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Summary. We develop the general a priori error analysis of residual-free
bubble finite element approximations to non-self-adjoint elliptic problems
of the form (εA + C)u = f subject to homogeneous Dirichlet bound-
ary condition, whereA is a symmetric second-order elliptic operator,C is
a skew-symmetric first-order differential operator, andε is a positive pa-
rameter. Optimal-order error bounds are derived in various norms, using
piecewise polynomial finite elements of degreek ≥ 1.

Mathematics Subject Classification (1991):65N30

1. Introduction

Although the paper deals with a slightly more general case, let us consider
here, for simplicity, the following model problem: findu ∈ H1

0 (Ω) such
that

−ε∆u+ ux = f in Ω,(1.1)
whereΩ is a bounded polygonal domain in the plane,f is given inL2(Ω),
andε > 0 is very small compared with the diameter ofΩ, so that (1.1)
is advection-dominated. Let{Th}h be a sequence of partitions ofΩ into
trianglesT , let k ≥ 1 be an integer, and consider the finite element space

Wh ≡ W k
h (Th, Ω) = {v ∈ H1

0 (Ω) : v|T ∈ Pk|T for eachT in Th}.(1.2)

Hereh is a positive discretisation parameter which measures the granularity
of the partitionTh, andPk|T denotes the space of polynomials of degree
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≤ k onT . The usual Galerkin finite element approximation to (1.1) is thenfind uG
h ∈ Wh such that∫

Ω(ε∇uG
h · ∇v + uG

h xv)dx =
∫
Ω fvdx ∀v ∈ Wh.

(1.3)

It is well known that, wheneverε/h << 1, this method is unstable, which
manifests itself in large maximum-principle-violating oscillations in the nu-
merical solution. Among several possible remedies for this undesirable fea-
ture of the usual Galerkin approximation, the SUPG method ([7,15]) has
attracted considerable attention over the last decade, primarily because of
its attractive combination of structural simplicity, generality and the quality
of the resulting numerical solution. For problem (1.1) the SUPG method
reads 

find uS
h ∈ Wh such that∫

Ω
(ε∇uS

h · ∇v + uS
h,xv)dx− S(uS

h, v)

=
∫

Ω
fvdx ∀v ∈ Wh,

whereS(uS
h, v) =

∑
T

τT

∫
T
(−ε∆uS

h

+uS
h,x − f)(−ε∆v − vx)dx,

(1.4)

andτT is a parameter which needs to be chosen suitably. Reasonable rules
of thumb for the choice ofτT can be found, for instance, in [9] and the
references therein; the corresponding error analysis (for model problems
like (1.1)) is given in [14].

In recent years, the SUPG method has been frequently viewed in a more
general context (see, e.g., [1,2] and the references therein), and appropriate
choices for the value ofτT (or, more generally, for a suitable form of the
stabilizing term to be added to (1.3)) found a different, and philosophically
more appealing, justification.

For the particular case of piecewise linear elements, for instance, it was
shown that SUPG can be also derived by the so-calledresidual-free bubble
approach (RFB from now on; see [6, 10, 16]) as well as by thelocal Green’s
functionapproach ([12, 13]). The connections between these two approaches
were clarified in [2]: both strategies lead precisely to (1.4), with a very
specific value forτT which can be, therefore, considered as optimal, at least
from the theoretical point of view.

Since fork = 1 the SUPG method and the RFB approach (or its equiv-
alent local Green’s function counterpart) yield the same scheme, the results
of [14] can be used for the error analysis. However, as it was shown in [4],
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an analysis based on the residual-free bubble framework can arrive at the
same results by means of a completely different procedure, casting a new
light on the basic underlying features of the new methodology.

In contrast with the case ofk = 1, for k > 1 the RFB approach produces
a stabilizing term similar but not identical to that of (1.4). As a matter of
fact, fork > 1, (1.4) may be obtained by suitablevirtual bubbles (see [1])
– an approach which does not follow from the RFB methodology.

The objective of this paper is then to perform the error analysis of the
residual-free bubble method for the case ofk > 1. This can be seen, in a
sense, as an extension of [4], although the techniques of error analysis pre-
sented here are quite different and, to the best of our knowledge, completely
new in this context. They are based on sharp interpolation results in certain
Besov spaces of differential order1/2 which do not coincide with the usual

Hilbertian Sobolev spacesH1/2 orH1/2
00 .

The outline of the paper is as follows. In Sect. 2 we present our model
problem, and we recall the basic features of the RFB method applied to it.
In Sect. 3 we recall the definitions of the Besov spaces mentioned above
and we prove some simple properties of these which will be used in the
subsequent analysis. Finally, the error analysis is presented in Sect. 4.

Numerical experiments to compare the relative performances of SUPG
and RFB for values ofk > 1 would be very interesting but are beyond the
scope of this paper and are not discussed here.

2. Statement of the problem

Suppose thatΩ is a bounded polyhedral domain inR
n and letL be a second-

order linear differential operator of the form

L = εA+ C,(2.1)

whereA andC are defined, forw,say, inH1(Ω), by

Aw ≡ −
n∑

i,j=1

∂

∂xj

(
aij(x)

∂w

∂xi

)
, Cw ≡

n∑
i=1

ci(x)
∂w

∂xi
.

We assume that, for almost everyx in Ω, the n × n matrix (aij(x)) is
symmetric and positive definite, with smallest eigenvalue≥ α > 0 and
largest eigenvalue≤ 1, independent ofx. In a sense, we arenormalizingthe
operatorA in the productεA. To the operatorA we assign the bilinear form

a(w, v) =
∫

Ω

n∑
i,j=1

aij(x)
∂w

∂xi

∂v

∂xj
dx, w, v ∈ H1(Ω).(2.2)
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With the above assumptionsA is a symmetric operator fromH1
0 (Ω) into

H−1(Ω) verifying

a(w, v) = 〈Aw, v〉 = 〈w,Av〉 ∀w, v ∈ V,(2.3)

where, from now on,

V = H1
0 (Ω), V ′ = H−1(Ω),

equipped with respective norms‖·‖H1(Ω) and‖·‖H−1(Ω), and〈·, ·〉 denotes
the duality pairing betweenV andV ′. Moreover, the bilinear forma(·, ·) is
V -elliptic andnormalised to1, that is,

α|v|2H1(Ω) ≤ a(v, v) ∀v ∈ V,(2.4)

a(v, w) ≤ |v|H1(Ω)|w|H1(Ω) ∀v, w ∈ V,(2.5)

where| · |H1(Ω) is the seminorm ofV = H1
0 (Ω).

Similarly, we assume that, for almost everyx in Ω, then-component
vector(ci(x)) has Euclidean norm≤ γ, independent ofx, and we introduce
the bilinear formc(·, ·), defined by

c(w, v) =
∫

Ω

n∑
i=1

ci(x)
∂w

∂xi
vdx, w ∈ H1(Ω), v ∈ L2(Ω).(2.6)

As a consequence, we have

c(w, v) = (Cw, v) ∀w ∈ H1(Ω), ∀v ∈ L2(Ω),(2.7)

where(·, ·) signifies the inner product inL2(Ω). Our hypotheses imply that

|c(w, v)| ≤ γ|w|H1(Ω)‖v‖L2(Ω) ∀w ∈ H1(Ω), ∀v ∈ L2(Ω),(2.8)

where‖ · ‖L2(Ω) is the norm ofL2(Ω). We make the additional assumption
that the bilinear formc(·, ·) is skew-symmetric onV ; namely,

c(w, v) = −c(v, w) = (Cw, v) = −(w,Cv) ∀w, v ∈ V.(2.9)

This can be ensured by requiring that the vector fieldc = (c1, . . . , cn) is
divergence-free onΩ in the sense of distributions.

Forf given inL2(Ω), say, we consider the boundary value problem{
Lu = f in Ω,
u = 0 on∂Ω.

(2.10)

Let L(·, ·) be the bilinear form onV × V associated with the operatorL,
namely,

L(w, v) = εa(w, v) + c(w, v) ∀w, v ∈ V.(2.11)
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We consider the variational form of (2.10):{
find u ∈ V such that
L(u, v) = (f, v) ∀v ∈ V.

(2.12)

Applying (2.11), (2.4) and (2.9), it is easy to check that

αε|v|2H1(Ω) ≤ L(v, v) ∀v ∈ V.(2.13)

By virtue of (2.13) and the Lax-Milgram lemma, (2.12) has a unique solution
in V .

Next we formulate the RFB-approximation of (2.12). Suppose that we are
given a shape-regular family of partitions{Th}h ofΩ into openn-simplices
T (referred to aselements), and an integerk ≥ 1. We recall that{Th}h is
said to be a shape-regular family if there exists a fixed positive constantµ
such that, for eachTh and eachT ∈ Th,

hT

ρT
≤ µ,(2.14)

wherehT denotes the diameter of then-simplexT (i.e. its longest edge),
andρT is the diameter of the largest ball inscribed inT . We set

Vh ≡ V k
h (Th, Ω)={v ∈ V : v|e ∈ Pk|e for each(n− 1)-dimensional

facee of any elementT in the partitionTh}.(2.15)

HerePk|e denotes the set of all polynomials in(n− 1) variables of degree
≤ k on the face (or edge forn = 2) e. The discrete counterpart of (2.12) is
then {

find uh ∈ Vh such that
L(uh, vh) = (f, vh) ∀vh ∈ Vh.

(2.16)

Notice thatVh is not the usual finite element space of continuous piece-
wise polynomial functions (that would be the spaceWh defined in (1.2)),
but can be thought of as being obtained by supplementingWh by the space
of all functions inH1

0 (T ), for all T in Th. More precisely,

Vh = Wh +Bh,(2.17)

where
Bh =

⊕
T∈Th

H1
0 (T ).(2.18)

In particular,Vh is not finite-dimensional. In the following discussion
we shall show that problem (2.16) is equivalent to a finite-dimensional one.
However, working on formulation (2.16) makes the analysis simpler. For
instance we can immediately point out that, for everyT ∈ Th, and for every
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ϕ ∈ C∞
0 (T ), it is possible to constructvh ∈ Vh by selectingvh = ϕ in T ,

andvh identically zero outsideT . Consequently, from (2.16), we conclude
easily that

Luh = f in eachT in Th,(2.19)

which is the property that justifies the nameresidual-free.
In the remaining part of this Section we shall analyse (2.16) from the

point of view of the possible computational techniques. In doing so, we shall
also clarify its relationships with the SUPG-method.

We start the analysis with the following considerations, typical of the
RFB-approach (see, e.g., [2]). The solutionuh of (2.19) is a polynomial of
degreek on eache of ∂T (see (2.15)). Letpk be a polynomial of degree≤ k
in T having the same boundary value (on∂T ) asuh. Such a polynomial is
not unique fork > n, but this is not essential. Then,

uh = pk + ub,(2.20)

whereub ∈ H1
0 (T ) and, using (2.19), solves

LTub = −Lpk + f in eachT in Th.(2.21)

whereLT : H1
0 (T ) → H−1(T ) denotes the restriction of the operatorL

to T ; namely,LTw = Lw for all w ∈ H1
0 (T ), T ∈ Th. Notice thatLT is

injective, so that (2.21) can be written as

ub = L−1
T (−Lpk + f) in eachT in Th.(2.22)

Assume now thatf is a piecewise polynomial of degree≤ (k − 1), andA
andC have piecewise constant coefficients. Then, in eachT , the right-hand
side of (2.21) is a polynomial of degree≤ (k−1), and consequentlyub must
belong to the subspaceB(T ) ofH1

0 (T ) made up of all possible solutions of
LTub = g wheng ranges throughPk−1, that is,

B(T ) = {vb ∈ H1
0 (T ) : Lvb ∈ Pk−1(T )}.(2.23)

ClearlyB(T ) is a finite-dimensional space, and its dimension is bounded
by (

k − 1 + n
n

)
.

Finally, from (2.20) we deduce that, for allT , uh|T belongs toPk +B(T ),
so thatuh belongs to the spacẽVh defined as

Ṽh = Wh ⊕ B̃h,

where
B̃h =

⊕
T∈Th

B(T ).



Residual-free bubbles for advection-diffusion 37

andB(T ) is still given by (2.23). In particular,uh will coincide with the
unique solutioñuh of the problem{

find ũh ∈ Ṽh such that
L(ũh, v) = (f, v) ∀v ∈ Ṽh.

(2.24)

As problem (2.24) is clearly finite-dimensional, we can see that (2.16) is
equivalent to a finite-dimensional problem. For lowk, a set of basis functions
for B(T ) can be computed approximately, at a reasonable cost, at least
for ε << hT , wherehT = diam(T ) (see [6, 10, 3, 5, 2, 11]for various
developments of this idea). The elements ofB(T ) are referred to as residual-
free bubbles. A possible variant of (2.24), although not equivalent to (2.16),
is to chooseB(T ), on each elementT , as a finite dimensional subspace of
H1

0 (T ) such thatB(T ) ∩ Pk = {0}, the selection ofB(T ) being guided
by the desire to resolve features of the analytical solution which could not
otherwise be captured by seeking a numerical solution from the classical
finite element spaceWh. In fact, such an enhancement ofWh achieves more
than merely improving the ‘resolution of fine scales’, as we shall now show
by investigating the relationships of (2.16) with the SUPG approach.

Going back to the splitting (2.17), we can decomposeuh as

uh = uk + ub, uk ∈ Wh, ub ∈ Bh.(2.25)

We observe at this point thatVh is not a direct sum ofWh andBh, and
therefore the decomposition (2.25) ofuh is non-unique. In practice, this
conceptual difficulty does not arise, since, as already pointed out, instead
of operating on the whole ofVh one would be computing on its finite-
dimensional subspacẽVh. On inserting the decomposition (2.25) into (2.16),
and choosingvh = vk ∈ Wh andvh = vb ∈ Bh, we obtain, respectively,

L(uk, vk) + L(ub, vk) = (f, vk) ∀vk ∈ Wh,(2.26)

L(uk, vb) + L(ub, vb) = (f, vb) ∀vb ∈ Bh.(2.27)

As w = vb|T ∈ H1
0 (T ) for eachT in Th, after integration by parts (2.27)

can be rewritten in the form

(Lub, w)T = (f − Luk, w)T ∀w ∈ H1
0 (T ), T ∈ Th.(2.28)

As we already saw in (2.22), equation (2.28) implies that

ub = L−1
T (f − Luk).

Substituting this into (2.26) and recalling from (2.1) thatL = C + εA, we
find that

L(uk, vk) +
∑

T∈Th

(
L−1

T (C + εA)uk, (C − εA)vk

)
T

= (f, vk) +
∑
T

(
L−1

T f, (C − εA)vk

)
T

∀vk ∈ Wh.(2.29)
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Now, (2.29) can be viewed as a stabilised finite element approximation of the
convection-diffusion problem (2.12) over the standard finite element space
Wh. A particularly simple case is whenk = 1; thenAuk = 0 andAvk = 0
for eachvk ∈ Wk. Moreover, iff and the coefficients ofC are piecewise
constant, the spaceB(T ), defined in (2.23), has dimension one. Therefore
(2.29) reduces to the SUPG method; see [4] for further details.

3. The functional analytic setting

In this section we introduce the function spaces and norms which will be
used below in the error analysis. LetT be an element inTh and lethT denote
the diameter ofT . We recall the definitions of some Besov spaces onT ; of
course, these definitions still hold more generally when the elementT is
replaced by a bounded open set with, say, Lipschitz-continuous boundary.
In tandem with the usual natural norm‖ · ‖H1(T ) we shall use inH1(T ) the
equivalent norm|[·]|H1(T ) defined by

|[v]|2H1(T ) = h−2
T ‖v‖2

L2(T ) + |v|2H1(T ).(3.1)

Forv ∈ Σ(T ) := L2(T ) +H1(T ) (≡ L2(T )) andt > 0, we set

K(t, v) = inf
v = v0 + v1

v0 ∈ L2(T ), v1 ∈ H1(T )

{‖v0‖L2(T ) + t|[v1]|H1(T )
}
.(3.2)

Similarly, for anyv ∈ Σ0(T ) := L2(T ) + H1
0 (T ) (≡ L2(T )) andt > 0,

we define

K0(t, v) = inf
v = v0 + v1

v0 ∈ L2(T ), v1 ∈ H1
0 (T )

{‖v0‖L2(T ) + t|v1|H1(T )
}
.(3.3)

Following the notation of [17] we introduce now the function spaces

X(∞, T )={v ∈ Σ0(T ) : t 7→ t−1/2K0(t, v) ∈ L∞(0,∞)},(3.4)

Y (1, T )={v ∈ Σ(T ) : t 7→ t−3/2K(t, v) ∈ L1(0,∞)},(3.5)

with respective norms‖ · ‖X(∞,T ) and‖ · ‖Y (1,T ), defined by

‖v‖X(∞,T ) = ‖t−1/2K0(·, v)‖L∞(0,∞),(3.6)

‖v‖Y (1,T ) = ‖t−3/2K(·, v)‖L1(0,∞).(3.7)

Alternatively, exploiting the interpolation functor(·, ·)θ,p, 0 < θ < 1, 1 ≤
p ≤ ∞, of theK-method of function space interpolation,X(∞, T ) and
Y (1, T ) can be identified with certain Besov spaces:

X(∞, T ) = (L2(T ), H1
0 (T ))1/2,∞ =

◦
B

1/2
2,∞(T ),

Y (1, T ) = (L2(T ), H1(T ))1/2,1 = B1/2
2,1 (T ).(3.8)
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We have the following result.

Proposition 1. Let T be an element inTh. Then, for everyv in X(∞, T )
and everyt with 0 < t < ∞, there existv0 ∈ L2(T ) andv1 ∈ H1

0 (T ) with
v = v0 + v1 such that

t−1/2‖v0‖L2(T ) + t1/2|v1|H1(T ) ≤ 2‖v‖X(∞,T ).(3.9)

Proof. The result follows immediately from (3.6) and the definition of
K0(t, v) given in (3.3).

We now consider the master element

T̂ = {x̂ = (x̂1, . . . , x̂n) ∈ R
n : x̂i > 0,

i = 1, . . . , n, x̂1 + . . .+ x̂n < 1}

and the affine transformation̂x ∈ T̂ 7→ x = Mx̂+N whereM is ann×n
matrix andN is ann× 1 column vector. Given a functionv defined onT ,
we introduce the function̂v on T̂ by v̂(x̂) = v(x). Since the partitionTh

is shape regular (c.f. (2.14)), there exist positive constantsβ1 = β1(µ) and
β2 = β2(µ) such that [8]

β1h
n/2
T ‖v̂‖

L2(T̂ ) ≤ ‖v‖L2(T ) ≤ β2h
n/2
T ‖v̂‖

L2(T̂ ), v ∈ L2(T ),(3.10)

β1h
n/2−1
T |v̂|

H1(T̂ ) ≤ |v|H1(T ) ≤ β2h
n/2−1
T |v̂|

H1(T̂ ), v ∈ H1(T ).

(3.11)

From (3.10)-(3.11) we can deduce the analogous inequalities for other
norms. In particular, we immediately have for the norm (3.1)

β1h
n/2−1
T |[v̂]|

H1(T̂ ) ≤ |[v]|H1(T ) ≤ β2h
n/2−1
T |[v̂]|

H1(T̂ ),

v ∈ H1(T ).(3.12)

Similarly, with some additional computation we can easily deduce:

β1h
(n−1)/2
T ‖v̂‖

X(∞,T̂ )

≤ ‖v‖X(∞,T ) ≤ β2h
(n−1)/2
T ‖v̂‖

X(∞,T̂ ), v ∈ X(∞, T ),(3.13)

β1h
(n−1)/2
T ‖v̂‖

Y (1,T̂ ) ≤‖v‖Y (1,T ) ≤ β2h
(n−1)/2
T ‖v̂‖

Y (1,T̂ ),

v ∈ Y (1, T ).(3.14)
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For instance, a typical crucial step is

t−1/2h
−n/2
T ‖v0‖L2(T ) + t1/2h

−n/2+1
T |v1|H1(T )

= h
(1−n)/2
T

{
t−1/2h

−1/2
T ‖v0‖L2(T ) + t1/2h

1/2
T |v1|H1(T )

}
= h

(1−n)/2
T

{
τ−1/2‖v0‖L2(T ) + τ1/2|v1|H1(T )

}
,

(3.15)

with τ = thT . Finally, denoting, as usual, by(X(∞, T ))′ the dual space of
X(∞, T ) and using the definition of dual norm we have

β1h
(n+1)/2
T ‖v̂‖(X(∞,T̂ ))′

≤ ‖v‖(X(∞,T ))′ ≤ β2h
(n+1)/2
T ‖v̂‖(X(∞,T̂ ))′ .(3.16)

Using the above inequalities, one can show that the various constants
which arise in our analysis below are independent of the diameterhT of
the elementT considered. In particular, we have the following Gagliardo–
Nirenberg type inequality.

Proposition 2. Suppose thatT is an element inTh. Then there exists a
positive constantβ0 = β0(µ), independent ofT , such that

‖v‖Y (1,T ) ≤ β0‖v‖1/2
L2(T )|[v]|

1/2
H1(T )(3.17)

for eachv in H1(T ) and eachT ∈ Th.

Proof. From (3.8), withT replaced by the master elementT̂ , we have that
Y (1, T̂ ) = (L2(T̂ ), H1

0 (T̂ ))1/2,1; thus, by Theorem 1.3.3(g) in Triebel [18],

‖v̂‖
Y (1,T̂ ) ≤ c0‖v̂‖1/2

L2(T̂ )
‖v̂‖1/2

H1(T̂ )
∀v̂ ∈ H1(T̂ ),(3.18)

wherec0 is a fixed positive constant. On returning from̂x ∈ T̂ to our original
variablex ∈ T , with v(x) = v̂(x̂), using (3.14), (3.18), (3.10)–(3.11), and
(3.1), the estimate (3.17) follows.

Now we apply a deep result from the theory of function space interpolation
due to Tartar [17].

Proposition 3. Suppose thatT is an element inTh. Then there exists a
positive constantβ0 = β(µ) (possibly different than in Proposition 2),
independent ofT , such that

‖v‖X(∞,T ) ≤ β0‖v‖Y (1,T ).(3.19)

for eachv in Y (1, T ) and eachT in Th.
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Proof. By Theorem 5 in the work of Tartar [17],Y (1, T̂ ) ⊂ X(∞, T̂ )
with continuous embedding; thus, there exists a fixed positive constantc0
(possibly different than in (3.18)), such that

‖v̂‖
X(∞,T̂ ) ≤ c0‖v̂‖Y (1,T̂ ) ∀v̂ ∈ Y (1, T̂ ).

Applying (3.14) and (3.13) we deduce (3.19), withβ0 = c0β2/β1.

We emphasise here that, as (for instance)H1(T ) ⊂ Y (1, T ), the result
of Proposition 3 implies

H1(T ) ⊂ Y (1, T ) ⊂ X(∞, T ).(3.20)

We end this section with an inverse-type inequality which will be useful
in the next section.

Proposition 4. LetT be an element inTh, and letk be a non-negative in-
teger. There exist two positive constantsβ1 = β1(µ, k), andβ2 = β2(µ, k),
independent ofT , such that, for everyw in Pk(T ),

β1h
1/2
T ‖w‖L2(T ) ≤ ‖w‖(X(∞,T ))′ ≤ β2h

1/2
T ‖w‖L2(T ).(3.21)

Proof. The proof follows easily from (3.10) and (3.16) by a standard scaling
argument (see, e.g., [8]) and exploiting the equivalence of norms onPk(T̂ ).

4. Error analysis

Now we embark on the a priori error analysis of the method (2.16). As a
first step we need the basic Lemma stated below. We shall use the notation

|||w|||2T = γT ‖w‖L2(T )|[w]|H1(T ), w ∈ H1(T ),

where

γT =

 n∑
j=1

‖cj‖2
L∞(T )

1/2

,

and we put
|||w|||2 =

∑
T

|||w|||2T , w ∈ H1(Ω).

Lemma 1. There exists a positive constantβ = β(µ), such that, for every
ψ in H1(Ω), and everyϕ in H1(Ω) satisfying

εAϕ+ Cϕ = 0 in T for everyT ∈ Th,

we have
|(ψ,Cϕ)| ≤ βε1/2|ϕ|H1(Ω)|||ψ|||.(4.1)



42 F. Brezzi et al.

Proof. Considerψ ∈ H1(Ω) andϕ ∈ H1(Ω), as in the statement of the
Lemma. Let us first show that, for everyT ∈ Th, we have

|(ψ,Cϕ)T | ≤ 2(εγT )1/2|ϕ|H1(T )‖ψ‖X(∞,T ),(4.2)

where(·, ·)T denotes the inner product ofL2(T ). Applying Proposition 1
with t = (ε/γT ) andv = ψ|T ∈ H1(T ) ⊂ X(∞, T ) (c.f. (3.20)) we
deduce the existence ofψ0 andψ1, with ψ1 ∈ H1

0 (T ) such that

ψ = ψ0 + ψ1 onT(4.3)

and (
ε

γT

)−1/2

‖ψ0‖L2(T ) +
(
ε

γT

)1/2

‖ψ1‖H1(T ) ≤ 2‖ψ‖X(∞,T ).(4.4)

Further, sinceCϕ = −εAϕ ∈ L2(T ) andψ1 ∈ H1
0 (T ), we can apply

Green’s identity to deduce that

(ψ1, Cϕ)T = −ε(ψ1, Aϕ)T = −ε
n∑

i,j=1

(
∂ψ1

∂xj
, aij

∂ϕ

∂xi

)
T

,(4.5)

and therefore, using (2.5),

|(ψ1, Cϕ)T | ≤ ε|ψ1|H1(T )|ϕ|H1(T ).(4.6)

Now, applying (4.3), (2.8), (4.6) and (4.4) we have

|(ψ,Cϕ)T | = |(ψ0, Cϕ)T + (ψ1, Cϕ)T |
≤ γT ‖ψ0‖L2(T )|ϕ|H1(T ) + ε|ψ1|H1(T )|ϕ|H1(T )

≤ (εγT )1/2

{(
ε

γT

)−1/2

‖ψ0‖L2(T )

+
(
ε

γT

)1/2

‖ψ1‖H1(T )

}
|ϕ|H1(T )(4.7)

≤ 2(εγT )1/2|ϕ|H1(T )‖ψ‖X(∞,T ),

that is, (4.2). Using (3.19) and (3.17) in (4.2), we immediately have

|(ψ,Cϕ)T | ≤ βε1/2|ϕ|H1(T )|||ψ|||T .(4.8)

Finally, summation over allT and the Cauchy-Schwarz inequality give the
result.
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We define

uI = quasi interpolant ofu ∈ H1
0 (Ω) fromWh.(4.9)

For a definition of the quasi-interpolant and the associated error analysis we
refer for instance to the recent work of Verfürth [19] and references therein.
We then set

e = u− uh,(4.10)

η = u− uI,(4.11)

and note that, from (2.19),

Le = 0 in eachT in Th.(4.12)

Moreover, from (2.12), (2.16) we have the usual Galerkin property

L(u− uh, vh) = 0 ∀vh ∈ Vh.

Thereby, using (4.10) and (4.11),

L(e, η − e) = 0.(4.13)

From the above Lemma we immediately deduce the following result.

Theorem 1. Letu anduh be the solutions of (2.12) and (2.16), respectively,
and lete andη be defined through (4.9)–(4.11). Then there exists a constant
β∗ > 0, independent ofh, α, γ andε, such that

α2ε|e|2H1(Ω) ≤ β∗
(
ε|η|2H1(Ω) + |||η|||2

)
.

Proof. Using (2.13), (4.13) and (2.11), we have that

αε|e|2H1(Ω) ≤ L(e, e) = L(e, η) = εa(e, η) + c(e, η).(4.14)

From (4.14), using (2.5) and (2.7), it follows that

αε|e|2H1(Ω) ≤ ε|η|H1(Ω)|e|H1(Ω) + |(η, Ce)|.(4.15)

Noting (4.12) and applying (4.1) withϕ = e andψ = η to the second term
on the right-hand side of (4.15), we deduce that

αε|e|2H1(Ω) ≤ ε1/2|e|H1(Ω)

{
ε1/2|η|H1(Ω) + β|||η|||

}
(4.16)

and the result easily follows.
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Remark 1.It is estimate (4.1) of Lemma 1 that led us to introducing the
rather sophisticated function spaces of the previous section. While their use
is convenient and elegant, it is unclear whether this apparatus is absolutely
necessary. Nevertheless, our attempts to base our proofs on more conven-
tional techniques were unsuccessful.

The use of the property (4.12) seems essential in order to introduce
the factorε. One would then like to be able to integrate by parts in the
term containingεAψ, in order to have only one derivative inL2 for each
variable. Unfortunately, the (finite-dimensional) space of functions which
satisfy (4.12) and are polynomials at the element interfaces depends onε, so
the boundary term with the conormal derivative which would arise through
possible integration by parts cannot be easily absorbed in a mesh dependent
H1(T )-type norm. The problem disappears if the functionψ in (4.12) is
contained inH1

0 (T ). This, however, is an unrealistic requirement in view of
its application in (4.16); in addition it would give rise to a full power ofε –
half a power more than necessary.

Hence the idea of decomposingψ into a sum of two parts, balancing
the regularity (and the vanishing on∂T ) with the required powers ofε.
This decomposition, then, naturally points in the direction of the function
spaceX(∞, T ). We recall from the theory of Besov spaces thatHs(T ) ⊂
X(∞, T ) with continuous embedding for anys strictly greater than1/2,
so that the norm inX(∞, T ) can be bounded in terms of theHs−norm.
Unfortunately, such an embedding is too crude for our purposes as it would
only provide a suboptimal error estimate. The result by Tartar allows us to
use a Besov space with a derivative index exactly equal to1/2 (somehow,
the smallest of its kind) whose norm can then be bounded by the||| · ||| norm,
thus providing an optimal error bound.

We note now that, as we have already seen in [4] for the case ofk = 1,
the norm

ε1/2|e|H1(Ω)

is stronger than it might appear at the first sight. Actually, one has the
following result.

Theorem 2. Letu anduh be the solutions of (2.12) and (2.16), respectively,
and lete = u− uh. Then,

‖Ce‖2
∗ ≤ 4ε|e|2H1(Ω),

where

‖w‖2
∗ =

∑
T

1
γT

‖w‖2
(X(∞,T ))′ .
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Proof. From (4.2) one obtains, for every smooth functionψ,

|(ψ,Ce)T | ≤ 2(εγT )1/2|e|H1(T )‖ψ‖X(∞,T ),(4.17)

which yields
‖Ce‖(X(∞,T ))′ ≤ 2(εγT )1/2|e|H1(T ),

and taking the square

‖Ce‖2
(X(∞,T ))′ ≤ 4εγT |e|2H1(T ).

Upon summation over allT in Th, this gives the desired inequality.

We note that‖ · ‖∗ can be thought of as a sort of broken norm on a space
with negative-order 1/2. Its nature is further clarified by our next result.

Lemma 2. Let T be an element inTh, and letk be a non negative inte-
ger. There exist two positive constantsβ1 = β1(µ, k), andβ2 = β2(µ, k)
independent ofT , such that,

β1‖w‖∗ ≤
(∑

T

hT

γT
‖w‖2

L2(T )

)1/2

≤ β2‖w‖∗(4.18)

for eachw in Wh.

Proof. The proof follows immediately from Proposition?? and the defini-
tion of the norm‖ · ‖∗.

We complete the error analysis by recalling from [19] the following
standard local approximation results for the quasi interpolant: there exists a
positive constantβ = β(µ, k) such that for eachTh and eachT in Th,

‖u− uI‖L2(T ) ≤ βhr+1
T |u|Hr+1(S(T )),(4.19)

|u− uI|H1(T ) ≤ βhr
T |u|Hr+1(S(T )),(4.20)

for 0 ≤ r ≤ k, wherehT = diam(T ) andS(T ) is the union of all elements
in Th whose closure intersects the closure ofT .

Theorem 3. Letu anduh be the solutions of (2.12) and (2.16), respectively.
Assuming thatu ∈ Hk+1(Ω) ∩ H1

0 (Ω), there exists a positive constant
β∗ = β∗(µ, k), independent ofh, α, γ andε, such that

ε1/2|u− uh|H1(Ω) + ‖C(u− uh)‖∗

≤ β∗

α

∑
T∈Th

(
εh2r

T + γTh
2r+1
T

) |u|2Hr+1(S(T ))

1/2

,(4.21)

where0 ≤ r ≤ k.
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Proof. The result follows from Theorem 1, on noting thatη = u − uI and
applying (4.19) and (4.20).

Suppose, in particular, that there is a fixed constantµ1 > 0 such that, on
each elementT , the local mesh Peclet number

PeT =
γThT

ε
≥ µ1.

We note that this is a reasonable assumption when the problem (2.1) is
convection-dominated. Under this hypothesis, it follows from (4.21) that

ε1/2|u− uh|H1(Ω) ≤ β∗

α

∑
T∈Th

γTh
2r+1
T |u|2Hr+1(S(T ))

1/2

,(4.22)

where0 ≤ r ≤ k andβ∗ = β∗(µ, k, µ1).
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