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Summary. We show the consistency and the convergence of a spectral ap-
proximation of the bidimensional vorticity equation, proposed by V. Zeitlin
in [13] and studied numerically by I. Szunyogh, B. Kadar, and Bvéyi

in [12], whose main feature is that it preserves the Hamiltonian structure of
the vorticity equation.

Résurmé. On démontre la consistance et la convergence d’'une approxi-
mation spectrale deéguation du tourbillon bidimensionnell&gpodique,
propo®e par V. Zeitlin dans [13] ettudiee nunériquement par I. Szun-
yogh, B. Kadar et D. Bvenyi dans [12]; sa caraatistique principale est de
préserver la structure hamiltonienne deguation du tourbillon.

Mathematics Subject Classification (199&5N35

1 Introduction

The aim of this article is to study a particular form of spectral approximation
of the bidimensional Euler equation, proposed by V. Zeitlin in [13]. Before
explaining the reason for that particular approximation, let us recall a few
very basic facts concerning bidimensional, inviscid, incompressible flows,
from which is derived the bidimensional vorticity equation.

Let us consider an inviscid, incompressible fluid, evolving on the bidi-
mensional plane. A particle of that fluid, at a painénd at a time, has a
velocity v(t, ) which satisfies the incompressible Euler equation
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ov+v-Vo=—-Vp in RxT?
(E) divv =0
’Ult:(] =19 .

HereT? stands for the bidimensional torus: throughout this paper, we shall
suppose that the fluid is periodic in both directions of the plane. The first
equation in(E) is the momentum equation, whepes the pressure, and

the second equation represents the conservation of mass. We have writ-
ten divo = 90! 4+ 0202, whered; is the partial derivative in the directian,

and wherev = (v',v?). We suppose that is a periodic, divergence free
vector field, and throughout this paper, the vector fields will be supposed
also to be mean free éR°. Let us note that the unknowns aeriori v and

p, butp can be obtained from by plugging the incompressibility condition

into the momentum equation: we get

—Ap = Z 9;0;(v'07).
]

Afundamental quantity in fluid mechanics is the vorticmyd:ef curlv. Inthe

bidimensional case, itis identified with the scalar functiote’ D102 =0,
which satisfies

(VE)  Ow+v-Vw=0 in T?

andv andw are related by the well-known Biot—Savart law
1
(BS) v=V* (Exw), where E(z)= o logal.
7T

We have noted for the convolution operator, ard- = (—=02,01). We
shall not go into any detailed statement concerning systémand(V E).
We refer to [5], [8], [9], and [10] for extensive studies on those equations.
Let us nevertheless recall that there is a unique global soluti¢f tdor
smooth initial data (say, i’ (R, C") if vo € C” with » > 1), and theL?
norms of the vorticity are conserved for apy [1, oo].

In the following, the spacé/® is the usual homogeneous Sobolev space
of orders € R. We shall note in the following the norm of any function
in H9 by

def —~
uls = Y Inflam))? |

neZz?

whereu(n) denotes the discrete Fourier transformupivhich we shall also
sometimes note a8u(n):

VneZ? dn)=Fu(n) d:ef/ e Ty (z) de,
T2
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wheren - z is the usual scalar product ¢f,ns) by (z1,22). We have
noted|n| for the usual Euclidean norm B2, |n|> = n} + n3. Moreover,
we will note (a|b) the scalar product i of two functionsa andb.

As shown in [12] and [13], one very important feature of the vorticity
equationV E) is its Hamiltonian structure. We shall not go into any discus-
sion of the theory of Hamiltonian systems (see the work of V. Arnold in [1],
aswell as [2] and [11]). All we shall recall here is that the Hamiltonian struc-
ture of (V E) implies the conservation of an infinite number of invariants:
the energy, and the volume integral of any functionvoflif one wants to
study numerically the syste(W £'), one approach is to compute the Fourier
transform of the system, and to truncate at some frequéhciiowever,
traditional truncation strategies inevitably destroy the Hamiltonian struc-
ture of the equations (see [12] for details). In [13], V. Zeitlin proposes a
strategy which has the feature of preserving the Hamiltonian structure; the
main interest of such a structure—preserving scheme is that it is liable to
give better results than a scheme destroying the Hamiltonian structure, as
such a destruction leads to a loss in the Physics underlying the equation. Let
us note that the strategy proposed by V. Zeitlin, and studied in this article,
is also presented in the book by V. Arnold and B.A. Khesin (see [2], page
61). The truncation strategy proposed by V. Zeitlin is based on the Fourier
expansion of the equatiqiy £'), which can be written as follows:

d . n X k,\ ~ 2
(FVE)  —&(n )_gZ:Q Wu)(k)w(n—k), Vn e Z2

We have notea, x k = niks — noky. One traditional way to approximate
(FV E) is to consider the ordinary differential equation

d nxk ~
%WN( ) Z 1|n|<N |k7|2 w(k>w(n - k)v
k<N
(FVEN) On(n) =0 if |n| > N,
Wnjt=0(n) = Ljnj<n /1‘2 e Ty (x) dr .

We have noted |, < v for characteristic function of the ball centered at the
origin, of radiusN. We refer to [10] for the proof of the well-posedness
of (FVEy), and for the proof of the convergence of the solutions of
(FV EN) to those of(FV E) whenN goes to infinity. It is shown in [12]
that (F'V Ex) does not preserve the Hamiltonian structure, and the same
goes for thealiasedversion of that approximation, defined in the following
way:

%w( J=— 3 Gn ((n—k)2N +1]) - kS (k),
|k|<N
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|a|[M]
|al

integer in[— N, N] equal to|a| mod M. Now we have all the elements to
introduce thesine—bracket truncatiqgrproposed by V. Zeitlin in [13]:

OIN+1 (2t xk
*(UN 1 <N sin( >
(SB) dt |k|§v <N "ok [2 IN +1

N

xWn (k)o N(( k)[2N +1])
Wnji=0(n) = L <N @o(n

where we have defined M| = a, where|a|[M] is the smallest

The following result is proved in [12] and [13].

Proposition 1.1 The sine—bracket truncation preserves the Hamiltonian
structure of the bidimensional vorticity equation In particular, it preserves

the entropy, defined, for all functions by H (w ) ]w|0

Remark.Concerning the terminology used to define that truncation, the
“sine” part is clear, and the term “bracket” is due to the fact {itaBy)
can be written in a bracket form, due to its Hamiltonian structure (see [12],
[13]).

We shall note, throughout this paper,

def 2N +1 . 2mn X k\ .
FIn(a,b)(n) = |kz<:N1|n|§N e sin < ON 11 > a(k)

xb ((n — k)[2N +1]),

FT(a,b)(n) €S Wa(k)z(n — k).
keZ?

In particular, ifwy (resp.w) is a solution of the sine—bracket truncation
(SBy) (resp. of the bidimensional vorticity equatioi E)), then

d:—tN =Tn(wn,wn), and CC%) =T (w,w).

This paper is devoted to the mathematical analysis of the truncation
(SBy). We shall not study the numerical aspect of the truncation; we refer to
[12] for the analysis of numerical experiments carried out$B ), and for
the comparison with traditional schemes. In particular, we shall be concerned
with the consistency, and the convergence of the scheme (the stability is a
byproduct of the Hamiltonian structure, as seen in Proposition 1.1).

Theorem 1 (consistencyThere exists a consta6tsuch that the following
property is satisfied. Let be a smooth function, and let< 4 andn > 0
be two real numbers. Then
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TN (w,w) — T'(w,w)|o
< C'min (|1, N|w|o) (Nz_”’ wly + N7 |wlpt2) -

RemarkThattheorem indicates that the sine—bracket truncation is consistent
with the vorticity equatior{V E), with a rate of at most —2. The following
theorem shows that rate is sharp, and in particular, that the sine—bracket
truncationT’y is not spectrally accurate with respect to the operéator

Theorem 2 There exists a smooth function a constantC'(w) and an
integer N (w), such that for all integersv > N(w), we have

TN (w,w) — T(w,w)|o > C(w)N2

Theorem 3 (convergencel)etw, andw o be smooth functions, and lefs
(resp.w) be the solution of SBy) (resp. (V' E)) with initial data wy o
(resp.wp). Then for ally < 4, we have

wn (t) = w(B)o < C (lwno —wolo + N> lwoll 2 lwll L1 0,4,
XeC(HV“)HLl([oﬁtLLOO)'i't”WO”LQ)’

where(C is a constant independent &f. In particular, the sine—bracket

truncation(SBy) converges t¢V E) whenN goes to infinity.

Remarkslt should be noted thatVw||11(jo 4, z) iNcCreasesa priori, as a
double exponential of. So the estimate given in the theorem is poor for
large times. Moreover, one can notice tfidtnorms of the vorticity appear,
which are constant in time contrary to higher order Sobolev norms. In the
proof of that theorem, special care is taken in order to let siichorms
appear as often as possible, sometimes at the cost of higher powgrs of
Finally, the L*° norm of Vw which appears in Theorem 3 is due to the
use of a smoothened cut—off operator (see Sect. 3), enabling one I8 use
space—norms fgr # 2.

Throughout this paper, we will note all “universal constants” by the same
letterC'.

2 Consistency of the sine—bracket truncation

In this section, we are going to prove Theorems 1 and 2 stated in the intro-
duction.

Proof of Theorem 1Let us compute thé? norm inn of

In(w,w)(n) d:effTN(w,w)(n) — FT(w,w)(n).
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We havely (w,w)(n) = > Iy(w,w)(n), where

2N +1
In(a,b)(n) = Y Ljendjne k|>N1|n|<NW
keZ?

D 2mx k.~
(2.2) xsin o a(k)b((n —k)[2N + 1)),
IRe(a,0)(n) = = > Lpsnljpoj<n <y
keZz?
nxk

(2.2) a(k)b(n — k),

kP2

(2.3) IX(a,b)(n)=—> 1j,_ k|>N1|n|<Nn|]:|2ka(k)/b\(n — k),

keZ?
nxk_ .~
24) Ii(a.b)(n) = = ) Loy -alk)b(n — k),
keZ?
and finally where
2N +1
I (a, b)( kgz:21k|<N1|n kl<NYjnj<N 53 e

(2.5)

C 2mnx k  2mn Xk ~
><<szN+1 2N+1> alk)bn — k).

Lemma 2.1 If ¢ andb are smooth functions, then forall > 1 andg > —1,
we have

¥ (a,b) |z < CN?"%a|—2|blo + CN~|alg|blo.

Proof. Let us decomposé} (a,b) according to the relative size of|
andN/2. We have

Ii(a,b) = Iy'(a,b) + Iy*(a,b),

where

2N +1
1,1
Iy (a,b)(n) = Z 1\n|<N1|n k|>NW
N <jkl<N

« sin (Z;:f) a(k)B(n — k)[2N + 1),
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and
1 2 2N +1
I (a,0)(n) = ) Ljen k>N 5 e
k|<%
. 2mn X k ~
><s1n<2N+1> a(k)b((n — k)[2N +1]).
We have

11N (a, )]
S kIT2ak)| 1 cpr<an-alb((n — k)[2N +1])]
|k|>%

Butif N < |[n—k| < 2N +1, then the application —k +— (n—k)[2N +1]
is one—to—one, hence using Young'’s inequality, we get

<CN

&

1Y (@, D) < czv] Ly k2@ [Bm)

o e,

We have noted?}, the ¢’ norm with respect to the variabie.
Now the Cauchy—Schwarz inequality implies that

||I]1\}1(a, b)||;2 < CN 1%§|k‘|k\_2—ﬁ|k|ﬂ|a(l€)

|blo
s

< N[ 1722 lalsll
0

< CN_’6|(L|/g|b|0,

for all 3 > —1. So one part of the lemma is proved. We now are left with
the estimate of the terff y*(a, b) ;2. We have

115 (a, )| 2

3 b Linjen iy [0 b ((n = B2V + 1) |
k<%

<

&

- N N
But it is easy to see that k| < ) and|n — k| > N, then; < |(n -

k)[2N + 1]| < N. So we can write, using Young's inequality, followed by
Cauchy-Schwarz,

1132 (a,b)||

<CN

1N§|m|S2N+11%§\m[2N+1]\§N|b(m[2N‘|’ 1)) ) |a|—2

m

< CN?7%bl|al o,
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forall « > 1. So the lemma is proved. O

Lemma 2.2If ¢ andb are smooth functions, then for &l > 0, we have

173 (@ b) |2 < CN |a| g min(|bl1, N|blo)-

Proof. We have, again using the Cauchy—Schwarz inequality,

In x k| . ~
113 (a,b)||2 < Z Ljp—kj<NLljnj<n 75— [@(k)| [b(n — k)|
|K| 2
|k|>N n
< C|[Lysnlk|~Ha(k)| 1 min(|b]1, N{blo)

b

< CN~7|a|g min(|b|1, N|blo),

forall 3 > 0. The lemma is proved. O

Lemma 2.3If ¢ andb are smooth functions, then for dl> 2, we have

1% (a, D)2 < ON?°la]-1[b]5.

Proof. We can write

1% (a, b)ll> <

In x k| . ~
S Lol o ()] i — )
kez? [l

2
&

It follows that for alld > 2,

12 (@) < c“ K@)

Lim>n|ml[b(m)]

1
k em

< Clal-y ||Ljmsn|m|=°|  |bls,

&,

which gives the result. a

Lemma 2.41f a andb are smooth functions, then for &@ll> 2 and 3’ > 0,
we have

114:(a,b)]l,2 < CN~7|a|z min(|bly, N|blo) + CN270)a|_1|b]s.
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. . . N
Proof.Since|n| > N, then necessarily, we have either > 5 orjn—k| >

N
5 It follows that

nxk ~
L xienso Lo = G B — )
|K| 2

T <k n

|n x k| ~
+ H Z 1|k|<N1|n|<N |k’2 ‘ ( )‘ ‘b(n - k)’
|n—k|>—

13 (a,b) 2 <

&

Then a Young inequality yields

14 (0, )l < cHuZN/erla(kn min([b]1, N|blo)

0

[k~ [a (k)]

m k

)

+0|

1 g ] [B(m)

and the result follows by a Cauchy—Schwarz inequality. O

Lemma 2.5If ¢ andb are smooth functions, then for all < 4, we have

113 (a,0)lz < ON*77|b], min(|al1, N|alo)-

Proof. For allz € R, we have sinz — 2| < C|z|3, hence
113 (a,0) | 2

<O Y Lken L m<nLinj<n
k

n — kPlK|

N1zl a(k)| [b(n — k)|

&

Hence we get, by similar computations as above,

15 (0, )l < 0H1|m|§mm|3|3<m>|

min(N_1|a|0,N_2|a]1)
1

< CN?*7|b|, min(|al1, Nlalo).

for all v < 4. The result follows. O
Putting together Lemmas 2.1 to 2.5, we get the theorem. a

Proof of Theorem 2t is clear from Lemmas 2.1 to and 2.4 that the func-
tions I}, to I, defined in (2.1) to (2.4) have spectral accuracy. Hence it is
enough to prove the estimate of Theorem 2fgrdefined in(2.5). We are
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going to construct a function satisfying Theorem 2 in the following way: let
us consider the function defined by

(2.6) w(x1,x2) = cosxy + cos 2xs.

Then we obviously have(1,0) = ©(0,2) = 1,andw(k) = 0forall otherk

in Z2. Let us computd}(w,w) in that case. An immediate computation
shows that in'}, (w, w)(n), only the valuex = (1, 2) gives a non zero result,
and, forN > 2,

2N +1 47 . 4
I} (w,w)(1,2) = o <2N+1_Sm2N—|—1>
2N +1 4m . 4w
— — sin
8T 2N +1 2N +1

Hence we get

47 47
3 1.2)| > CN — si
ow)(1.2)] 2 ON (5T —sin g 7 )

>CN 2+ 0O(N™),

. 1 .
using the fact that — sinz = ?x?’ +O(z”). So Theorem 2 is proved. O

3 Convergence of the sine—bracket truncation

The aim of this section is to prove Theorem 3 stated in the introduction. We

have
1d
2 dt

But the structure of the truncation implies that @&, (a, b)|b) = 0 for anya

andb, hence the quantityy (wy, wy ) above can be replaced By (wy, w).
Moreover, we have

jwn () —w(t)]§ = Re(wy —w | Ty (wy,wy) — T(w,w)),

Tn(wy,w) =Ty (wy —w,w) + Ty (w,w),
so we get finally

1d 9

i&lwz\/ —w|j =Re(In(w,w) — T(w,w) |wy —w)

+Re(Tn(wy —w,w) |wy —w).

Then Theorem 1 enables us to infer that foralt 0 and ally < 4,
1d
2dt
(31) -+ ‘TN(LUN —w ‘ w)]0|wN — U.)|().

lwy = w[§ < Cloy = wlollwll 2 (N*wly + N1 wlyi2)
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Lemma 3.1If a € L?(T?) and ifb is a smooth function, then foral € IN,

we have forall < ¢ < 1,

|Tn (@, b)|o < Clalo(|[Vb| Lo + [blo + N7°|blc13)-

Let us suppose temporarily that this result is proved, and let us go back to
estimate (3.1). Then Lemma 3.1 implies that

1d _ _
Sy = wlf < Cllwllzalon — wlo(V3 7wl + N1 "uly4a)
+ O Twliee + [l + N~7leless) o — wlf,

hence, by Gronwall's lemma, we get for all> 0, for all N € N, for
ally<4,n>0and0 <e < 1,

(3.2)
lwn (t) —w(t)]o

< owa —waloesp (C [ (19wl + lellze + N~luless) (7) )
+ONanlia [ foly(r)dr
<o (0 (19wl + lllze + N~7luless) (7) i)
+ONTanlza [ folyia(r) dr

t
¢ exp (c | 90l + ol + N ~lolera) () dT) ,
0

where we have used the fact that ftfenorm ofw is constant. So the theorem
is proved. a

Proof of Lemma 3.1\We have
T (a,b)lo < [x(a,b)llez + 13 (a, b) |2 + [ IR (a, )|l 2,

with the notation of the previous section (see (2.5)), and where we have
defined
def nxk_  ~
33 K@) = Y Lyavlin-kanpi<y Tz ak)bn k)
keZ?

But Lemmas 2.1 and 2.5 imply that
13 (a,0) |2 + 113 (a, b)ll;2 < CN>"V]alo|bly + Clalo|blo,
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for all 2 < v < 4. So now we are left with the estimate [pf$; (a, b)|[ 2. A
direct estimate here will lead nowhere: one sees easily that it yields

1R (a, b)ll2 < Clal-1

L <nv|m[b(m)]

28

which if we only considerZ?-based Sobolev norms faér is unbounded

asN increases, and that is not wanted since that estimate appears in an ex-
ponential after Gronwall's lemma (see equation (3.2) above). To circumvent
this difficulty, we are going to replace tli§, estimate orl,,, <y |m/| [b(m)]

above by an.*° estimate or\vb, which will not cost any power oN. The

way to do so is to use an elementary form of J.-M. Bony’s paradifferential
calculus (see [3]), by replacing the cut-aff, <y by @ smooth truncation
defined as follows: let us consider a smooth, compactly supported, radial
function ¢, with values in[0, 1], such that

plr)=1 if xe€][0,1], e(x)=0 if |z|>2.
Then the tame truncation operat®y, for all N € N, is defined by

o 3.

and it is easy to see thatife D', thenSyu converges ta in D', whenN
goes to infinity. Moreover, we have the following crucial estimate:

[Svullze < Cllullze,

for anyp € [1, 00|, whereC does not depend oN. Let us note that such
an estimate is false in the case of the cut—off, except of course wheh.
Now we write I8, = I5" + 157

N » Where
6,1 n X k |n — k‘ ~
Iy (a,b)(n) = ) yenljncn g 7 ak)e {5 ) bn—k)

ke€Z?
and
nxk._.
162(61 b)( Z Lk <nljnj<v =5 BE a(k) (1 —¢)
keZ?
— kI ~

x <|”N‘> b(n — k).

We have

115" (a,b) 2
(nl—kl)k/\ \n—k| ~
< Z Z 1|k|§N1|n|SNTJa(k)@ N b(n — k)

i#j kez? &

)
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hence by Plancherel’'s theorem,

_ ki .
I3 (2, )2 < ZH}_ ! <1|k|§N‘kTQ(I(k)> Sn(0;b)
i

<2
i#]
< CHVbHLoo\a!—l-

L2

Sn(0;b)

ki
’1|k§N’kTQa(k‘)

G

Finally the last term is estimated as follows:

— k| @

> Lentoon O a(k)] o — o)

keZ?

< Clal-1

113 (a,b) ]2 <

‘b’f:"
o

e2

o
1> n|ml|'

< CN*|a|_1|b|o,

as soon as’ > 2. The lemma follows. O

Concluding remark

This paper shows that the sine—bracket truncation does converge towards
the Euler equation, but that the consistency is not satisfactory, contrary to a
traditional spectral truncation approximation, which has spectral accuracy.
However it is important from a practical point of view to conserve as much
invariants as possible in the approximation; hence if one desires a better
balance between accuracy and conservation of a large number of invariants,
one is led to looking for a new type of approximation.

Acknowledgementsl. wish to thank Yann Brenier for introducing me to the subject, for
suggesting the questions studied in this article, as well as for many helpful discussions.
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