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Summary. In this work error estimates for Galerkin proper orthogonal de-
composition (POD) methods for linear and certain non-linear parabolic sys-
tems are proved. The resulting error bounds depend on the number of POD
basis functions and on the time discretization. Numerical examples are in-
cluded.
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1. Introduction

Proper orthogonal decomposition (POD) is a method for deriving low order
models of dynamical systems. It was successfully used in different fields in-
cluding signal analysis and pattern recognition (see e.g. [9]), fluid dynamics
and coherent structures (see e.g. [6,16]) and more recently in control the-
ory (see e.g. [4,5,11,14]). Surprisingly good approximation properties are
reported for POD based schemes in several articles, see [8,19] for example.
However, to the authors’ knowledge convergence results have not yet been
established. In this work error estimates for Galerkin POD based methods
for parabolic systems are proved. The resulting error bounds depend on the
number of POD basis functions and on the time discretization. First, linear
evolution problems are studied. For the time integration the backward Euler,
Crank -Nicolson as well as the forward Euler methods are analyzed. Sec-
ondly, the analysis is extended to certain non-linear problems: to semi-linear
problems with Lipschitz non-linearity and to the Burgers equation.
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The paper is organized as follows. Sect. 2 is devoted to reviewing the
POD method. Error estimates for linear problems are proved in Sect. 3.
Non-linear problems are studied in Sect. 4. In Sect. 5 numerical examples
are presented.

2. The proper orthogonal decompaosition

Let X be areal Hilbert space endowed with inner product) x and norm
|| ' ||X Fory17"' yYn € X we set

V:span {y17"' 7yn}7

and refer to/ as ensemble consisting of the snapsigig’_,, at least one
of which is assumed to be non-zero. let, }¢_, denote an orthonormal
basis ofV with d = dim V. Then each member of the ensemble can be

expressed as
d

(1) ijZ(ijk)X%fij:Lm,n
s}

The method of proper orthogonal decomposition consists in choosing the
orthonormal basis such that for everg {1, ... ,d} the mean square error
between the elemengs, 1 < j < n, and the correspondirfgth partial sum

of (1) is minimized on average:

2 {wril}i{l ZHyJ > (Y7, Ur) X‘Z”“H

subject to(ibz,%)x = 513 for1 <i</0,1<j<i.

A solution{wk}iz1 to (2) is called a POD-basis of raikWe introduce the
correlation matrixk’ = ((K;;)) € R™*" corresponding to the snapshots
{yj}?:l by
Kij = - (W5, vi)
n

The matrix K is positive semi-definite and has ratikThe solution of (2)
can be found in [6, 16], for instance.

Proposition 1. Let A\; > ... > A\; > 0 denote the positive eigenvalues of
K andwvy,... ,vq € R™ the associated eigenvectors. Then a POD basis of
rank{ < d is given by

1 n
Yy = \/T—k ]Z;(Uk)jyj’
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where(vy,); is thej-th component of the eigenvectgy. Moreover, we have
the error formula

fzuyj yj,wkxwk” S

k=0+1

3. Pod approximation of evolution problems of first order int

This section is devoted to error estimates for Galerkin-POD methods for
linear parabolic problems. For the time integration we study the backward
Euler, Crank-Nicolson as well as the forward Euler method.

3.1. Problem formulation

Let V andH be real, separable Hilbert spaces and supposétlimtiense
in H with continuous injection so that, by identifying and its dualHd*,
we have

Ve H=H"<V"

each embedding being dense. In particular, there exists a constand
such that

3) el < a ey forall p € V.

ForT > 0 we denote the space of measurable functions which are square
integrable in the sense of Bochner by(0, T'; V). The spacéV (0,T;V)
is defined by

W(0,T;V) = {p € L*(0,T;V) : ¢, € L*(0,T; V*)}.

Itis a Hilbert space endowed with the common inner product, see for instance
in [7]. It is well-known that everyp € W(0,T; V) is almost everywhere
equal to an element @f ([0, T|; H), the space of continuous functions from
[0,7]to H.

Leta : V x V — R be a continuous ant-elliptic bilinear form, i.e.
there exist constanis$ > 0 andx > 0 such that

(4) la(e, D) < Bllelly [[¢lly forallp, ¢ e V

and

(5) a(, ) > & ||¢lf; forall g € V.
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Suppose thap € H andf € C([0,T]; H). Then the problem

(6a)
% (u(t), )y +alu(t),p) = (f(t),¢)y forall p € Vandt € (0,T")
and
(6b) (uw(0), ) = (¢, x) forall x € H
admits a unique solution € W (0,7; V). If moreover,p € V, thenu €

C([0,T);V)andu, € C([0,T]; H). Forthe proofs of these results we refer
to [15], for example.
3.2. Computation of the POD basis

Throughout this section we denote bye C([0,7]; V') a solution to (6)
with ¢ € V. Form € N we introduce the time stept = L and the

time instances;, = k At, k = 0,... ,m. In the context of Sect. 2 we set
n = 2m + 1 and choose

yj =u(tj—1), j=1,... ., m+1
and

Y; = ﬁu(tj_m_l), j=m-+2,...,2m+1,

where

u(tk) — u(tk_l)
At )

By construction all snapshots belong to the spldc&Ve shall consider two
different POD bases built up from the above snapshots. For the first one we
chooseX = V and denote the corresponding POD basigty}¢_,. Due

to Proposition 1 we have for afy< d the error formula

Ju(ty) =

)4
g1 2 )~ i,

() =

‘ d
1 o _ - -2 -
gy 2 [[Fults) = X2 @u(ty) by ]|, = D A,
j=1 k=1 k=¢+1
where),, k = 1,... ,n, are the eigenvalues of the correlation mathkix

with elementsk;; = ﬁ (vj,v:)v- The subspace spanned by the first
POD basis functions is denoted bY.
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Remark 1.1t may come as a surprise at first that the finite difference quo-
tientsou(t,) are included into the set of snapshots. To motivate this choice let
us point out that while the finite difference quotients are contained in the span
of {u(t;— 1)}m_ﬁ1, the POD bases differ depending on whetfi@u(t;)} 7,

are mcluded or not. The linear dependence does not constitute a difficulty
for the singular value decomposition which is required to compute the P
OD basis. In fact, the snapshots themselves can be linearly dependent. The
resulting POD basis is, in any case, maximally linearly independent in the
sense expressed in (2) and Proposition 1. Secondly, in anticipation of the
rate of convergence results that will be obtained further below, we note that
the time derivative of, in (6a) must be approximated by the Galerkin-POD
based scheme. In case the ter{ﬂa(tk) * , are included in the snapshot
ensemb le, we will be able to utilize the estimate

(8) ;iHau (t5) i: Au( (t5), i V’(/}kH <3 Z -
j=1 k=1 k=0+1

Otherwise, if only the snapshois = u(t;—q) forj =1,... ,m + 1, are
used, we obtain instead of (7) the error formula

mlﬂiu S b = Y

j=0 k=1 k=0+1

and (8) must be replaced by

53 [ )= Y@t

=1

8 4
A
k=t+1

which in contrast to (8) contains the factatt)~2 on the right-hand side.

For the second choice we také = H and denote the corresponding
POD basis by }¢_,. Now (7) is replaced by

1 m 4
2m+1ZH“(’“LJ -2l HW
=0 k

=1

(10) 1 m l d
+2m+IZH6u t] Z 8u tj Hﬂ)k = Z A
j=1 k=1 k=(+1
for every? < d. Here A\, k = 1,... ,d, are the eigenvalues of the correla-

tion matrix X with the eIementsK” = 2ml+1 (yj,vi)m- Let V! denote the
linear subspace spanned®y, . . . , ;.
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In the following we shall write{y;,}{_, andV* = span {41, ... , 9}
if we do not distinguish between the two POD bases. Note itifat= V
holds.

It will be convenient to introduce the mass matrix

M = ((M;;)) € R with M;; = (45, %)
and the stiffness matrix
(11) S = ((Si)) € R™with S = (v;,11),-

The mass matrix for the POD basisihas well as the stiffness matrix for
the POD basis iV’ turn out to be the identity matrices.
OnV we have the following estimates.

Lemma 2. For all u € V we have
(12)
ullyr < A/IMII IS lully andflully, < A/IS M=y g,
where|| - ||2 denotes the spectral norm for symmetric matrices.
Proof. Letu € V be an arbitrary element. Then
d
w=Y (u,v) x Vs

k=1

Settingz = ((u,%1)x, -, (u,vq4)x)T € R? we obtain that

lulfy = «" Mz < | M]a"e

— — 2
< IS7H o l1M ]Iy 2" S = (|87 ol Ml lully,
which gives the first estimate. The second one follows analogously.

Remark 2.a) In analogy to finite element approximation theory we refer
to the second inequality in (12) as inverse estimate.
b) Incase ofthe POD basisinthe inequalities in (12) lead to the estimates

lullr < /1Ml [lully andlfully < /Il (g

On the other hand for the POD basishhwe find for everyu € V that

[l < /IS Hlg llully andlully < 3/1ISTly [l
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3.3. Backward Euler-Galerkin method

To study the backward Euler-POD-Galerkin method for (6), we introduce
the Ritz-projectionP’ : V' — V* by

(13) a(P'u,v) = a(u, ) forall ¢ € V¥,

whereu € V. Due to (4) and (5) the linear operatBf is well-defined and
bounded:

1P%lly < 2 Jull, forallu e V.
K

Lemma 3. For every/ € {1,... ,d} the projection operator®’ satisfy
(14) if:”lé(ﬁk — Pla(ty)lly < 22 ﬁ Z A
m 4 K
k=1 k=t+1
and
m d
1 1 2 3/3HSH2 3
15) > fulte) — Plu(t)lly < =2 3 A,
k=1 k=0+1

where)\, and )\, denote the eigenvalues of the correlation mafkixwith
the elementg— (yj,vi)v and 5= 2m+1 (vj,vi) o, respectively.

Proof. For arbitraryu € V we deduce from (13) that
K |jlu— PéuH%/ < a(u — P'u,u — Ptu)
= a(u — Plu,u—1) forally e V*
so that
(16) Ju — Ptul), < g |u — || forally € V.
Using (16), (12) and (10) we obtain

*ZHU ty) — Plu(ty)y

5 f e
p Z Jutte) = 3 (uttn), B

1=1

S ‘ bi) )
32577|L JQl Z H Z (u(tr), Vi) gt

i=1

IN

%
H
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which is estimate (15). The proof of (14) which does not rely on the inverse
inequality is analogous. O
From the proof the following corollary immediately follows.

Corollary 4. For the difference quotients we have the estimates

1 o= = -
(17) ml;ﬂau(tk — Pu(ty)l} < Z A

k=¢+1
and

L5\~ 3 = 38).9 A
a8 3 10utt) ~ POutly < OISt 5~ 5

Now we describe the backward Euler-POD-Galerkin method for (6). It
consists in finding a sequen¢®, }7, in V* satisfying

(19a) (Uo,¥) gy = (¢, 0) forally € V*
and
(19b) (OU, ¥) y + a(Ui,¥) = (f(te), ) for all g € V*
fork =1,...,m. Here, we have set
= Up — Uk
W= =7

Theorem 5. There exist unique solutiofU/; }}", in V* to problem(19).
Moreover, the estimate

kT
YT\ _ kT l—e m
(20) [Ukllyy < (1 + -~ Je™m Il + ——— I/ lleqo,
~y ((0,T];H)

fork=0,...,m,
withy = k/«, holds.

Proof. We infer from (4) and (5) that there exists a unique solufiop} ",
of (19). Takingyy = Uy, as the test function in (19b) we obtain from (3) and

(5)
(1 +9A) |Ukll g < Uk—1llgr + At 11 £ )l 7.
which yields upon summation
(21)
k .
1 k 1 J
< — I — .
Vel < (75=7) 100l + 8¢ ooy > (ra)
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Note that(1 + yAt)* > %4t /(1 + yAt). Moreover, setting = 1/(1 +
vAt) we find

k ; k k —ykAt
1 1- 1-— 1—e™7
AtZ( )J PVE S S Sl P Sl .
= 1+~At ¢1-1 v v
Inserting these two estimates and utilizing the fact thaf|| z < ||¢||z in
(21) yield (20). O

Itis simple to extend the previous theorem to a special class of non-linear
problems.

Corollary 6. Let us consider the non-linear evolution problem

(22a) % (u(®), ©) g + au(t), @) + (F(u(t), ©) g = (f(), ©)u
forall p € Vanda.et € (0,7), with
(22b) (u(0),x) g = (¢, x) forall x € H,
where the non-linear term satisfies
(23) (F(¢),¢)y =>0forall p € V.
Then the backward Euler-Galerkin scheme (@2)
(24a) (Uo,¥) gy = (¢,9)  Torall o € V*
and
(24b)
(OUk ) gy + a(Ug, ) + (F(UL), ) gy = (f(tr),9)  forall € V*
for k = 1,...,m has a unique solutiojU;}]", satisfying the estimate
(20).

Let us present an example for non-linear problems, which satisfy as-
sumption (23).

Example 1.In case of the Burgers equation the bilinear form and the non-
linearity are given by

a(p, ) = / @'Y dz for ¢, €V,
F(p) =gy’ forp eV,
wherev > 0, H = L?(2),V = H}(£2) andf2 = (0, 1). In this case

F(e)pdr=~0forallp € V.
Q

Moreover, forf € C([0,T]; H) and¢ € V there exists a unique solution
ue W(,T;V)nC([0,T];V), see [12], for instance.
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Our next goal is to derive an error estimate for the term

1 m
. > Uk — ulte)llr,
k=1

whereu(ty,) is the solution of (6) atthe timeinstandes ¢,k = 1,... ,m.
Throughout we shall use the decomposition

(25) Uk —ulty) = Up — Plu(ty) + Plu(ty) — ulty) = 9% + o,

whered, = Uy, — Plu(ty,) andgy, = Plu(ty,) — u(t). It follows that

1 — 5 2 & 5 2 = 9
(26) EZ”Uk—u(thH < EZ‘wkHH"' EZHQkHH'
k=1 k=1 k=1

Due to (3) and Lemma 3 we have

1 & 3045
(27a) —> llexlly < Z M
k=1 k=0+1
and
1 & 3085, < ;
(27b) = llelly <=2 > A
k=1 k=0(+1

where), and )\, denote the eigenvalues of the correlation matrix with the
elementsk;; = ﬁ (yj,vi)v andK;; = 2m+1 (vj,vi)H, respectively.

Using the notatio®;, = % k=1,...,m,we obtain

(D9, ¥) gy + a(Ok, ) = (U, ) g + a(Ug, )
—(OP u(ty), ) — a(Ptu(ty), )
= (f(t),¥) gy — (OP"u(tr), ¥) y — alu(ty), )
(28) = (Uk>¢>H7

where
Vg = ut(tk) — 5Peu(tk) = ut(tk) — gu(tk) + gu(tk) — ngu(tk).

We putw;, = u(t) — Oul(ty) andz, = du(ty) — P'Ou(ty). Choosing
Y =9, € VVin (28) we infer that

[0l 3 — Ok, On—1) + At a(Ok, 9k) < At [|vgll 7 19| 5.
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from which we derive the estimate

1
196l < Ty (191l + At el )

and upon summation

k .
1 k 1 k—j+1
90l < (5 ) 10l + 4032 () ol
Jj=1 o
Hence, withy = & > 0

2

T (k) )’

2 1 2
< P —
19kl < 2<1 e 3t> [90ll7 +

7j=1
To shorten notation we pygt= ﬁ. From
(6)" = @raan™ = (14 20)" <ot
we infer thatl — ¢?™ <1 — =T and
2) CQ _ C2m+2 21— CZm 21— <2m 1 — 6727T
m 1-C  m{2-1"m 29At — AT
Hence, we obtain that
1 2 _ 2 X ok g2 S k—j+1 2
e 2o 10l = 32 ¢ ol + =S (Zc ol )
k=1 k=1 j=1
2) C C2m+2
e |
<o Il
T m k k
_ 2
2L Z <ZC2(k i+1) 3 HUjHH>
k=1 j=1 j=1
1l—e 2T o or2 I K& )
= = ol + WZ (3o S )
k=1 j=1 j=1

m

1—e 2T 5 m 2 C2 (2k+2

1— efZ'yT 5 T2 m 9
g (Ioll + onvkuH)'
k=1

IN

IN
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Now we estimate the term||%, = ||wy + 2x||%. From

u(ty) — u(tg-1)
At

(At u(tg) — (tk) - U(tk—l)))
/ (s —tp—1)uu(s)ds

wk:ut(t ) —

we infer that

- 2 - 1 b 2 b 2
Sohunly <Y [ - taa [ P
k=1 k=1 -1

tk—1
At
<

r 2
<5 ([wee (8) || 77 dt

holds. Thud|vk||% < 2 |lwe|% + 2 ||2x]|% leads to

—Q'y 2T3 T 5
*ZHWHH (!790||H 3m2/0 ([t (8)[[ dt

ill%!h)

If the POD basis is chosen i then by (17)

m

u“ d
1 1 5 = 2 3ap -
3 Nl = — D 1IButt) - Putti)lly < == 3 A,
k=1

k=1 k=0+1

otherwise, if the POD basis is chosenfnwe have

m m d
1 E 1 3 = 2 3ap||S .
m HZkH%{ = - Z Hau(tk) — Pgau(tk)HH < ﬁ/!HQ E e
k=1 k=1

k=0+1

Summarizing, we obtain

*Z 19kl7 < H%HH

1—e 2T /2(A 608T? A -
(292)  +—= ( (3 ! st 7200 .0y + o
v k=011
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and
—2
- Z el < L2 ol
1= 27T 2(At)? 68T [|S]l, <~ 5
(290) +— ( 7 il Zeo i+ ———2 > A

k=0+1

for the POD basefy; }¢_, and {4 }¢_,, respectively. From (27) and (29)
we conclude the following result.

Theorem 7. Letuand{U}}}"_, be the solutions t{6) and(19), respectively
and suppose that;; € L?(0,T; H). Then there exists a constaft > 0
depending on, «, G, k, T', but independent dfandm, such that

1 m d ~
— > lluttn) = Uellyy < C(llo = Prolls + 3 A+ (A0?)
k=1

k=0+1

and

m d

1 2 -

S utn) — Uil < O (ko = Pl + 1S, 37 e+ (A0)2),
k=1

k=¢+1
whereS denotes the stiffness matrix introduced1m).

Remark 3.From the derivation leading to Theorem 7 we also obtain the
following estimate exhibiting the dependencebbn «, 3, x andT"

1 & 9
Ez Ju(tr) — Uklly
k=1
2 2
<c(T) ¢ — P'oll + gC(T)(Alﬁ)2 ||uttH%2(0,T;H)

d
(30) +6aﬁ:(T)(1+T2) > M

wherec(T) = 2(1 — e=2T) /(yT'), and the POD-basis is taken ¥. In

case the POD basis is takeniify then)\;, has to be replaced byS||2 A,

in (30). From (30) it follows that the influence &f decays witHl" — oc.

The factor in front szzzeJrl A1 behaves likel for largeT. We must not
forget, however, that the singular valugsand\;, themselves depend d@n
as well.
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Remark 4.Up to now we have not made use ofe V. Since the initial
condition is included in the set of snapshots, we are able to estjfpate
P’¢|| . From (10) and (16) we conclude

Copt2 o B E af & s
o~ Pl < 2 o= 3 ovmxun], = @m+ 1% 3 &,
k=1 k=£+1

respectively,

l6 = P'olly < 5\(«5 wkwkHi

= (©2m+1) HSHQ Z Ak
k=0+1

Thus, if we choosé = d, we obtain
1 — 2 ) 9
- Z lu(te) — Uklif < (T)(At) st 22 0,711

with ¢(7") defined in Remark 3..

3.4. Crank-Nicolson scheme

In this subsection we investigate Crank-Nicolson-POD approximation to
(6). Thus we consider the family of discrete problems of finding a sequence
{U}7, in V¢ satisfying

(31a) (Uo,¥) gy = (¢,9) forall ¢ € V*
and
(31b)
(OUk,¥) g + % a(Uy, + Ug—1,%) = (f(te — 51), ¥), forall ¢ € V*
fork=1,...,m

Theorem 8. There exists a unique solutidi/, } ", in V¢ to (31). More-
over, the estimate

WUkl g < ollg + T I flleqo,rym fork=0,...,m
holds.
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Proof. Equation (31b) implies that

Uk )+ 5 0l ) = Uk 1,00 — 5 U1,
32) F (- S

for all ¢» € V*. Since the bilinear forna satisfies (4) and (5), there exists
a unique solutiorl;, to (31b) for everyk € {1,...,m}. Takingy =
Uy + Ui,_1 as atest function in (31b) we obtain

Ok = 1011l ) (Wil gz + 10,1 1)
< At f(ti = G Uk + Unally

and hence

Ukl gy < 1Uk-1llgz + At [Lf (tx = S0 -

Summation with respect toyields

At
Ukl < Mol g + Atz 1t — *)HH <ollg +T 1l eo,rm):
O

Remark 5.An analogous result to Corollary 6 also holds for the Crank-
Nicolson scheme.

We shall require the following condition concerning the solutioof
(6) and the bilinear forma.

There exists a subspat€ of V' with continuous injection and a
constanC' > 0 such that, € W22(0,T; W) and

a(p. ) < C lllly il forallp € W, € V.

(H)

Example 2.ForW = H?(2) N HY(N2), V = HY(N), H = L*(2), with
2 a bounded domain iR! and

a(p, ) = /QVgo - Vipda forall @, € HY ()

we havea(p, ¥) < |l¢||lwl|v| g forall p € W, € V and the inequality
in (H) holds withC' = 1.
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Theorem 9. Letu and {U}}", be the solutions t§6) and (31), respec-
tively, and suppose thgH) holds and thatu,;; € L%(0,T; H). Then there
exists a constant’ > 0 depending on, «, 3, k, T, but independent of
andm, such that

m d

1 ) 3

— > lluttn) = Uellyy < C(llo = Proll + 3 A+ (A
k=1 k=0+1

and
1 — 2 i
— " lhutt) = Ul < €1l = P'olly + 11l Y- A+ (A1),
k=1 k=(+1

whereS denotes the stiffness matrix introduced1m).

Proof. We proceed as in Sect. 3.3. The tegncan be estimated as before.
For 4, we obtain

(D9, 9) y + % a(Ok + Ig—1,9)
= (wg + 2, ¥) g + % a(2u(ty — 51) — ulty) — u(ty-1),7),
wherewy, andz; are given by
wy, = wy(ty — 4L) — dul(ty) andzy, = du(ty) — POulty,).
Let us choose) = ¥, + J;_1. Due to(H) we arrive at
(09,9 +P—1) g < (19ll gy + 101l ) Ulwill gy + Nzl )

C At t
@)+l W0l (555 [ [ Tl dsar).
2 VT

t
to1—
From (33) we conclude that
CAt [t

19ellr < Wl -+ At (ol + sl + =5 [ ety )
k—1

Summation implies that

k
19l < 190157 + ALY (sl + 1125115 )
j=1
C(At)? [t
+(2)/0 [[uee(8) ||y dt.
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Hence,
m m k
1 3(At)? 2
— > el < 3 Wollz + = >~ (D lhwsllys + 1zl
k=1 k=1 j=1
302 Aty & T
S S ([ o)y dr)
k=1 70
< 3 [olly; + 6402 >N (hwslly, + 1213
k=1 j=1
3C2T (At
# ST o .

From Sect. 3.3 we know that

—ZuzkuH< a8 $ 5

k=041

and

m d
1 9 3aiS||y .
[ < " Ts A
=3 lalh < =22 S

k=1 k=041

depending on the choice of the basidiror H. As in the proof of Theorem
1.6 in [18] we estimate

m

(A2~ willzy = Y lulte) — u(te—1) — At w(ty_ )|,

k=1 k=1

20

<> (cran? / " ) 1)’

k=1 te—1

IN

C2(A) Z "t HHdt)

th—1

T
< 2 (ary’ / e (8) 2 dt
0

foraconstan€ > 0independentafr. Thus, forC*= max(6CT, 3C2T?)
we have

d
18a,8T
*Z||’l9k||H<3||190||H P

k=0(+1

+C* (At (HutttHL?(O,T;H) + Hutt”%Q(O,T;W))
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or

18aBT?||S
—Zuﬂkuﬁsrw 13, + 2P0l S A

k=0+1
+C*(At)* <||Uttt||L2(o,T;H) + HuttHLQ(O,T;W))‘

Combining the estimates fak, with those forgy, in (27) we obtain

1 m
. > Uk — ulte)lly
=1

<6l¢— Plo|5 + 60‘5(1 + 6T At) Z A
k=0+1
* 4 2 2
(34) +2C*(At) (At llweetl| 720,70y + HuttHLz(o,T;W))
and similarly for the basis taken iH. The assertion of the theorem now
follows. O

3.5. Forward Euler-Galerkin scheme

The forward Euler-Galerkin-POD method for problem (6) leads to the prob-
lem

(35a) (Uo, V) = (¢, forallyp € V*
and
(35b) (U, ¥) s + a(Up_1,9) = (f(ts_1), ) forall g € V*

fork =1,... ,m. Takingy = U} as a test function in (35b) and using (3)
and (4) we obtain

(36) (1 =nAt) Ukl g < 1Uk1llg + A [ f (el

with » = 3/«. To guarantee stability of the scheme we have to assume that
the step sizedt is sufficiently small, i.e.,

(37) At < 1.
n
Then, (36) yields upon summation

1 k
10kl < (5= ;) NColl

k .

1 J

(38) +A [ fll o, E : (1 — nAt> .
j=1
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Note that(1 — nAt)* > e~"%4t, Moreover, setting = 1/(1 — nAt) we
find

enkAt -1

k :
1 j G |
At — ) = At = <
;(1—77At) ¢l-1 n - n
Inserting these two estimates and utilizing the fact tiat|| 7 < ||¢|| & in
(38) we obtain the estimate

nkT
kT em —1
Ukl < €™ ll8l1 + - I lleqo,ry;m) fOr k= 0,...,m.
Moreover, with (37) holding an error estimate of the form (30) follows,
where nowe(T) = 2(e?"" — 1) /nT).

3.6. Remarks

From (30), (34) and the discussion and Sect. 3.5 it follows that the influence
of the error in the initial condition either decays exponentially, is bounded
by a constant, or is bounded by an exponential expressi@hdepending

on whether the implicit Euler, the Crank—Nicolson, or the explicit Euler
methods are used. This is analogous to estimates for fully discrete schemes
based on the finite element methods, see for example [18].

Let us comment on the scope of the approximation results of this sec-
tion. The POD technique for discretization of (6) requires snapshots, which
can be obtained by an independent numerical method or by the appropriate
technological means related to a specific applications. One of the strengths
of POD-based methods are their good approximation properties with a rel-
atively small number of basis elements. They are therefore frequently used
as a method for system reduction. On the basis of the POD-reduced system
further issues can be addressed, as for instance control or optimal control re-
lated problems. Due to model reduction, system theoretic problems become
accessible that could otherwise be beyond the scope of computing power
or alternatively the computing time can be significantly reduced when com-
pared to finite element or finite difference based approximations. Our results
specify the quality of the approximation of the POD-reduced system to the
solutions of the continuous system. — In these results we estimate the dif-
ference of the snapshots to the solution of the dynamical system in the case
where the snapshots are taken from a system whose parameters and inhomo-
geneities coincide with that of the system itself. In the alternative situation
where the snapshots are taken from a system with one set of parameters and
inhomogeneities (controls) and utilized as basis elements in a system with
a different set of parameters the problem of unmodeled dynamics arises.
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On a computational level progress was made on this topic in the context of
optimal control of the Navier—Stokes equation where a dynamic update of
the basis elements was performed, see [1,2,10].

4. Non-linear problems

In this section we extend our analysis to certain non-linear evolution prob-
lems. First we investigate a semi-linear problem with local Lipschitz non-
linearity. Secondly, we study the Burgers equation, where the non-linear
term does not satisfy a Lipschitz-condition &h

4.1. A semi-linear equation

Consider the non-linear evolution problem

(39a) % (u(t), ) +a(u(t), o) + (F(u(®), )y = (f(t),9)n

forall p € V and a.et € (0,7T), with
(39b) (w(0),x) gy = (¢, x)y forall x € H,

where¢ € V andf € L?(0,7T; H). The backward Euler-Galerkin-POD
scheme for (39) is given by

(40a) (U0, ¥) g = (¢, 0)y forally € V*

and

(40b) = (f(tr), V) forally € V*.
Theorem 10. Assume tha(39) has a unique solution. € C([0,T];V)

with w € W22(0,T; H) and that{U;}", is the unique solution t¢40)
satisfying

Ul < C
Orgr}gnll kllg <

for a constantC' > 0 independent ofu. If F is locally Lipschitz-continuous
on H and At is sufficiently small, then there exists a constéht> 0
depending on, «, 5, k, T', but independent dfandm, such that

m d

1 5 5

— > lluttn) = Uellyy < C(llo = Prolly + 3 M+ (A0?)
k=1 k=041
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and
1 — 2 .
— > lluttn) = Uellyy < C(llo = Prolly +11Slly D A+ (402),
k=1 k=0+1

whereS denotes the stiffness matrix introduced1m).

Proof. Since the terna;, can be estimated as before, we only have to consider
J5. Using the notation introduced in Sect. 3.3 we obtain

(41) (9%, ¥) g + a(Ok,¥) = (v, ) g + (Fu(ty)) — F(Ur), %) -
Settingy = ¥4 and using (5) we infer that

10k]% — (9, Om1) r + KA |0k |3,
< A9kl g (lorll g + 1 F(UR) = Flu(ti)l ) -

As F'is locally Lipschitz-continuous and(t;.) andUy are bounded inde-
pendently ofk, there exists a consta6t* > 0 such that

1E(Uk) = F(ulti) g < C Uk = ulti) ]l -

Inserting into (41) we find

(1 2528 g3y < Wonaly + At (enly + 2+ 364 uly
+C* loelly)
DefiningC' = 1+ 3C* — 2= this implies that
(1= C0) 9l < N0na 1 + At (ol +C* aell)

Let At > 0 be sufficiently small so thaf' At < 1 is satisfied. Then there
exists a constar® > 0 such that

(1-CAt) <1+ CAL
Thus, for smallA¢
19ell3y < (1+Cat) (I0xal + At (ol +C* ol )
holds. Summation ok implies

k
913 < <7 (1903 + At (sl +C* lesl3) ).
j=1
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Using the estimates far, andg, derived in Sect. 3.3 we arrive at

1 & A
— > 9wl < T [9olly
k=1
d
3(2 + CHapT ~
2+CaT 5

R

or (2(At)?
@22)  + (2 a2 g+
k=0+1

and
1 A
2 1%} 2
— > owl < < 1907
k=1

o (2(At)?
@2b) +¢7 (20 a2 +

. d
32+ C*)apT||S|, Z A,

KR
k=0+1

for the POD base§yy.}¢_, and {¢;.}¢_,, respectively. From (42a) the
theorem follows. a

Remark 6.We refer the reader to [15], for example, for sufficient conditions
such that (39) admits a unique solution. Due to the fact tha locally
Lipschitz-continuous orf{, problem (40) is uniquely solvable, provided
that a solution exists.

4.2. Burgers’ equation

We consider Burgers equation that was introduced in Example 1.. It is as-
sumed thaty € V = H} () and thatf € L?(0,T; H) with H = L?({2)

so that a solutiom € W (0,7, V)N C([0,T]; V) exists.

Theorem 11. Let v and {U};", be the solutions to the Burgers equa-
tion and its backward Galerkin-POD scheme, respectively. Suppose that
uy € L2(0,T; H). If At is sufficiently small there exists a consténht> 0
depending ont andT’ but independent afandm such that

m d

1 ) 3

— > lluttn) = Uellyy < C(llo = Prolly + 3 M+ (A0?)
k=1 k=041

and

m d

1 2 2

— > lut) = Urllyy < €Il = Proll + 10, D A+ (402),
k=1 k=(+1

whereS denotes the stiffness matrix introduced1m).
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Proof. To obtain the desired estimate we utilize the error equation (41),
from the previous proof. The non-linearity must be estimated in a different
manner, however. Due to Corollary 6 and simce C([0, T]; V') there exists

a constant”; > 0 such that

Hu(tk)HV <Ch andHUkHH < forl <k <m.
Using Holder’s inequality we have

|(F(u(tr)) — F(Ur), 01 m| < [lu(ti)lly lultr)
(43) = Ukl 9kl s + Ukl rllu(tr) = Uklly (198 oo s

and hence, sincBy, — u(tx) = 9% + ok,
(44)  [(F(u(ty)) — F(Ur),9%) |
< Cu (I9el7a + Newllall el o + 195l 198l + Herlly lxl o) -

Let C, > 0 denote the common embedding constantoh L*(£2) and
L>(£2) in L*(£2). Then

!WWW%—FWMﬁ&ﬂ§%<WHM%um

(45) +u@kuvnﬁkan),

whereC3 = C1(1 + C2). By Agmon’s inequality (see [17]) there exists a
constantC; > 0 such that

1/2 1/2
loll e < Ca ol 2Nl forall g € V,

and consequently Young’s inequality implies the existence of a constant
C5 > 0 such that

3/2 1/2
Ci [0xlly 98]l e < C5Ci 1981/ 04113
1%
(46) < 5 I0klly + Cs 19k
for 1 < k < m. Moreover, there exists a constary > 0 such that
12

A7) CsllenllpallVells < 5 I0k[13 + Co lloxll3 for 1 < k < m
Using (46) and (47) in (45) we arrive at

[(F(u(ty)) — F(UR), )| < v 9513
(48) +C5 19I5 + Cé [loxl3-
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Settingy) = ¥ in (41) we obtain from (48)

1917 — Ok, Or1) gy < At (HkaH 1951 + Cs 9% 1 + Cé HM!%/)
and further

19ell3r < a1l + At (Iloell3 + (1 +2Cs) 19xl% +2Cs lloxl? ).
It follows that

(1= (1+2C5)At) [9xll3; < 951l + At (Ilowl3; +2Cs loxl )
Thus, for smallAt there exists a constadt, > 0 such that

19el3 < (14 Cra8) (195113 + At (ol +2Cs ol ) )

holds. By summation ok we have
k
19l < T (0ol + 4¢3 (sl +2Cs llesl) )-
j=1

Let V be endowed with|¢'||;2 as norm. Thems = x = 1, and together
with Lemma 3

*ZIIQkHv<3 Z A, and — Z||Qk”v<3”SH2 Z ™

k=(+1 k=0+1

where\; and )\, denote the eigenvalues of the correlation matrix with the
elementsK; = 5 (y;,%i)v andK;; = 5-L (y;, vi) i, respectively.
Using the estimate far, deduced in Sect. 3.4 we arrive at

1 m
— > Welliy < e [0l
(49a) =1

er (2(At)°
+e“T < lueel| 20 7,11y + 6C6T k;ﬂ Ak)

and

1 m
2 C 2
— > 19l < < ol

k=1
(49D) ( a0

ol + 6CHT 15T, 3 M)
k=0+1

for the POD base§); }{_, and{« }¢_,, respectively. From (49) the claim
follows directly. a
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5. Numerical experiments

We present three examples for the approximation of parabolic equations by
Galerkin-POD based schemes. The results confirm the good approximation
properties of such schemes which was already reported in [3-6,8,11,13,
14,19], for example. We also compdre and H-norm based schemes and
schemes based on POD-ensembles with and without difference quotients.
For the examples that we tested we found no significant difference between
theV- and theH -norm implementations. Inc luding the difference quotients
can improve the numerical result in case the snapshots are taken only from
a coarse grid. For the numerical realization we used MATLAB version 5.3
executed on a DIGITAL Alpha 21264 computer.

Run 1. In our first test example we consider heat flow in a rectangular
metal block with a rectangular cavity. The block is heated on one side, heat
is flowing from the block to the surrounding air at a constant rate on the
opposite side and the block is isolated at the remaining walls. This leads the
the initial boundary value problem

uw—Au=0 in Q=(0,T) x £,
u=1on Ih1={(-0.5,y): —0.8 <y <0.8},
ou

I —0.1 on I, = {(0.5,y) : —0.8 <y < 0.8},
n

0
FZ —0 on 9N\ ([T U D),
u(0,-) =¢ in £,
whereT = 5,
2 = ((—0.5,0.5) x (—0.8,0.8)) \ ((—0.05,0.05) x (—0.4,0.4))

and¢ = 0. We computed an approximate solution to the heat equation
by using the backward Euler-Galerkin finite element scheme. The spatial
discretization was carried out by linear finite elements with respect to a
triangular grid and 1844 degrees of freedom. Furthémas chosen to be
0.04. Let

Vh = Span {(pl, . 7901844} C Hl(Q)

denote the finite element space. Then the reference numerical solution was
characterized by a coefficient matiix € R344x126 in the following way

1844
UFE(tjfl) = Z Uijgoi fOI’j = 1, e, 126.

=1
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Domain Q and triangular mesh FE-solution at the terminal time
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Fig. 1.

The triangular mesh as well as the finite element solution at fieee
shown in Fig. 1. As snapshots we took the finite element solution at the
discrete time instances. Thus, our snapshots were

1844

y;?:ZYijgoifOI’j:L... ,251,
=1

whereY € R1844x251 was given by
Y, =U,forj=1,...,126

and

1

Y jit126 = —
7]+ A

/ (Y7j+1 — YJ‘) forj=1,...,125.

Numerically,rank Y = 17. Let?¥ € R'844*17 denote the coefficient matrix
of the POD basis functiongyy }+7, satisfying

1844
Ye = Uppifork=1,..17.

=1

Due to Proposition 1 the matrik can be determined as follows. First com-
pute the eigenvalue¥; > ... > A7 > 0 and the corresponding eigenvec-
torsvy, ... ,vg € R?! of the correlation matrixs’ = 5= Y7@Y, where
@ € R1844x184 denotes the mass matrix with the elemahts= (¢}, ;) x
for 1 <4, j < 1844. Then thek-th column of? is obtained by setting

1

U, =——Yu..
LRV, v
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Utilizing the MATLAB function eig , each solution of the eigenvalue prob-
lem for X = V and forX = H needed 3 seconds, whereas the CPU time
was about 1 second if we computed only the first 5 eigenvalues and their
corresponding eigenvectors by applying the iterative MATLAB eigenvalue
solvereigs . The rapid decay of the eigenvalues is presented in Fig. 2. For
instance \¢g ~ 0.000002 and\g ~ 0.00000005.

10

100 F

10

10t

First eigenvalues )\k for X=V

Fig. 2.
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10 1 2 3 4
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0 0
0.85
y-axis -1 -05 x-axis

Dacay rate of the first eigenvalues for X=H
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0.2
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t-axis

For the results presented below we tabk= 5 POD basis functions.
Then for the summation over the eigenvalues in the error formulas (7) and
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(10) we found
251 _ 251
Z e < 0.000002 and Z s < 0.00000006,
k=6 k=6

respectively. The solution of the heat equation with the backward Euler-
Galerkin-POD method needed less than 0.1 seconds for each of the POD
bases i/ andH. The POD solution at = 7' is plotted at the leftin Fig. 3,
whereas on the right we find the*-norms of the finite element and the
POD solution. We observe that tfié-norms nearly coincide. In Table 1 we
compare the error

e(m) = %Z |lurEe(ty) — UkHJZLI

with m = 125 for different POD bases. For these simulations we took five
POD basis functions. It turns out that the choice of the spaar H as

well as the inclusion of the difference quotients made no difference for this
example.

Table 1.

e(m)
POD basis il includingdu(t;)  0.00011786
POD basis inf includingdu(ty) 0.00011785

POD basis iV 0.00011755
POD basis inH 0.00011754

Run 2. Our second test is carried out for the Burgers equation. Here, we
chose the snapshots on a relatively coarse grid and we shall see thatinclusion
of the difference equations leads to a smaller error. We1oek1, v = 0.5,

¢_{1in(0,§],

0 otherwise,

andf(t) = ¢ in (0,7"). We computed an approximate solution to Burgers’
equation by using the backward Euler-Galerkin finite element scheme. For
the spatial discretization we used linear finite elements with 198 degrees of
freedom, and as time grid we took = kAt with At = 5-1073. The finite
element solution at tim& are shown in Fig. 4. We chose snapshots on a
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FE—solution at the terminal time
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uniform time-grid withAt = % Thus, our snapshots were

198

yl = Yigpiforj=1,... 11,
i=1

whereY € R9*11 was given by
Y. j=U 1000¢-1)41 forj=1,...,6

and

1 .
Y,j+6 = Zt (YJJrl — YJ) fOl'j =1,...,5.



146 K. Kunisch, S. Volkwein

Numerically, we hadank Y = 6. Each solution of the eigenvalue problem
for X = V and forX = H needed less than 0.01 seconds. The decay rate
of the eigenvalues is presented in Fig. 5. In our computations we/teok

POD basis functions. Then we have in the error formulas (7) and (10)

6 6
Z s < 0.00564 and Z e < 0.00003,
k=3 k=3

respectively. Furthermore, the initial condition satisfies- P{¢||; < 0.45.

The solution ofthe Burgers equation with the backward Euler-Galerkin-POD
method needed less than 0.02 seconds for each POD basis. The(erfor

is shown in Table 2. Finally, computing the finite element solutign;

Table 2.

e(m)
POD basis ir¥/, includingdu(ty)  0.0012796
POD basis inf, includingdu(t;) 0.0012689
POD basis iV 0.0016033
POD basis inH 0.0015921

on the coarse time grid, we obtainédzzz1 lupe(ty) — dre(te)|% =
0.0205496.

Run 3. In our third run we compare the numerical error to the estimate of
Theorem 11. For that purpose jgt, ) = (2> — ) sin(2rxt) be the exact
solution of the Burgers equation and compfisccordingly. The spatial grid
was chosen in such a way that the error betwgand its approximation is
about10~'°, Then we took snapshots for different valuesfafand solved

the Burgers equation with= 6 POD basis functions. Since

d ~
> <107t
k=7

andy(0,-) = 0 hold, the error depends almost exclusively on terms of the
form C(At)* where the constar® > 0 is independent ofAt and /. We
computed form; = 2'm withi = 0,... ,9andm = 5. Then;m? = 4m? |

and we infer that% ought to be close td fori = 1,...,9. The
numerical results are presented in Table 3.
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6. Conclusion

Error estimates for Galerkin POD methods for parabolic problems were
presented. The error depends on the number of POD basis functions and
on the time discretization. To obtain the desired estimates the difference
guotients were added to the shapshot ensemble. Without them the error
bounds contain terms of the form Ei:[+1 Ak, With C' a positive constant
independent of andm. Inclusion of the difference quotients showed little
effect on the practical approximation properties of POD based discretization
of the linear heat and the Burgers equation in numerical tests, unless the time
discretization for the snapshots was very coarse. In this case the ensemble
containing the difference quotients gave more favorable results.

Table 3.

i ms; e(m;) E(:(ri;:)l)

0 5 0.00279337991 —
1 10 0.00090061392 3.11
2 20 0.00025387076 3.55
3 40 0.00006741209 3.77
4 80 0.00001737545 3.88
5 160 0.00000441201 3.94
5 320 0.00000111210 3.96
5 640 0.00000027939 3.97
6 1280 0.00000007013 3.98
7 2560 0.00000001763 3.98
8 5120 0.00000000445 3.96
9 10240 0.00000000113 3.92
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