k ≥ σ̂min yield

τk = τ0
k−1∏
j=0

(1− σ̂j t̂j) ≤ τ0
k−1∏
j=0

(1− σ̂mint̂j).(19)

Sinceτk → τ∗ > 0 by assumption, it follows from (19) thatlimk→∞ t̂k = 0.
Therefore, the stepsizêαk := t̂k/ρ does not satisfy the line search criterion
(12) for allk ∈ N sufficiently large. Hence we have

‖θ(x̂k + α̂k∆x̂
k, ŝk + α̂k∆ŝ

k, (1− σ̂kα̂k)τ̂k)‖ > β(1− σ̂kα̂k)τ̂k(20)

for all thesek ∈ N.
Now let w∗ = (x∗, λ∗, s∗) be an accumulation point of the sequence

{wk}, and let{wk}K be a subsequence converging tow∗. Since σ̂k ∈
[σ̂min, σ̂max] for all k ∈ N, we can assume without loss of generality that
the subsequence{σ̂k}K converges to some numberσ̂∗ ∈ [σ̂min, σ̂max]. Fur-
thermore, sinceτ∗ > 0, it follows from Lemma 3.1 (a) that the correspond-
ing subsequence{(∆ŵk, ∆τ̂k)}K converges to a vector(∆ŵ∗, ∆τ̂∗) =
(∆x̂∗, ∆λ̂∗, ∆ŝ∗, ∆τ̂∗), where(∆ŵ∗, ∆τ̂∗) is the unique solution of the
linear equation

Θ′(w∗, τ∗)
(
∆ŵ
∆τ̂

)
= −Θσ̂∗(w

∗, τ∗),(21)

cf. (11). Using{α̂k}K → 0 and taking the limitk → ∞ on the subsetK,
we then obtain from (18) and (20) that

‖θ(x∗, s∗, τ∗)‖ ≥ βτ∗ > 0.(22)

On the other hand, we get from (20), (18), Lemma 3.2 (c), andσ̂k ≤ σ̂max
that

‖θ(x̂k + α̂k∆x̂
k, ŝk + α̂k∆ŝ

k, (1− σ̂kα̂k)τ̂k‖
> (1− σ̂kα̂k)βτ̂k
= (1− σ̂kα̂k)βτk
≥ (1− σ̂kα̂k)‖θ(xk, sk, τk)‖
≥ (1− σ̂maxα̂k)‖θ(xk, sk, τk)‖

for all k ∈ N sufficiently large. Using (18) and∆τ̂k = −σ̂kτ̂k (cf. (8)), this
implies

‖θ(xk + α̂k∆x̂
k, sk + α̂k∆ŝ

k, τk + α̂k∆τ̂k)‖ − ‖θ(xk, sk, τk)‖
α̂k

≥ −σ̂max‖θ(xk, sk, τk)‖.

500 S. Engelke, C. Kanzow

Since‖θ(·, ·, ·)‖ is a continuously differentiable function at(x∗, s∗, τ∗) due
to (22), taking the limitk →∞ for k ∈ K then gives

θ(x∗, s∗, τ∗)T

‖θ(x∗, s∗, τ∗)‖θ
′(x∗, s∗, τ∗)

∆x̂

∗
∆ŝ∗
∆τ̂∗

 ≥ −σ̂max‖θ(x∗, s∗, τ∗)‖,

where(∆x̂∗, ∆λ̂∗, ∆ŝ∗, ∆τ̂∗) denotes the solution of the linear system (21).
Using (21) then gives

−‖θ(x∗, s∗, τ∗)‖ ≥ −σ̂max‖θ(x∗, s∗, τ∗)‖.
Sinceσ̂max ∈ (0, 1), this implies‖θ(x∗, s∗, τ∗)‖ = 0, a contradiction to
(22). ��
Note that the assumed existence of an accumulation point in Theorem 3.5
is automatically satisfied under the conditions of Proposition 3.4. — An
immediate consequence of Theorem 3.5 is the following result.

Corollary 3.6 Every accumulation point of a sequence{wk} = {(xk, λk,
sk)} generated by Algorithm 2.1 is a solution of the optimality conditions
(3).

Proof. Let w∗ = (x∗, λ∗, s∗) be an accumulation point of the sequence
{wk} = {(xk, λk, sk)}, and let{wk}K denote a subsequence converging
tow∗. Then we haveτk → 0 in view of Theorem 3.5. Hence Lemma 3.2 (c)
implies

‖θ(x∗, s∗, 0)‖ = lim
k∈K
‖θ(xk, sk, τk)‖ ≤ β lim

k∈K
τk = 0,

i.e., we havex∗ ≥ 0, s∗ ≥ 0 andx∗
i s

∗
i = 0 for i = 1, . . . , n due to the

definition ofθ. Since Lemma 3.2 (a) also shows that we haveATλ∗ +s∗ = c
andAx∗ = b, we see thatw∗ = (x∗, λ∗, s∗) is indeed a solution of the
optimality conditions (3). ��
We next want to give a local convergence result. To this end, we first note
that the search direction we obtain in our predictor step is identical to the
one obtained in the predictor step of the method from [9].

Lemma 3.7 The vector(∆wk, ∆τk) is a solution of the linear system (10)
if and only if∆wk solves the system

Φ′
τk

(wk)∆w = −Φ0(wk),

and∆τk = 0.

Improved smoothing-type methods for the solution of linear programs 501

Proof. Since the smoothing parameter on the right-hand side of the linear
system (10) is equal to zero, the assertion follows immediately from the
discussion following (6). ��

The previous result implies that we can apply the local rate of conver-
gence analysis from [9]. Hence we obtain the following result from [9] (see
also Tseng [17]).

Theorem 3.8 Assume that the sequence{wk} generated by Algorithm 2.1
converges to a strictly complementary solution of the optimality conditions
(2.1). Suppose further that the parameterβ from Step (S.0) of Algorithm 2.1
is chosen sufficiently large such thatβ > 2

√
n. Then the predictor step is

eventually accepted, and we have

τk+1 = O(τ2
k)

for all k ∈ N sufficiently large, i.e., the smoothing parameter converges
locally Q-quadratically to zero.

Note that a typical interior-point method can guarantee the convergence
of the corresponding iteration sequence toa strictly complementary solution,
so from this point of view, the assumptions we use in Theorem 3.8 are
stronger. However, this is basically the only difference, in particular, we
stress that the assumptions used in Theorem 3.8 do not necessarily imply
that the solution set of the optimality conditions (3) reduces to a singleton.

Weclose this sectionbynoting thatall results (with thepossibleexception
of Theorem3.8)would still be true ifϕwould denote theFischer-Burmeister
function

ϕ(a, b) := a+ b−
√
a2 + b2

from [10] together with its smooth counterpart

ϕτ (a, b) := a+ b−
√
a2 + b2 + 2τ2

from [13]; this can be seen by an easy inspection of the previous proofs. On
the other hand, it is currently an open question whether or not Theorem 3.8
also holds for the Fischer-Burmeister function.

4 Numerical results

We implemented Algorithm 2.1 in MATLAB by modifying the LIPSOL
code from Zhang [19,20]. LIPSOL is a primal-dual interior-point solver for
linear programs, written in MATLAB and calling a FORTRAN subroutine
in order to solve certain linear systems using the sparse Cholesky method
by Ng and Peyton [14]. Since the linear systems occuring in Algorithm 2.1

502 S. Engelke, C. Kanzow

have essentially the same structure as those arising in primal-dual interior-
point methods, it was possible to use the numerical linear algebra part from
LIPSOL for our implementation of Algorithm 2.1.

The starting pointw0 = (x0, λ0, s0) was constructed in the following
way:

(a) SolveAATy = b using a sparse Cholesky code in order to compute
y0 ∈ R

m.
(b) Setx0 := ATy0.
(c) SolveAATλ = Ac using a sparse Cholesky code to computeλ0 ∈ R

m.
(d) Sets0 := c−ATλ0.

This is exactly the starting point used in [9]. One arrives at this starting point
by solving the two simple programs

min
1
2
‖x‖2 s.t. Ax = b

for x0 and

min
1
2
‖s‖2 s.t. ATλ+ s = c

for λ0 ands0. The construction of the starting point guarantees that the two
linear systemsAx = b andATλ+ s = c are satisfied inw0 = (x0, λ0, s0).
Furthermore, the initial smoothing parameterτ0 is taken such that

τ0 ≥
√
x0

i s
0
i ∀i ∈ {1, . . . , n} with x0

i > 0, s0i > 0.

This choice guarantees that we haveθ(x0, s0, τ0) ≤ 0 (both for the min-
imum and the Fischer-Burmeister function). This condition is required by
the algorithm from Burke and Xu [2], although it is not necessary for our
method.

We terminate our iteration if one of the following conditions hold:

(a) τk < 10−4 or
(b) ‖Φ(wk)‖∞ < 10−4 or
(c) ‖Φ(wk)‖∞ < 10−3 and‖Φ(wk)‖∞/‖Φ(w0)‖∞ < 10−6.

Criterion (a) was used in [9] and is motivated by the fact that the square
of τ does, more or less, play the role of the duality gap in interior-point
methods (cf. (4)) forwhich10−8 is a typical value for the stoppingparameter.
Criterion (b) is an absolute error measuring the total residual‖Φ(wk)‖∞,
whereas (c) is a mixture between a weakened form of this absolute error
and a relative error comparing thekth residual‖Φ(wk)‖∞ with the initial
residual‖Φ(w0)‖∞.

The remaining parameters fromStep (S.0) of Algorithm 2.1 were chosen
as follows:

ρ = 0.9, β := ‖Φτ0(w
0)‖/τ0

Improved smoothing-type methods for the solution of linear programs 503

andϕ being the Fischer-Burmeister function (according to our experience,
the Fischer-Burmeister function gives better results than theminimum func-
tion, at least within the framework of Algorithm 2.1). Finally, the parameter
σ̂k from Step (S.3) of Algorithm 2.1 was always taken to be0.5.

All test runs were done on a SUN Ultra 2 with 300 MHz, and Table 1
contains the corresponding results, with the columns of Table 1 having the
following meanings:

problem: name of the test problem in the netlib collection,
m: number of equality constraints (after preprocessing),
n: number of variables (after preprocessing),
k: number of iterations until termination,
P: number of accepted predictor steps,
τf : value ofτk at the final iterate,
‖Φ(wf)‖∞: value of‖Φ(wk)‖∞ at the final iterate,
primal objective: value of the primal objective function at final iterate.

The overall results are quite good and seem to be better than the corre-
sponding results from the three-stepmethoddescribed in [9]. Themethodhas
only one failure on problemdfl001 (interestingly, LIPSOL also produces
an error for this example, at least on our machine), and most test problems
can be solved in less than 20–30 iterations. Although interior-point methods
are still more efficient on most examples, the numerical behaviour of our
smoothing-type method is getting pretty close to the one of interior-point
methods, and is definitely approaching an area where it may be viewed as a
possible alternative to interior-point methods.

When comparing the results with an interior-point solver, however, one
should take into account that Algorithm 2.1 has to factor up to two linear
systemsof equationsper iteration,whereas interior-pointmethodsworkwith
only one factorization. On the other hand, we stress that Algorithm 2.1 has
to factorize only one linear system at those iterations where the predictor
step is not successful. Moreover, it seems possible to modify the theory
in such a way that one can skip the corrector step whenever the predictor
step is acceptable. Such a modification of Algorithm 2.1 would then have
to factorize only one system per iteration.

5 Concluding remarks

In this paper, we modified the recently proposed smoothing-type methods
from [2,9]. The modified method has some stronger global and/or local
convergence properties than the methods from [2,9], and the numerical
results indicate that the method works very well on the netlib test problem
collection.Since these resultswereobtainedbyusing theFischer-Burmeister

504 S. Engelke, C. Kanzow

Table 1. Numerical results for Algorithm 2.1

problem m n k P τf ‖Φ(wf)‖∞ primal objective

25fv47 798 1854 34 17 6.0250e−04 2.9537e−04 5.5018459053e+03
80bau3b 2235 11516 29 23 1.0987e−03 7.1465e−04 9.8722419211e+05
adlittle 55 137 15 15 2.1737e−02 8.7395e−05 2.2549496391e+05
afiro 27 51 10 10 4.7999e−02 3.2452e−05 −4.6474687177e+02
agg 488 615 23 20 1.3406e−02 6.9052e−04 −3.5991767286e+07
agg2 516 758 25 18 7.6969e−03 4.7607e−04 −2.0239252355e+07
agg3 516 758 30 14 7.0617e−03 1.1522e−04 1.0312115936e+07
bandm 269 436 20 19 4.9684e−04 9.3110e−05 −1.5862801756e+02
beaconfd 148 270 18 15 2.7426e−03 5.8563e−04 3.3592485986e+04
blend 74 114 13 12 2.7468e−03 2.9106e−06 −3.0812134385e+01
bnl1 632 1576 26 16 3.5355e−04 7.0895e−05 1.9776295617e+03
bnl2 2268 4430 26 14 9.5617e−04 4.8772e−04 1.8112367543e+03
boeing1 347 722 26 16 2.2843e−03 4.9528e−04 −3.3521310546e+02
boeing2 140 279 16 15 5.4054e−03 9.8945e−04 −3.1500732408e+02
bore3d 199 300 28 22 1.3979e−03 4.1970e−05 1.3730804026e+03
brandy 149 259 19 15 1.1040e−03 7.8205e−05 1.5185099104e+03
capri 267 476 20 19 9.5525e−03 6.4732e−04 2.6900133856e+03
cycle 1801 3305 39 19 9.4566e−05 1.0106e−02 −5.2249915841e+00
czprob 737 3141 22 19 1.1163e−02 2.8069e−04 2.1851966995e+06
d2q06c 2171 5831 57 19 8.3779e−05 4.0045e−05 1.2278421095e+05
d6cube 404 6184 25 21 1.7077e−03 2.6014e−05 3.1549167161e+02
degen2 444 757 23 23 2.3842e−03 9.9759e−05 −1.4351779632e+03
degen3 1503 2604 16 16 7.9692e−04 5.7716e−05 −9.8729398786e+02
dfl001 6071 12230 — — — —
e226 220 469 27 25 2.4792e−04 5.3902e−05 −1.8751928739e+01
etamacro 357 692 26 13 1.5436e−04 7.3792e−05 −7.5571522983e+02
ffff f800 501 1005 36 14 6.2879e−03 8.5460e−04 5.5567957590e+05
finnis 492 1014 31 20 1.3882e−03 2.9195e−04 1.7279127031e+05
fit1d 24 1049 20 18 5.7480e−04 4.0534e−05 −9.1463780917e+03
fit1p 627 1677 19 19 1.7472e−03 7.3692e−06 9.1463780936e+03
fit2d 25 10524 22 20 6.0248e−04 8.2675e−05 −6.8464293289e+04
fit2p 3000 13525 20 20 1.2942e−03 3.0570e−04 6.8464293283e+04
forplan 135 463 28 17 4.7384e−03 9.3267e−04 −6.6421820761e+02
ganges 1137 1534 25 20 3.0644e−03 6.4436e−04 −1.0958573612e+05
gfrd-pnc 600 1144 23 16 1.2681e−02 2.4942e−04 6.9022360024e+06
greenbea 2318 5424 25 20 5.7593e−03 8.5643e−04 −7.2462520306e+07
greenbeb 2317 5415 35 15 2.2551e−03 4.7930e−04 −4.3022602607e+06
grow15 300 645 37 18 2.4283e−02 3.7293e−06 −1.0687094129e+08
grow22 440 946 37 15 1.0882e−01 7.5577e−06 −1.6083433646e+08
grow7 140 301 34 19 3.2322e−02 2.2135e−05 −4.7787811813e+07
israel 174 316 27 17 3.9926e−03 2.8436e−04 −8.9664482178e+05
kb2 43 68 32 10 3.3160e−03 9.8866e−05 −1.7499000911e+03
lotfi 151 364 35 16 3.7591e−03 8.0923e−04 −2.5263066012e+01
maros 835 1921 37 12 3.1239e−03 7.1513e−04 −5.8063742927e+04
maros-r7 3136 9408 22 22 4.7684e−03 9.7763e−04 1.4971851671e+06
modszk1 686 1622 26 17 1.1499e−02 8.3608e−04 3.2061981508e+02
nesm 654 2922 52 14 2.9135e−04 2.4794e−04 1.4076036489e+07
perold 625 1530 33 14 3.3115e−03 7.3875e−04 −9.3805322461e+03

Improved smoothing-type methods for the solution of linear programs 505

Table 1. (continued)

problem m n k P τf ‖Φ(wf)‖∞ primal objective

pilot 1441 4657 81 14 1.1707e−04 1.4059e−04 −5.5748445014e+02
pilotja 924 2044 76 14 9.6009e−05 4.3618e−03 −6.1130052461e+03
pilotwe 722 2930 61 13 5.8582e−04 3.7472e−04 −2.7201075333e+06
pilot4 402 1173 132 13 9.5377e−05 6.9395e−03 −2.5810606602e+03
pilot87 2030 6460 63 14 8.3070e−05 8.8733e−03 3.0173031374e+02
pilotnov 951 2242 27 22 2.5409e−03 3.0714e−04 −4.4972761773e+03
recipe 85 177 14 14 1.2207e−03 3.5042e−05 −2.6661598322e+02
sc105 105 163 19 13 1.4451e−03 7.7940e−05 −5.2202033312e+01
sc205 205 317 22 19 7.5991e−04 1.3473e−04 −5.2202035425e+01
sc50a 49 77 15 10 3.6860e−03 4.9576e−05 −6.4575009902e+01
sc50b 48 76 14 11 6.6556e−03 7.6186e−06 −6.9999776566e+01
scagr25 471 671 19 17 2.3406e−02 2.9238e−04 −1.4753433056e+07
scagr7 129 185 19 18 3.4159e−03 3.3656e−04 −2.3313898243e+06
scfxm1 322 592 20 19 5.9750e−03 6.4703e−04 1.8416759818e+04
scfxm2 644 1184 26 18 4.3503e−03 8.7736e−04 3.6660262213e+04
scfxm3 966 1776 26 21 4.9124e−03 9.6075e−04 5.4901255716e+04
scorpion 375 453 21 20 2.7373e−04 1.8825e−05 1.8781248227e+03
scrs8 485 1270 21 19 6.6791e−04 4.5185e−05 9.0429695560e+02
scsd1 77 760 22 22 4.7684e−03 9.5696e−06 8.6666991041e+00
scsd6 147 1350 15 15 4.0199e−04 1.1125e−06 5.0500000067e+01
scsd8 397 2750 13 13 1.1068e−02 4.6656e−05 9.0500023711e+02
sctap1 300 660 24 23 4.0019e−03 5.1964e−05 1.4122500207e+03
sctap2 1090 2500 18 16 1.5629e−03 1.4780e−05 1.7248071430e+03
sctap3 1480 3340 18 17 2.1396e−03 9.2047e−05 1.4240000008e+03
seba 515 1036 23 15 3.1158e−03 9.3931e−05 1.5711600096e+04
share1b 112 248 43 14 3.0326e−03 9.3991e−04 −7.6589318369e+04
share2b 96 162 16 16 3.0518e−04 4.4814e−07 −4.1573224024e+02
shell 496 1487 22 14 1.7418e−01 1.6486e−05 1.2088253461e+09
ship04l 356 2162 20 20 1.6465e−02 8.0608e−04 1.7933245380e+06
ship04s 268 1414 20 20 1.2018e−02 6.5490e−05 1.7987147004e+06
ship08l 688 4339 21 20 1.0490e−02 3.7678e−04 1.9090552114e+06
ship08s 416 2171 20 20 1.8916e−02 1.4499e−04 1.9200982105e+06
ship12l 838 5329 21 20 8.4547e−03 5.6258e−04 1.4701879193e+06
ship12s 466 2293 20 19 8.9471e−03 6.2617e−04 1.4892361344e+06
sierra 1222 2715 22 19 1.9638e−02 9.5043e−04 1.5394362263e+07
stair 356 538 19 18 2.3050e−03 1.6815e−04 −2.5126689656e+02
standata 359 1258 13 12 7.2079e−02 9.5241e−06 1.2577586668e+03
standgub 361 1366 13 12 7.2079e−02 9.5241e−06 1.2577586668e+03
standmps 467 1258 18 14 9.0258e−03 1.1631e−05 1.4060176463e+03
stocfor1 109 157 16 11 3.3401e−02 1.2536e−04 −4.1131976111e+04
stocfor2 2157 3045 29 16 8.3230e−04 2.4732e−05 −3.9024408532e+04
stocfor3 16675 23541 63 17 1.8715e−04 2.8605e−04 −3.9976784284e+04
stocfor3old 16675 23541 70 13 8.7370e−05 6.0456e−04 −3.9976783942e+04
truss 1000 8806 19 18 6.3715e−03 5.6972e−05 4.5881584778e+05
tuff 292 617 32 16 3.2629e−04 1.5624e−04 2.9216987102e−01
vtpbase 194 325 19 19 3.8147e−02 3.2374e−05 1.2983146617e+05
wood1p 244 2595 13 13 3.3617e−04 6.1025e−05 1.4429024524e+00
woodw 1098 8418 34 22 2.2390e−04 9.7122e−05 1.3044869516e+00

506 S. Engelke, C. Kanzow

function (rather than theminimum function) and since the local convergence
result fromTheorem3.8doesnotnecessarily hold for theFischer-Burmeister
function, this function certainly deserves further investigation. In fact, this
is part of our future research, and we hope that this, in turn, will have a
positive influence on our implementation of the predictor step.

Acknowledgement.The authors would like to thank a referee as well as Prof. Liping Zhang
for pointing out an error in an earlier version of this manuscript.

References

1. J.V. Burke, S. Xu: A non-interior predictor-corrector path-following method for LCP.
In:M. Fukushima, L. Qi (eds.): Reformulation: Nonsmooth, PiecewiseSmooth, Semis-
mooth and Smoothing Methods. Kluwer: Kluwer Academic Publishers 1999

2. J.V. Burke, S. Xu: A non-interior-predictor-corrector path following algorithm for the
monotone linear complementarity problem. Mathematical Programming87, 113–130
(2000)

3. B. Chen, X. Chen: A global and local superlinear continuation-smoothing method for
P0 andR0 NCP or monotone NCP. SIAM J. Opt.9, 624–645 (1999)

4. B. Chen, P.T. Harker: A non-interior-point continuation method for linear complemen-
tarity problems. SIAM J. Matrix Anal. Appl.14, 1168–1190 (1993)

5. B. Chen, N. Xiu: A global linear and local quadratic noninterior continuation method
for nonlinear complementarity problems based on Chen-Mangasarian smoothing func-
tions. SIAM J. Opt.9, 605–623 (1999)

6. X. Chen, L. Qi, D. Sun: Global and superlinear convergence of the smoothing Newton
method and its application to general box constrained variational inequalities. Math.
Comput.67, 519–540 (1998)

7. X. Chen, Y. Ye: On homotopy-smoothing methods for box-constrained variational
inequalities. SIAM J. Control Opt.37, 589–616 (1999)

8. S. Engelke, C. Kanzow: On the solution of linear programs by Jacobian smoothing
methods. Ann. Oper. Res. (to appear)

9. S. Engelke, C. Kanzow: Predictor-corrector smoothing methods for the solution of lin-
ear programs. Preprint 153, Institute of Applied Mathematics, University of Hamburg,
Hamburg, March 2000

10. A. Fischer: A special Newton-type optimization method. Optimization24, 269–284
(1992)

11. K. Hotta, A. Yoshise: Global convergence of a class of non-interior point algorithms
usingChen-Harker-Kanzow-Smale functions for nonlinear complementarity problems.
Mathematical Programming86, 105–133 (1999)

12. H. Jiang: Smoothed Fischer-Burmeister equation methods for the complementarity
problem. Technical Report, Department of Mathematics, University of Melbourne,
Melbourne, Australia, June 1997

13. C. Kanzow: Some noninterior continuation methods for linear complementarity prob-
lems. SIAM J. Matrix Anal. Appl.17, 851–868 (1996)

14. E. Ng, B.W. Peyton: Block sparse Cholesky algorithms on advanced uniprocessor
computers. SIAM J. Sci. Comput.14, 1034–1056 (1993)

15. S. Smale: Algorithms for solving equations. In Proceedings of the International
Congress of Mathematicians. AMS, Providence 172–195 (1987)

Improved smoothing-type methods for the solution of linear programs 507

16. P. Tseng: Analysis of a non-interior continuation method based on Chen-Mangasarian
smoothing functions for complementarity problems. In: M. Fukushima, L. Qi (eds.):
Reformuation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods,
pp. 381–404. Dordrecht: Kluwer Academic Publishers 1998

17. P. Tseng: Error bounds and superlinear convergence analysis of some Newton-type
methods in optimization. In: G. Di Pillo, F. Giannessi (eds.): Nonlinear Optimization
and Related Topics. Dordrecht: Kluwer Academic Publishers (to appear)

18. S.J. Wright: Primal-Dual Interior-Point Methods. SIAM, Philadelphia, PA, 1997
19. Y. Zhang: Solving large-scale linear programs by interior-point methods under the

MATLAB environment. Opt. Methods Softw.10, 1–31 (1998)
20. Y. Zhang: User’s guide to LIPSOL: Linear programming interior point solver v0.4.

Opt. Methods Softw.11& 12, 385–396 (1999)

