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Summary. In this work error estimates for Galerkin proper orthogonal de-
composition (POD)methods for linear and certain non-linear parabolic sys-
tems are proved. The resulting error bounds depend on the number of POD
basis functions and on the time discretization. Numerical examples are in-
cluded.
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1. Introduction

Proper orthogonal decomposition (POD) is a method for deriving low order
models of dynamical systems. It was successfully used in different fields in-
cluding signal analysis and pattern recognition (see e.g. [9]), fluid dynamics
and coherent structures (see e.g. [6,16]) and more recently in control the-
ory (see e.g. [4,5,11,14]). Surprisingly good approximation properties are
reported for POD based schemes in several articles, see [8,19] for example.
However, to the authors’ knowledge convergence results have not yet been
established. In this work error estimates for Galerkin POD based methods
for parabolic systems are proved. The resulting error bounds depend on the
number of POD basis functions and on the time discretization. First, linear
evolution problems are studied. For the time integration the backward Euler,
Crank -Nicolson as well as the forward Euler methods are analyzed. Sec-
ondly, the analysis is extended to certain non-linear problems: to semi-linear
problems with Lipschitz non-linearity and to the Burgers equation.

Correspondence to: K. Kunisch
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The paper is organized as follows. Sect. 2 is devoted to reviewing the
POD method. Error estimates for linear problems are proved in Sect. 3.
Non-linear problems are studied in Sect. 4. In Sect. 5 numerical examples
are presented.

2. The proper orthogonal decomposition

LetX be a real Hilbert space endowed with inner product(· , ·)X and norm
‖ · ‖X . Fory1, . . . , yn ∈ X we set

V = span {y1, . . . , yn},
and refer toV as ensemble consisting of the snapshots{yj}nj=1, at least one
of which is assumed to be non-zero. Let{ψk}dk=1 denote an orthonormal
basis ofV with d = dimV. Then each member of the ensemble can be
expressed as

yj =
d∑

k=1

(yj , ψk)Xψk for j = 1, . . . , n.(1)

The method of proper orthogonal decomposition consists in choosing the
orthonormal basis such that for every	 ∈ {1, . . . , d} the mean square error
between the elementsyj , 1 ≤ j ≤ n, and the corresponding	-th partial sum
of (1) is minimized on average:

min
{ψk}�

k=1

1
n

n∑
j=1

∥∥∥yj −
�∑

k=1

(yj , ψk)Xψk
∥∥∥2

X

subject to(ψi, ψj)X = δij for 1 ≤ i ≤ 	, 1 ≤ j ≤ i.

(2)

A solution{ψk}�k=1 to (2) is called a POD-basis of rank	. We introduce the
correlation matrixK = ((Kij)) ∈ R

n×n corresponding to the snapshots
{yj}nj=1 by

Kij =
1
n

(yj , yi)X .

The matrixK is positive semi-definite and has rankd. The solution of (2)
can be found in [6,16], for instance.

Proposition 1. Letλ1 ≥ . . . ≥ λd > 0 denote the positive eigenvalues of
K andv1, . . . , vd ∈ R

n the associated eigenvectors. Then a POD basis of
rank 	 ≤ d is given by

ψk =
1√
λk

n∑
j=1

(vk)jyj ,
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where(vk)j is thej-th component of the eigenvectorvk. Moreover, we have
the error formula

1
n

n∑
j=1

∥∥∥yj −
�∑

k=1

(yj , ψk)Xψk
∥∥∥2

X
=

d∑
k=�+1

λk.

3. Pod approximation of evolution problems of first order in t

This section is devoted to error estimates for Galerkin-POD methods for
linear parabolic problems. For the time integration we study the backward
Euler, Crank-Nicolson as well as the forward Euler method.

3.1. Problem formulation

Let V andH be real, separable Hilbert spaces and suppose thatV is dense
in H with continuous injection so that, by identifyingH and its dualH∗,
we have

V ↪→ H = H∗ ↪→ V ∗,

each embedding being dense. In particular, there exists a constantα > 0
such that

‖ϕ‖2
H ≤ α ‖ϕ‖2

V for all ϕ ∈ V.(3)

For T > 0 we denote the space of measurable functions which are square
integrable in the sense of Bochner byL2(0, T ;V ). The spaceW (0, T ;V )
is defined by

W (0, T ;V ) =
{
ϕ ∈ L2(0, T ;V ) : ϕt ∈ L2(0, T ;V ∗)

}
.

It is aHilbert spaceendowedwith thecommon innerproduct, see for instance
in [7]. It is well-known that everyϕ ∈ W (0, T ;V ) is almost everywhere
equal to an element ofC([0, T ];H), the space of continuous functions from
[0, T ] toH.

Let a : V × V → R be a continuous andV -elliptic bilinear form, i.e.
there exist constantsβ > 0 andκ > 0 such that

|a(ϕ,ψ)| ≤ β ‖ϕ‖V ‖ψ‖V for all ϕ,ψ ∈ V(4)

and

a(ϕ,ϕ) ≥ κ ‖ϕ‖2
V for all ϕ ∈ V.(5)
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Suppose thatφ ∈ H andf ∈ C([0, T ];H). Then the problem

d

dt
(u(t), ϕ)H + a(u(t), ϕ) = (f(t), ϕ)H for all ϕ ∈ V andt ∈ (0, T )

(6a)

and

(u(0), χ)H = (φ, χ)H for all χ ∈ H(6b)

admits a unique solutionu ∈ W (0, T ;V ). If moreover,φ ∈ V , thenu ∈
C([0, T ];V ) andut ∈ C([0, T ];H). For the proofs of these results we refer
to [15], for example.

3.2. Computation of the POD basis

Throughout this section we denote byu ∈ C([0, T ];V ) a solution to (6)
with φ ∈ V . Form ∈ N we introduce the time step∆t = T

m and the
time instancestk = k∆t, k = 0, . . . ,m. In the context of Sect. 2 we set
n = 2m+ 1 and choose

yj = u(tj−1), j = 1, . . . ,m+ 1

and

yj = ∂u(tj−m−1), j = m+ 2, . . . , 2m+ 1,

where

∂u(tk) =
u(tk) − u(tk−1)

∆t
.

By construction all snapshots belong to the spaceV . We shall consider two
different POD bases built up from the above snapshots. For the first one we
chooseX = V and denote the corresponding POD basis by{ψ̃k}dk=1. Due
to Proposition 1 we have for any	 ≤ d the error formula

1
2m+ 1

m∑
j=0

∥∥∥u(tj) −
�∑

k=1

(u(tj), ψ̃k)V ψ̃k
∥∥∥2

V

+
1

2m+ 1

m∑
j=1

∥∥∥∂u(tj) −
�∑

k=1

(∂u(tj), ψ̃k)V ψ̃k
∥∥∥2

V
=

d∑
k=�+1

λ̃k,

(7)

whereλ̃k, k = 1, . . . , n, are the eigenvalues of the correlation matrixK
with elementsKij = 1

2m+1 (yj , yi)V . The subspace spanned by the first	

POD basis functions is denoted byṼ �.
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Remark 1.It may come as a surprise at first that the finite difference quo-
tients∂u(tk)are included into thesetof snapshots.Tomotivate this choice let
uspoint out thatwhile the finite differencequotients are contained in the span
of {u(tj−1)}m+1

j=1 , the POD bases differ depending on whether{∂u(tk)}mj=1
are included or not. The linear dependence does not constitute a difficulty
for the singular value decomposition which is required to compute the P
OD basis. In fact, the snapshots themselves can be linearly dependent. The
resulting POD basis is, in any case, maximally linearly independent in the
sense expressed in (2) and Proposition 1. Secondly, in anticipation of the
rate of convergence results that will be obtained further below, we note that
the time derivative ofu in (6a) must be approximated by the Galerkin-POD
based scheme. In case the terms{∂u(tk)}mj=1 are included in the snapshot
ensemb le, we will be able to utilize the estimate

1
m

m∑
j=1

∥∥∥∂u(tj) −
�∑

k=1

(∂u(tj), ψ̃k)V ψ̃k
∥∥∥2

V
≤ 3

d∑
k=�+1

λ̃k.(8)

Otherwise, if only the snapshotsyj = u(tj−1) for j = 1, . . . ,m + 1, are
used, we obtain instead of (7) the error formula

1
m+ 1

m∑
j=0

∥∥∥u(tj) −
�∑

k=1

(u(tj), ψ̃k)V ψ̃k
∥∥∥2

V
=

d∑
k=�+1

λ̃k,

and (8) must be replaced by

1
m

m∑
j=1

∥∥∥∂u(tj) −
�∑

k=1

(∂u(tj), ψ̃k)V ψ̃k
∥∥∥2

V
≤ 8

(∆t)2

d∑
k=�+1

λ̃k,(9)

which in contrast to (8) contains the factor(∆t)−2 on the right-hand side.

For the second choice we takeX = H and denote the corresponding
POD basis by{ψ̂k}dk=1. Now (7) is replaced by

1
2m+ 1

m∑
j=0

∥∥∥u(tj) −
�∑

k=1

(u(tj), ψ̂k)H ψ̂k
∥∥∥2

H

+
1

2m+ 1

m∑
j=1

∥∥∥∂u(tj) −
�∑

k=1

(∂u(tj), ψ̂k)H ψ̂k
∥∥∥2

H
=

d∑
k=�+1

λ̂k

(10)

for every	 ≤ d. Here,λ̂k, k = 1, . . . , d, are the eigenvalues of the correla-
tion matrixK with the elementsKij = 1

2m+1 (yj , yi)H . Let V̂ � denote the

linear subspace spanned byψ̂1, . . . , ψ̂�.
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In the following we shall write{ψk}�k=1 andV
� = span {ψ1, . . . , ψ�}

if we do not distinguish between the two POD bases. Note thatV d = V
holds.

It will be convenient to introduce the mass matrix

M = ((Mij)) ∈ R
d×d withMij = (ψj , ψi)H

and the stiffness matrix

S = ((Sij)) ∈ R
d×d with Sij = (ψj , ψi)V .(11)

The mass matrix for the POD basis inH as well as the stiffness matrix for
the POD basis inV turn out to be the identity matrices.

OnV we have the following estimates.

Lemma 2. For all u ∈ V we have

‖u‖H ≤
√

‖M‖2‖S−1‖2 ‖u‖V and‖u‖V ≤
√

‖S‖2‖M−1‖2 ‖u‖H ,
(12)

where‖ · ‖2 denotes the spectral norm for symmetric matrices.

Proof. Let u ∈ V be an arbitrary element. Then

u =
d∑

k=1

(u, ψk)Xψk.

Settingx = ((u, ψ1)X , . . . , (u, ψd)X)T ∈ R
d we obtain that

‖u‖2
H = xTMx ≤ ‖M‖2x

Tx

≤ ‖S−1‖2‖M‖2 x
TSx = ‖S−1‖2‖M‖2 ‖u‖2

V ,

which gives the first estimate. The second one follows analogously.��
Remark 2.a) In analogy to finite element approximation theory we refer

to the second inequality in (12) as inverse estimate.
b) In case of thePODbasis inV the inequalities in (12) lead to the estimates

‖u‖H ≤
√

‖M‖2 ‖u‖V and‖u‖V ≤
√

‖M−1‖2 ‖u‖H .

On the other hand for the POD basis inH we find for everyu ∈ V that

‖u‖H ≤
√

‖S−1‖2 ‖u‖V and‖u‖V ≤
√

‖S‖2 ‖u‖H .
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3.3. Backward Euler-Galerkin method

To study the backward Euler-POD-Galerkin method for (6), we introduce
the Ritz-projectionP � : V → V � by

a(P �u, ψ) = a(u, ψ) for all ψ ∈ V �,(13)

whereu ∈ V . Due to (4) and (5) the linear operatorP � is well-defined and
bounded:

‖P �u‖V ≤ β

κ
‖u‖V for all u ∈ V.

Lemma 3. For every	 ∈ {1, . . . , d} the projection operatorsP � satisfy
1
m

m∑
k=1

‖u(tk) − P �u(tk)‖2
V ≤ 3β

κ

d∑
k=�+1

λ̃k(14)

and

1
m

m∑
k=1

‖u(tk) − P �u(tk)‖2
V ≤ 3β‖S‖2

κ

d∑
k=�+1

λ̂k,(15)

whereλ̃k and λ̂k denote the eigenvalues of the correlation matrixK with
the elements 1

2m+1 (yj , yi)V and 1
2m+1 (yj , yi)H , respectively.

Proof. For arbitraryu ∈ V we deduce from (13) that

κ ‖u− P �u‖2
V ≤ a(u− P �u, u− P �u)

= a(u− P �u, u− ψ) for all ψ ∈ V �

so that

‖u− P �u‖V ≤ β

κ
‖u− ψ‖V for all ψ ∈ V �.(16)

Using (16), (12) and (10) we obtain

1
m

m∑
k=1

‖u(tk) − P �u(tk)‖2
V

≤ β

κm

m∑
k=1

∥∥∥u(tk) −
�∑
i=1

(u(tk), ψ̂i)H ψ̂i
∥∥∥2

V

≤ 3β‖S‖2
κ(2m+ 1)

m∑
k=1

∥∥∥u(tk) −
�∑
i=1

(u(tk), ψ̂i)H ψ̂i
∥∥∥2

H

≤ 3β‖S‖2
κ

d∑
k=�+1

λ̂k,
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which is estimate (15). The proof of (14) which does not rely on the inverse
inequality is analogous. ✷

From the proof the following corollary immediately follows.

Corollary 4. For the difference quotients we have the estimates

1
m

m∑
k=1

‖∂u(tk) − P �∂u(tk)‖2
V ≤ 3β

κ

d∑
k=�+1

λ̃k(17)

and

1
m

m∑
k=1

‖∂u(tk) − P �∂u(tk)‖2
V ≤ 3β‖S‖2

κ

d∑
k=�+1

λ̂k.(18)

Now we describe the backward Euler-POD-Galerkin method for (6). It
consists in finding a sequence{Uk}mk=0 in V

� satisfying

(U0, ψ)H = (φ, ψ)H for all ψ ∈ V �(19a)

and

(∂Uk, ψ)H + a(Uk, ψ) = (f(tk), ψ)H for all ψ ∈ V �(19b)

for k = 1, . . . ,m. Here, we have set

∂Uk =
Uk − Uk−1

∆t
.

Theorem 5. There exist unique solution{Uk}mk=0 in V
� to problem(19).

Moreover, the estimate

‖Uk‖H ≤
(
1 +

γT

m

)
e− γkT

m ‖φ‖H +
1 − e− γkT

m

γ
‖f‖C([0,T ];H)(20)

for k = 0, . . . ,m,

with γ = κ/α, holds.

Proof. We infer from (4) and (5) that there exists a unique solution{Uk}mk=0
of (19). Takingψ = Uk as the test function in (19b) we obtain from (3) and
(5)

(1 + γ∆t) ‖Uk‖H ≤ ‖Uk−1‖H +∆t ‖f(tk)‖H ,
which yields upon summation

‖Uk‖H ≤
( 1

1 + γ∆t

)k ‖U0‖H +∆t ‖f‖C([0,T ];H)

k∑
j=1

( 1
1 + γ∆t

)j
.

(21)
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Note that(1 + γ∆t)k ≥ eγk∆t/(1 + γ∆t). Moreover, settingζ = 1/(1 +
γ∆t) we find

∆t

k∑
j=1

( 1
1 + γ∆t

)j
= ∆t

1 − ζk

ζ−1 − 1
=

1 − ζk

γ
≤ 1 − e−γk∆t

γ
.

Inserting these two estimates and utilizing the fact that‖U0‖H ≤ ‖φ‖H in
(21) yield (20). ✷

It is simple to extend the previous theorem to a special class of non-linear
problems.

Corollary 6. Let us consider the non-linear evolution problem

d

dt
(u(t), ϕ)H + a(u(t), ϕ) + (F (u(t)), ϕ)H = (f(t), ϕ)H(22a)

for all ϕ ∈ V and a.e.t ∈ (0, T ), with

(u(0), χ)H = (φ, χ)H for all χ ∈ H,(22b)

where the non-linear term satisfies

(F (ϕ), ϕ)H ≥ 0 for all ϕ ∈ V.(23)

Then the backward Euler-Galerkin scheme for(22)

(U0, ψ)H = (φ, ψ)H for all ψ ∈ V �(24a)

and

(∂Uk, ψ)H + a(Uk, ψ) + (F (Uk), ψ)H = (f(tk), ψ)H for all ψ ∈ V �

(24b)

for k = 1, . . . ,m has a unique solution{Uk}mk=0 satisfying the estimate
(20).

Let us present an example for non-linear problems, which satisfy as-
sumption (23).

Example 1.In case of the Burgers equation the bilinear form and the non-
linearity are given by

a(ϕ,ψ) = ν

∫
Ω
ϕ′ψ′ dx for ϕ,ψ ∈ V,

F (ϕ) = ϕϕ′ for ϕ ∈ V,

whereν > 0,H = L2(Ω), V = H1
0 (Ω) andΩ = (0, 1). In this case∫

Ω
F (ϕ)ϕdx = 0 for all ϕ ∈ V.

Moreover, forf ∈ C([0, T ];H) andφ ∈ V there exists a unique solution
u ∈ W (0, T ;V ) ∩ C([0, T ];V ), see [12], for instance.
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Our next goal is to derive an error estimate for the term

1
m

m∑
k=1

‖Uk − u(tk)‖2
H ,

whereu(tk) is the solution of (6) at the time instancest = tk,k = 1, . . . ,m.
Throughout we shall use the decomposition

Uk − u(tk) = Uk − P �u(tk) + P �u(tk) − u(tk) = ϑk + 2k,(25)

whereϑk = Uk − P �u(tk) and2k = P �u(tk) − u(tk). It follows that

1
m

m∑
k=1

‖Uk − u(tk)‖2
H ≤ 2

m

m∑
k=1

‖ϑk‖2
H +

2
m

m∑
k=1

‖2k‖2
H .(26)

Due to (3) and Lemma 3 we have

1
m

m∑
k=1

‖2k‖2
H ≤ 3αβ

κ

d∑
k=�+1

λ̃k(27a)

and

1
m

m∑
k=1

‖2k‖2
H ≤ 3αβ‖S‖2

κ

d∑
k=�+1

λ̂k,(27b)

whereλ̃k andλ̂k denote the eigenvalues of the correlation matrix with the
elementsKij = 1

2m+1 (yj , yi)V andKij = 1
2m+1 (yj , yi)H , respectively.

Using the notation∂ϑk = ϑk−ϑk−1
∆t , k = 1, . . . ,m, we obtain

(∂ϑk, ψ)H + a(ϑk, ψ) = (∂Uk, ψ)H + a(Uk, ψ)

−(∂P �u(tk), ψ)H − a(P �u(tk), ψ)

= (f(tk), ψ)H − (∂P �u(tk), ψ)H − a(u(tk), ψ)
= (vk, ψ)H ,(28)

where

vk = ut(tk) − ∂P �u(tk) = ut(tk) − ∂u(tk) + ∂u(tk) − ∂P �u(tk).

We putwk = ut(tk) − ∂u(tk) andzk = ∂u(tk) − P �∂u(tk). Choosing
ψ = ϑk ∈ V � in (28) we infer that

‖ϑk‖2
H − (ϑk, ϑk−1) +∆ta(ϑk, ϑk) ≤ ∆t ‖vk‖H‖ϑk‖H ,
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from which we derive the estimate

‖ϑk‖H ≤ 1
1 + κ

α∆t

(
‖ϑk−1‖H +∆t ‖vk‖H

)
and upon summation

‖ϑk‖H ≤
( 1

1 + κ
α∆t

)k ‖ϑ0‖H +∆t

k∑
j=1

( 1
1 + κ

α∆t

)k−j+1 ‖vj‖H .

Hence, withγ = κ
α > 0

‖ϑk‖2
H ≤ 2

( 1
1 + γ∆t

)2k ‖ϑ0‖2
H +

2T 2

m2

( k∑
j=1

( 1
1 + γ∆t

)k−j+1‖vj‖H
)2
.

To shorten notation we putζ = 1
1+γ∆t . From(1

ζ

)2m
=
(
1 + γ∆t

)2m =
(
1 +

2γT
2m

)2m ≤ e2γT

we infer that1 − ζ2m ≤ 1 − e−2γT and

2
m

ζ2 − ζ2m+2

1 − ζ2 =
2
m

1 − ζ2m

ζ−2 − 1
≤ 2
m

1 − ζ2m

2γ∆t
≤ 1 − e−2γT

γT
.

Hence, we obtain that

1
m

m∑
k=1

‖ϑk‖2
H ≤ 2

m

m∑
k=1

ζ2k ‖ϑ0‖2
H +

2T 2

m3

m∑
k=1

( k∑
j=1

ζk−j+1 ‖vj‖H
)2

≤ 2
m

ζ2 − ζ2m+2

1 − ζ2 ‖ϑ0‖2
H

+
2T 2

m3

m∑
k=1

( k∑
j=1

ζ2(k−j+1)
k∑
j=1

‖vj‖2
H

)

=
1 − e−2γT

γT
‖ϑ0‖2

H +
2T 2

m3

m∑
k=1

( k∑
j=1

ζ2j
k∑
j=1

‖vj‖2
H

)
≤ 1 − e−2γT

γT
‖ϑ0‖2

H +
T 2

m

m∑
j=1

‖vj‖2
H

m∑
k=1

2
m2

ζ2 − ζ2k+2

1 − ζ2

≤ 1 − e−2γT

γT

(
‖ϑ0‖2

H +
T 2

m

m∑
k=1

‖vk‖2
H

)
.
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Now we estimate the terms‖vk‖2
H = ‖wk + zk‖2

H . From

wk = ut(tk) − u(tk) − u(tk−1)
∆t

=
1
∆t

(
∆tut(tk) − (u(tk) − u(tk−1)

))
=

1
∆t

∫ tk

tk−1

(s− tk−1)utt(s) ds

we infer that

m∑
k=1

‖wk‖2
H ≤

m∑
k=1

1
∆t2

∫ tk

tk−1

(t− tk−1)2 dt
∫ tk

tk−1

utt(t)2 dt

≤ ∆t

3

∫ T

0
‖utt(t)‖2

H dt

holds. Thus‖vk‖2
H ≤ 2 ‖wk‖2

H + 2 ‖zk‖2
H leads to

1
m

m∑
k=1

‖ϑk‖2
H ≤ 1 − e−2γT

γT

(
‖ϑ0‖2

H +
2T 3

3m2

∫ T

0
‖utt(t)‖2

H dt

+
2T 2

m

m∑
k=1

‖zk‖2
H

)
.

If the POD basis is chosen inV then by (17)

1
m

m∑
k=1

‖zk‖2
H =

1
m

m∑
k=1

‖∂u(tk) − P �∂u(tk)‖2
V ≤ 3αβ

κ

d∑
k=�+1

λ̃k,

otherwise, if the POD basis is chosen inH we have

1
m

m∑
k=1

‖zk‖2
H =

1
m

m∑
k=1

‖∂u(tk) − P �∂u(tk)‖2
H ≤ 3αβ‖S‖2

κ

d∑
k=�+1

λ̂k.

Summarizing, we obtain

1
m

m∑
k=1

‖ϑk‖2
H ≤ 1 − e−2γT

γT
‖ϑ0‖2

H

+
1 − e−2γT

γT

(2(∆t)2

3
‖utt‖2

L2(0,T ;H) +
6αβT 2

κ

d∑
k=�+1

λ̃k

)
(29a)
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and

1
m

m∑
k=1

‖ϑk‖2
H ≤ 1 − e−2γT

γT
‖ϑ0‖2

H

+
1 − e−2γT

γT

(2(∆t)2

3
‖utt‖2

L2(0,T ;H) +
6αβT 2 ‖S‖2

κ

d∑
k=�+1

λ̂k

)
(29b)

for the POD bases{ψ̃k}dk=1 and{ψ̂k}dk=1, respectively. From (27) and (29)
we conclude the following result.

Theorem 7. Letuand{Uk}mk=0 be thesolutions to(6)and(19), respectively
and suppose thatutt ∈ L2(0, T ;H). Then there exists a constantC > 0
depending onu, α, β, κ, T , but independent of	 andm, such that

1
m

m∑
k=1

‖u(tk) − Uk‖2
H ≤ C

(
‖φ− P �φ‖2

H +
d∑

k=�+1

λ̃k + (∆t)2
)

and

1
m

m∑
k=1

‖u(tk) − Uk‖2
H ≤ C

(
‖φ− P �φ‖2

H + ‖S‖2

d∑
k=�+1

λ̂k + (∆t)2
)
,

whereS denotes the stiffness matrix introduced in(11).

Remark 3.From the derivation leading to Theorem 7 we also obtain the
following estimate exhibiting the dependence ofC onα, β, κ andT :

1
m

m∑
k=1

‖u(tk) − Uk‖2
H

≤ c(T ) ‖φ− P �φ‖2
H +

2
3
c(T )(∆t)2 ‖utt‖2

L2(0,T ;H)

+
6αβc(T )

κ
(1 + T 2)

d∑
k=�+1

λ̃k,(30)

wherec(T ) = 2(1 − e−2γT )/(γT ), and the POD-basis is taken inV . In
case the POD basis is taken inH, thenλ̃k has to be replaced by‖S‖2λ̂k
in (30). From (30) it follows that the influence ofϑ0 decays withT → ∞.
The factor in front of

∑d
k=�+1 λ̃k behaves likeT for largeT . We must not

forget, however, that the singular valuesλ̃k andλ̂k themselves depend onT
as well.
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Remark 4.Up to now we have not made use ofφ ∈ V. Since the initial
condition is included in the set of snapshots, we are able to estimate‖φ −
P �φ‖H . From (10) and (16) we conclude

‖φ− P �φ‖2
H ≤ αβ

κ

∥∥∥φ−
�∑

k=1

(φ, ψk)Xψk
∥∥∥2

V
= (2m+ 1)

αβ

κ

d∑
k=�+1

λ̃k,

respectively,

‖φ− P �φ‖2
H ≤ αβ

κ

∥∥∥φ−
�∑

k=1

(φ, ψk)Xψk
∥∥∥2

V

= (2m+ 1)‖S‖2
αβ

κ

d∑
k=�+1

λ̂k.

Thus, if we choose	 = d, we obtain

1
m

m∑
k=1

‖u(tk) − Uk‖2
H ≤ 2

3
c(T )(∆t)2 ‖utt‖2

L2(0,T ;H),

with c(T ) defined in Remark 3..

3.4. Crank-Nicolson scheme

In this subsection we investigate Crank-Nicolson-POD approximation to
(6). Thus we consider the family of discrete problems of finding a sequence
{Uk}mk=0 in V

� satisfying

(U0, ψ)H = (φ, ψ)H for all ψ ∈ V �(31a)

and

(∂Uk, ψ)H +
1
2
a(Uk + Uk−1, ψ) = (f(tk − ∆t

2 ), ψ)
H
for all ψ ∈ V �

(31b)

for k = 1, . . . ,m.

Theorem 8. There exists a unique solution{Uk}mk=0 in V
� to (31). More-

over, the estimate

‖Uk‖H ≤ ‖φ‖H + T ‖f‖C([0,T ];H) for k = 0, . . . ,m

holds.
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Proof.Equation (31b) implies that

(Uk, ψ)H +
∆t

2
a(Uk, ψ) = (Uk−1, ψ)H − ∆t

2
a(Uk−1, ψ)

+ (f(tk − ∆t

2
), ψ)

H
(32)

for all ψ ∈ V �. Since the bilinear forma satisfies (4) and (5), there exists
a unique solutionUk to (31b) for everyk ∈ {1, . . . ,m}. Taking ψ =
Uk + Uk−1 as a test function in (31b) we obtain(‖Uk‖H − ‖Uk−1‖H

)(‖Uk‖H + ‖Uk−1‖H
)

≤ ∆t ‖f(tk − ∆t
2 )‖

H
‖Uk + Uk−1‖H

and hence

‖Uk‖H ≤ ‖Uk−1‖H +∆t ‖f(tk − ∆t
2 )‖

H
.

Summation with respect tok yields

‖Uk‖H ≤ ‖φ‖H +∆t

k∑
j=1

‖f(tj − ∆t

2
)‖
H

≤ ‖φ‖H + T ‖f‖C([0,T ];H).

✷

Remark 5.An analogous result to Corollary 6 also holds for the Crank-
Nicolson scheme.

We shall require the following condition concerning the solutionu of
(6) and the bilinear forma.

(H)


There exists a subspaceW of V with continuous injection and a
constantĈ > 0 such thatu ∈ W 2,2(0, T ;W ) and

a(ϕ,ψ) ≤ Ĉ ‖ϕ‖W ‖ψ‖H for all ϕ ∈ W,ψ ∈ V.

Example 2.ForW = H2(Ω) ∩ H1
0 (Ω), V = H1

0 (Ω), H = L2(Ω), with
Ω a bounded domain inRl and

a(ϕ,ψ) =
∫
Ω

∇ϕ · ∇ψ dx for all ϕ,ψ ∈ H1
0 (Ω)

we havea(ϕ,ψ) ≤ ‖ϕ‖W ‖ψ‖H for all ϕ ∈ W , ψ ∈ V and the inequality
in (H) holds withĈ = 1.



132 K. Kunisch, S. Volkwein

Theorem 9. Let u and{Uk}mk=0 be the solutions to(6) and (31), respec-
tively, and suppose that(H) holds and thatuttt ∈ L2(0, T ;H). Then there
exists a constantC > 0 depending onu, α, β, κ, T , but independent of	
andm, such that

1
m

m∑
k=1

‖u(tk) − Uk‖2
H ≤ C

(
‖φ− P �φ‖2

H +
d∑

k=�+1

λ̃k + (∆t)4
)

and

1
m

m∑
k=1

‖u(tk) − Uk‖2
H ≤ C

(
‖φ− P �φ‖2

H + ‖S‖2

d∑
k=�+1

λ̂k + (∆t)4
)
,

whereS denotes the stiffness matrix introduced in(11).

Proof. We proceed as in Sect. 3.3. The term2k can be estimated as before.
Forϑk we obtain

(∂ϑk, ψ)H +
1
2
a(ϑk + ϑk−1, ψ)

= (wk + zk, ψ)H +
1
2
a
(
2u(tk − ∆t

2 ) − u(tk) − u(tk−1), ψ
)
,

wherewk andzk are given by

wk = ut(tk − ∆t
2 ) − ∂u(tk) andzk = ∂u(tk) − P �∂u(tk).

Let us chooseψ = ϑk + ϑk−1. Due to(H) we arrive at

(∂ϑ, ϑk + ϑk−1)H ≤ (‖ϑk‖H + ‖ϑk−1‖H)(‖wk‖H + ‖zk‖H)

+(‖ϑk‖H + ‖ϑk−1‖H)
( Ĉ∆t

2

∫ tk

tk−1− ∆t
2

∫ t

t− ∆t
2

‖utt(s)‖W dsdt
)
.(33)

From (33) we conclude that

‖ϑk‖H ≤ ‖ϑk−1‖H +∆t
(
‖wk‖H + ‖zk‖H +

Ĉ∆t

2

∫ tk

tk−1

‖utt(t)‖W dt
)
.

Summation implies that

‖ϑk‖H ≤ ‖ϑ0‖H +∆t

k∑
j=1

(
‖wj‖H + ‖zj‖H

)
+
Ĉ(∆t)2

2

∫ tk

0
‖utt(t)‖W dt.
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Hence,

1
m

m∑
k=1

‖ϑk‖2
H ≤ 3 ‖ϑ0‖2

H +
3(∆t)2

m

m∑
k=1

( k∑
j=1

‖wj‖H + ‖zj‖H
)2

+
3Ĉ2(∆t)4

4m

m∑
k=1

(∫ T

0
‖utt(t)‖W dt

)2

≤ 3 ‖ϑ0‖2
H + 6(∆t)2

m∑
k=1

m∑
j=1

(
‖wj‖2

H + ‖zj‖2
H

)
+

3Ĉ2T (∆t)4

4

∫ T

0
‖utt(t)‖2

W dt.

From Sect. 3.3 we know that

1
m

m∑
k=1

‖zk‖2
H ≤ 3αβ

κ

d∑
k=�+1

λ̃k

and

1
m

m∑
k=1

‖zk‖2
H ≤ 3αβ‖S‖2

κ

d∑
k=�+1

λ̂k

depending on the choice of the basis inV orH. As in the proof of Theorem
1.6 in [18] we estimate

(∆t)2
m∑
k=1

‖wk‖2
H =

m∑
k=1

‖u(tk) − u(tk−1) −∆t ut(tk− 1
2
)‖2
H

≤
m∑
k=1

(
C̃(∆t)2

∫ tk

tk−1

‖uttt(t)‖H dt
)2

≤ C̃2(∆t)4
m∑
k=1

(∫ tk

tk−1

‖uttt(t)‖H dt
)2

≤ C̃2(∆t)5
∫ T

0
‖uttt(t)‖2

H dt

for a constant̃C > 0 independent ofm. Thus, forC∗= max(6C̃2T, 3
4 Ĉ

2T 2)
we have

1
m

m∑
k=1

‖ϑk‖2
H ≤ 3 ‖ϑ0‖2

H +
18αβT 2

κ

d∑
k=�+1

λ̃k

+C∗(∆t)4
(
‖uttt‖2

L2(0,T ;H) + ‖utt‖2
L2(0,T ;W )

)
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or

1
m

m∑
k=1

‖ϑk‖2
H ≤ 3 ‖ϑ0‖2

H +
18αβT 2‖S‖2

κ

d∑
k=�+1

λ̂k

+C∗(∆t)4
(
‖uttt‖2

L2(0,T ;H) + ‖utt‖2
L2(0,T ;W )

)
.

Combining the estimates forϑk with those for2k in (27) we obtain

1
m

m∑
k=1

‖Uk − u(tk)‖2
H

≤ 6 ‖φ− P �φ‖2
H +

6αβ
κ

(1 + 6T∆t)
d∑

k=�+1

λ̃k

+2C∗(∆t)4
(
∆t ‖uttt‖2

L2(0,T ;H) + ‖utt‖2
L2(0,T ;W )

)
(34)

and similarly for the basis taken inH. The assertion of the theorem now
follows. ✷

3.5. Forward Euler-Galerkin scheme

The forward Euler-Galerkin-PODmethod for problem (6) leads to the prob-
lem

(U0, ψ)H = (φ, ψ)H for all ψ ∈ V �(35a)

and

(∂Uk, ψ)H + a(Uk−1, ψ) = (f(tk−1), ψ)H for all ψ ∈ V �(35b)

for k = 1, . . . ,m. Takingψ = Uk as a test function in (35b) and using (3)
and (4) we obtain

(1 − η∆t) ‖Uk‖H ≤ ‖Uk−1‖H +∆t ‖f(tk−1‖H(36)

with η = β/α. To guarantee stability of the scheme we have to assume that
the step size∆t is sufficiently small, i.e.,

∆t <
1
η
.(37)

Then, (36) yields upon summation

‖Uk‖H ≤
( 1

1 − η∆t

)k ‖U0‖H

+∆t ‖f‖C([0,T ];H)

k∑
j=1

( 1
1 − η∆t

)j
.(38)
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Note that(1 − η∆t)k ≥ e−ηk∆t. Moreover, settingζ = 1/(1 − η∆t) we
find

∆t

k∑
j=1

( 1
1 − η∆t

)j
= ∆t

1 − ζk

ζ−1 − 1
=
ζk − 1
η

≤ eηk∆t − 1
η

.

Inserting these two estimates and utilizing the fact that‖U0‖H ≤ ‖φ‖H in
(38) we obtain the estimate

‖Uk‖H ≤ e
ηkT
m ‖φ‖2

H +
e

ηkT
m − 1
η

‖f‖C([0,T ];H) for k = 0, . . . ,m.

Moreover, with (37) holding an error estimate of the form (30) follows,
where nowc(T ) = 2(e2ηT − 1)/ηT ).

3.6. Remarks

From (30), (34) and the discussion and Sect. 3.5 it follows that the influence
of the error in the initial condition either decays exponentially, is bounded
by a constant, or is bounded by an exponential expression inT depending
on whether the implicit Euler, the Crank–Nicolson, or the explicit Euler
methods are used. This is analogous to estimates for fully discrete schemes
based on the finite element methods, see for example [18].

Let us comment on the scope of the approximation results of this sec-
tion. The POD technique for discretization of (6) requires snapshots, which
can be obtained by an independent numerical method or by the appropriate
technological means related to a specific applications. One of the strengths
of POD-based methods are their good approximation properties with a rel-
atively small number of basis elements. They are therefore frequently used
as a method for system reduction. On the basis of the POD-reduced system
further issues can be addressed, as for instance control or optimal control re-
lated problems. Due to model reduction, system theoretic problems become
accessible that could otherwise be beyond the scope of computing power
or alternatively the computing time can be significantly reduced when com-
pared to finite element or finite difference based approximations. Our results
specify the quality of the approximation of the POD-reduced system to the
solutions of the continuous system. — In these results we estimate the dif-
ference of the snapshots to the solution of the dynamical system in the case
where the snapshots are taken from a systemwhose parameters and inhomo-
geneities coincide with that of the system itself. In the alternative situation
where the snapshots are taken from a system with one set of parameters and
inhomogeneities (controls) and utilized as basis elements in a system with
a different set of parameters the problem of unmodeled dynamics arises.
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On a computational level progress was made on this topic in the context of
optimal control of the Navier–Stokes equation where a dynamic update of
the basis elements was performed, see [1,2,10].

4. Non-linear problems

In this section we extend our analysis to certain non-linear evolution prob-
lems. First we investigate a semi-linear problem with local Lipschitz non-
linearity. Secondly, we study the Burgers equation, where the non-linear
term does not satisfy a Lipschitz-condition onH.

4.1. A semi-linear equation

Consider the non-linear evolution problem

d

dt
(u(t), ϕ)H + a(u(t), ϕ) + (F (u(t)), ϕ)H = (f(t), ϕ)H(39a)

for all ϕ ∈ V and a.e.t ∈ (0, T ), with

(u(0), χ)H = (φ, χ)H for all χ ∈ H,(39b)

whereφ ∈ V andf ∈ L2(0, T ;H). The backward Euler-Galerkin-POD
scheme for (39) is given by

(U0, ψ)H = (φ, ψ)H for all ψ ∈ V �(40a)

and

(∂Uk, ψ)H + a(Uk, ψ) + (F (Uk), ψ)H
= (f(tk), ψ)H for all ψ ∈ V �.(40b)

Theorem 10. Assume that(39) has a unique solutionu ∈ C([0, T ];V )
with u ∈ W 2,2(0, T ;H) and that{Uk}mk=0 is the unique solution to(40)
satisfying

max
0≤k≤m

‖Uk‖H ≤ C̃

for a constantC̃ > 0 independent ofm. If F is locally Lipschitz-continuous
on H and∆t is sufficiently small, then there exists a constantC > 0
depending onu, α, β, κ, T , but independent of	 andm, such that

1
m

m∑
k=1

‖u(tk) − Uk‖2
H ≤ C

(
‖φ− P �φ‖2

H +
d∑

k=�+1

λ̃k + (∆t)2
)
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and

1
m

m∑
k=1

‖u(tk) − Uk‖2
H ≤ C

(
‖φ− P �φ‖2

H + ‖S‖2

d∑
k=�+1

λ̂k + (∆t)2
)
,

whereS denotes the stiffness matrix introduced in(11).

Proof. Since the term2k canbeestimatedasbefore,weonlyhave toconsider
ϑk. Using the notation introduced in Sect. 3.3 we obtain

(∂ϑk, ψ)H + a(ϑk, ψ) = (vk, ψ)H + (F (u(tk)) − F (Uk), ψ)H .(41)

Settingψ = ϑk and using (5) we infer that

‖ϑk‖2
H − (ϑk, ϑk−1)H + κ∆t ‖ϑk‖2

V

≤ ∆t‖ϑk‖H (‖vk‖H + ‖F (Uk) − F (u(tk))‖H) .

As F is locally Lipschitz-continuous andu(tk) andUk are bounded inde-
pendently ofk, there exists a constantC� > 0 such that

‖F (Uk) − F (u(tk))‖H ≤ C� ‖Uk − u(tk)‖H .
Inserting into (41) we find(

1 +
2κ∆t
α

)
‖ϑk‖2

H ≤ ‖ϑk−1‖2
H +∆t

(
‖vk‖2

H + (1 + 3C�) ‖ϑk‖2
H

+C� ‖2k‖2
H

)
.

DefiningC̄ = 1 + 3C� − 2κ
α this implies that

(1 − C̄∆t) ‖ϑk‖2
H ≤ ‖ϑk−1‖2

H +∆t
(
‖vk‖2

H + C� ‖2k‖2
H

)
.

Let∆t > 0 be sufficiently small so that̄C∆t < 1 is satisfied. Then there
exists a constant̂C > 0 such that

(1 − C̄∆t)−1 ≤ 1 + Ĉ∆t.

Thus, for small∆t

‖ϑk‖2
H ≤ (1 + Ĉ∆t)

(
‖ϑk−1‖2

H +∆t
(
‖vk‖2

H + C� ‖2k‖2
H

))
holds. Summation onk implies

‖ϑk‖2
H ≤ eĈT

(
‖ϑ0‖2

H +∆t

k∑
j=1

(‖vj‖2
H + C� ‖2j‖2

H

))
.
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Using the estimates forvk and2k derived in Sect. 3.3 we arrive at

1
m

m∑
k=1

‖ϑk‖2
H ≤ eĈT ‖ϑ0‖2

H

+eĈT
(2(∆t)2

3
‖utt‖2

L2(0,T ;H) +
3(2 + C�)αβT

κ

d∑
k=�+1

λ̃k

)
(42a)

and

1
m

m∑
k=1

‖ϑk‖2
H ≤ eĈT ‖ϑ0‖2

H

+eĈT
(2(∆t)2

3
‖utt‖2

L2(0,T ;H) +
3(2 + C�)αβT‖S‖2

κ

d∑
k=�+1

λ̂k

)
(42b)

for the POD bases{ψ̃k}dk=1 and {ψ̂k}dk=1, respectively. From (42a) the
theorem follows. ✷

Remark 6.We refer the reader to [15], for example, for sufficient conditions
such that (39) admits a unique solution. Due to the fact thatF is locally
Lipschitz-continuous onH, problem (40) is uniquely solvable, provided
that a solution exists.

4.2. Burgers’ equation

We consider Burgers equation that was introduced in Example 1.. It is as-
sumed thatφ ∈ V = H1

0 (Ω) and thatf ∈ L2(0, T ;H) with H = L2(Ω)
so that a solutionu ∈ W (0, T ;V ) ∩ C([0, T ];V ) exists.

Theorem 11. Let u and {Uk}mk=0 be the solutions to the Burgers equa-
tion and its backward Galerkin-POD scheme, respectively. Suppose that
utt ∈ L2(0, T ;H). If ∆t is sufficiently small there exists a constantC > 0
depending onu andT but independent of	 andm such that

1
m

m∑
k=1

‖u(tk) − Uk‖2
H ≤ C

(
‖φ− P �φ‖2

H +
d∑

k=�+1

λ̃k + (∆t)2
)

and

1
m

m∑
k=1

‖u(tk) − Uk‖2
H ≤ C

(
‖φ− P �φ‖2

H + ‖S‖2

d∑
k=�+1

λ̂k + (∆t)2
)
,

whereS denotes the stiffness matrix introduced in(11).



Galerkin POD methods for parabolic problems 139

Proof. To obtain the desired estimate we utilize the error equation (41),
from the previous proof. The non-linearity must be estimated in a different
manner, however. Due toCorollary 6 and sinceu ∈ C([0, T ];V ) there exists
a constantC1 > 0 such that

‖u(tk)‖V ≤ C1 and‖Uk‖H ≤ C1 for 1 ≤ k ≤ m.

Using Hölder’s inequality we have∣∣(F (u(tk)) − F (Uk), ϑk)H
∣∣ ≤ ‖u(tk)‖V ‖u(tk)

− Uk‖L4‖ϑk‖L4 + ‖Uk‖H‖u(tk) − Uk‖V ‖ϑk‖L∞ ,(43)

and hence, sinceUk − u(tk) = ϑk + 2k,∣∣(F (u(tk)) − F (Uk), ϑk)H
∣∣(44)

≤ C1

(
‖ϑk‖2

L4 + ‖2k‖L4‖ϑk‖L4 + ‖ϑk‖V ‖ϑk‖L∞ + ‖2k‖V ‖ϑk‖L∞

)
.

Let C2 > 0 denote the common embedding constant ofV in L4(Ω) and
L∞(Ω) in L4(Ω). Then∣∣(F (u(tk)) − F (Uk), ϑk)H

∣∣ ≤ C3

(
‖ϑk‖V ‖ϑk‖L∞

+‖2k‖V ‖ϑk‖L∞

)
,(45)

whereC3 = C1(1 + C2
2 ). By Agmon’s inequality (see [17]) there exists a

constantC4 > 0 such that

‖ϕ‖L∞ ≤ C4 ‖ϕ‖1/2
V ‖ϕ‖1/2

H for all ϕ ∈ V,

and consequently Young’s inequality implies the existence of a constant
C5 > 0 such that

C3 ‖ϑk‖V ‖ϑk‖L∞ ≤ C3C4 ‖ϑk‖3/2
V ‖ϑk‖1/2

H

≤ ν

2
‖ϑk‖2

V + C5 ‖ϑk‖2
H(46)

for 1 ≤ k ≤ m. Moreover, there exists a constantC6 > 0 such that

C3 ‖2k‖L4‖ϑk‖L4 ≤ ν

2
‖ϑk‖2

V + C6 ‖2k‖2
V for 1 ≤ k ≤ m.(47)

Using (46) and (47) in (45) we arrive at∣∣(F (u(tk)) − F (Uk), ϑk)H
∣∣ ≤ ν ‖ϑk‖2

V

+C5 ‖ϑk‖2
H + C6 ‖2k‖2

V .(48)
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Settingψ = ϑk in (41) we obtain from (48)

‖ϑk‖2
H − (ϑk, ϑk−1)H ≤ ∆t

(
‖vk‖H ‖ϑk‖H + C5 ‖ϑk‖2

H + C6 ‖2k‖2
V

)
and further

‖ϑk‖2
H ≤ ‖ϑk−1‖2

H +∆t
(
‖vk‖2

H + (1 + 2C5) ‖ϑk‖2
H + 2C6 ‖2k‖2

V

)
.

It follows that

(1 − (1 + 2C5)∆t) ‖ϑk‖2
H ≤ ‖ϑk−1‖2

H +∆t
(
‖vk‖2

H + 2C6 ‖2k‖2
V

)
.

Thus, for small∆t there exists a constantC7 > 0 such that

‖ϑk‖2
H ≤ (1 + C7∆t)

(
‖ϑk−1‖2

H +∆t
(
‖vk‖2

H + 2C6 ‖2k‖2
V

))
holds. By summation onk we have

‖ϑk‖2
H ≤ eC7T

(
‖ϑ0‖2

H +∆t

k∑
j=1

(‖vj‖2
H + 2C6 ‖2j‖2

V

))
.

Let V be endowed with‖ϕ′‖L2 as norm. Thenβ = κ = 1, and together
with Lemma 3

1
m

d∑
k=1

‖2k‖2
V ≤ 3

m∑
k=�+1

λ̃k and
1
m

d∑
k=1

‖2k‖2
V ≤ 3‖S‖2

m∑
k=�+1

λ̂k,

whereλ̃k andλ̂k denote the eigenvalues of the correlation matrix with the
elementsKij = 1

2m+1 (yj , yi)V andKij = 1
2m+1 (yj , yi)H , respectively.

Using the estimate forvk deduced in Sect. 3.4 we arrive at

1
m

m∑
k=1

‖ϑk‖2
H ≤ eC7T ‖ϑ0‖2

H

+eĈT
(2(∆t)2

3
‖utt‖2

L2(0,T ;H) + 6C6T

d∑
k=�+1

λ̃k

)(49a)

and

1
m

m∑
k=1

‖ϑk‖2
H ≤ eC7T ‖ϑ0‖2

H

+eĈT
(2(∆t)2

3
‖utt‖2

L2(0,T ;H) + 6C6T ‖S‖2

d∑
k=�+1

λ̂k

)(49b)

for the POD bases{ψ̃k}dk=1 and{ψ̂k}dk=1, respectively. From (49) the claim
follows directly. ✷
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5. Numerical experiments

We present three examples for the approximation of parabolic equations by
Galerkin-POD based schemes. The results confirm the good approximation
properties of such schemes which was already reported in [3–6,8,11,13,
14,19], for example. We also compareV - andH-norm based schemes and
schemes based on POD-ensembles with and without difference quotients.
For the examples that we tested we found no significant difference between
theV - and theH-norm implementations. Inc luding the difference quotients
can improve the numerical result in case the snapshots are taken only from
a coarse grid. For the numerical realization we used MATLAB version 5.3
executed on a DIGITAL Alpha 21264 computer.

Run 1. In our first test example we consider heat flow in a rectangular
metal block with a rectangular cavity. The block is heated on one side, heat
is flowing from the block to the surrounding air at a constant rate on the
opposite side and the block is isolated at the remaining walls. This leads the
the initial boundary value problem

ut −∆u = 0 in Q = (0, T ) ×Ω,

u = 1 on Γ1 = {(−0.5, y) : −0.8 ≤ y ≤ 0.8},
∂u

∂n
= −0.1 on Γ2 = {(0.5, y) : −0.8 ≤ y ≤ 0.8},
∂u

∂n
= 0 on ∂Ω \ (Γ1 ∪ Γ2) ,

u(0, ·) = φ in Ω,

whereT = 5,

Ω = ((−0.5, 0.5) × (−0.8, 0.8)) \ ((−0.05, 0.05) × (−0.4, 0.4))

andφ = 0. We computed an approximate solution to the heat equation
by using the backward Euler-Galerkin finite element scheme. The spatial
discretization was carried out by linear finite elements with respect to a
triangular grid and 1844 degrees of freedom. Further∆t was chosen to be
0.04. Let

V h = span {ϕ1, . . . , ϕ1844} ⊂ H1(Ω)

denote the finite element space. Then the reference numerical solution was
characterized by a coefficient matrixU ∈ R

1844×126 in the following way

uFE(tj−1) =
1844∑
i=1

Uijϕi for j = 1, . . . , 126.
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The triangular mesh as well as the finite element solution at timeT are
shown in Fig. 1. As snapshots we took the finite element solution at the
discrete time instances. Thus, our snapshots were

yhj =
1844∑
i=1

Yijϕi for j = 1, . . . , 251,

whereY ∈ R
1844×251 was given by

Y·,j = U·,j for j = 1, . . . , 126

and

Y·,j+126 =
1
∆t

(Y·,j+1 − Y·,j) for j = 1, . . . , 125.

Numerically,rank Y = 17. LetΨ ∈ R
1844×17 denote the coefficient matrix

of the POD basis functions{ψk}17
k=1 satisfying

ψk =
1844∑
i=1

Ψikϕi for k = 1, . . . , 17.

Due to Proposition 1 the matrixΨ can be determined as follows. First com-
pute the eigenvaluesλ1 ≥ . . . ≥ λ17 > 0 and the corresponding eigenvec-
torsv1, . . . , vd ∈ R

251 of the correlation matrixK = 1
251 Y

TΦY , where
Φ ∈ R

1844×1844 denotes themassmatrix with the elementsΦij = (ϕj , ϕi)X
for 1 ≤ i, j ≤ 1844. Then thek-th column ofΨ is obtained by setting

Ψ·,k =
1√
λk

Y vk.
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Utilizing the MATLAB functioneig , each solution of the eigenvalue prob-
lem forX = V and forX = H needed 3 seconds, whereas the CPU time
was about 1 second if we computed only the first 5 eigenvalues and their
corresponding eigenvectors by applying the iterative MATLAB eigenvalue
solvereigs . The rapid decay of the eigenvalues is presented in Fig. 2. For
instance,̃λ6 ≈ 0.000002 andλ̂6 ≈ 0.00000005.
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For the results presented below we took	 = 5 POD basis functions.
Then for the summation over the eigenvalues in the error formulas (7) and
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(10) we found

251∑
k=6

λ̃k < 0.000002 and
251∑
k=6

λ̂k < 0.00000006,

respectively. The solution of the heat equation with the backward Euler-
Galerkin-POD method needed less than 0.1 seconds for each of the POD
bases inV andH. The POD solution att = T is plotted at the left in Fig. 3,
whereas on the right we find theL2-norms of the finite element and the
POD solution. We observe that theL2-norms nearly coincide. In Table 1 we
compare the error

e(m) =
1
m

m∑
k=1

‖uFE(tk) − Uk‖2
H

withm = 125 for different POD bases. For these simulations we took five
POD basis functions. It turns out that the choice of the spaceV or H as
well as the inclusion of the difference quotients made no difference for this
example.

Table 1.

e(m)

POD basis inV including∂u(tk) 0.00011786
POD basis inH including∂u(tk) 0.00011785
POD basis inV 0.00011755
POD basis inH 0.00011754

Run 2. Our second test is carried out for the Burgers equation. Here, we
chose the snapshots on a relatively coarse grid andwe shall see that inclusion
of the difference equations leads to a smaller error.We tookT = 1, ν = 0.5,

φ =
{

1 in (0, 1
2 ],

0 otherwise,

andf(t) = φ in (0, T ). We computed an approximate solution to Burgers’
equation by using the backward Euler-Galerkin finite element scheme. For
the spatial discretization we used linear finite elements with 198 degrees of
freedom, and as time grid we tooktk = k∆t with∆t = 5 · 10−3. The finite
element solution at timeT are shown in Fig. 4. We chose snapshots on a
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uniform time-grid with∆t = 1
5 . Thus, our snapshots were

yhj =
198∑
i=1

Yijϕi for j = 1, . . . , 11,

whereY ∈ R
198×11 was given by

Y·,j = U·,1000(j−1)+1 for j = 1, . . . , 6

and

Y·,j+6 =
1
∆t

(Y·,j+1 − Y·,j) for j = 1, . . . , 5.
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Numerically, we hadrank Y = 6. Each solution of the eigenvalue problem
for X = V and forX = H needed less than 0.01 seconds. The decay rate
of the eigenvalues is presented in Fig. 5. In our computations we took	 = 2
POD basis functions. Then we have in the error formulas (7) and (10)

6∑
k=3

λ̃k < 0.00564 and
6∑

k=3

λ̂k < 0.00003,

respectively. Furthermore, the initial conditionsatisfies‖φ−P �φ‖H ≤ 0.45.
Thesolutionof theBurgersequationwith thebackwardEuler-Galerkin-POD
method needed less than 0.02 seconds for each POD basis. The errore(m)
is shown in Table 2. Finally, computing the finite element solutionũFE

Table 2.

e(m)

POD basis inV , including∂u(tk) 0.0012796
POD basis inH, including∂u(tk) 0.0012689
POD basis inV 0.0016033
POD basis inH 0.0015921

on the coarse time grid, we obtained15
∑5

k=1 ‖uFE(tk) − ũFE(tk)‖2
H =

0.0205496.

Run 3. In our third run we compare the numerical error to the estimate of
Theorem 11. For that purpose lety(t, x) = (x2 −x) sin(2πxt) be the exact
solution of theBurgers equation and computef accordingly. The spatial grid
was chosen in such a way that the error betweeny and its approximation is
about10−10. Then we took snapshots for different values of∆t and solved
the Burgers equation with	 = 6 POD basis functions. Since

d∑
k=7

λ̃k < 10−12

andy(0, ·) = 0 hold, the error depends almost exclusively on terms of the
form C(∆t)2 where the constantC > 0 is independent of∆t and	. We
computed formi = 2imwith i = 0, . . . , 9 andm = 5. Then,m2

i = 4m2
i−1

and we infer thate(mi−1)
e(mi)

ought to be close to4 for i = 1, . . . , 9. The
numerical results are presented in Table 3.
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6. Conclusion

Error estimates for Galerkin POD methods for parabolic problems were
presented. The error depends on the number of POD basis functions and
on the time discretization. To obtain the desired estimates the difference
quotients were added to the snapshot ensemble. Without them the error
boundscontain termsof the formCm

∑d
k=�+1 λk,withC apositiveconstant

independent of	 andm. Inclusion of the difference quotients showed little
effect on the practical approximation properties of PODbased discretization
of the linear heat and theBurgers equation in numerical tests, unless the time
discretization for the snapshots was very coarse. In this case the ensemble
containing the difference quotients gave more favorable results.

Table 3.

i mi e(mi)
e(mi−1)

e(mi)

0 5 0.00279337991 —
1 10 0.00090061392 3.11
2 20 0.00025387076 3.55
3 40 0.00006741209 3.77
4 80 0.00001737545 3.88
5 160 0.00000441201 3.94
5 320 0.00000111210 3.96
5 640 0.00000027939 3.97
6 1280 0.00000007013 3.98
7 2560 0.00000001763 3.98
8 5120 0.00000000445 3.96
9 10240 0.00000000113 3.92

References

1. K. Afanasiev,M.Hinze (2001): Adaptive control of awake flowusing proper orthogonal
decomposition. In: Shape Optimization & Optimal Design. Marcel Dekker: Lecture
Notes in Pure and Applied Mathematics

2. E. Arian, M. Fahl, E. W. Sachs (2000): Trust-region proper orthogonal decomposition
for flow control. ICASE: Technical Report 2000-25

3. J. A. Atwell, B. B. King (2001): Proper orthogonal decomposition for reduced basis
feedback controllers for parabolic equations. Mathematical and Computer Modelling
33: 1–19

4. J. A. Atwell, B. B. King: Reduced order controllers for spatially distributed systems via
proper orthogonal decomposition. SIAM Journal Scientific Computation (to appear)



148 K. Kunisch, S. Volkwein

5. H. T. Banks, R. C. H. del Rosario, R. C. Smith (1998): Reduced order model feedback
control design: Numerical implementation in a thin shell model. North Carolina State
University: Technical Report CRSC-TR98-27

6. G. Berkooz, P. Holmes, J. L. Lumley (1996): Turbulence, Coherent Structuress, Dy-
namical Systems and Symmetry. Cambridge University Press: Cambridge Monographs
on Mechanics

7. R. Dautray, J.-L. Lions (1992): Mathematical Analysis and Numerical Methods for
Science and Technology. Vol.5: Evolution Problems I. Berlin: Springer

8. M. Fahl: Computation of POD basis functions for fluid flows with Lanczos methods.
Mathematical and Computer Modelling (to appear)

9. K. Fukunaga (1990): Introduction toStatisticalRecognition.NewYork:AcademicPress
10. M. Hinze, K. Kunisch (1999) Three control methods for time-dependent fluid flow.

Submitted
11. K. Kunisch, S. Volkwein (1999): Control of Burgers’ equation by a reduced order

approach using proper orthogonal decomposition. J. Optimization Theory and Appli-
cations102(2): 345–371

12. H. V. Ly, K. D.Mease, E. S. Titi (1997): Distributed and boundary vontrol of the viscous
Burgers equation. Numerical Functional Analysis and Optimization18: 143–188

13. H. V. Ly, H. T. Tran (2001): Modelling and control of physical processes using proper
orthogonal decomposition. Mathematical and Computer Modeling33: 223–236

14. H. V. Ly, H. T. Tran: Proper orthogonal decomposition for flow calculations and optimal
control in a horizontal CVD reactor. Quarterly of Applied Mathematics (to appear)

15. A. Pazy (1983): Semigoups of Linear Operators and Applications to Partial Differential
Equations. Berlin Heidelberg New York: Springer

16. L. Sirovich (1987): Turbulence and the dynamics of coherent structures, parts I–III.
Quart. Appl. Math.XLV : 561–590

17. R. Temam (1988): Infinite-Dimensional Dynamical Systems inMechanics and Physics,
Applied Mathematical Sciences 68. New York: Springer
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