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Summary. Two-scale numerical homogenization problems are addressed,
with particular application to the modified compressible Reynolds equation
with periodic roughness. It is shown how to calculate sensitivities of the
homogenized coefficients that come out from local problems. This allows
for significant reduction of the computational cost by two means: The con-
struction of accurate Taylor expansions, and the implementation of rapidly
convergent nonlinear algorithms (such as Newton'’s) instead of fixed-point-
like ones. Numerical tests are reported showing the quantitative accuracy of
low-order Taylor expansions in practical cases, independently of the shape
and smoothness of the roughness function.
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1. Introduction

Most physical phenomena occur at several different length and time scales.
Their modeling, in turn, differs from one scale to the other, from quantum
mechanics at the atomic level to continuum mechanics at a more macro-
scopic one.

Focusing now within the domain of validity of continuum mechanics, a
typical length range being0~" — 10® meters, there is still plenty of space
for the occurrence of multiple-scale phenomena. A good example is heat
transfer and/or mechanical equilibrium in real materials. There is one length
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scale of the component itself (the wall thickness of a furnace, the length or
width of a tool, etc.) on the one hand. On the other hand, no real material
is homogeneous, and the size and shape of its heterogeneities define one or
more additional length scales (the grain size in a metal or alloy, the distance
between inclusions in a composite, the pore size in a porous medium, etc.).

Considering stationary two-scale phenomena, their predictive modeling
implies the solution of a problem atghobal scaleL, whereas the material
properties vary at #ocal scalel. The complexity of the system grows as
e~4, wheree = ¢/L andd is the number of space dimensionse I 1,
some kind of approximation is needed. Such is the case of classical concepts
like the effective thermal and elastic properties of materials such as wood,
granite, or even steel. The underlying intuitive idea is that there exists a
“global scale behaviour” that is governed by the geometry, the loads and
the constraints, and that occurs at a length stakeach point of the global
scale is not of zero diameter, but in fact an abstraction of a small elementary
volume of diameter greater th&rAt each of these points, the response of the
system comes from the small-scale or “local” behaviour, that is independent,
or almost independent, of the global features.

The mathematical tools needed to add rigor to this intuitive idea come
from homogenization theory. Under suitable assumptions, a partial differ-
ential equation (PDE) is found to hold on the global domain (denoted)by
that takes into account the small scale in an averaged sense. Its coefficients
come from the solution abcal problemsnamely PDE problems defined
on some unit cell (denoted hy), representative of the small scale. This
two-level structure cannot always be removed by the definition of “effec-
tive” homogeneous properties (e.g., in nonlinear cases), and it carries on to
any numerical treatment of the problem.

In this article we consider the application of several tools from optimal
design and bifurcation theory to the specific field of multiple-scale analysis.
Though the arguments are quite general, the exposition is based on a specific
problem. It consists of the flow of air between two surfaces in relative motion.
The distance between the two surfaces is assumed to be very small (
10~%m), so that lubrication hypotheses hold, rendering the problem two-
dimensional. The small scale comes from assuming that the surfaces are
rough, the typical scale of the roughness being much smaller than that of the
surfaces themselves. The mathematical homogenization problem, of great
technological interest, has been thoroughly studied in the incompressible
case by Bayada and Faure [3], and in the compressible case by Jai [9]. We
will focus on the latter, modeled by the so-called modified compressible
Reynolds equation, that is nonlinear, and on its numerical treatment.

The main items addressed are:
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1. The calculation of sensitivities of first and higher order at the local prob-
lem level, and their numerical approximation.

2. The construction and application of Taylor expansions as a way of sig-
nificantly reducing the computational burden brought by local problems.

3. The use of first-order sensitivities at the local level to replace fixed-point
iterations at the global level by Newton’s method.

4. Abrief discussion of extensions to optimal design homogenization prob-
lems

Our work is related to the literature as follows: The local problems in-
troduced at eaclr € (2 by homogenization depend on two parameters,
one of them being the unknown value of the global solutiomat these
parameters, a fact that occurs in many nonlinear problems [2,9]. We thus
deal with a parametrized family of PDE problems at the local level, that in
our specific case are linear but could well be nonlinear as in [6]. The ap-
proximation theory in this mathematical setting has been established in [4].
Intensive application of derivatives (mainly first order ones) with respect to
parameters in the PDE can be found in the optimal design literature. How-
ever, perhaps due to the two-level structure discussed above, multiple-scale
problems have received little attention. We can cite in this direction a recent
paper on optimum composite materials by Haslinger and Dvorak [8]. They
consider first derivatives with respect to the shape in linear elastic problems.
The use of higher order derivatives and of Taylor expansions for finite ele-
ment analysis has been proposed by Guillaume and Masmoudi [7] within the
context of optimal shape design (without multiple-scale phenomena). Our
work is oriented towards taking full profit of sensitivity analysis and Taylor
expansions in the numerical approximation of homogenization problems, a
task that is, to our knowledge, as yet unaccomplished.

2. Local problem and homogenized coefficients
2.1. Definitions and differentiability results

As discussed in the introduction, 1€t be a two dimensional domain, its
points denoted by = (z1, z2) (the global variables). A global PDE prob-
lem, to be precised later, is assumed to be define@,imts coefficients
depending on the solution of local problems that we address in this Sec-
tion. For this purpose, let” be the unit cell, and ley = (y1,y2) denote
so-called local (or rapid) space variables defined inFor simplicity, we
setY =0, 1[ x ]0, 1[.

We consider the space of periodic functions

H,(Y)={ve H'(Y)/v takes equal values on opposite faced¢f
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and in particular its zero-mean subspace

H! (V) = {v €H)Y)/ /Yv = 0}

which is a Hilbert space under the norm

2 9 1/2
[v]| =
2 L2(Y)

i=1
We proceed to introduce a local problentirthat depends o2 parameters
aq, oo (We seta = (a1, ag) and extension to more parameters is straight-
forward). Let, for a given value af within a suitable open sef C R?,
B(a) be the operator defined an= H} (V) by

12
0y;

(2.2) B(a).v = =Vy. (d(osy).Vyv)

where the subindices in differential operators refer to the (local or global)
space variables anl{; y) is of classC™ with respect tey, in the L°°-norm,
namely that

ak1+kzd

k1o ko
Oay' 0oy

(2.2) sup {

yey

(a;y)} <p

holds for some3 (possibly depending on) for all k1 + k2 < m. We also
introduce the associated bilinear form

(2.3) b(a;u,v) :/ d(a; y)Vyu.Vyvdy Yu,v eV
Y

The functiond is assumed to rendér(strongly) V-elliptic, uniformly
forall a € =, i.e there exist a positive constansuch that:

(2.4) blosu,u) > 6 ||ul|* Yue V

In (2.1), B(«) is understood as an operator frafinto its duall’”’, with
the derivatives taken in the weak sense. In additiord] (et; ) be a bounded
vector field onY’, also of clas€”"* with respect tax in the sense of (2.2).

Local problem For « given, findw; andy;, i = 1, 2, belonging toV as the
(unique) solutions of

(2.5) b(o; wi, v). = —/ d(a;y)a—vdy YoeV
Y Ay

(2.6) b(a; Xi,v). = —/ Ui(a;y)@dy Vv eV
Y 0y;
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Remark 2.1Existence and uniqueness for the local problem come from the
V-ellipticity of b and from the Fredholm alternative.

The local problem is in fact an auxiliary problem introduced to calculate
the so-called homogenized coefficierts(«) and©*(«), given by

27)  A*a) = {ATIEO‘) ﬁ%‘?ga)} = B (o wi(a),wa(0))
(2.8) O*(a) = {@;EZH = 0% (e, x1(), x2(a))

we suppose that the function@k(a,wl,wg) and©* (o, x1, x2) satisfy the
following:

(2.9) A* and©* are of clas$™ with respect to their arguments.

Lemma 2.1 Under assumptions (2.2), (2.4) and (2.9), the solutioy{sv)
andy;(«), i = 1,2, of the local problem, and the homogenized coefficients
A*(a) and©* () are of classC™ with respect tax.

Proof. We remark that the function «; y) andU («; y) are such that the
linear forms

oFtld v U, v

2.10 — — ,
(2.10) y 0akoal, 0y Y y 0afdal, 9y

are continuous (with respect toc V) for all £ + I < m. Egs. (2.5)-(2.6)
thus admit the generic form

(2.11) b(a; z,v) = (f(a),v) Yv eV

whereb(a; -, ) : V xV — Randf(a) : V — Rare, as bilinear and linear
forms, respectively, of clags™ with respect tax. Moreoverb(c; -, -), in
view of its ellipticity, defines an isomorphisiB(«) (of classC™) from

V to V' by (B(«) u,v) = b(a;u,v). EQ. (2.11) can thus be rewritten as
F(asu) d:efB(a)u — f(a) = 0. We have by the implicit function theorem
that the functiorz(«) defined by (2.11) is also of clags™ with respect to
a. The result is thus established foy(«) and x;(«). That for A*(«) and
©*(a) comes from the differentiability of composite functionsl

Remark 2.2The previous lemma generalizes to the case whetez, v)
is nonlinear (but of clas€'™) in z, provided that its differential defines an
isomorphism, as is evident from above.
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2.2. Specific application: modified compressible Reynolds equation

We consider a lubrication problem, specifically the flow of air (or other fluid)
between two surfaces in relative motion. The distance between the surfaces,
or air gap, is assumed to be very small (0~%m), given by a known
functionh.(x). The subindex expresses that the surfaces are rough, with
a roughness wavelengththat is superposed to a mean vallig(z). An
important technological application concerns computer magnetic storage
devices, in which the gap between the reading head and the magnetic disk
or tape is extremely small.

The mathematical model, due to Burgdorfer [5], is a modification of the
classical Reynolds equation accounting for molecular slip at the surfaces. It
reads

(2.12) V. [(h2P. + AR2) VP.] = A% (heP.)  x = (x1,29) € 2
1

P.(zx)=1 x € 0f2

whereP. = P.(x) is the normalized pressure between the two rough sur-
faces,2 C R? is the region ( with smooth boundafy? ) where the upper
and lower bodies are in proximity. Except for normalization factars, a
physical constant (the Knudsen number) ah@he gas bearing number)
depends on the relative velocity and on the minimal clearance.

Eqg. (2.12) is a two-scale one as discussed in the introduction, v.g., its
coefficients vary on a length scateassumed to be much smaller that the
diameter of2. Let us now recallits treatment by homogenization techniques.
The real gap is defined as anperiodic function around the average value
Ho(z) by

h(z,y) = Ho(x) + Hi(y)

where H,(y) is a given periodic function. In [9] it was shown, by way
of the two scale convergence, that the (unique) weak positive solution of
problem (2.12) converges to the homogenized solufipof the following
homogenized system

V. ((A*(Ho(z), Po(x)) V)
(2.13) = AV.(0*(Hy(z), Py(x))Py) in 2
Py=1 along 02
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whereA* and©* are of the form given in (2.7) and (2.8) with
a = (a1, az) = (Ho(z), Po(z))
gfi(a,wl,wg) = fy d(a;y) <ZZZ + 1> dy 1=1,2

A* _ A* o . (%)2
214) | Aba(eswnwn) = A5 (awwe) = fy dlasy) 7 -

~ 0
Oi(a,x) = [y <a1 + Hi(y) + d(o; y)(;;) dy
= ox1
O5(a,x) = |y dlasy)=—d

5, x) = [y d(esy) Dy,

andw; andy; are solutions of the local problems (2.5) and (2.6) with the
functionsd andU given by

dy

d(osy) = (o1 + Hi(y))? a2 + A (o1 + Hi(y))”
(2.15) Ur(a;y) = Hi(y)
Us(e;y) =0

For the sake of clarity, we will systematically refer to this specific prob-
lem in the following sections.

Remark 2.3As a consequence of Lemma 2.1 and of @ff&-regularity of
the functionsd andU defined by (2.15), we know that;, x1, A* and©*
areC* functions ofa; (=Ho(x)) andas (= Py(z)).

Remark 2.44* and®* in (2.13) can be viewed, simply, as a function of
x, but its regularity would depend on that 8§. It is a crucial trick to get
the C'>°-regularity to explicit that its dependence ois throughH, (=) and
Py(z). Parametrized with respect to these two quantitigsand©* can be
differentiated up to an arbitrary order without regularity assumptions with
respect to the global space variable

Remark 2.5Local problems of the form (2.5)-(2.6) and homogenization
formula like (2.7)-(2.8) are obtained by asymptotic expansion (with conver-
gence under additional assumptions) of the general quasilinear convection-
diffusion equation

(2.16) — D Oy, (a5(z,u)0puf) + D Oa, (b (w,uf)uf) = f
1<4,5<n 1<i<n

3. Sensitivities and Taylor expansions

3.1. Taylor expansions

Any numerical treatment of (2.13) leads to multiple evaluation&'of2* for
manya; = Hy(z) anday = Py(z). It must be noticed, however, that each
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evaluation needs the solution of a partial differential equation or, in practice,
anumerical approximation of it by finite elements, finite differences, or other
method. Considering that the global problem (2.13) involves generally some
thousand discretisation points, a naif approach leads to the same number of
numerical boundary value problems, times the number of local unknown
fields @ in our casew;, w2 andy), times the number of nonlinear iterations.
Moreover, it is not obvious how to implement an iterative algorithm other
than a fixed-point one in view of the implicit definition 4f («) ando*(«),
and fixed-point algorithms are known to converge slowly.

We propose to replacg* and©* in (2.13) by their Taylor expansions
of ordern < m

TA;(Q):A*( a®)
0 0 0 ‘ *0 0
(3.1) +Z <a1—a1 M—I—(ag—aQ)(%Q)A(a)

Toy (a) = 9*(a°)

(3.2) +Z <a1 —af) 81 + (a2 — af) af;) 6* (a9

for a representative vectof, so that, once the coefficients of the expan-
sions are known, no further solution of a local problem is needed to evaluate
A*, ©* for an arbitrary value ofy.

Fora? given in=, we know from Lemma 2.1 that the Taylor expansion
is well defined and that there exist> 0 such that, if

o = a®|| <
then

[47(@) = Tz (@)] = o ([|e = ”[|")
[67(e) = Toy ()] = o ([la = a”]")

This local resultis however not sufficient for the algorithm to be useful. It
remains to show(i) That for realistic interval/,,;, < a1 < Hpmax, Pmin <
as < Phax, the Taylor expansions, with a reasonably low ondgprovide
a high enough accuracy to render valid the replacemerit*6f), ©*(«)
by T'ax (@), Tex (v); (ii) that the numerical treatment of the local problems
( by finite elements or other technique) does not interfere with the Taylor-
expansion idegjii) that numerical approximations of the Taylor expansion
coefficients can indeed be calculated at an affordable cos{j\@rtiat the
computer implementation of Taylor expansions is not too troublesome in
what concerns programming. These questions will be discussed in the rest
of the paper, some of them by means of numerical experiments.
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3.2. Calculation of the Taylor-expansion coefficients

The derivatives interveningin (3.1)-(3.2) can be calculated by the so-called
“direct” method, or by the “adjoint” method. In this case the former is more
convenient, as the number of variabléso : a1, as) is smaller than the
number of functions to be differentiatédive : A}, A%y, A}y, OF, 03).
The direct method begins with the evaluation of the derivatives of the solu-
tionsw;, x; of (2.5)-(2.6) up to the ordet. This evaluation proceeds as the
following inductive sequence:

Let o° given in =, and letk;, k; be two nonnegative integers, with
k1 + ko < m, and set

Z(k1,k2) ={(l,n) e NxN/0 <<k,
0<n<kyl+n< k‘1—|—]€2}
wj 8l+nX@'
daoal’ dakoay’
Z(k1,ka). The(k1, k) derivatives then are the unique functionslirsat-
isfying:

al+n
Assume that

i = 1,2, are known for all(l,n) €

okitka . oFitk2d oy
3.3 bal; L Wy T Ov
@.3) @ 00 = 7 )y abroak 0y ™

kl k‘g 8k1+k2—l—nb 0 al-‘rnwi
=S (z)( ) e (0% e n) eV
80&1 80& 1005

(l n)GZ kl kz)

8k1+k2XA okt Gy

0. 7 _ 7

(34) b(a ) k1 k27v) - k1 ko a ] Y
Oay' 0oy y 0aq' 0o 0Yi

kl—i—k:g—l—nb l+n. .
—Z <k}1> <k2> c")k P <a0, al Xl,v> YoeV
o o> 0ol 0oy

(| ﬂ GZ(k1 kg)

where the derivatives of the bilinear form are given, as expected, by

6l+nb 6l+nd
(a;w,v):/ —— (s y)Vyw.Vyu dy

daldal y 0alday
(3.5) Yw,v eV
l+nb
Remark 3. 18 T —(a;.,.) is a continuous bilinear form defined dn
This is due to (2.2) which gives
8l+n

(3.6) o a(@w,v) <6 flw]| o] Vw,v €V

Oaq0aly
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Once the computation of all derivatives©f andy; up to ordern has
been finished, those of* and©®* are obtained from the chain rule. Instead
of providing a general expression, that is quite involved, let us write down
the first two derivatives of};:

First derivatives ofd*(a) = A*(a, wi(a),wz(a)) ata = .

04y _ 04y | dwi, g i+ w2 0 =
da =~ Do DQAklvaﬁ%(a ) )+ DgAkl’@(a ) i=1,2

Second derivatives.

PAy,  OPAL AL\ Own AL\ Owy
— D kl D kl Tl
80@80@- 80@80@' + 2 8aj ’ 8041' + 2 6041' ’ 804j

Owp Ow ~ O*w
+Dad <3a1- 1)+<D2A‘tl’1>

78061' (9052'(905]’
Owy Ows Owi Owsa
3.7 D2 A D2 A —
3.7) R (8a2’8a1)+ 23 (80@-’80@)

DAL\ Ows 0A%,\ Ows
+<D3<8aj>’8ai>+<D3<8ai 780[]'
bt &.u aw ~ 82w
2 Ax* vw2 U2 2 <ji<
+D33 A%, (8% ; 8%-) + <D3Akl7 Gaiaaj> 1<4,7<2

The derivatives of the homogenized convection ve€tocan be calcu-
lated analogously.

Remark 3.2For the specific case (2.14 ) we have foe 1,2

aA* 0 0 0\\ __ od 0.
e (e, wi(a”), wa(a”)) = yiﬁak(a )
Owi , ¢ C
X (1—|— 8%(& ,y)> dy i=1,2
0Ay, 0A5 [ od, o 0w,
aak - 80ék - aak(a ,y)ayl (a 7y)

(Do r(a%)n(a®) gj% )
/d oY) o [22,3 ' )] i
(Dais (e r(a).wnfa)). G220
= (Dadl(a®, () (@), G2 ) ) =0
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Ows
The expression fo<D3A22, D > is analogous to that fo<D2A11,

G

3 > It suffices to replace; by w, andy; by ys. The first derivative with
Qg

respect tay; is obtained by replacing, in the previous formutagby as.

Remark 3.3ltis clear from (3.7) that the complexity grows rapidly with the
order of differentiation. Fortunately, as will be shown in the next section,
the computational procedures need not be programmed by hand, but instead
be obtained by automatic differentiation.

4. Numerical approximation

Let V}, be a finite element subspace Bf., (Y), made of piecewise poly-
nomial functions of degreds. Discrete versions of; and y;, that we
will denote byw;y, x;n are defined as unique solutionslif to problems

k1+ko
(2.5)-(2.6) restricted t®},. Moreover, discrete versior(sﬁ) and
0oyt Darg?
1 2 h

8’“*’“2)@ . . . .-

———. | canbe defined by induction restricting problems (3.3)-(3.4)
0oy Oary?

to V}, and replacing exact derivatives in the right-hand side by their discrete

versions. The same is done witti, ©* and their derivatives, every time

w;, x; Or their derivatives appear in their expressions, they are replaced by

k1+ka g* k1 4k oy
their discrete versions. Let;,©; and (6 o f;) , <8 7 @k )
Oay* 0oy Oay' Oay?
be the numerically obtained coefficients and their derivatives. Finally let
TA* andT@* be the discrete version of the Taylor expansions (3.1)-(3.2).
The systematic replacement of each exact quantity by its discrete version
throughout the process makes the following proposition hold:

Proposition 4.1 For k1, ko two nonnegative integers such thatt ko < m,
we have

41 ak1+k2wi B ak1+k2wih
(1) Dak19ak? 9 9ak?
1 2 h 1 2

k1+ko k1+ka ., .
(4.2) (8 1 ’2) = o
dar1oab ,  0ogtoay
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Moreover,
k1+k2A* akl-i-kgA*
(4.3) (M) =
Oay' Oay N 0oy Oay
k1+ko 0O* 8k1+k2@*
(4.4) (%) = s
0oy Oay N 0oy Oasy

Proof. The proof of (4.1) or (4.2) is done by induction and can be found in
[7]. (4.3) and (4.4) are an immediate consequence.

Remark 4.1Prop.4.1 implies that automatic differentiation, that provides
us with computational procedures to evaluate the right-hand sides of (4.1)-
(4.4), can indeed be used to get approximate derivatives (the left-hand sides
of (4.1)-(4.4)) without any loss in accuracy. Formula (3.7), for example,
was never programmed, and in fact it was first derived at the time of writing
down this article. Implementation issues are, thus, nonexistent.

We now establish an approximation result. In fact, itis linked to previous
results in [4] and [7], but the context is quite different.

Proposition 4.2 Let k1, ko be two given non-negative integers with +
ko < m, and assume that

al+nd 8l+nUi
0akdal " dakoay
Then, under assumption (2.9), there exists a constandependent of

h (the mesh size) such that

al—&-nwih 8l+nwi

(4.5) c HX(Y), i=1,214+n<m

(4.6) — - || <Ch~
0af0ay  Oaf0ad
l+n., . I+n.,.

(4.7) 07 "xin 077X || o o
Oaq0ay  Oaqdaly

for aq, as given andd < < k1,0 < n < k. In addition,

l+n A% l+n Ax*

4.8) (81 An> _Ol AnHSChQK
day0ay ), Oaj0ay
l+n o* l+n 0)*

(4.9) (81 9n> _8l QnHSChQK
day0ay ), Oajday

Proof. See Appendix A. O

Remark 4.2From Proposition 4.2 it is clear that the homogenized coeffi-
cients (together with their derivatives), are calculated with an accuracy order
that is twice the one attained for the local solutians ;. This is true in a
wide class of numerical homogenization problems.
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5. Numerical results

In the previous sections we have addressed most of the questions posed
in Sect. 3.1. It only remains to show that, for a practical application, the
accuracy of the Taylor expansion is high enough to permit its use instead of
the “exact” homogenized coefficient (the one obtained by solving the local
problems). This will be addressed by means of a numerical example.

For the homogenized version of the modified compressible Reynolds
equation, Eq. (2.13), itis known [9] that in practical cases the exact solution
Py(x) may vary, in normalized units, betwegrand10. The range of values
of Hy(x) depends on the actual form of the two surfaces. Again in normalized
units, a realistic range is— 10. We need thus to calculaté&*(«;, a2) and
9*(041,042) for 1 <1 <10,1 <ay <10.

We consider three cases, the transverse-roughness situation, which has
an explicit analytical solution given in [9], a general two-dimensional rough-
ness function and finally a two-dimensional discontinuous roughness func-
tion.

The local domairt” is discretized by finite elements of degr&e= 1,
and sizeh = 1/N.

Next, Taylor expansiong’;. andTj. were built, by developpement
arounda$ = 5,9 = 5, for several values of and N and for all values of
o1 andas betweenl and10 with intervals 0f0.5.. Itis clear that, a®v — oo
(h —0), TZ:L (af,ad) — A* (af, af) andTg% (af,0d) = 0% (af,al).

It is also clear that, in some neighbourhood(af, a9), T. — A* and

Tg* — ©* as bothn, N — oo. Let us investigate the actual accuracy of
these approximations. For this purpose, we define

(5.1)
SUP1 <0y 02 <10 ‘T,Z;; (a1, a2) — A* (a1, a2)

ERROR(n,N,A") =
(n, N, A7) SUP1<ar,a2<10 | A* (o1, )

(5.2)

SUP1 <0y ap<10 | T6: (@1, 02) — O (a1, a2)

E N, O") =
RROR(n, N, 0% SUP1§a1,a2§10|9* (a1, a2

where we have takefV/| = sup; ; |M;;| as norm for matrices, and the
euclidian norm for vectors.
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Table 1. Errors between exact and Taylor’s expansion of the homogenized coefficients in
the transverse roughness case

a. Homogenized diffusion matrix

ERROR(n,N,A*) N=5 N =10 N =20 N =40
n=0 0.9197712 0.9197712 0.9197712 0.9197712
n=2 0.2831131 0.2831124 0.2831124 0.2831124
n=3 0.0566187 0.0566187 0.0566187 0.0566187
n=4 5.570 x 107° 4.648 x 107° 4.648 x 107> 4.648 x 10~°

b. Homogenized convection vector

ERROR(n,N,0") N=5 N =10 N =20 N =40
n=20 0.5052175 0.5052175 0.5052143 0.5052143
n=1 1.699 x 1072 1.700 x 1072 1.700 x 1072 1 x 700.10™2
n=2 1.305 x 1072 1.309 x 1072 1.309 x 1072 1 x 309.102
n=3 9.821 x 1072 9.886 x 1073 9.886 x 1072 9 x 886.1073
n=4 7.710 x 1073 7.788 x 1072 7.788 x 10™® 7 x 788.1073

5.1. Transverse roughness

The roughness functiof; depends only og;and the homogenized coef-
ficients are expressed by ( see [9]):

1

fl dyy
O (o1 + Hi(y1))*((a1 + Hi(y1))az + A)

Al (a1, a2) =

AMmaﬂ—AIu+mwmwm+Hmmemmm

I dy1
(5.3) O%(ar, az) — — 1+ H1<y1>><(c3yl+ Hy (y1))oz + N)

1
b o H ) ( + B ))as 0
Afy(ar, a2) = A5y (o, a) = O3 (a1, a2) =0

ChoosingH (y1) = sin(27y;) ( see Fig 1a) it easy to calculate (with
Mathematica) exact expressions 6t and©*. These are compared with
the numerically obtained values (more precisely, with the values of the nu-
merically obtained Taylor expansions aroufad, o) = (5,5) ) in Tables
la and 1b.

From Tables 1a and 1b one can remark the following:

1. The accuracy of the Taylor expansions seems to depend only on the order
of expansiom. More precisely, for a given value afthe relative error
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between the exact solution and the approximate one levels off around
N = 10. This tells us that, to reduce the error, it is better to increase the
order of the Taylor expansion than to refine the mesH.in

2. There is a jump of the error of* (resp@*) fromn = 3 (resp.n = 0)
ton = 4 (resp.n = 1). The dominant terms in the expansions4f
(resp©*) are thus those of order < 4 (resp.n < 1).

3. ltis clear that, fon. = 4 we have already an extremely accurate approx-
imation. In fact, considering that there is an incertainty in the values of
the physical data, even= 3 would be acceptable.

5.2. Two-dimensional surface roughness

The need of efficient numerical methods is most evident when the roughness
function H; (y) is two-dimensional, we have chosen the following reference
function

(5.4)
-1
[ sewEen (< (@ - - b2 - 08— 9 )
Hy(y1,y2) = if a® > (1) — 5%+ (19 — 3)°
0 otherwise

To introduce a surface roughness orientation we consider the following
mapping:

y1 = cos® -y + sin 6.99

(5.5) {y2 = (—sinf - y{ + cos6.49) /v

from which we deduce the roughness function:
Hi(yi,y2) = H?(cos Oy1 — sinBys , sin Oy, + cos Oyo)

So that the roughness corresponds, roughly speaking, to elliptic bumps
of orientationf and amplitudes. Let us select = 0.5, a = 0.6, v = 4,
6 = 7 /3. The form of the roughness function can be seen in Fig. 1b. Itis a
nontrivial case, as in fact the amplitude of the bumps is half the minimum
air gap considered.

Since no exact solution in closed form exists, a reference calculation was
carried out withV = 100, evaluatingA* and©* for all values ofa; and
oo betweenl and10 with intervals of0.5. The cost of this calculations is
enormous361 different10000 x 10000-matrix are to be built and factorized,
each one solved f&different right-hand sides. Its results will be considered
“exact” values in what follows. Graphs &f}; (a1, a2) andOj (a1, az) can
be seenin Fig. 2.
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b

Fig. 2a,b.Behaviour of the homogenized coefficieraBehaviour ofA7;. b Behaviour of
CH

One gets approximately the same errors as in the transverse case ( see
Tables 2a and 2b, to be compared to Tables 1a and 1b, respectively). The
same remarks as in Subsect. 5.1 apply. To give an idea of the accuracy of
the Taylor expansion we plot in Fig. 3 the valuedif, as function oy, for
ay = 10. Also plotted are the Taylor expansioA$, (n) up to ordem = 4.

It is clear that the approximation is excellent, even far away ftom).

Remark 5.1Let us remark that, for the calculation of the Taylor expansions,
only one matrix was assembled and factorized once and for all.. Depending
on n, this matrix was then solved f& (n =0),9(n=1), 18(n = 2),
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Table 2. Errors between exact and Taylor’s expansion of the homogenized coefficients in
the two-dimensional continuous surface roughness case

a. Homogenized diffusion matrix

ERROR(n,N,A*) N =5 N=10 N =20 N =40
n=20 0.92170506  0.92174278  0.921744 0.921744
n=1 0.65093702  0.65107469  0.651080 0.651079
n=2 0.28711604  0.2872245 0.287225 0.287226
n=3 0.0577645 0.057884 0.057872 0.057886
n=4 2.864 x 107% 1.109 x 107° 1.219 x 107% 1.19 x 1076

b. Homogenized convection vector

ERROR(n,N,0*) N=5 N =10 N =20 N =40
n=0 0.5035976 0.5036178 0.5036195 0.5036198
n=1 2.156 x 1072 2.132x 1072 2.130 x 107% 2.129 x 1073
n=2 1.793 x 1073 1.764 x 1073 1.762 x 10~ 1.761 x 102
n=3 1.477 x 1073 1.446 x 1073 1.443 x 1073 1.442 x 1073
n=4 1.232 x 1073 1.200 x 1072 1.196 x 1073 1.196 x 1073
12000
10000 |- | A*11(0)
---- A*11(1)
——- A*11(2)
—-— A*11(3)

8000 -

Exact Solution

6000

4000

2000

—-2000 L L L .
0 2 4 6 8 10

Fig. 3. Accuracy of Taylor expansiod; (n) with respect tax; with a2 = 10. The curve
of the 4-th order expansion is not visible because it coincides (within resolution accuracy)
with the exact solution

30 (n = 3) or 45 (n = 4) different right-hand sides. The comparative effi-
ciency with respect to solving local problems for numerous values ahd
as (each involving a new matrix) is evident.
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Table 3. Errors between exact and Taylor’s expansion of the homogenized coefficients in
the two-dimensional discontinuous surface roughness case

a. Homogenized diffusion matrix

ERROR(n,N,A*) N =20 N =230 N =40 N =50
n=0 0.917014 0.917027 0.917035 0.917035
n=1 0.638754 0.638789 0.638812 0.638811
n=2 0.275704 0.275750 0.275781 0.275780
n=3 0.053911 .053956 0.053988 0.053987
n=4 735 x 107° 276 x 107° 3.65 x 107 2.52 x 107

b. Homogenized convection vector

ERROR(n,N,0*) N =20 N =30 N =40 N =50
n=0 0.492260 0.492288 0.492306 0.492306
n=1 353 x 1072 3.48x 1073 3.45x 107 3.45x 1073
n=2 2.72x 1072 2.65x 1072 2.62x 1072 2.62 x 1073
n=3 2.06x 1072 1.98x 1072 1.94x 1073 1.94 x 1073
n=4 1.60 x 1073 1.51 x 1072 1.47x 1073 1.47 x 1073

5.3. Two-dimensional discontinuous surface roughness

We will end up by showing that the accuracy of the Taylor expansions does
not depend on the regularity of the roughness function with respect to the
spatial variableg, y». For this we choose a quite limit case, namely the
following discontinuous function (see Fig 1c):

B if |cosf-y; —sinb -, 2|
Hiyi + 3,92+ 5) = <aand|sing-yi +cosf -y <a
0 otherwise

with 3 = 0.5 andf = /3.

Considering the same errors given by (5.1)-(5.2) we obtain the results
listed in Tables 3a and 3b. It is observed that the remarks in Subsect. 5.1
indeed apply, with the exception that the error now level offVat- 40.
Non-smooth roughness functions thus require finer meshes, but not higher
order expansions.

6. Discussion

The previous sections have shown that accurate Taylor expansions for ho-
mogenization problems can indeed be calculated. The impact on the CPU
cost of calculating local homogenized coefficients is evident. Only one ma-

trix is to be assembled and factorized, and once the Taylor expansion is
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known the solution of local problems is replaced by the simple evaluation
of a polynomial expression. By the way, it has been shown that fourth or-
der Taylor expansions are extremely accurate for the homogenization of
the modified compressible Reynolds equation. Thus, rigorous homogenized
coefficients can be evaluated at very low cost, and there is no need to ap-
proximate them by heuristic formulae.

We should remark, however, that the concepts introduced above have
wider, and perhaps more relevant applications. We will discuss two of them:
They allow for the implementation of Newton-Raphson iterative methods
in nonlinear homogenization, and they open the way towards systematic
analysis of optimization and inverse problems.

6.1. Newton-Raphson iterations

Let us consider the homogenized nonlinear system (2.13). For its discretiza-
tion, a finite-dimensional spad&),, C H'({2) is introduced. We set

WP ={ph e Wn/ pupo =1}
and
Wi ={pn € Wi,/ ppjon =0}
The discrete version of (2.13) thus reads: “Figl € W;” such that
(6.1) F(Pon,qn) =0 Vap € Wy
where
F(Pon, qn) = /Q[A*(Ho(x), Porn(x))V Por-Vap
— APy (z)O* (Ho(x), Pon(x)).Vap|dx
A Newton-Raphson iteration to solve (6.1) thus reads

1. Let P, be given inW”

2. Find 6" € W} satisfying the linear system
DiF (B, qn) 6" = —F (P qn)  Van € W;?
3. SetPyt! = Py + 6™ and go back to 1.

(6.2)

whereD, F' is the derivative of” with respect tavy (= Py(z)) and is given
by
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DF (P qr) 8" = / A* (Ho(z), Py () V6" Vqyda

A / 5" (Ho(), Bl (1)) Vandz

/5 8a2 (z), Pop,(w)) VPop,-Van
Tlae* n

The matrix involvedin (6.2), i{gp is a (e.qg. finite-element) basis

of W, is

I}[:I,N

My = / [A*Vgol.ch‘] — A@*cp‘]VgoI] dx
(9}

g OA* 00*
P — AP o7 Vol
+/Q [@ aF, VP, V! 0hP ar, V@]

so that the derivatives od* and©* with respect taF, are needed. At this
point, if one has already constructed the Taylor expansion§*@&nd©o*,
one can simply differentiate them with respect to the second varlaplle(

(3.1) and (3.2)) and in that way obtain the Taylor expansmngg# and
00*
0Py’
Remark 6.1Some readers may prefer calculaté and©@* for each value
of Hy(x) and Fjj, (x) by solving local problems instead of following the
Taylor-expansion procedure we propose. That could be the case in massively
parallel computers, as local problems are easily solved in parallel. In such a
A* *

framework, the calculation o% an

W LN e, 2" om,

the same procedures presented in Subsect. 3.2 to calculate first derivatives of
the coefficients with respectt@. Thisis clear from the fact that the Newton-
Raphson method is based upon a first-order Taylor expansion afgjjind

6.2. Optimal design and inverse problems

In much the same way as the ability to differentiate the homogenized coeffi-
cients allows for the evaluation of Newton-Raphson matrices, it is possible
to use them in optimal design problems. An immediate application, in the
specific problem considered, is the determination of an optimal shape of the
surface to surface gafiy(x). More generally, as the procedures described
apply to any parameter that enters the local problems, it is not difficult to
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attack the optimization of other local quantities, such as the orientation or
shape of the inhomogeneities.. As details concerning this would need addi-
tional notation and numerous formulae, we will just provide an outline of
the key facts below.

Equation (2.7), or more generally equation (2.11), lead after homoge-
nization to problems of the form

(6.3) —V. (A*Vu) + V. (0%u) = f*

where the coefficientd* , ©* and f* depend on the properties of inhomo-
geneities and, possibly, on the solution itself. Optimal design ( or inverse)
problems for (6.3 ) thus enter within the framework of optimization with
respectto the coefficients of a partial differential equation (also called “opti-
mization with respect to material parameters”) of which several applications
can be found, e.g., in [1]. The only difference is thit, ©* and f* are not
explicit functions of the shape and properties of inhomogeneities, but are
implicitly defined through a local problem. However, as shown previously,
this does not preclude their evaluation or differentiation, so that optimization
techniques can indeed be applied.

7. Conclusions

In this article, it has been shown how to differentiate homogenized coef-
ficients, defined by means of local problems, with respect to parameters
involved in the differential operators of the local problems. An immediate
application of this is the construction of Taylor expansions that, when ac-
curate enough, significantly reduce the cost of the solution of nonuniform
and/or nonlinear problems. In fact, it was shown that, for a technologi-
cally relevant lubrication problem, a fourth order Taylor formulae is very
accurate, and thus that after the expansion is built, local problems can be
replaced by the inexpensive evaluation of polynomials of degree four. As a
by-product, Newton-Raphson iteration matrices are obtained that improve
nonlinear convergence.

In a more general setting, the two-scale theory of optimal design is of
wide applicability to two-scale problems, in particular in what concerns the
determination of optimal characteristics of the inhomogeneities with respect
to globally defined criteria. The differentiation procedures presented in this
article allow for immediate application of optimal design techniques in an
homogenization framework, a line of research that has been little explored.
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A. Proof of Proposition 4.2

We will use a continuous projection (or interpolation) operatpr V. — V,
satisfying

(A1) |mhw — w|| < Crh® Yw e VN HEYY)

Let/ be a nonnegative integet & 1), W, = V! andW,;, = V| and
consider the following block-triangular bilinear form definedidfx

l 7
(A2) AW 0%, (6,62 €)= 303 by (0, )

i=1 j=1

whereb;; (1 < i < 1,1 < j < i) are bilinear forms defined ol and
satisfying the following:
There exists positive constants;, §; such that

(A.3) [ij (0, )| < Bij el lwll - ¥ (p,w) €V XV

(A.4) bi(p, ) > dilloll? VYeeV

We have the following lemma.
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LemmaA.l Letu,y € (HK“(Y))Z C W, and definey, andx;, € W,
by

(A.5) Alu —up, &) =0 VE e Wiy
(A.6) Alv,x —xn) =0 Vv e Wy,
Then there exists a positive constahsuch that
(A7) lu = wnlly, < CR®
(A.8) Ix = Xallw, < CR®

Proof. We begin by the proof of (A.7). It suffices to prove by induction that
(A.9) lensll = |lu’ —uj]| < CRE for1<i<l.
By setting¢ = (¢, 0, ...,0) in equation (A.5) we obtain
bu(u' —u,eHy=0 Vel ey,

and the desired estimate fbr= 1 is classical. Suppose now that (A.9) is
valid fori = 1,...,j — 1 (j < ). By taking, in equation (A.5)% such that
& =0fori # jandg? € V), we obtain

J
(A.10) Zbﬂ —ub =0 Ve,

Using Eq. (A.10), the continuity df;; (A.3), the strong coercivity df;;
(A.4) and (A.1) we obtain the following:

2
lenill” < <bjj (en: en.;)

Sl QO"‘ —

1
b (eng, v —mn (v!)) + 5. 0ii (en,js Then,;)
J
-1

> bji (eny, mhen,i)

i=1

{ﬁJJhK + Bji Z len,; }

7=0

1
enjll W™ + —

C’ﬂ_IB.,
S 6 7] H 5
J J

Now from the induction hypothesis we obtdjs;, ;|| < Ch¥ and the
proof of (A.7) is complete.

The proof of (A.8) is analogous, but in this case the induction is made in
the opposite sense; i.e., the proof begins by showing|tat /|| < Ch*
(this is done taking, in (A.6)y! = v2 = ... = /=1 = 0 ando! € V},
arbitrary). O
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Remark A.1lLemma A.1 can be generalized to the case where, instead of
the strong coercivity (2.4), we have the weak discrete coercivities

bii (0, 1)

inf sup ———=+ >,

eeVipev;, el ol =
b

inf sup — (, ) > 0;

veVigev;, [l 1]l
but the proof is of course different.

Lemma A.2 LetF : W; — R be aC?—function and assume that, for some
u € (HK“(Y))Z C Wy, J = DF(u) is such that the solutiog of

(A.11) A(v, x) = J(v) Yv e W;

belongs to HX+1(Y"))', whereA is as in Lemma A.Me definey, € W},
by

(A.lZ) A(u — uh,f) =0 Vf ewy,
Then
(A.13) |F(u) — F(up)| < Ch*

Proof. SinceF is of classC?, there exists a positive constansuch that
|F(u) = F(up)| < 1T (u—up)| + cllu—up|fy,
Let x;, be a discrete solution to problem (A.11). Then we have
Alv,x =xn) =0 Vv e Wy,
From Lemma A.1, we get

lw = unlly, < Ch"

I = xnllw, < Ch"

Now from (A.11) and (A.12) we have

< C.lu—uplly, Ix = xnllw,
< Ch2K O
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Proof of Proposition 4.2We will sketch the proof of the “scalar” case,
namely whem € R. No additional difficulty is posed by € R2. Let us
come back to the generic form (2.11).F@rnonnegative integex(m) The
i-th (i < 1) order derivative ot and of its discrete approximatiaf, at o
are given, respectively, by

iz = 9=b &z
0. 0
e i) = (o) - Zo< ) 5 (57)
(A.14) YveV
&z — 9=b &z
0. 0
o= (Gh) £ () (052
(A.15) Vv eV,
&b . .
Whereﬁ are defined in (3.5).
Letey, ; be the error in theé-th order derivative
Oz Oz, .
;= - — — =1,2,..
€hi dat ot 1 ) Ly 7l

Consider the following bilinear form i/, ; (we omit the parameter,
that is fixeda = o),

A((vh 0%, L€l

+1 i, i
P =Y (1)) G i€

i=1 j=1

also, letL : W;;1 — R be defined by

41 o f
1 2 +1\ __ 7
AN SR >Z<aa~5>

i=1

l
We have thus, from (A.14)-(A.15), and by setting-= (z, gz g ZZ)
o
0 8
€ Wiy anduy, = (zp, ﬁ Z;L) € Wigin:
da’ 7 D
A(u, &) = L(§) V& € Wit
A(up, &) = L(§)  VEE€ Wip

and thus

Alu —up,§) =0  VEe Wi
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Moreover the bilinear formd is of the form given in (A.2) with

0" Ib
b”((,D,W) = m(gpﬂ’)) V(QO,CU) eV xV

As the periodicity assumption precludes any singularity coming from the
domain shape, from (A.14) and (4.5) we hagtei € HX+1(Y), and then
Oél

uw € Wip N (lﬂj’f’“rl(Y))lJrl . The hypotheses of continuity and coercivity
(A.3) and (A.4) follow from (3.6) and (2.4). Thus all hypotheses of Lemma
A.1 are satisfied and we have:

0z _ 0z,
oot  Oal

Let us now show (4.8)-(4.9). Notice that, from hypothesis (2.9) and for
o fixed, A* and©* and all of their derivatives of order up fo= m — 2,
arein fa~ctC2 —functions defined oMV, ; (thek — th order derivatives of
A* and®* depend on the derivatives of andy; up to the ordek). Thus
we get the error estimation (4.8) and (4.9)Ari and©* and all of their
derivatives from Lemma A.2. 0O

<ChE  i=1,2,..1




