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Summary. We develop the general a priori error analysis of residual-free
bubble finite element approximations to non-self-adjoint elliptic problems
of the form (cA + C)u = f subject to homogeneous Dirichlet bound-
ary condition, whered is a symmetric second-order elliptic operai@ris

a skew-symmetric first-order differential operator, ani$ a positive pa-
rameter. Optimal-order error bounds are derived in various norms, using
piecewise polynomial finite elements of degfee 1.
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1. Introduction

Although the paper deals with a slightly more general case, let us consider
here, for simplicity, the following model problem: find € H{(£2) such

that

(1.2) —cAu+u, = f in £,

where(? is a bounded polygonal domain in the playigs given inLy((2),

ande > 0 is very small compared with the diameter @f so that (1.1)

is advection-dominated. L€t7,}, be a sequence of partitions 6f into
trianglesT, letk > 1 be an integer, and consider the finite element space

(1.2) Wi =W (Th,2) ={v e Hy(2) : v|r € Py|r for eachT’in T3, }.

Hereh is a positive discretisation parameter which measures the granularity
of the partition7;, and P;|r denotes the space of polynomials of degree
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< konT. The usual Galerkin finite element approximation to (1.1) is then

find u§ € W}, such that
(1.3)
[o(eVUs - Vv +uf v)de = [, fvdr Vv € W,

It is well known that, whenever/h << 1, this method is unstable, which
manifests itself in large maximum-principle-violating oscillations in the nu-
merical solution. Among several possible remedies for this undesirable fea-
ture of the usual Galerkin approximation, the SUPG method ([7,15]) has
attracted considerable attention over the last decade, primarily because of
its attractive combination of structural simplicity, generality and the quality
of the resulting numerical solution. For problem (1.1) the SUPG method

reads
find u$ € W), such that

/ (eVu} - Vo + u%mv)d:c — S(uf,v)
Q

(1.4) 2/ fvdx Yv € Wy,
9

whereS (u$, v) = ZTT/(eAu%
T T
+u;Sw — )(—eAv — v,)dz,

andr, is a parameter which needs to be chosen suitably. Reasonable rules
of thumb for the choice of;, can be found, for instance, in [9] and the
references therein; the corresponding error analysis (for model problems
like (1.1)) is given in [14].

In recent years, the SUPG method has been frequently viewed in a more
general context (see, e.g., [1, 2] and the references therein), and appropriate
choices for the value of;. (or, more generally, for a suitable form of the
stabilizing term to be added to (1.3)) found a different, and philosophically
more appealing, justification.

For the particular case of piecewise linear elements, for instance, it was
shown that SUPG can be also derived by the so-cadlsidiual-free bubble
approach (RFB from now on; see [6, 10, 16]) as well as bydbal Green’s
functionapproach ([12, 13]). The connections between these two approaches
were clarified in [2]: both strategies lead precisely to (1.4), with a very
specific value for which can be, therefore, considered as optimal, at least
from the theoretical point of view.

Since fork = 1 the SUPG method and the RFB approach (or its equiv-
alent local Green'’s function counterpart) yield the same scheme, the results
of [14] can be used for the error analysis. However, as it was shown in [4],
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an analysis based on the residual-free bubble framework can arrive at the
same results by means of a completely different procedure, casting a new
light on the basic underlying features of the new methodology.

In contrast with the case &f= 1, for k > 1the RFB approach produces
a stabilizing term similar but not identical to that of (1.4). As a matter of
fact, fork > 1, (1.4) may be obtained by suitabletual bubbles (see [1])

— an approach which does not follow from the RFB methodology.

The objective of this paper is then to perform the error analysis of the
residual-free bubble method for the casetof 1. This can be seen, in a
sense, as an extension of [4], although the techniques of error analysis pre-
sented here are quite different and, to the best of our knowledge, completely
new in this context. They are based on sharp interpolation results in certain
Besov spaces of differential ordef2 which do not coincide with the usual

Hilbertian Sobolev spaceg!/2 or Hy”.

The outline of the paper is as follows. In Sect. 2 we present our model
problem, and we recall the basic features of the RFB method applied to it.
In Sect. 3 we recall the definitions of the Besov spaces mentioned above
and we prove some simple properties of these which will be used in the
subsequent analysis. Finally, the error analysis is presented in Sect. 4.

Numerical experiments to compare the relative performances of SUPG
and RFB for values of > 1 would be very interesting but are beyond the
scope of this paper and are not discussed here.

2. Statement of the problem

Suppose tha® is a bounded polyhedral domainit¥ and letL be a second-
order linear differential operator of the form

(2.1) L=cA+C,
whereA andC are defined, for,say, inH!(£2), by

sz—zn:aaggj(aij(x)gw) zz:: axz'

ij=1

We assume that, for almost everyin {2, then x n matrix (a;;(z)) is
symmetric and positive definite, with smallest eigenvaluer > 0 and
largest eigenvalug 1, independent af. In a sense, we areormalizingthe
operatorA in the product A. To the operatod we assign the bilinear form

(2.2) a(w,v) / Z a;j(x 8w ﬂdm, w, v e HY ().
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With the above assumption$ is a symmetric operator fromfi; (£2) into
H~1(£2) verifying

(2.3) a(w,v) = (Aw,v) = (w, Av) Yw, v eV,
where, from now on,
V=H)Q), V'=H)

equipped with respective norms|| ;1 (o) and| - || z-1(s), and(-, -) denotes
the duality pairing betweel andV’. Moreover, the bilinear form(-, -) is
V-elliptic andnormalised tal, that is,

(2.4) Oz]v|12q1(9) < a(v,v) Yv eV,

(2.5) a(v,w) < || gy |wl g (o) Yo, w €V,

where| - | ;1) is the seminorm o/ = H (D).

Similarly, we assume that, for almost everyin {2, the n-component
vector(c¢;(z)) has Euclidean norm v, independent aof, and we introduce
the bilinear forme(+, -), defined by

- ow
2.6) c(w,v)= ci(x)=—wvdx, w L), v ).
@6) el = [ > ety e H'(®), v e Lo(%)

As a consequence, we have

(2.7) c(w,v) = (Cw,v)  Yw € HY(), Yv € Ly(N),

where(-, -) signifies the inner product ih,(£2). Our hypotheses imply that
(2.8) e(w,v)| <A|wlgllvllLy) Yw € H'(2), Yo € La(92),

where|| - ||z, () is the norm ofZ.z(£2). We make the additional assumption
that the bilinear forme(-, -) is skew-symmetric of’; namely,

(2.9) c(w,v) = —c(v,w) = (Cw,v) = —(w,Cv) Yw, veV.

This can be ensured by requiring that the vector field (cq,...,¢,) is
divergence-free of? in the sense of distributions.
For f given in Lo (f2), say, we consider the boundary value problem

Lu=f in{f,
(2.10) { u=0 onof2.

Let £(-,-) be the bilinear form oV x V' associated with the operatés,
namely,
(2.11) L(w,v) = ea(w,v) + c(w,v) Yw, veV.



Residual-free bubbles for advection-diffusion 35

We consider the variational form of (2.10):

find v € V such that
(2.12) {E(u,v) = (f,v) Yo e V.

Applying (2.11), (2.4) and (2.9), it is easy to check that
(2.13) aelvlf gy < L(v,0) Vo eV.

By virtue of (2.13) and the Lax-Milgram lemma, (2.12) has a unique solution
inV.

Nextwe formulate the RFB-approximation of (2.12). Suppose thatwe are
given a shape-regular family of partitiofig;, }, of {2 into openn-simplices
T (referred to aglements and an integek > 1. We recall that{ 7}, is
said to be a shape-regular family if there exists a fixed positive constant
such that, for eacff;, and eacll” € 7y,

(2.14) hr i,

pT

wherehr denotes the diameter of thesimplexT (i.e. its longest edge),
andpr is the diameter of the largest ball inscribedl/inWe set

Vi = ViF(Th, 2)={v eV : v|, € P, for each(n — 1)-dimensional
(2.15) facee of any elemenf in the partition7}, }.

Here P;|. denotes the set of all polynomials(n — 1) variables of degree
< k on the face (or edge fat = 2) e. The discrete counterpart of (2.12) is
then

(2.16) {fmd up, € Vi, such that

E(uh,’uh) = (f, ’Uh) Yo € Vp,.

Notice thatV}, is notthe usual finite element space of continuous piece-
wise polynomial functions (that would be the spa€g defined in (1.2)),
but can be thought of as being obtained by supplementipdpy the space
of all functions inH} (T'), for all T in 7;,. More precisely,

where
(2.18) By = P Hy(T).
TET,

In particular,V}, is not finite-dimensional. In the following discussion
we shall show that problem (2.16) is equivalent to a finite-dimensional one.
However, working on formulation (2.16) makes the analysis simpler. For
instance we can immediately point out that, for evErg 7;,, and for every
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p € C§°(T), itis possible to construet, € V}, by selectingyy, = ¢ in T,
anduvy, identically zero outsid&’. Consequently, from (2.16), we conclude
easily that

(2.19) Lup = f ineachlin Ty,

which is the property that justifies the namesidual-free

In the remaining part of this Section we shall analyse (2.16) from the
point of view of the possible computational techniques. In doing so, we shall
also clarify its relationships with the SUPG-method.

We start the analysis with the following considerations, typical of the
RFB-approach (see, e.g., [2]). The solutignof (2.19) is a polynomial of
degreek on eacte of 9T (see (2.15)). Lep, be a polynomial of degre€ &
in T' having the same boundary value (@R) asu;. Such a polynomial is
not unique fork > n, but this is not essential. Then,

(2.20) Up = Pk + Up,
whereu,, € H}(T) and, using (2.19), solves
(2.21) Lruy, = —Lpp + f ineachl'inTy,.

whereLy : H}(T) — H~1(T) denotes the restriction of the operator
to T; namely,Lyw = Lw for all w € HY(T), T € T;,. Notice thatLy is
injective, so that (2.21) can be written as

(2.22) up, = L' (—=Lpy + f) ineachT in 7.

Assume now thaf is a piecewise polynomial of degree (k — 1), and A
andC' have piecewise constant coefficients. Then, in dadhe right-hand
side of (2.21) is a polynomial of degree(k — 1), and consequentky, must
belong to the subspade®(T') of H{ (T') made up of all possible solutions of
Lyu, = g wheng ranges througlt®,_q, that is,

(2.23) B(T) = {v, € HY(T): Lv, € Pp_1(T)}.

Clearly B(T) is a finite-dimensional space, and its dimension is bounded

by
k—14+n
" .
Finally, from (2.20) we deduce that, for 4, up |7 belongs taPy, + B(T),
so thatu,, belongs to the spadg, defined as
Vi, = Wi, @ By,

where

B, = P B(1D).

TeT,
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and B(T) is still given by (2.23). In particular, will coincide with the
unique solutionuy, of the problem

{ﬁnd iy, € Vj, such that
L(up,v) = (f,v) Yu € V.

As problem (2.24) is clearly finite-dimensional, we can see that (2.16) is
equivalent to afinite-dimensional problem. For lbya set of basis functions
for B(T) can be computed approximately, at a reasonable cost, at least
for e << hp, wherehy = diam(T') (see [6, 10, 3, 5, 2, 11]for various
developments of thisidea). The element®¢1’) are referred to as residual-
free bubbles. A possible variant of (2.24), although not equivalent to (2.16),
is to chooseB(T'), on each elemerit, as a finite dimensional subspace of
HZ(T) such thatB(T') N P, = {0}, the selection of3(T) being guided
by the desire to resolve features of the analytical solution which could not
otherwise be captured by seeking a numerical solution from the classical
finite element spach/},. In fact, such an enhancementi®j, achieves more
than merely improving the ‘resolution of fine scales’, as we shall now show
by investigating the relationships of (2.16) with the SUPG approach.

Going back to the splitting (2.17), we can decomposeas

(2.24)

(2.25) Up = Ug + Up, up € Wy, up € By,.
We observe at this point thaf, is not a direct sum o#¥};, and B;,, and
therefore the decomposition (2.25) @f is non-unique. In practice, this
conceptual difficulty does not arise, since, as already pointed out, instead
of operating on the whole of}, one would be computing on its finite-
dimensional subspadg . On inserting the decomposition (2.25) into (2.16),
and choosingy, = v, € W, andv, = vy, € By, We obtain, respectively,
(2.26) L(ug,v) + L(up,vr) = (fo6)  Vog € Wh,
(2.27) L(ug, vp) + L(up, vp) = (fyvp) Vo, € By,
As w = vy|r € H}(T) for eachT in T, after integration by parts (2.27)
can be rewritten in the form
(2.28) (Lub,w)r = (f — Lug,w)r Yw € HY(T), T € Th.
As we already saw in (2.22), equation (2.28) implies that

up, = LN f — Lug).
Substituting this into (2.26) and recalling from (2.1) tiat C + €A, we
find that

L(ug,vg) + Z (L}l(C + eA)uy, (C — SA)vk)T
TeT

(2.29) = (f,ve) + Z L' f,(C —eA)g), Vo, € Wy,
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Now, (2.29) can be viewed as a stabilised finite element approximation of the
convection-diffusion problem (2.12) over the standard finite element space
W) A particularly simple case is whén= 1; thenAu; = 0 andAv; =0

for eachv;, € Wy.. Moreover, if f and the coefficients of’ are piecewise
constant, the spadg(T"), defined in (2.23), has dimension one. Therefore
(2.29) reduces to the SUPG method; see [4] for further detalils.

3. The functional analytic setting

In this section we introduce the function spaces and norms which will be
used below in the error analysis. LBbe an element iff;, and leth denote

the diameter of . We recall the definitions of some Besov space§ pof
course, these definitions still hold more generally when the eleffigat
replaced by a bounded open set with, say, Lipschitz-continuous boundary.
In tandem with the usual natural notf|| ;1 () we shall use i1 (T) the
equivalent norm[-]| ;1 (7 defined by

(3.1) |[U]|%11(T) = h%2”v||%2(T) + |U‘§{1(T)'

Forv € X(T) := Lo(T) + H(T) (= L»(T)) andt > 0, we set

B2 K(tv)= inf {IlvollLo(r) + o]l gy } -
v =129 +v

Vo € LQ(T),’U1 ElHl(T)
Similarly, for anyv € Xo(T) := Lo(T) + HY(T) (= Lo(T)) andt > 0,
we define

(3.3)  Ko(t,v) = inf {llvoll o1y + tlor ey } -
v =1+ V1
vo € Lo(T),v1 € Hg(T)
Following the notation of [17] we introduce now the function spaces
(3.4) X (oo, T)=Hv € Xo(T) : t — t2Ky(t,v) € Loo(0,00)},
(35) Y(1,T)=Hv e X(T) : t — t732K(t,v) € L1(0,00)},

with respective norm§ - || x (o, 7y @nd|| - [ly-(1,7), defined by

(3.6) 19l x(oo,7) = 172 K0 (-, 0) || 1. (0,00):
(3.7) [vlly ) = 122K 0) |z 0,00 -

Alternatively, exploiting the interpolation functdr, -)y,,, 0 < § < 1,1 <
p < oo, of the K-method of function space interpolatioX,(co, 7") and
Y (1,T) can be identified with certain Besov spaces:

X(00,T) = (La(T), Hy (T))1 2,00 =B34 5(T),
(3.8) Y(1,7) = (Lo(T), H{(T))1 21 = By (T).
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We have the following result.

Proposition 1. LetT" be an element iff;,. Then, for every in X (oo, T)
and everyt with 0 < ¢ < oo, there existyy € Lo(T) andv; € H(T) with
v = vg + v1 such that

(3.9) 120l ey + 201y < 2000 x (o0m)-

Proof. The result follows immediately from (3.6) and the definition of
Ky(t,v) givenin (3.3)0

We now consider the master element

~

T=A{z=(Z1,...,2,) € R" : 7; >0,

i=1,...,n, T1+...+ T, <1}
and the affine transformatiahe T + = M7 + N whereM is ann x n
matrix andV is ann x 1 columg vector. Given a function defined orl’,
we introduce the functiom onT" by v(z) = v(z). Since the partitioryy,

is shape regular (c.f. (2.14)), there exist positive constants 3, (x) and
B2 = B2(w) such that [8]

(32083005231, 7y < N0llacry < G715l 7y v € La(T),
61h;/2_1’6|ﬂl < |vlmr) < Bth P % v e HY(T).

|U‘H1(f)7
(3.11)

From (3.10)-(3.11) we can deduce the analogous inequalities for other
norms. In particular, we immediately have for the norm (3.1)

B> 0] g 2y < NNy < B> s oy,
(3.12) v e HY(T).

Similarly, with some additional computation we can easily deduce:

Bb 20l oo 7

(3.13) <mm@m<mw””wm 7y vEX(00,T),
nl 2 n—1)/2,~
BnE VP lly 7y <lollyaay < kS5l 2,

(3.14) veY(1,T).
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For instance, a typical crucial step is

t=1/2p

n/2 —n
2 vol| oy + £/2R

’vl|H1T
(318) = n{=2 L2 R gy oy + 20 o )
— W2 =12 g Ly + T2 0ty )

with 7 = thp. Finally, denoting, as usual, §yX (cc, T')) the dual space of
X (00, T) and using the definition of dual norm we have

n+1)/2,~
ﬁlhf(r+ ) HUH(X( Ty

(3.16) <ol xeoryy < B2hE V210 ooy
Using the above inequalities, one can show that the various constants

which arise in our analysis below are independent of the dianigtesf

the elemenf” considered. In particular, we have the following Gagliardo—

Nirenberg type inequality.

Proposition 2. Suppose thaf’ is an element inf;,. Then there exists a
positive constanty = [y(u), independent df’, such that

(3.17) ol < Bollol il ey

for eachv in H(T') and eachl’ € 7j,.

Proof. From (3. 8) withT replaced by the master elemdntwe have that
Y(1,T) = (LQ(T) HH(T ))1/2 1;thus, by Theorem 1.3.3(g) in Triebel [18],

< eolldlly 3z W0l WO € HY(D),

(3.18) B

9lly .7

wherec is a fixed positive constant. On returning frane T to our original
variablex € T, with v(x) = v(Z), using (3.14), (3.18), (3.10)—(3.11), and
(3.1), the estimate (3.17) follows.

Now we apply a deep result from the theory of function space interpolation
due to Tartar [17].

Proposition 3. Suppose thaf’ is an element inf;,. Then there exists a
positive constantly = ((u) (possibly different than in Proposition 2),
independent of’, such that

(3.19) 1] x (00,7) < Bollvlly1,7)-
for eachv in Y'(1,7") and eachl’ in 7.
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Proof. By Theorem 5 in the work of Tartar [17}{(1,?) C X(oo,f)
with continuous embedding; thus, there exists a fixed positive congtant
(possibly different than in (3.18)), such that

< collo Vo e Y(1,T).

HY(l,T)
Applying (3.14) and (3.13) we deduce (3.19), with= co52/51. 0

We emphasise here that, as (for instané)T') C Y'(1,T), the result
of Proposition 3 implies

(3.20) HYT)CcY(1,T) C X(c0,T).

190 ¢ oo 79

We end this section with an inverse-type inequality which will be useful
in the next section.

Proposition 4. Let T be an element iff;,, and letk be a non-negative in-
teger. There exist two positive constats= (31 (u, k), and sy = B2(u, k),
independent of’, such that, for every in Py (T),

321)  Bihi | wlLyry < ol xeory < Bobil *llwll Lo

Proof. The prooffollows easily from (3.10) and (3.16) by a standard scaling
argument (see, e.g., [8]) and exploiting the equivalence of norni% @h). O

4. Error analysis

Now we embark on the a priori error analysis of the method (2.16). As a
first step we need the basic Lemma stated below. We shall use the notation

w7 = yrllwl el wllm iy, we YD),

. 1/2
Y = (Z Cj%oo(T)> 7
=1

lfwl[[> =Y llwlllf,  w e H'Y(%).
T

where

and we put

Lemma 1. There exists a positive constait= (u), such that, for every
Y in H(£2), and everyp in H'(2) satisfying

eAp+Cp=0 iInT for everyT € Ty,

we have
(4.1) (%, Cp)| < Be 2|l o lI121]].
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Proof. Consideryy € H'(2) andy € H'(£2), as in the statement of the
Lemma. Let us first show that, for evefye 7, we have

(4.2) (¥, Co)rl < 2(ev0) 2|0 1 () 1%l x (o0,

where(-, ) denotes the inner product @ (7"). Applying Proposition 1
with ¢t = (¢/y7) andv = +|pr € HY(T) C X(o0,T) (c.f. (3.20)) we
deduce the existence ¢f, andv, with ¢y € H}(T') such that

(4.3) Y=1vo+1¢1 onT

and

£\ 12 o\ 12
4.4)( = (£ BT
@ (Z) Mol + () Wl < 2blxe

Further, sinceCy = —cAp € Lo(T) andyyy € HZ(T), we can apply
Green’s identity to deduce that

(45) (1, Cp)r = —c(t1, Ap)r =—ez<8¢1 a@> ,
2,7=1 T

K ’L] 8.%‘1
and therefore, using (2.5),
(4.6) |(Y1, Co)r| < eln|m el 1y
Now, applying (4.3), (2.8), (4.6) and (4.4) we have

(¢, Co)r| = |(%o, Co)r + (¢1,Coo) 7|
< rlYoll Loy el 7y + eloilm el

i o\ 12
< (evr)Y/ {<W> %ol o (1)
S\ 12
(4.7) + <’y:r> ||1/11||H1(T)} ol (r)

< 2(ev0) 2l i1 () 1V || x (00,7
that is, (4.2). Using (3.19) and (3.17) in (4.2), we immediately have
(4.8) (. Co)r| < B2l Il -

Finally, summation over all' and the Cauchy-Schwarz inequality give the
result.0
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We define
(4.9) u! = quasi interpolant of, € HE () from W,.

For a definition of the quasi-interpolant and the associated error analysis we
refer for instance to the recent work of \érth [19] and references therein.
We then set

(4.10) e=u—up,
4.11 =u—u
(4.11) n ,

and note that, from (2.19),

(4.12) Le=0 in eachT in Tp,.

Moreover, from (2.12), (2.16) we have the usual Galerkin property
L(u—up,vp) =0 Yo, € V.

Thereby, using (4.10) and (4.11),

(4.13) L(e,n—e)=0.

From the above Lemma we immediately deduce the following result.

Theorem 1. Letu anduy, be the solutions of (2.12) and (2.16), respectively,
and lete andn be defined through (4.9)—(4.11). Then there exists a constant
G* > 0, independent of, o, v ande, such that

o?elel3p (o) < B* (el + mll?)
Proof. Using (2.13), (4.13) and (2.11), we have that
(4.14) as]e\%{l(m < L(e,e) = L(e,n) = eale,n) + c(e, n).
From (4.14), using (2.5) and (2.7), it follows that

(4.15) aelelF ) < elnlao)lelae) + (0, Ce)l.

Noting (4.12) and applying (4.1) with = ¢ andiy> = 7 to the second term
on the right-hand side of (4.15), we deduce that

(4.16)  acle[fn g < e 2lel (e {51/2|77|H1(Q) + 5!||77H|}

and the result easily follows]
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Remark 1.1t is estimate (4.1) of Lemma 1 that led us to introducing the
rather sophisticated function spaces of the previous section. While their use
is convenient and elegant, it is unclear whether this apparatus is absolutely
necessary. Nevertheless, our attempts to base our proofs on more conven-
tional techniques were unsuccessful.

The use of the property (4.12) seems essential in order to introduce
the factore. One would then like to be able to integrate by parts in the
term containing: A, in order to have only one derivative ¥ for each
variable. Unfortunately, the (finite-dimensional) space of functions which
satisfy (4.12) and are polynomials at the element interfaces depeagdsmn
the boundary term with the conormal derivative which would arise through
possible integration by parts cannot be easily absorbed in a mesh dependent
H(T)-type norm. The problem disappears if the functionn (4.12) is
contained inF/} (T'). This, however, is an unrealistic requirement in view of
its application in (4.16); in addition it would give rise to a full powersof
half a power more than necessary.

Hence the idea of decomposinginto a sum of two parts, balancing
the regularity &nd the vanishing oroT) with the required powers of.

This decomposition, then, naturally points in the direction of the function
spaceX (oo, T'). We recall from the theory of Besov spaces tHat(7") C

X (00, T') with continuous embedding for anystrictly greater tharl /2,

so that the norm inX (oo, T') can be bounded in terms of thHé*—norm.
Unfortunately, such an embedding is too crude for our purposes as it would
only provide a suboptimal error estimate. The result by Tartar allows us to
use a Besov space with a derivative index exactly equéf20somehow,

the smallest of its kind) whose norm can then be bounded by thiénorm,

thus providing an optimal error bound.

We note now that, as we have already seen in [4] for the cake-ot,

the norm
e2lel (o)

is strongerthan it might appear at the first sight. Actually, one has the
following result.

Theorem 2. Letu anduy, be the solutions of (2.12) and (2.16), respectively,
and lete = u — uy,. Then,

ICel|? < 4elelF (g,

where

1
lwl? = —llwliEx ooy
- T
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Proof. From (4.2) one obtains, for every smooth functipn

(4.17) (¢, Ce)r| < 2evr)lel () 19l x (oo,7),
which yields
ICell(x(oomyy < 2(ev7)2|el 1 (7,
and taking the square
ICellPx (oomyy < 4errlelF(r)-
Upon summation over alf” in 7y, this gives the desired inequality.

We note thaf| - ||.. can be thought of as a sort of broken norm on a space
with negative-order 1/2. Its nature is further clarified by our next result.

Lemma 2. Let T be an element ify;,, and letk be a non negative inte-
ger. There exist two positive constamts = 31 (i, k), and B = [a(u, k)
independent of’, such that,

1/2
h
(4.18) ﬁl|rw||*s<27§||w|%2m> < Boljwl).

T

for eachw in W),

Proof. The proof follows immediately from Propositié?? and the defini-
tion of the norm|| - ||.. O

We complete the error analysis by recalling from [19] the following
standard local approximation results for the quasi interpolant: there exists a
positive constant = ((u, k) such that for eacff;, and eacl" in 7y,

(4.19) Ju— uM| 2y () < BRE ul grss (sery),
(4.20) lu— |1y < BRIl g1 (7)),

for 0 < r < k, wherehy = diam(") andS(T) is the union of all elements
in 75, whose closure intersects the closurédof

Theorem 3. Letu anduy, be the solutions of (2.12) and (2.16), respectively.
Assuming that: € H*1(£2) n H}(£2), there exists a positive constant
B* = *(u, k), independent of, «, v ande, such that

e 2w — up| g1y + 1C(u — wp) |

1/2
(4.21) < % (Z (ehQT” +7Th%r+1) u%;,,H(S(T))) )

T€Th

where0 < r < k.
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Proof. The result follows from Theorem 1, on noting that u — u! and
applying (4.19) and (4.20).00

Suppose, in particular, that there is a fixed constant 0 such that, on
each elemert’, the local mesh Peclet number

yrhr

Per = > 1.

We note that this is a reasonable assumption when the problem (2.1) is
convection-dominated. Under this hypothesis, it follows from (4.21) that

1/2
B r
(4.22) &?|u— up| (o) < o Z yrh¥ +1|U\§{r+1(5(T)) )
TeT,

where0 < r < kandg* = g*(u, k, p1).
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