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Summary. We show the consistency and the convergence of a spectral ap-
proximation of the bidimensional vorticity equation, proposed by V. Zeitlin
in [13] and studied numerically by I. Szunyogh, B. Kadar, and D. Dévényi
in [12], whose main feature is that it preserves the Hamiltonian structure of
the vorticity equation.

Résuḿe. On d́emontre la consistance et la convergence d’une approxi-
mation spectrale de l’équation du tourbillon bidimensionnelle périodique,
propośee par V. Zeitlin dans [13] et́etudíee nuḿeriquement par I. Szun-
yogh, B. Kadar et D. D́evényi dans [12]; sa caractéristique principale est de
préserver la structure hamiltonienne de l’équation du tourbillon.

Mathematics Subject Classification (1991):65N35

1 Introduction

The aim of this article is to study a particular form of spectral approximation
of the bidimensional Euler equation, proposed by V. Zeitlin in [13]. Before
explaining the reason for that particular approximation, let us recall a few
very basic facts concerning bidimensional, inviscid, incompressible flows,
from which is derived the bidimensional vorticity equation.

Let us consider an inviscid, incompressible fluid, evolving on the bidi-
mensional plane. A particle of that fluid, at a pointx and at a timet, has a
velocityv(t, x) which satisfies the incompressible Euler equation
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(E)



∂tv + v · ∇v = −∇p in R × T

2

div v = 0
v|t=0 = v0 .

HereT2 stands for the bidimensional torus: throughout this paper, we shall
suppose that the fluid is periodic in both directions of the plane. The first
equation in(E) is the momentum equation, wherep is the pressure, and
the second equation represents the conservation of mass. We have writ-
ten divv = ∂1v

1+∂2v
2,where∂i is the partial derivative in the directionxi,

and wherev = (v1, v2). We suppose thatv0 is a periodic, divergence free
vector field, and throughout this paper, the vector fields will be supposed
also to be mean free onT2. Let us note that the unknowns area priori v and
p, butp can be obtained fromv by plugging the incompressibility condition
into the momentum equation: we get

−∆p =
∑
i,j

∂i∂j(vivj).

A fundamental quantity in fluidmechanics is the vorticityΩ
def= curlv. In the

bidimensional case, it is identifiedwith thescalar functionω
def= ∂1v

2−∂2v
1,

which satisfies

(V E) ∂tω + v · ∇ω = 0 in T2,

andv andω are related by the well–known Biot–Savart law

(BS) v = ∇⊥(E ∗ ω), where E(x) =
1
2π

log |x|.

We have noted∗ for the convolution operator, and∇⊥ = (−∂2, ∂1). We
shall not go into any detailed statement concerning systems(E) and(V E).
We refer to [5], [8], [9], and [10] for extensive studies on those equations.
Let us nevertheless recall that there is a unique global solution to(E) for
smooth initial data (say, inC0(R, Cr) if v0 ∈ Cr with r > 1), and theLp

norms of the vorticity are conserved for anyp ∈ [1,∞].
In the following, the spaceHs is the usual homogeneous Sobolev space

of orders ∈ R. We shall note in the following the norm of any functionu
in Hs by

|u|s def=


 ∑

n∈Z2

|n|2s|û(n)|2



1
2

,

whereû(n) denotes the discrete Fourier transform ofu, which we shall also
sometimes note asFu(n):

∀ n ∈ Z2, û(n) = Fu(n) def=
∫
T2

e−in·xu(x) dx,
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wheren · x is the usual scalar product of(n1, n2) by (x1, x2). We have
noted|n| for the usual Euclidean norm inZ2, |n|2 = n2

1 + n2
2. Moreover,

we will note(a|b) the scalar product inL2 of two functionsa andb.
As shown in [12] and [13], one very important feature of the vorticity

equation(V E) is its Hamiltonian structure. We shall not go into any discus-
sion of the theory of Hamiltonian systems (see the work of V. Arnold in [1],
aswell as [2] and [11]). All we shall recall here is that theHamiltonian struc-
ture of (V E) implies the conservation of an infinite number of invariants:
the energy, and the volume integral of any function ofω. If one wants to
study numerically the system(V E), one approach is to compute the Fourier
transform of the system, and to truncate at some frequencyN . However,
traditional truncation strategies inevitably destroy the Hamiltonian struc-
ture of the equations (see [12] for details). In [13], V. Zeitlin proposes a
strategy which has the feature of preserving the Hamiltonian structure; the
main interest of such a structure–preserving scheme is that it is liable to
give better results than a scheme destroying the Hamiltonian structure, as
such a destruction leads to a loss in the Physics underlying the equation. Let
us note that the strategy proposed by V. Zeitlin, and studied in this article,
is also presented in the book by V. Arnold and B.A. Khesin (see [2], page
61). The truncation strategy proposed by V. Zeitlin is based on the Fourier
expansion of the equation(V E), which can be written as follows:

(FV E)
d

dt
ω̂(n) =

∑
k∈Z2

n × k

|k|2 ω̂(k)ω̂(n − k), ∀ n ∈ Z2.

We have notedn × k = n1k2 − n2k1. One traditional way to approximate
(FV E) is to consider the ordinary differential equation

(FV EN )




d

dt
ω̂N (n) =

∑
|k|≤N

1|n|≤N
n × k

|k|2 ω̂(k)ω̂(n − k),

ω̂N (n) = 0 if |n| > N,

ω̂N |t=0(n) = 1|n|≤N

∫
T2

e−in·xω0(x) dx .

We have noted1|n|≤N for characteristic function of the ball centered at the
origin, of radiusN . We refer to [10] for the proof of the well–posedness
of (FV EN ), and for the proof of the convergence of the solutions of
(FV EN ) to those of(FV E) whenN goes to infinity. It is shown in [12]
that (FV EN ) does not preserve the Hamiltonian structure, and the same
goes for thealiasedversion of that approximation, defined in the following
way:

d

dt
ω̂N (n) = −

∑
|k|≤N

v̂N ((n − k)[2N + 1]) · k ω̂N (k),



226 I. Gallagher

where we have defineda[M ] =
|a|[M ]

|a| a, where |a|[M ] is the smallest

integer in[−N,N ] equal to|a| modM . Now we have all the elements to
introduce thesine–bracket truncation, proposed by V. Zeitlin in [13]:

(SBN )




d

dt
ω̂N (n) =

∑
|k|≤N

1|n|≤N
2N + 1
2π|k|2 sin

(
2πn × k

2N + 1

)
×ω̂N (k)ω̂N ((n − k)[2N + 1])

ω̂N |t=0(n) = 1|n|≤N ω̂0(n).

The following result is proved in [12] and [13].

Proposition 1.1 The sine–bracket truncation preserves the Hamiltonian
structure of the bidimensional vorticity equation. In particular, it preserves

the entropy, defined, for all functionsω, byH(ω)
def
= |ω|0.

Remark.Concerning the terminology used to define that truncation, the
“sine” part is clear, and the term “bracket” is due to the fact that(SBN )
can be written in a bracket form, due to its Hamiltonian structure (see [12],
[13]).

We shall note, throughout this paper,

FTN (a, b)(n) def=
∑

|k|≤N

1|n|≤N
2N + 1
2π|k|2 sin

(
2πn × k

2N + 1

)
â(k)

×b̂ ((n − k)[2N + 1]) ,

FT (a, b)(n) def=
∑
k∈Z2

n × k

|k|2 â(k)̂b(n − k).

In particular, ifωN (resp.ω) is a solution of the sine–bracket truncation
(SBN ) (resp. of the bidimensional vorticity equation(V E)), then

dωN

dt
= TN (ωN , ωN ), and

dω

dt
= T (ω, ω).

This paper is devoted to the mathematical analysis of the truncation
(SBN ).Weshall not study thenumerical aspect of the truncation;we refer to
[12] for the analysis of numerical experiments carried out on(SBN ), and for
thecomparisonwith traditional schemes. Inparticular,weshall beconcerned
with the consistency, and the convergence of the scheme (the stability is a
byproduct of the Hamiltonian structure, as seen in Proposition 1.1).

Theorem 1 (consistency)There exists a constantC such that the following
property is satisfied. Letω be a smooth function, and letγ < 4 andη > 0
be two real numbers. Then
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|TN (ω, ω) − T (ω, ω)|0
≤ C min (|ω|1, N |ω|0)

(
N2−γ |ω|γ + N−η |ω|η+2

)
.

Remark.That theorem indicates that thesine–bracket truncation is consistent
with the vorticity equation(V E), with a rate of at mostN−2. The following
theorem shows that rate is sharp, and in particular, that the sine–bracket
truncationTN is not spectrally accurate with respect to the operatorT .

Theorem 2 There exists a smooth functionω, a constantC(ω) and an
integerN(ω), such that for all integersN ≥ N(ω), we have

|TN (ω, ω) − T (ω, ω)|0 ≥ C(ω)N−2.

Theorem 3 (convergence)Letω0 andωN,0 be smooth functions, and letωN

(resp.ω) be the solution of(SBN ) (resp. (V E)) with initial data ωN,0
(resp.ω0). Then for allγ < 4, we have

|ωN (t) − ω(t)|0 ≤ C
(|ωN,0 − ω0|0 + N3−γ‖ω0‖L2‖ω‖L1([0,t],Hγ)

)
×eC(‖∇ω‖L1([0,t],L∞)+t‖ω0‖L2 )

,

whereC is a constant independent ofN . In particular, the sine–bracket
truncation(SBN ) converges to(V E) whenN goes to infinity.

Remarks.It should be noted that‖∇ω‖L1([0,t],L∞) increases,a priori, as a
double exponential oft. So the estimate given in the theorem is poor for
large times. Moreover, one can notice thatL2 norms of the vorticity appear,
which are constant in time contrary to higher order Sobolev norms. In the
proof of that theorem, special care is taken in order to let suchL2 norms
appear as often as possible, sometimes at the cost of higher powers ofN .
Finally, theL∞ norm of∇ω which appears in Theorem 3 is due to the
use of a smoothened cut–off operator (see Sect. 3), enabling one to useLp

space–norms forp /= 2.
Throughout this paper, wewill note all “universal constants” by the same

letterC.

2 Consistency of the sine–bracket truncation

In this section, we are going to prove Theorems 1 and 2 stated in the intro-
duction.

Proof of Theorem 1.Let us compute the$2 norm inn of

IN (ω, ω)(n) def= FTN (ω, ω)(n) − FT (ω, ω)(n).
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We haveIN (ω, ω)(n) =
5∑

i=1

Ii
N (ω, ω)(n), where

I1
N (a, b)(n) =

∑
k∈Z2

1|k|≤N1|n−k|>N1|n|≤N
2N + 1
2π|k|2

× sin
2πn × k

2N + 1
â(k)̂b((n − k)[2N + 1]),(2.1)

I2
N (a, b)(n) = −

∑
k∈Z2

1|k|>N1|n−k|≤N1|n|≤N

×n × k

|k|2 â(k)̂b(n − k),(2.2)

I3
N (a, b)(n) = −

∑
k∈Z2

1|n−k|>N1|n|≤N
n × k

|k|2 â(k)̂b(n − k),(2.3)

I4
N (a, b)(n) = −

∑
k∈Z2

1|n|>N
n × k

|k|2 â(k)̂b(n − k),(2.4)

and finally where

I5
N (a, b)(n) =

∑
k∈Z2

1|k|≤N1|n−k|≤N1|n|≤N
2N + 1
2π|k|2

×
(

sin
2πn × k

2N + 1
− 2πn × k

2N + 1

)
â(k)̂b(n − k).(2.5)

Lemma 2.1 If a andb are smooth functions, then for allα > 1 andβ > −1,
we have

‖I1
N (a, b)‖�2 ≤ CN2−α|a|−2|b|α + CN−β|a|β|b|0.

Proof. Let us decomposeI1
N (a, b) according to the relative size of|k|

andN/2. We have

I1
N (a, b) = I1,1

N (a, b) + I1,2
N (a, b),

where

I1,1
N (a, b)(n) =

∑
N
2 ≤|k|≤N

1|n|≤N1|n−k|>N
2N + 1
2π|k|2

× sin
(

2πn × k

2N + 1

)
â(k)̂b((n − k)[2N + 1]),
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and

I1,2
N (a, b)(n) =

∑
|k|≤ N

2

1|n|≤N1|n−k|>N
2N + 1
2π|k|2

× sin
(

2πn × k

2N + 1

)
â(k)̂b((n − k)[2N + 1]).

We have

‖I1,1
N (a, b)‖�2

≤ CN

∥∥∥∥ ∑
|k|≥ N

2

|k|−2|â(k)| 1N<|n−k|≤2N+1 |̂b((n − k)[2N + 1])|
∥∥∥∥

�2n

.

But ifN < |n−k| ≤ 2N+1, then the applicationn−k �→ (n−k)[2N+1]
is one–to–one, hence using Young’s inequality, we get

‖I1,1
N (a, b)‖�2 ≤ CN

∥∥∥∥1N
2 ≤|k||k|−2|â(k)|

∥∥∥∥
�1k

∥∥∥∥b̂(m)
∥∥∥∥

�2m

.

We have noted$pm the$p norm with respect to the variablem.
Now the Cauchy–Schwarz inequality implies that

‖I1,1
N (a, b)‖�2 ≤ CN

∥∥∥∥ 1N
2 ≤|k||k|−2−β|k|β|â(k)|

∥∥∥∥
�1k

|b|0

≤ CN

∥∥∥∥ 1N
2 ≤|k||k|−2−β

∥∥∥∥
�2k

|a|β|b|0

≤ CN−β|a|β|b|0,
for all β > −1. So one part of the lemma is proved. We now are left with
the estimate of the term‖I1,2

N (a, b)‖�2 . We have

‖I1,2
N (a, b)‖�2

≤
∥∥∥∥ ∑

|k|≤ N
2

1|n−k|>N1|n|≤N
2N + 1
2π|k|2 |â(k)| |̂b ((n − k)[2N + 1]) |

∥∥∥∥
�2n

.

But it is easy to see that if|k| ≤ N

2
and|n − k| > N, then

N

2
≤ |(n −

k)[2N + 1]| ≤ N. So we can write, using Young’s inequality, followed by
Cauchy–Schwarz,

‖I1,2
N (a, b)‖�2

≤ CN

∥∥∥∥1N≤|m|≤2N+11N
2 ≤|m[2N+1]|≤N |̂b(m[2N + 1])|

∥∥∥∥
�1m

|a|−2

≤ CN2−α|b|α|a|−2,
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for all α > 1. So the lemma is proved. ��
Lemma 2.2If a andb are smooth functions, then for allβ′ > 0, we have

‖I2
N (a, b)‖�2 ≤ CN−β′ |a|β′ min(|b|1, N |b|0).

Proof.We have, again using the Cauchy–Schwarz inequality,

‖I2
N (a, b)‖�2 ≤

∥∥∥∥ ∑
|k|>N

1|n−k|≤N1|n|≤N
|n × k|

|k|2 |â(k)| |̂b(n − k)|
∥∥∥∥

�2n

≤ C

∥∥∥∥1|k|>N |k|−1|â(k)|
∥∥∥∥

�1k

min(|b|1, N |b|0)

≤ CN−β′ |a|β′ min(|b|1, N |b|0),

for all β′ > 0. The lemma is proved. ��
Lemma 2.3If a andb are smooth functions, then for allδ > 2, we have

‖I3
N (a, b)‖�2 ≤ CN2−δ|a|−1|b|δ.

Proof.We can write

‖I3
N (a, b)‖�2 ≤

∥∥∥∥ ∑
k∈Z2

1|n−k|>N1|n|≤N
|n × k|

|k|2 |â(k)| |̂b(n − k)|
∥∥∥∥

�2n

.

It follows that for allδ > 2,

‖I3
N (a, b)‖�2 ≤ C

∥∥∥∥ |k|−1|â(k)|
∥∥∥∥

�2k

∥∥∥∥1|m|>N |m||̂b(m)|
∥∥∥∥

�1m

≤ C|a|−1

∥∥∥∥∥1|m|>N |m|1−δ

∥∥∥∥∥
�2m

|b|δ,

which gives the result. ��
Lemma 2.4If a andb are smooth functions, then for allδ > 2 andβ′ > 0,
we have

‖I4
N (a, b)‖�2 ≤ CN−β′ |a|β′ min(|b|1, N |b|0) + CN2−δ|a|−1|b|δ.
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Proof.Since|n| > N , thennecessarily, wehaveeither|k| > N

2
, or|n−k| >

N

2
. It follows that

‖I4
N (a, b)‖�2 ≤

∥∥∥∥ ∑
N
2 ≤|k|

1|n−k|≤N/21|n|≥N
|n × k|

|k|2 |â(k)| |̂b(n − k)|
∥∥∥∥

�2n

+
∥∥∥∥ ∑

|n−k|> N
2

1|k|≤N1|n|≤N
|n × k|

|k|2 |â(k)| |̂b(n − k)|
∥∥∥∥

�2n

.

Then a Young inequality yields

‖I4
N (a, b)‖�2 ≤ C

∥∥∥∥1|k|≥N/2|k|−1|â(k)|
∥∥∥∥

�1k

min(|b|1, N |b|0)

+ C

∥∥∥∥1N
2 ≤|m||m||̂b(m)|

∥∥∥∥
�1m

∥∥∥∥|k|−1|â(k)|
∥∥∥∥

�2k

,

and the result follows by a Cauchy–Schwarz inequality. ��
Lemma 2.5If a andb are smooth functions, then for allγ < 4, we have

‖I5
N (a, b)‖�2 ≤ CN2−γ |b|γ min(|a|1, N |a|0).

Proof.For allx ∈ R, we have| sinx − x| ≤ C|x|3, hence
‖I5

N (a, b)‖�2

≤ C

∥∥∥∥∥
∑

k

1|k|≤N1|n−k|≤N1|n|≤N
|n − k|3|k|
(2N + 1)2

|â(k)| |̂b(n − k)|
∥∥∥∥∥

�2n

.

Hence we get, by similar computations as above,

‖I5
N (a, b)‖�2 ≤ C

∥∥∥∥1|m|≤N |m|3 |̂b(m)|
∥∥∥∥

�1m

min(N−1|a|0, N−2|a|1)

≤ CN2−γ |b|γ min(|a|1, N |a|0).
for all γ < 4. The result follows. ��

Putting together Lemmas 2.1 to 2.5 , we get the theorem. ��
Proof of Theorem 2.It is clear from Lemmas 2.1 to and 2.4 that the func-
tionsI1

N to I4
N defined in (2.1) to (2.4) have spectral accuracy. Hence it is

enough to prove the estimate of Theorem 2 forI5
N defined in(2.5). We are
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going to construct a function satisfying Theorem 2 in the following way: let
us consider the functionω defined by

ω(x1, x2) = cosx1 + cos 2x2.(2.6)

Thenweobviously havêω(1, 0) = ω̂(0, 2) = 1,andω̂(k) = 0 for all otherk
in Z2. Let us computeI5

N (ω, ω) in that case. An immediate computation
shows that inI5

N (ω, ω)(n), only the valuen = (1, 2) gives a non zero result,
and, forN ≥ 2,

I5
N (ω, ω)(1, 2) =

2N + 1
2π

(
4π

2N + 1
− sin

4π
2N + 1

)

−2N + 1
8π

(
4π

2N + 1
− sin

4π
2N + 1

)
.

Hence we get

|I5
N (ω, ω)(1, 2)| ≥ CN

(
4π

2N + 1
− sin

4π
2N + 1

)
≥ CN−2 + O(N−4),

using the fact thatx− sinx =
1
3!
x3 +O(x5). So Theorem 2 is proved. ��

3 Convergence of the sine–bracket truncation

The aim of this section is to prove Theorem 3 stated in the introduction. We
have

1
2
d

dt
|ωN (t) − ω(t)|20 = Re(ωN − ω | TN (ωN , ωN ) − T (ω, ω)) ,

But the structure of the truncation implies that Re(TN (a, b)|b) = 0 for anya
andb, hence thequantityTN (ωN , ωN )above canbe replacedbyTN (ωN , ω).
Moreover, we have

TN (ωN , ω) = TN (ωN − ω, ω) + TN (ω, ω),

so we get finally

1
2
d

dt
|ωN − ω|20 = Re(TN (ω, ω) − T (ω, ω) | ωN − ω)

+Re(TN (ωN − ω, ω) | ωN − ω) .

Then Theorem 1 enables us to infer that for allη > 0 and allγ < 4,

1
2
d

dt
|ωN − ω|20 ≤ C|ωN − ω|0‖ω‖L2(N3−γ |ω|γ + N1−η|ω|η+2)

+ |TN (ωN − ω | ω)|0|ωN − ω|0.(3.1)
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Lemma3.1If a ∈ L2(T2) and ifb is a smooth function, then for allN ∈ N,
we have for all0 < ε < 1,

|TN (a, b)|0 ≤ C|a|0(‖∇b‖L∞ + |b|0 + N−ε|b|ε+3).

Let us suppose temporarily that this result is proved, and let us go back to
estimate (3.1). Then Lemma 3.1 implies that

1
2
d

dt
|ωN − ω|20 ≤ C‖ω‖L2 |ωN − ω|0(N3−γ |ω|γ + N1−η|ω|η+2)

+ C(‖∇ω‖L∞ + ‖ω‖L2 + N−ε|ω|ε+3) |ωN − ω|20,
hence, by Gronwall’s lemma, we get for allt ≥ 0, for all N ∈ N, for
all γ < 4, η > 0 and0 < ε < 1,

(3.2)

|ωN (t) − ω(t)|0
≤ |ωN,0 − ω0|0 exp

(
C

∫ t

0

(‖∇ω‖L∞ + ‖ω‖L2 + N−ε|ω|ε+3
)
(τ) dτ

)

+CN3−γ‖ω0‖L2

∫ t

0
|ω|γ(τ) dτ

× exp
(
C

∫ t

0

(‖∇ω‖L∞ + ‖ω‖L2 + N−ε|ω|ε+3
)
(τ) dτ

)

+CN1−η‖ω0‖L2

∫ t

0
|ω|η+2(τ) dτ

× exp
(
C

∫ t

0

(‖∇ω‖L∞ + ‖ω‖L2 + N−ε|ω|ε+3
)
(τ) dτ

)
,

wherewehaveused the fact that theL2 normofω is constant. So the theorem
is proved. ��
Proof of Lemma 3.1.We have

|TN (a, b)|0 ≤ ‖I1
N (a, b)‖�2 + ‖I5

N (a, b)‖�2 + ‖I6
N (a, b)‖�2 ,

with the notation of the previous section (see (2.5)), and where we have
defined

I6
N (a, b)(n) def=

∑
k∈Z2

1|k|≤N1|n−k|≤N1|n|≤N
n × k

|k|2 â(k)̂b(n − k).(3.3)

But Lemmas 2.1 and 2.5 imply that

‖I1
N (a, b)‖�2 + ‖I5

N (a, b)‖�2 ≤ CN3−γ |a|0|b|γ + C|a|0|b|0,
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for all 2 < γ < 4. So now we are left with the estimate of‖I6
N (a, b)‖�2 . A

direct estimate here will lead nowhere: one sees easily that it yields

‖I6
N (a, b)‖�2 ≤ C|a|−1

∥∥∥∥1|m|≤N |m||̂b(m)|
∥∥∥∥

�1m

,

which if we only considerL2-based Sobolev norms forb, is unbounded
asN increases, and that is not wanted since that estimate appears in an ex-
ponential after Gronwall’s lemma (see equation (3.2) above). To circumvent
this difficulty, we are going to replace the$1m estimate on1|m|≤N |m||̂b(m)|
above by anL∞ estimate on∇b, which will not cost any power ofN . The
way to do so is to use an elementary form of J.-M. Bony’s paradifferential
calculus (see [3]), by replacing the cut–off1|m|≤N by a smooth truncation
defined as follows: let us consider a smooth, compactly supported, radial
functionϕ, with values in[0, 1], such that

ϕ(x) = 1 if x ∈ [0, 1], ϕ(x) = 0 if |x| ≥ 2 .

Then the tame truncation operatorSN , for allN ∈ N, is defined by

SNu
def= F−1

(
ϕ

( | · |
N

)
û(·)

)
,

and it is easy to see that ifu ∈ D′, thenSNu converges tou in D′, whenN
goes to infinity. Moreover, we have the following crucial estimate:

‖SNu‖Lp ≤ C‖u‖Lp ,

for anyp ∈ [1,∞], whereC does not depend onN . Let us note that such
an estimate is false in the case of the cut–off, except of course whenp = 2.
Now we writeI6

N = I6,1
N + I6,2

N , where

I6,1
N (a, b)(n) =

∑
k∈Z2

1|k|≤N1|n|≤N
n × k

|k|2 â(k)ϕ
( |n − k|

N

)
b̂(n − k)

and

I6,2
N (a, b)(n) =

∑
k∈Z2

1|k|≤N1|n|≤N
n × k

|k|2 â(k) (1 − ϕ)

×
( |n − k|

N

)
b̂(n − k).

We have

‖I6,1
N (a, b)‖�2

≤
∑
i /=j

∥∥∥∥ ∑
k∈Z2

1|k|≤N1|n|≤N
(ni − ki)kj

|k|2 â(k)ϕ
( |n − k|

N

)
b̂(n − k)

∥∥∥∥
�2n

,
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hence by Plancherel’s theorem,

‖I6,1
N (a, b)‖�2 ≤

∑
i /=j

∥∥∥∥F−1
(
1|k|≤N

kj

|k|2 â(k)
)
SN (∂ib)

∥∥∥∥
L2

≤
∑
i /=j

∥∥∥∥SN (∂ib)
∥∥∥∥

L∞

∥∥∥∥1|k|≤N
kj

|k|2 â(k)
∥∥∥∥

�2k

≤ C‖∇b‖L∞ |a|−1.

Finally the last term is estimated as follows:

‖I6,2
N (a, b)‖�2 ≤

∥∥∥∥∥
∑
k∈Z2

1|k|≤N1|n−k|≥N
|n − k|

|k| |â(k)| |̂b(n − k)|
∥∥∥∥∥

�2

≤ C|a|−1

∥∥∥∥1|m|≥N |m|1−ε′
∥∥∥∥

�1m

|b|ε′

≤ CN2−ε′ |a|−1|b|ε′ ,

as soon asε′ > 2. The lemma follows. ��

Concluding remark

This paper shows that the sine–bracket truncation does converge towards
the Euler equation, but that the consistency is not satisfactory, contrary to a
traditional spectral truncation approximation, which has spectral accuracy.
However it is important from a practical point of view to conserve as much
invariants as possible in the approximation; hence if one desires a better
balance between accuracy and conservation of a large number of invariants,
one is led to looking for a new type of approximation.
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1. V.I. Arnold: Sur la ǵeoḿetrie différentielle des groupes de Lie de dimension infinie et
ses applications̀a l’hydrodymamique. Annales de l’Institut Fourier de Grenoble16,
319–361 (1966)

2. V.I. Arnold,B.A.Khesin: TopologicalMethods inHydrodynamics.NewYork:Springer
1998

3. J.-M. Bony: Calcul symbolique et propagation des singularités pour leśequations aux
dérivées partielles non lińeaires. Annales de l’École Normale Suṕerieure14, 209–246
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Meteorological Service 71–107 (1998)

13. V. Zeitlin: Finite–mode Analogs of 2D Ideal Hydrodynamics: Coadjoint Orbits and
Local Canonical Structure. Physica D49, 353–362 (1991)


