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Summary. In the present paper we investigate Freudenthal’s simplex refine-
ment algorithm which can be considered to be the canonical generalization
of Bank’s well knownred refinement strategy for triangles. Freudenthal’s
algorithm subdivides any given (n)-simplex into2n subsimplices, in such
a way that recursive application results in a stable hierarchy of consistent
triangulations. Our investigations concentrate in particular on the number of
congruence classes generated by recursive refinements. After presentation
of the method and the basic ideas behind it, we will show that Freuden-
thal’s algorithm produces at mostn!/2 congruence classes for any initial
(n)-simplex, no matter how many subsequent refinements are performed.
Moreover, we will show that this number is optimal in the sense that re-
cursive application of any affine invariant refinement strategy with2n sons
per element results inat leastn!/2 congruence classes foralmost all(n)-
simplices.

Mathematics Subject Classification (1991):65N50

1. Introduction

Along with the growing acceptance of adaptive discretization methods for
partial differential equations, a number of adaptive mesh refinement al-
gorithms have been developed during the last years. Much attention has
been paid in particular to the refinement of simplicial grids (triangulations),
which have some advantages, compared to cubic-type meshes, concerning
the approximation of curved domains and the preservation of consistency
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after adaptive refinements. Usually, simplicial meshes obtained by subse-
quent refinements are required to fulfill at least two conditions:stabilityand
consistency.

The stability condition means that the simplices (elements) generated
during the refinement process must not degenerate, i.e., the interior angles
of all elements have to be bounded uniformly away from zero. Consistent
triangulations are characterized by the fact that the intersection of each pair
of adjacent elements is either a common vertex, a common edge, or, in
general, a common lower-dimensional subsimplex. Note that in most cases
consistency is required rather for the sake of convenience than on account
of mathematical necessity. In contrast, stability is essential for example for
the approximation properties of finite element spaces and the convergence
behaviour of multigrid and multilevel algorithms.

Besides the numerical solution of partial differential equations there are
many other fields where mesh refinement techniques are of particular interest
(see [26] for an overview). In two and three space dimensions, for example,
adaptively refined meshes are used for realistic surface and volume rendering
in computer graphics or for the resolution of details in geometric design, cf.
[15]. Higher-dimensional meshes are applied in combinatorical algorithms
for the computation of fixed points or in financial mathematics to determine
fair prices of options. In most of these cases stability and consistency are
important properties.

For triangular and tetrahedral grids there exist several refinement algo-
rithms satisfying both conditions for arbitrary consistent input triangula-
tions. These algorithms can be divided into two major classes depending on
the basic subdivision scheme and on the way how stability and consistency
are preserved:red/green refinement algorithms[2,6,21,33] andbisection
methods[1,3,20,22,25,27,28].

There also exist more general refinement algorithms for simplicial grids
in n space dimensions. Most of these methods, however, are not fully sat-
isfactory. The bisection methods of Maubach [23,24] and Traxler [31], for
example, are based on certain rather restrictive assumptions concerning the
initial triangulation that are often hard to fulfill in practice. For Rivara’s
longest edge bisection [28], on the other hand, which indeed applies to any
consistent triangulation, it has not been proved yet that it is stable forn > 2.

Subject of the present paper is a refinement strategy which has been
published already in 1942 by H. Freudenthal [13]. Freudenthal’s algorithm
subdivides any given(n)-simplexT into 2n subsimplices of equal volume
in such a way that recursive refinement ofT yields stable and consistent
triangulations ofT . Moreover, the method can be applied to arbitrary con-
sistent triangulations. Inspired by [2], we refer to such subdivisions with2n

sons per element asregular (or red) refinements. In fact, the famous red
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refinement strategy for triangles, proposed by Bank [2], and also the corre-
sponding 3D refinement strategy proposed by the author in [6], are special
cases of Freudenthal’s method.

Freudenthal’s algorithm is frequently used in, for example, fixed point
computations, cf. [30]. The method, however, is not well-known in the field
of numerical solution of partial differential equations. The original paper of
Freudenthal [13], which is indeed very interesting for historical reasons, is
not very suitable as an introduction for engineers and application program-
mers. Therefore we will present a detailed description of the method and
the basic idea behind it. The algorithm itself will be presented in a some-
what more modern form which comes closer to what is usually called a
“ready-to-implement” formulation.

After presentation of the method we concentrate on the number of con-
gruence classes generated in subsequent refinement steps. As a first result we
will show that Freudenthal’s algorithm produces at mostn!/2 congruence
classes for any initial (n)-simplexT , no matter how many subsequent re-
finement steps are performed. Of course, this result implies stability. We will
also show that a finite number of congruence classes is not only sufficient but
also necessary for stability, provided we restrict ourselves to regular refine-
ment schemes. For practical reasons, however, it is often desirable that the
number of congruence classes is not only finite but even as small as possi-
ble. In many applications such as finite element computations, for example,
there are data depending on the element’s congruence class and refinement
level only. Such applications can often be significantly accelerated if data
of this type are calculated and stored only once.

In this respect, the following result – which can be considered to be the
main result of this paper – seems to be interesting: We will prove that recur-
sive application ofanyregular and affine invariant refinement strategy pro-
duces at leastn!/2 congruence classes for almost all(n)-simplices. Hence,
Freudenthal’s algorithm is optimal in that sense. In fact one can show that
the bisection methods mentioned above generate up ton! ·2n−2 congruence
classes ifn subsequent bisection steps are considered to be one single reg-
ular refinement, cf. [1]. Consequently, Freudenthal’s algorithm has at least
two advantages compared to bisection: It applies to any given consistent
triangulation and it produces significantly fewer congruence classes.

It should be mentioned at this point that Freudenthal’s algorithm with-
out modification can be used foruniform refinements only. In contrast, the
bisection methods mentioned above yield consistent triangulations also in
the case ofadaptiverefinements. In order to extend Freudenthal’s method
to a fully adaptive algorithm, it has to be combined with some suitable set
of additionalirregular refinement rules for the so calledgreen closure. This
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topic, however, will be addressed in a forthcoming paper, cf. [7]. Here we
are mainly concerned with recursive, uniform refinements.

The remainder of this paper is organized as follows: Sect. 2 contains
basic definitions and some elementary geometric results. In Sect. 3 we give
a short survey of existing grid refinement algorithms in two, three, and more
space dimensions. In Sect. 4 we derive Freudenthal’s algorithm and show
that it generates at mostn!/2 congruence classes for any initial elementT .
Finally, in Sect. 5, we prove that this number is optimal for any regular and
affine invariant refinement strategy.

2. Basic definitions

We start with the definition of basic notions and recall some elementary
results from geometry. Most of the material presented here can be found
in [10]. One result (Theorem 2.1), however, appears to be new and will
therefore be proved at the end of this section.

2.1. Simplices

A closed subsetT ⊂ IRn is called a(k)-simplex, 0 ≤ k ≤ n, if T is the
convex linear hull ofk + 1 verticesx(0), . . . , x(k) ∈ IRn :

T = [x(0), . . . , x(k) ](1)

:=
{

x =
k∑

j=0

λjx
(j)

∣∣∣
k∑

j=0

λj = 1; λj ∈ [0, 1], 0 ≤ j ≤ k
}

.

The vertex ordering of each such (k)-simplex T is assumed to be fixed.
Hence, two simplicesT = [x(0), . . . , x(k) ], T ′ = [ y(0), . . . , y(k) ] are de-
fined to be equal, i.e.T = T ′, if x(j) = y(j) for 0 ≤ j ≤ k. If the vertex
numbering is different butT andT ′ still denote the same subset ofIRn, we
say thatT coincides withT ′ in the sense of setsand writeT ∼= T ′.

If k = n thenT is simply calledsimplexor elementof IRn. (2)- and
(3)-simplices are calledtriangles and tetrahedraas usual. Note that the
vertex ordering plays an important role in many grid refinement algorithms
and in particular in the algorithm considered in this paper. The boundary of
a (k)-simplex consists of lower-dimensional subsimplices: An (`)-simplex
S = [ y(0), . . . , y(`) ] is called an(`)-subsimplexof T = [x(0), . . . , x(k) ],
0 ≤ ` < k ≤ n, if the vertices ofS are vertices ofT and if their ordering
coincides with the ordering induced by the vertex numbering ofT , i.e., if
there are indices0 ≤ i0 < i1 < · · · < i` ≤ k such thaty(j) = x(ij) for
0 ≤ j ≤ `. Obviously, the (0)- and (1)-subsimplices ofT are just its vertices
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and edges, respectively. The number of (`)-subsimplices of a (k)-simplexT
is

(k+1
`+1

)
.

The k-dimensional volume of a (k)-simplex T is denoted by vol(T )
if k = n and by volk(T ) otherwise. If volk(T ) = 0 or, equivalently, if
the vertices ofT belong to a(k−1)-dimensional hyperplane,T is called
degenerate. In many applications, for example in the discretization of partial
differential equations, such degenerate simplices should be avoided. A more
refined quality measure for the shape of (k)-simplices is themeasure of
degeneracy

δ(T ) := h(T ) /%(T ) ,(2)

whereh(T ) denotes the length of the longest edge ofT , and%(T ) is the
diameter of the biggestk-dimensional ball contained inT . It is easily seen
thatT is degenerate if and only ifδ(T ) = ∞. Other shape measures and
their relations are considered in [19], for example. Our choice is motivated
by the finite element convergence analysis in [10]. To calculateδ(T ) for a
(k)-simplexT , in practice one may use the formula

δ(T ) :=
h(T ) volk−1(∂T )

2 n volk(T )
,

which can be shown to hold using similar arguments as in the proof of the
corresponding three-dimensional result in [33].

2.2. Affine transformations

To carry over certain results from one simplex to another, affine transfor-
mations have proved to be a useful tool. Anaffine transformationin IRn is
a mappingF : IRn −→ IRn of the form

F (x) = v + Bx , x ∈ IRn ,

wherev ∈ IRn is an arbitrary translation vector andB ∈ IRn×n is a non-
singular transformation matrix. In most cases we writeFx instead ofF (x).
For any subsetM ⊂ IRn, the transformed setM ′ = F (M) is given by
F (M) := { Fx | x ∈ M }.

Every affine transformationF : x 7→ v + Bx is one-to-one, and the
inverse mappingF−1, given byF−1 : x 7→ B−1(x − v), x ∈ IRn, is
also an affine transformation. Furthermore, the image of any (k)-simplex
T = [x(0), . . . , x(k) ] ⊂ IRn under some affine transformationF is again a
(k)-simplex. The vertex ordering of the transformed simplexT ′ = F (T ) is
induced by the vertex ordering inT , i.e.,F (T ) is defined by

F (T ) := [Fx(0), . . . , Fx(k) ] .
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For F (T ) we also use the notationF (T ) = v + B T . If B = cI for some
c 6= 0, we writeF (T ) = v + c T .

Since bothT andF (T ) have a given vertex ordering, it follows that
for any two non-degenerate simplicesT, T ′ ⊂ IRn there is a unique affine
transformationF satisfyingT ′ = F (T ). If T ′ equalsT in the sense of sets,
T ′ ∼= T , thenF is calledrenumberingof T . Renumberings can be used to
replace relations of the formT ∼= T ′ by equations of the formT ′ = F (T ).
Considering simplices as subsets ofIRn makes sense if a certain simplex
property is independent of the actual vertex ordering. In the present paper
the most important property of this type is the congruence property: Two
simplicesT, T ′ ⊂ IRn are calledcongruentto each other if there exists a
translation vectorv ∈ IRn, a scaling factorc > 0, and an orthogonal matrix
Q ∈ IRn×n such that

T ′ ∼= v + c Q T .(3)

In this caseT andT ′ are elements of the samecongruence class. Since (3)
readsT ′ ∼= v + c Q T but notT ′ = v + c Q T , the congruence class of a
simplex is independent of its vertex ordering. Clearly, any two simplices of
the same congruence class have the same measure of degeneracy.

2.3. Triangulations

A finite setT of non-degenerate simplicesT ⊂ IRn with pairwise non-
overlapping interior is called atriangulation(in IRn). The vertices ofT are
just the vertices of its elements. A triangulationT is calledconsistent1 if the
intersection of any two distinct simplicesT, T ′ ∈ T is either empty or – in
the sense of sets – a common lower-dimensional subsimplex. If each such
subsimplex is a common subsimplex not only in the sense of sets but even
in the sense of equality of simplices (cf. Sect. 2.1), then we say thatT is
consistently numbered. More precisely:T is called consistently numbered
if for any two simplicesT = [x(0), . . . , x(n) ], T ′ = [ y(0), . . . , y(n) ] ∈ T
with non-empty intersectionT ∩ T ′ 6= ∅ there are a number0 ≤ ` ≤ n and
indicesi0 < i1 < · · · < i`, j0 < j1 < · · · < j` such that

T ∩ T ′ ∼= [x(i0), . . . , x(i`) ] = [ y(j0), . . . , y(j`) ] .

Examples of consistently numbered triangulations in 2D and 3D are shown in
Fig. 1. We note that the consistent-numbering-property is of great importance
when applying Freudenthal’s algorithm globally to all simplices of a given
triangulation – at least ifn > 3, cf. Sect. 4.4. In case ofn = 2 or n = 3 it
usually suffices to consider consistent triangulations.

1 Some authors prefer the termsregular, conforming, or compatible
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Fig. 1. Consistently numbered triangulations in 2D and 3D

Themeasure of degeneracyof a triangulationT is defined by

δ(T ) := max
T∈T

δ(T ) .

For any triangulationT and any affine transformationF in IRn, the trans-
formed triangulationF (T ) is given by

F (T ) := { F (T ) | T ∈ T } .

It is easily verified thatF (T ) is consistent (consistently numbered) if and
only if T has this property.

2.4. Refinements

Refinement is the key operation in various grid adaptation algorithms. Here
we consider only such refinements where the new vertices coincide with edge
midpoints of refined simplices. To be more precise, letT ⊂ IRn be a non-
degenerate simplex. Arefinementof T is a triangulationR(T ) consisting
of at least two elements such that each vertex ofR(T ) is either a vertex or
an edge midpoint ofT . The elements inR(T ) are calledsonsof T while T
is calledfather of the elements inR(T ). It follows from the definition that
each refined simplex can have at most2n sons. According to [2], we refer
to refinements with2n sons asregular refinements. Note that the volume of
any sonT ′ of a regular refinementR(T ) is given by vol(T ′) = 2−n vol(T ).

A (regular) refinement strategyis a mappingR associating with each
non-degenerate simplexT ⊂ IRn a (regular) refinementR(T ). A refine-
ment strategyR is calledaffine invariantif F (R(T )) = R(F (T )) for each
non-degenerate simplexT and any affine transformationF . Affine invariant
strategies are fully determined by the corresponding refinement of an arbi-
trary reference element̂T . In contrast, non-affine invariant strategies often
depend on some geometric property of the simplex under consideration, as
for example the longest-edge-bisection method of Rivara [27,28] and the



8 J. Bey

shortest-interior-edge strategy of Zhang [33]. For a description of these and
other methods we refer to Sect. 3.

So far we have considered the refinement of single simplices only. Now
we consider the refinement of a triangulation. LetT 6= T ′ be two triangula-
tions covering the same regionΩ :=

⋃ { T |T ∈ T } =
⋃ { T ′ |T ′ ∈ T ′ }.

ThenT ′ is called arefinementof T if for each simplexT ∈ T eitherT ∈ T ′
or there is a refinementR(T ) ⊂ T ′. Repeating the refinement process, we
obtain a(nested) hierarchy of triangulations, i.e. a sequence(Tk)k∈IN0 start-
ing with someinitial triangulationT0 such thatTk+1 is a refinement ofTk for
eachk ≥ 0. Such a hierarchy(Tk)k∈IN0 is calledstableif δ(Tk) is bounded
uniformly in k.

Hierarchies of triangulations are often produced by recursive application
of some refinement strategyR. Let T0 be an initial triangulation; then the
hierarchy of triangulations(Tk)k∈IN0 , generatedby recursive application
of R to T0, is defined by

Tk+1 :=
⋃

{ R(T ) | T ∈ Tk } , k ≥ 0 .

If T0 consists of a single simplex̂T , we say that(Tk)k∈IN0 is generated by
recursive application ofR to T̂ . Note that at this point we mainly consider
uniform rather than adaptive refinements.

A refinement strategyR is calledstableif for any non-degenerate sim-
plexT̂ the corresponding hierarchy of triangulations, generated by recursive
application ofR to T̂ , is stable. Clearly, ifR generates only a finite number
N = N(T̂ ) of congruence classes for any initial elementT̂ , thenR is stable.
Surprisingly, the reverse implication also holds, at least in the case of regular
refinements:

Theorem 2.1 A regular refinement strategyR is stable if and only if for
each non-degenerate initial simplex̂T the number of congruence classes
generated by recursive application ofR to T̂ is finite.

Proof. We have to show that stability implies a finite number of congruence
classes. We therefore consider an arbitrary regular and stable refinement
strategyR. Let T̂ = [x(0), . . . , x(k) ] ⊂ IRn be a non-degenerate simplex
and let(Tk)k∈IN0 be the hierarchy of triangulations generated by recursive
application ofR to T̂ . Without loss of generality we can assumex(0) = 0.
Due to the regularity ofR, the volume of each elementT ∈ Tk is given by

vol(T ) = 2−knvol(T̂ ) .(4)

For the diameter of the biggestn-dimensional ball contained inT , denoted
again by%(T ), we obtain the estimate

%(T ) ≤ C vol(T )1/n = C 2−k vol(T̂ )1/n ≤ C 2−k h(T̂ ) ,(5)
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whereC = C(n) is a positive constant depending onn only. The stability
condition in combination with (2) implies that there exists (another) con-
stantC independent ofk such that for allk ≥ 0

h(T ) ≤ C 2−k h(T̂ ) , T ∈ Tk .(6)

Now we make use of the fact that all vertices ofTk are either vertices or
edge midpoints ofTk−1. Usingx(0) = 0, it follows by induction that the
vertices ofTk are contained in the set

Zn,k :=
{

x =
n∑

j=1

2−kλjx
(j)

∣∣∣ λj ∈ ZZ, 1 ≤ j ≤ n
}

.

For each elementT = [x(0)
T , . . . , x

(n)
T ] ∈ Tk letT∗ be the simplex obtained

from T by translating its first vertex to the origin and scaling the resulting
simplex by the factor2k :

T∗ := 2k(T − x
(0)
T ) , T ∈ Tk, k ≥ 0 .(7)

Clearly,T∗ is congruent toT . Moreover,h(T∗) = 2k h(T ) holds for each
elementT ∈ Tk. From (6) we conclude that

h(T∗) ≤ C h(T̂ ) , T ∈ Tk, k ≥ 0 .

Since the first vertex of every simplexT∗ is the origin, it follows that all
simplicesT∗ are contained in a closed ballB of radiusC h(T̂ ) around the
origin. Moreover, from the fact that the vertices of each elementT ∈ Tk

belongZn,k it follows that the vertices of the corresponding elementT∗
belongZn,0. The number of points in the setZn,0 ∩B depends onδ(T̂ ) but
is finite. Hence the number of possible elementsT∗ with vertices in this set
is also finite. Since for any simplexT ∈ Tk, k ∈ IN0, the corresponding
elementT∗, defined by (7), is congruent toT , we conclude that the number
of congruence classes in the hierarchy(Tk)k∈IN0 must be finite. ut

3. Survey of grid refinement algorithms

Before we discuss and analyze Freudenthal’s algorithm, we first give a short
overview of existing refinement methods in two, three, and more space
dimensions. According to the topic treated in this paper, the emphasis here
is on recursive refinement and stability. One main goal in this section is to
make clear which of these methods can be considered to be regular and affine
invariant because these are the only assumptions for the main theorem in
Sect. 5.2. As mentioned in the introduction, (adaptive) refinement algorithms
can in general be divided into two classes:red/green refinement algorithms
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Fig. 2. Red/green refinement Fig. 3. Bisection

andbisection methods. In order to get a first impression of this classification,
consider the triangulation snapshots in Fig. 2 and Fig. 3.

As a rule of thumb one can say that red/green refinement in 2D produces
triangulations having a local structure as in Fig. 2 (at least in the uniformly re-
fined regions and after some suitable affine transformation), while bisection
methods usually lead to triangulations as in Fig. 3. In the higher-dimensional
case a similar statement holds for the 2D-faces of refined simplices.

3.1. Red/green refinement algorithms

The most characteristic feature of red/green refinement is the strict distinc-
tion between refinement of marked simplices, selected for example by a
suitable error estimator, and refinements that are applied for the sake of
consistency preservation only. The latter procedure is usually called the
green closure. In general, a red/green refinement algorithm consists of the
following three components:

– A stableregular refinement strategy for the marked simplices,
– a set of additionalirregular refinement rules for the green closure,
– a global algorithmcombining regular and irregular refinements in such

a way that the resulting triangulations are consistent and stable.

Prototype for this kind of method is Bank’s well-known 2D refinement
algorithm [2]. His method can be summarized as follows: Marked triangles
are subdivided into four subtriangles by connecting the three edge midpoints,
cf. Fig. 4. The four subtriangles have the same volume and are congruent
to the original one. Hence, this red refinement strategy is stable. In order to
preserve consistency, bisection is applied to triangles with one refined edge.
Triangles with two or three refined edges are refined regularly. Elements
resulting from bisection are not refined further but may be replaced by a
regular refinement. Hence, stability is guaranteed even in the case of adaptive
refinements.

The stable refinement of tetrahedral grids is more complex. In contrast
to the 2D case, a tetrahedron can in general not be subdivided into eight
(or 2n) subtetrahedra of the same congruence class. Nevertheless, Bank’s
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Fig. 4. Red refinement in 2D Fig. 5. Red refinement in 3D

red refinements have a canonical generalization in three dimensions which
was found independently by Zhang [33] and the author [6]. The resulting
3D refinement strategy is illustrated in Fig. 5. It subdivides any given tetra-
hedron into eight subtetrahedra of equal volume. In general, however, only
four of these subtetrahedra are congruent to their father.

After cutting off four subtetrahedra at the corners, the remaining octahe-
dron can be subdivided further in three different ways each corresponding to
one of three possible interior diagonals. In subsequent refinement steps, this
interior diagonal has to be chosen carefully in order to satisfy the stability
condition. Indeed it was shown by Zhang that always selecting the longest
diagonal will in general lead to non-stable triangulations [33].

In [6] we proposed a simple algorithm which arranges the 3D red re-
finement in such a way that recursive application to any initial tetrahedron
yields elements of at most three congruence classes, no matter how many
subsequent refinements are performed. In the meantime this algorithm forms
the backbone of various adaptive refinement algorithms for tetrahedral grids
[4–6]. Let T = [x(0), x(1), x(2), x(3) ] be the tetrahedron to be refined and
denote byx(ij) the edge midnode betweenx(i) andx(j). Then the algorithm
reads as follows:

Algorithm RedRefinement3D(T = [x(0), x(1), x(2), x(3) ] )
{

T1 := [x(0),x(01),x(02),x(03)]; T5 := [x(01),x(02),x(03),x(13)];
T2 := [x(01), x(1),x(12),x(13)]; T6 := [x(01),x(02),x(12),x(13)];
T3 := [x(02),x(12), x(2),x(23)]; T7 := [x(02),x(03),x(13),x(23)];
T4 := [x(03),x(13),x(23), x(3) ]; T8 := [x(02),x(12),x(13),x(23)];

}
The diagonal chosen runs fromx(02) tox(13) and hence is given implicitly

by the vertex ordering ofT . The vertex ordering of the sonsTi, 1 ≤ i ≤ 8,
is crucial for the stability of the algorithm. If we exchange the order of the
verticesx(01), x(02) inT1, for example, the resulting algorithm will in general
not be stable anymore. By construction, algorithm RedRefinement3D is
affine invariant.
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Zhang also investigated a second strategy selecting always the shortest
diagonal for refinement [33]. This so calledshortest-interior-edgestrategy
turned out to be equivalent to Algorithm RedRefinement3D as long as it
is applied to initial elements with non-obtuse faces and a suitable vertex
ordering. For elements with at least one obtuse triangle, however, the stabil-
ity of his method has not been proved yet. Note that shortest-interior-edge
refinement is not affine invariant.

Bank’s red refinements in 2D and Algorithm RedRefinement3D turned
out to be special cases of a refinement algorithm which has been published
already in 1942 by H. Freudenthal [13]. This method applies to simplices of
arbitrary dimension. The method is regular and affine invariant. Moreover,
it can be extended to a fully adaptive red/green refinement algorithm, cf.
[7]. Since Freudenthal’s algorithm will be discussed in detail in Sect. 4, we
proceed at this point and turn to the second class of refinement algorithms.

3.2. Bisection methods

This second class contains those algorithms using only simplex bisection
for subdivision. The main advantage of these methods is that bisection may
result in more local refinements compared to regular subdivision because
elements are divided into only two instead of2n sons. Therefore these meth-
ods may be preferable ifn is large and a subdivision into2n sons yields a
too strong refinement. On the other hand, as we shall see later, bisection
methods also have some clear disadvantages.

Bisection methods differ by the way the bisection edge is selected and
consistency is preserved. In 2D there are two basic techniques. The first
one goes back to Mitchell and is referred to asnewest-vertex-bisection[25].
In this method always the triangle edge opposite to the vertex created last
(newest vertex) is used for refinement. As can be seen from Fig. 6, recursive
application of this method generates at most four congruence classes for any
initial triangle. Hence, the method is stable. Moreover, it is affine invariant.
Consistency is obtained by a recursive process refining simultaneously pairs
of triangles with a common bisection edge. If the bisection edges of the initial
triangulation are chosen properly, this recursive procedure terminates after a
finite number of steps. As Mitchell was able to show this can be done without
further restrictions onT0. Consequently, newest-vertex-bisection in 2D can
be applied to any consistent initial triangulation.

The second approach, due to Rivara, is based on using the triangle’s
longest edge for refinement [27]. The stability of this method follows from
the fact thatlongest-edge-bisectionchanges into newest-vertex-bisection
after a finite number of refinement steps [29]. Hence, the number of congru-
ence classes is also finite but in general it depends onδ(T0). Consistency
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Fig. 6. Newest-Vertex-Bisection

Fig. 7. Subsequent bisections in 3D

is achieved by a recursive process similar to the one of Mitchell. Rivara’s
method applies to any consistent triangulation. In contrast to newest-vertex-
bisection it is not affine invariant.

Both the method of Rivara and the one of Mitchell have been generalized
to three and even higher dimensions. For the longest-edge-bisection method
this was done by Rivara [28]. Indeed,n-dimensional longest-edge-bisection
can be applied to any consistent triangulation. The stability of this method,
however, has not been proved yet forn > 2.

3D versions of Mitchell’s algorithm have been developed by Bänsch [3],
Maubach [22], Liu Joe [20], and Arnold et al. [1]. These methods are stable
and apply to any consistent triangulation. In fact, they are all equivalent and
affine invariant when applied recursively to a single element. In this case at
most 36 congruence classes can appear, as was shown in [1,24]. From these
papers we also know that this bound is sharp. Fig. 7 illustrates the result of
three subsequent bisection steps. Here “subsequent” means that each but the
first bisection step is applied to all elements generated in the previous step.

Generalizations of Mitchell’s method ton dimensions have been devel-
oped by Maubach [23,24] and Traxler [31]. Both methods are equivalent
and affine invariant when applied recursively to a single element. In this
case at mostn ·n! ·2n−2 congruence classes are generated, and this bound is
sharp, cf. [1,24]. In order to satisfy the consistency condition, however, both
algorithms make some restrictive assumptions on the initial triangulationT0.
The method of Traxler, for example, requires the number of elements shar-
ing any interior(n−2)-subsimplex ofT0 to be even. Although this condition
is easily checked in practice, it is not clear how to modifyT0 if it is violated.

Remark 3.1As illustrated in Fig. 6 and Fig. 7,n subsequent bisection steps
(newest-vertex-bisection or one of its generalizations) can be regarded as
one single regular refinement step. Hence, it is possible to compare bisection
methods with regular refinement schemes, for example with respect to the
number of congruence classes, cf. Theorem 5.1. It follows from the results in
[1,24] that recursive application of such a regular bisection strategy produces
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at mostn! · 2n−2 congruence classes for any initial element. Moreover, this
bound can be shown to be sharp.

We briefly summarize the main points of this section. Bank’s red re-
finement strategy in 2D, Algorithm RedRefinement3D, and, more general,
Freudenthal’s algorithm inn dimensions, are regular, affine invariant, and
stable. Ifn subsequent bisection steps are considered as one refinement, then
Mitchell’s newest-vertex-bisection and its higher-dimensional variants are
also regular, affine invariant, and stable. The higher-dimensional variants
of Mitchell’s method, however, can not be applied to arbitrary consistent
triangulations ifn > 3. Zhang’s shortest-interior-edge strategy in 3D is
regular but not affine invariant. Rivara’s longest-edge-bisection in two and
higher dimensions is neither regular nor affine invariant. Both methods ap-
ply to any consistent triangulation. Stability, however, has been proved for
2D longest-edge-bisection only.

4. Freudenthal’s algorithm

Freudenthal’s algorithm can be considered to be the canonical generaliza-
tion of Bank’s red refinement strategy and of Algorithm RedRefinement3D
ton space dimensions. Though published already in 1942 [13], it seems that
Freudenthal’s algorithm is hardly known in the field of numerical methods
for partial differential equations. Maybe this is explained by the fact that
Freudenthal’s paper was not motivated by finite element or multigrid meth-
ods. In effect, Freudenthal mentioned in [13] that his main motivation was a
question of Brouwer concerning the construction of nested and stable hierar-
chies of triangulations. The intention of Brouwer, however, is not clear from
[13]. Freudenthal only mentioned that his method may be of use in analysis
and in the limit field between analysis and topology. Todd assumed in [30]
that Brouwer intended to apply the method for the computation of fixed
points. In fact, this seems to be the field of research where Freudenthal’s
algorithm is best known today.

4.1. The basic idea: Kuhn’s triangulation

The basic idea of Freudenthal’s algorithm can be explained best by consid-
ering the 2D case. Fig. 8 shows different triangulations of the unit square.
The triangulation in the middle of the lower row can be obtained in two
ways: by subdividing the square into two triangles each of which is then
refined red or by subdividing the square into four equally sized subsquares
each of which is then divided into two triangles. Here it is important that the
diagonal subdividing each square has the same orientation as the diagonal



Simplicial grid refinement 15

Fig. 8. Unit square triangulations

(0,0)

(1,1)

Fig. 9. How to reach vertex (1,1) ?

(1,1,1)

(0,0,0)

Fig. 10. Kuhn’s triangulation in 3D

of the square at the lower left corner. Both procedures can be repeated to
obtain equivalent triangulations of arbitrary refinement depth.

In order to derive from this observation a refinement strategy for(n)-
simplices, we first have to construct a suitable triangulation of then-dimen-
sional unit cubeC := [ 0, 1 ]n. Therefore, in Fig. 9, we consider the unit
square triangulation once again. Starting from the origin, the vertices of the
lower triangle are obtained by following first the edge inx- and then the
edge iny-direction. In the same way the vertices of the upper triangle are
obtained by going first iny- and then inx-direction. In both cases we end
at the vertex(1, 1)T.

In the n-dimensional case there are exactlyn! of such paths from the
origin over the unit cube’s edges to the vertex(1, 1, . . . , 1)T, each one pass-
ing exactlyn + 1 vertices if start and endpoint are included. These vertices
define an(n)-simplex and the set of alln! simplices is in fact a triangulation
of C. This follows from Lemma 4.1b) below. Due to [17], this triangulation
is usually calledKuhn’s triangulationof C. We note, however, that the same
subdivision already appears in the paper of Freudenthal [13].

To be more precise, lete(1), . . ., e(n) be the standard unit vectors ofIRn

and denote bySn the group of permutations of{ 1, . . . , n }. Forπ ∈ Sn, the

simplexTπ = [x(0)
π , . . . , x

(n)
π ] is defined by

x(0)
π = (0, 0, . . . , 0)T, x(j)

π = x(j−1)
π + e(π(j)), 1 ≤ j ≤ n.(8)

The setK(C) = { Tπ |π ∈ Sn } is calledKuhn’s triangulationof C. For
any affine transformationF , Kuhn’s triangulation ofF (C) is defined by
K(F (C)) := F (K(C)).
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Kuhn’s triangulation of the 3D cube is shown in Fig. 10. Some basic
properties ofK(C) are stated in the following Lemma.

Lemma 4.1 Kuhn’s triangulationK(C) has the following properties:

a) (0, 0, . . . , 0)T and (1, 1, . . . , 1)T are common vertices of all elements
Tπ, π ∈ Sn.

b) For each elementTπ, π ∈ Sn, the following representation holds:

Tπ
∼= { x ∈ C | 0 ≤ xπ(n) ≤ · · · ≤ xπ(1) ≤ 1 }.(9)

c) K(C) is a consistent triangulation ofC.
d) K(C) is compatible with translation, i.e., for each vectorv ∈ { 0, 1 }n

the union ofK(C) andK(v + C) is a consistent triangulation of the set
C ∪ (v + C).

A rigorous proof of these results, in particular those in Lemma 4.1c)
and d), is hard to find though these properties are already known for a long
time and used by many authors, cf. [11,17,30]. A proof of Lemma 4.1,
which is indeed rather technical, can be found in [8].

4.2. Refinement of Kuhn’s triangulation

Figure 8 suggests the next step towards Freudenthal’s algorithm: We subdi-
videC into 2n subcubes

Cv := v + 1
2 C , v ∈ { 0, 1

2 }n .

ThenK(Cv) consists of the tetrahedraTv,π := v+ 1
2 Tπ, π ∈ Sn. The union

of all triangulationsK(Cv), v ∈ { 0, 1
2 }n, yields

T1 :=
{

Tv,π

∣∣∣ v ∈ { 0, 1
2 }n, π ∈ Sn

}
.(10)

Clearly, T1 is a triangulation ofC. The consistency ofT1 follows from
Lemma 4.1c), d). We shall now show thatT1 is in fact a refinement of
T0 := K(C). The proof of the following Lemma represents the main part
of Freudenthal’s paper.

Lemma 4.2 The triangulationT1 in (10) is a refinement ofK(C).

Proof. Given anyv ∈ { 0, 1
2 }n andπ ∈ Sn, we will show that there exists

a unique permutation̂π = π̂(v, π) such thatTv,π ⊂ Tπ̂. To this end, let
0 ≤ k ≤ n be the number of entriesvi of v such thatvi = 1/2. It follows
that there arek unique indicesi1, . . . , ik ∈ { 1, . . . , n } satisfying

1 ≤ i1 < · · · < ik ≤ n, vπ(i1) = · · · = vπ(ik) = 1
2 ,(11)
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and the remainingn − k indicesik+1, . . . , in ∈ { 1, . . . , n } \ { i1, . . . , ik }
can be ordered such that

1 ≤ ik+1 < · · · < in ≤ n, vπ(ik+1) = · · · = vπ(in) = 0.(12)

Here and in the sequel, for the casesk = 0 and k = n, we skip those
parts of the corresponding (in)equalities that make no sense. We now define
a permutation̂π by π̂(j) = π(ij), 1 ≤ j ≤ n. From the equality results
in (11), (12) we conclude

vπ̂(1) = · · · = vπ̂(k) = 1
2 , vπ̂(k+1) = · · · = vπ̂(n) = 0.(13)

Now assumex ∈ 1
2 Tπ or, equivalently,0 ≤ xπ(n) ≤ · · · ≤ xπ(1) ≤ 1

2 , cf.
Lemma 4.1b). Using the inequality results in (11), (12), we obtain

0 ≤ xπ̂(k) ≤ · · · ≤ xπ̂(1) ≤ 1
2 , 0 ≤ xπ̂(n) ≤ · · · ≤ xπ̂(k+1) ≤ 1

2 .(14)

Combination of (13) and (14) yields

0 ≤ vπ̂(n) + xπ̂(n) ≤ · · · ≤ vπ̂(k+1) + xπ̂(k+1) ≤ 1
2

≤ vπ̂(k) + xπ̂(k) ≤ · · · ≤ vπ̂(1) + xπ̂(1) ≤ 1 ,

or, equivalently,v +x ∈ Tπ̂. Hence we have provedTv,π = v + 1
2 Tπ ⊂ Tπ̂.

By construction, the vertices ofTv,π are either vertices or edge midpoints
of Tπ̂. SinceTv,π ∈ T1 was chosen arbitrarily, we conclude thatT1 is a
refinement ofK(C). ut

4.3. Freudenthal’s algorithm

The proof of Lemma 4.2 already contains the main idea underlying Freu-
denthal’s algorithm. In this section we want to present this algorithm in a
somewhat more modern form compared to [13]. To this end, for any simplex
Tπ̂ ∈ K(C), let R(Tπ̂) =

⋃ { Tv,π ∈ T1 |Tv,π ⊂ Tπ̂ } be the refinement
induced byT1. It then follows from the proof of Lemma 4.2 thatR(Tπ̂)
contains precisely those simplicesTv,π ∈ T1 for which there is a number
0 ≤ k ≤ n such that the pairv, π satisfies (13) and

(π−1 ◦ π̂)(1) < · · · < (π−1 ◦ π̂)(k) ,(15a)

(π−1 ◦ π̂)(k + 1) < · · · < (π−1 ◦ π̂)(n) .(15b)

In particularR(Tπid), πid = (1, 2, . . . , n), consists of all simplicesTv,π

such thatv takes the form

v = (1
2 , . . . , 1

2︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

)T(16)
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for some0 ≤ k ≤ n, andπ satisfies

π−1(1) < · · · < π−1(k) , π−1(k + 1) < · · · < π−1(n) .(17)

We will now show thatT1 can be generated by an affine invariant refinement
strategy. To this end, letFπ̂ : x 7→ Pπ̂x be the affine transformation defined
by thepermutation matrixPπ̂ = ( δi,π̂(j) )n

i,j=1, and this for eacĥπ ∈ Sn.
A simple calculation showsTπ̂ = Fπ̂(Tπid), π̂ ∈ Sn. Now fix anyπ̂ ∈ Sn

and consider an arbitrary elementTv,π ∈ R(Tπid). Using v̂ = Pπ̂v and
π−1 = (π̂ ◦ π)−1 ◦ π̂, (16), (17) can be written as

v̂π̂(1) = · · · = v̂π̂(k) = 1
2 , v̂π̂(k+1) = · · · = v̂π̂(n) = 0 ,

and

((π̂ ◦ π)−1 ◦ π̂)(1) < · · · < ((π̂ ◦ π)−1 ◦ π̂)(k) ,
((π̂ ◦ π)−1 ◦ π̂)(k + 1) < · · · < ((π̂ ◦ π)−1 ◦ π̂)(n) .

From (13), (15) we conclude thatTv,π ∈ R(Tπid) holds if and only if
Tv̂,π̂◦π ∈ R(Tπ̂). Using the relationPπ′◦π = Pπ′ Pπ, it is not difficult to
show thatTv̂,π̂◦π = Fπ̂(Tv,π). It follows thatR(Tπ̂) = Fπ̂ R(Tπid) holds
for π̂ ∈ Sn. Hence,T1 can be generated fromK(C) by an affine invariant
refinement strategy.

To find such a strategy, we reformulate (16), (17) in an affine invariant
way. Letv, π be such that (16), (17) hold. It follows from (8) that the first
vertex ofTv,π = v + 1

2 Tπ is given byv(0) = v = 1
2 (x(0)

πid + x
(k)
πid). The re-

maining verticesv(1), . . . , v(n) can be expressed in terms of the verticesx
(j)
πid

as follows:

v(`) = v + 1
2 x(`)

π = v + 1
2

∑̀
j=1

e(π(j))

= v(`−1) + 1
2 e(π(`)) = v(`−1) + 1

2 (x(π(`))
πid

− x(π(`)−1)
πid

) .

Replacingx(0)
πid , . . . , x

(n)
πid by the vertices of an arbitrary simplexT we end

up with Freudenthal’s algorithm:
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Algorithm RedRefinementND(T = [x(0), . . . , x(n) ] )
{

for ( 0 ≤ k ≤ n ) do (1)
{

v(0) := 1
2 (x(0) + x(k)); (2)

for ( π ∈ Sn ) do (3)
if ( π−1(1) < · · · < π−1(k) ) (4)
and ( π−1(k + 1) < · · · < π−1(n) ) then (5)
{

for ( 1 ≤ ` ≤ n ) do (6)
v(`) := v(`−1) + 1

2(x(π(`)) − x((π(`)−1)); (7)
Tv(0),π := [ v(0), . . . , v(n) ]; (8)

}
}

}
By construction, Algorithm RedRefinementND is affine invariant. Note that
for eachk there are precisely

(n
k

)
permutationsπ satisfying the if-condition

in line (4), (5). It follows that2n sons are generated in line (8) and hence,
Algorithm RedRefinementND is a regular refinement strategy. The stability
condition is proved in the following Theorem which also provides an upper
bound for the number of congruence classes. This upper bound is in fact the
main new result of this section.

Theorem 4.1 For any non-degenerate simplexT ⊂ IRn, recursive appli-
cation of Algorithm RedRefinementND results in a stable hierarchy of con-
sistent triangulations ofT . Moreover, the number of generated congruence
classes is at mostn!/2.

Proof. Let (Tk)k∈IN0 be the hierarchy of triangulations generated by recur-
sive application of Algorithm RedRefinementND toT0 := K(C). Clearly,
T1 has the representation (10). By induction we obtain

Tk = { Tv,π := v + 2−k Tπ | v ∈ Zn,k; π ∈ Sn } , k ≥ 0 ,

whereZn,k := { v ∈ [0, 1)n | 2k vi ∈ ZZ, 1 ≤ i ≤ n } is a subset of the
vertices ofTk. From Lemma 4.1c), d) we conclude thatTk is consistent for
all k ≥ 0.

Now let T = [x(0), . . . , x(n) ] be any non-degenerate simplex and let
(Tk(T ))k∈IN0 be the hierarchy of triangulations generated by recursive ap-
plication of Algorithm RedRefinementND toT . The affine invariance of
Algorithm RedRefinementND leads us to the representation

Tk(T ) = { F (T ′) | T ′ ∈ Tk, T ′ ⊂ Tπid } , k ≥ 0 ,



20 J. Bey

whereF : Tπid −→ T is the unique affine transformation betweenTπid

andT . The consistency ofTk implies the consistency ofTk(T ) for k ≥ 0.
Moreover, since any elementT ′ ∈ Tk is of the formT ′ = v + 2−k Tπ for
somev ∈ Zn,k, π ∈ Sn, it follows thatF (T ′) is congruent withF (Tπ) for
someπ ∈ Sn. Hence, the number of congruence classes in the hierarchy
(Tk(T ))k∈IN0 is at mostn!. This bound can be improved: Letπ, π′ ∈ Sn

be permutations such thatπ′(j) = π(n + 1 − j), j = 1, . . . , n. Using the
vector1l := ( 1, 1, . . . , 1 )T, the vertices ofTπ, Tπ′ are related by

x
(i)
π′ =

i∑
j=1

e(π′(j)) =
i∑

j=1

e(π(n+1−j)) = 1l −
n−i∑
j=1

e(π(j)) = 1l − x(n−i)
π

for 0 ≤ i ≤ n. This impliesTπ′ ∼= 1l−Tπ. It follows thatF (Tπ′) is congruent
to F (Tπ). Hence, the number of congruence classes in(Tk(T ))k∈IN0 is
bounded byn!/2. This implies stability. ut
Remark 4.1Condition (17) means thatπ = (π(1), . . . , π(n) ) contains the
numbers1, 2, . . . , k and the numbersk+1, . . . , n in their natural order, that
is, 1 appears somewhere on the left of 2, 2 appears somewhere on the left
of 3, and so on, up tok−1 which appears somewhere on the left ofk, and
likewise fork+1, . . . , n. If, for example,n = 3 andk = 1, then condition
(17) is satisfied for all permutationsπ ∈ { (1, 2, 3), (2, 1, 3), (2, 3, 1) }.

Remark 4.2One may easily verify that Algorithm RedRefinementND for
n=3 is equivalent to Algorithm RedRefinement3D.

4.4. Global refinements

In the previous subsection we have seen that recursive application of Freu-
denthal’s algorithm to a single simplexT produces consistent and stable
triangulations ofT . In the 3D case Freudenthal’s algorithm can in fact be
applied to any consistent triangulation, due to the symmetric subdivision of
triangular faces, cf. Fig. 5. In higher dimensions, however, the refinement
of adjacent simplices may give rise to consistency problems at their com-
mon lower-dimensional subsimplex. Nevertheless, as the following theorem
shows, Freudenthal’s algorithm can be successfully applied to anyconsis-
tently numberedinitial triangulation, cf. Sect. 2.3. The result appears already
in Freudenthal’s paper [13] but he did not prove it. For a proof of Theorem
4.2 we refer to [8].

Theorem 4.2 LetT0 be a consistently numbered triangulation inIRn. Then
the triangulationsTk, k > 0, obtained by recursive application of Algorithm
RedRefinementND toT0, are consistently numbered as well.
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Note that, by definition, “consistently numbered” implies consistency.
Also note that any consistent triangulation can be made consistently num-
bered by fitting the local vertex ordering of each element to an arbitrary
global numbering of the vertices of the triangulation. Hence, in contrast
to the bisection methods mentioned in Sect. 3.2 Freudenthal’s algorithm
applies toanyconsistent initial triangulation. Note, however, that the basic
form of Freudenthal’s algorithm can be used to produceuniformrefinements
only. In order to obtain a fullyadaptiverefinement algorithm it has to be
combined with additional irregular refinement rules for the green closure.
This will be the subject of a forthcoming paper, cf. [7].

5. The optimal number of congruence classes

Theorem 4.1 shows that recursive application of Freudenthal’s algorithm
to any initial elementT produces simplices of at mostn!/2 congruence
classes. In special cases, of course, less thann!/2 congruence classes may
appear. All elements obtained by subsequent refinement of Kuhn’s triangu-
lation K(C), for example, belong to the same congruence class. Sufficient
conditions for tetrahedra having this property can be found in [14]. On the
other hand, there are several refinement schemes producing significantly
more thann!/2 congruence classes. For the bisection methods of Maubach
and Traxler, for example, it is known that these may generate up ton! ·2n−2

congruence classes for general initial elements ifn subsequent bisection
steps are regarded as a single regular refinement step, cf. Remark 3.1.

We emphasize that the number of congruence classes is of great practical
importance. In many applications there are data which depend on the ele-
ment’s congruence class and refinement level only. These applications can
often be considerably accelerated if such data are calculated and stored only
once. The assembling of stiffness matrices in finite element computations
is a typical example. Also note that, if the number of congruence classes is
small, one may expect better shaped triangulations in terms ofδ(T ). Hence,
it is beneficial to have the number of congruence classes as small as possible.

At this point the following question arises: Is it possible to construct
a refinement algorithm which generates less thann!/2 congruence classes
for any initial elementT ? We will show in the remainder of this section
that the answer is negative – at least if we restrict our considerations to
refinement strategies which are regular and affine invariant. More precisely:
we will prove that recursive application ofany regular and affine invariant
refinement strategy must produceat leastn!/2congruence classesfor almost
all (n)-simplicesT .

The formulation “for almost all” allows exceptions as the application of
Freudenthal’s algorithm to the elements ofK(C). The precise meaning of
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this formulation is the following: Every (n)-simplex represents a point in the
Euclidean spaceIRn (n+1). A certain assertion is said to holdfor almost all
simplicesT ⊂ IRn if the set of simplices violating this assertion corresponds
to a set of Lebesgue measure zero inIRn (n+1). Note that the set of degenerate
simplices inIRn corresponds to a set of measure zero inIRn (n+1). Hence, the
formulations “for almost all simplices” and “for almost all non-degenerate
simplices” are equivalent.

5.1. A special property of the polar decomposition

The proof of our theorem is based on a certain regularity property of the
polar decomposition. In this subsection we will formulate and prove this
property. Here and in the sequel, forn ∈ IN fixed, we use the following
matrix set notation:

GL := { A ∈ IRn×n | det A 6= 0 } ,

O := { Q ∈ IRn×n | QTQ = I } ,

S := { A ∈ IRn×n | A = AT } ,

S+ := { A ∈ S | xTAx > 0, x ∈ IRn \ {0} } .

The setGL is usually referred to asgeneral linear group. It is known, cf. [16],
that each elementA of this group has a uniquepolar decompositionof the
form

A = QX1/2 , Q ∈ O, X ∈ S+.(18)

Clearly, the matrixX in (18) satisfiesX = ATA. As we shall see later, this
polar decomposition plays an important role in the proof of our theorem. In
particular the following regularity property will be used:

Lemma 5.1 LetM ⊂ S be a proper subspace of dimensionk < n
2 (n+1).

Then the set

B := { A = QX1/2 | Q ∈ O; X ∈ M ∩ S+ }(19)

is a set of Lebesgue measure zero inIRn×n.

Proof. This Lemma can be proved elegantly by using the concept of real
manifolds, cf. [9,18].

It is known thatO is a real manifold of dimensionn2 (n− 1), cf. [9]. The
setS+, which is an open subset ofS, can be regarded as a real manifold
of dimensionn

2 (n + 1). It follows that theproduct manifoldO × S+ has
dimensionn2. Clearly, the open subsetGL ⊂ IRn×n is also a real manifold
of dimensionn2.

The mappingX 7→ X1/2 is the inverse of theC∞-bijectionX 7→ X2

on S+. From the inverse function theorem (cf. [12]) it follows that the
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mappingX 7→ X1/2 is aC∞-bijection onS+, see [16]. Hence, the mapping
F : O×S+ −→ GL, defined byF (Q, X) = Q X1/2, isC∞, too. Moreover,
from the existence and uniqueness of the polar decomposition for all matrices
A ∈ GL it follows thatF is one-to-one. We conclude that F is aC∞-bijection
from the real manifoldO × S+ onto the real manifoldGL.

Now suppose thatM is a proper subspace of dimensionk < n
2 (n + 1)

in S. Then for the setB from (19) we haveB = F (O × (M∩S+)). Hence,
B is asubmanifoldof dimension< n2 in GL, cf. [9,18]. This implies that
B is a set of Lebesgue measure zero inIRn×n. ut

5.2. The optimality result

We are now in a position to prove the main theorem of this paper:

Theorem 5.1 Let R be a regular and affine invariant refinement strategy
for simplices inIRn. Then for almost all simplicesT ⊂ IRn, recursive
application ofR to T generates at leastn!/2 congruence classes.

Proof. Let againTπid be the reference simplex from Kuhn’s triangulation
K([ 0, 1 ]n) and let(Tk)k∈IN0 be the hierarchy of triangulations obtained by
recursive application ofR to Tπid . Fork ≥ 0 fixed we divide the simplices
T ∈ Tk into equivalence classes

[T ] := { T ′ ∈ Tk | T ′ ∼= v + T for somev ∈ IRn }, T ∈ Tk.

A second set of equivalence classes can be defined by

[T ]± := { T ′ ∈ Tk | T ′ ∼= v + T or T ′ ∼= v − T for somev ∈ IRn }
for all T ∈ Tk. The number of different equivalence classes[T ] and[T ]±,
T ∈ Tk, is denoted byµk, µ±

k . Clearly,µk ≤ 2 µ±
k . Note that an arbitrary

but fixed affine transformationF maps all simplices of the sameequiva-
lence class[T ] (or [T ]±) into the samecongruence class. Also note that
affine transformations can be regarded as points inIRn × IRn×n. Hence, the
Lebesgue measure of a set of affine transformations is well defined. We are
now going to prove the following assertions:

Assertion 1. Fork sufficiently large:µk ≥ n! and hence,µ±
k ≥ n!/2.

Assertion 2. AssumeT, T ′ ∈ Tk such that[T ]± 6= [T ′]±. Then the set of
affine transformationsF mappingT andT ′ into the same
congruence class is a set of Lebesgue measure zero inIRn×
IRn×n.

It follows from these two assertions and from the finiteness ofµ±
k for eachk

that for sufficiently largek the elementsT ∈ Tk are mapped to at leastn!/2
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congruence classes by almost all affine transformationsF . SinceR is affine
invariant, we conclude that for almost all affine transformationsF recur-
sive application ofR to F (Tπid) produces at leastn!/2 congruence classes.
We note that there is a one-to-one correspondence between affine transfor-
mations and non-degenerate simplices, which is in addition easily shown
to be Lipschitz-continuous. This implies that a zero measure set of affine
transformations corresponds to a zero measure set of simplices, cf. [32].
Hence, if Assertion 1 and 2 hold true, it follows that recursive application
of R produces at leastn!/2 congruence classes for almost all initial sim-
plicesT ⊂ IRn.

Proof of Assertion 1.We choosek ≥ 0 large enough such that some (n)-
cubeC with axis-parallel edges of length2−k is contained inTπid . Then
we fix an arbitrary elementT ∈ Tk. Intersection ofC with the union of all
simplicesT ′ ∈ [T ] yields

C ∩ [T ] :=
⋃

T ′∈[T ]

(C ∩ T ′) , T ∈ Tk .

We are going to estimate the volume ofC ∩ [T ]. Since different elements in
Tk overlap at most at their boundaries, we can write

vol(C ∩ [T ]) =
∑

T ′∈[T ]

vol(C ∩ T ′) .

The vertices ofTk belong to the set of grid points

Zn,k := { v ∈ IRn | 2kvi ∈ ZZ, 1 ≤ i ≤ n } .

It follows that for any simplexT ′ ∈ [T ] there is a vectorv ∈ Zn,k such that
T ′ ∼= v + T . Hence we have the estimate

vol(C ∩ [T ]) ≤
∑

v∈Zn,k

vol
(

C ∩ (v + T )
)

.

The intersection ofC and the translates ofT is illustrated in Fig. 11. The
shaded regions are parts of translates ofT which have been clipped at the
larger square’s boundary. Of course, instead ofT alsoC might be moved.
UsingC ∩ (v + T ) = (−v + C) ∩ T for v ∈ IRn we obtain

∑
v∈Zn,k

vol
(

C ∩ (v + T )
)

=
∑

v∈Zn,k

vol
(

(−v + C) ∩ T
)

=
∑

v∈Zn,k

vol
(

(v + C) ∩ T
)
.



Simplicial grid refinement 25

T

C

Fig. 11. Intersection ofC and the translates ofT

The translatesv+C,v ∈ Zn,k, intersect pairwise at most at their boundaries.
Hence we conclude

∑
v∈Zn,k

vol
(

(v + C) ∩ T
)

= vol
(

T ∩
( ⋃

v∈Zn,k

(v + C)
) )

= vol(T ∩ IRn) = vol(T ).

SinceT ∈ Tk was chosen arbitrarily we end up with the estimate

vol(C ∩ [T ]) ≤ vol(T ) , T ∈ Tk .

Now we use the assumption thatR is a regular refinement strategy. It follows
that all elementsT ∈ Tk have the same volume

vol(T ) = 2−kn vol(T̂ ) =
2−kn

n!
.

By construction,C ⊂ Tπid is completely covered by simplicesT ∈ Tk. We
therefore obtain

2−kn = vol(C) =
∑
[T ]

vol(C ∩ [T ]) ≤
∑
[T ]

vol(T ) = µk
2−kn

n!
,

that isµk ≥ n! and hence,µ±
k ≥ n!/2. This proves Assertion 1.

Proof of Assertion 2.We have to show that different equivalence classes
[T ]± 6= [T ′]± are mapped into different congruence classes by almost all
affine transformationsF . To this end, consider two simplicesT, T ′ ∈ Tk

such that[T ]± 6= [T ′]±. Let furtherG : x 7→ v + Ax be the unique affine
transformation satisfyingT ′ = G(T ). Then vol(T ) = vol(T ′) implies
| det A | = 1 and, due to[T ]± 6= [T ′]±, neitherA nor −A can be the
matrix of a renumbering ofT , cf. Sect. 2.2. Now letF : x 7→ w + Bx
be an arbitrary affine transformation. As the congruence class ofF (T ) and
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of F (T ′) is independent ofw, we can assumew = 0. By definition,F (T )
andF (T ′) are congruent to each other if and only if

B T ′ ∼= z + c QB T(20)

holds for somec > 0, z ∈ IRn, andQ ∈ O. From vol(B T ) = vol(B T ′)
we concludec = 1. Using a suitable renumberingx 7→ u + Ux of T ′, (20)
can be rewritten as

B (u + U T ′) = z + QB T .

InsertingT ′ = G(T ) we obtain

B u + B Uv + B UA T = z + QB T .

Now vol(T ) > 0 implies z = B u + B Uv and hence,B UA = Q B. It
follows thatF (T ), F (T ′) are congruent if and only if there exists some
renumbering ofT ′ with matrixU such thatB UA B−1 is orthogonal. Using
the notationÃ = UA it follows that

(B Ã B−1)T = (B Ã B−1)−1

should hold or, equivalently

BTB = ÃTBTB Ã .

Thus,F (T ) andF (T ′) are congruent to each other if and only if the polar
decomposition ofB, i.e. B = V X1/2 with V ∈ O, X ∈ S+, yields a
symmetric positive definite matrixX satisfying

X = ÃTX Ã(21)

with Ã = UA and a suitable renumberingU . Let M ⊂ S be the set of
all matricesX ∈ S (not necessaryX ∈ S+) satisfying (21). Clearly,M
is a linear subspace ofS. A simple comparison of coefficients shows that
M = S impliesÃ = ±I and henceA = ±U−1. In this case eitherA or−A
would be the matrix of a renumbering ofT , in contradiction to[T ]± 6= [T ′]±.
Thus,M must be a proper subspace ofS and we can apply Lemma 5.1. It
follows that the set

B := { B = V X1/2 | V ∈ O; X ∈ M ∩ S+ }
is a set of Lebesgue measure zero inIRn×n. Hence, the set of all affine trans-
formationsF with transformation matrixB ∈ B is of Lebesgue measure
zero inIRn × IRn×n. This, however, proves Assertion 2 becauseB ∈ B and
the congruence ofF (T ), F (T ′) are equivalent. ut
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Remark 5.1It can be shown by induction that an (n)-cubeC with axis-
parallel edges of length2−k fits intoTπid if k ≥ n−1. From this observation
it follows that Freudenthal’s algorithm stops generating new congruence
classes aftern − 1 refinement steps.

Remark 5.2Theorem 5.1 in combination with Theorem 4.1 shows that
Freudenthal’s algorithm is optimal with respect to the number of congru-
ence classes. This, of course, does not imply that Freudenthal’s algorithm
is also optimal with respect to the measure of degeneracy of the resulting
triangulations. Compared to the bisection algorithms of Maubach [23,24]
and Traxler [31], however, we can make the following observation: The
n · n! · 2n−2 congruence classes (orn! · 2n−2 if n subsequent bisections are
regarded as one regular refinement) generated by recursive bisection con-
tain thosen!/2 congruence classes generated by Freudenthal’s algorithm.
Hence, assuming identical initial triangulations, the measure of degeneracy
of the triangulation hierarchy generated by Freudenthal’s algorithm cannot
be worse than the one obtained by recursive bisection.

Remark 5.3Although Theorem 5.1 applies to affine invariant strategies
only, it is in our opinion very unlikely that there exists a non-affine in-
variant recursive refinement strategy generating less thann!/2 congruence
classes for any initial element. For Rivara’s longest edge bisection [27,28]
and for Zhang’s shortest interior edge refinement [33] it is in fact known that
in general the number of congruence classes depends onδ(T ) and may be ar-
bitrarily large. Hence, with respect to minimizing the number of congruence
classes affine invariant methods are preferable.

The proof of Theorem 5.1 is based on the fact that the vertices ofTk

belong to some rectangular gridZn,k. The refinement assumption, however,
is not used at all. In fact, we have proved the following more general result:

Corollary 5.1 Let T be a triangulation of some regionΩ ⊂ IRn. Assume
there is someh > 0such that (i) the vertices ofT belong to a rectangular grid
of meshwidthh, (ii) some (n)-cube with axis-parallel edges of lengthh fits
intoΩ̄, and (iii), all elementsT ∈ T have the same volume vol(T ) = hn/n!.
Then almost every affine transformationF results in a triangulationF (T )
with elements in at leastn!/2 different congruence classes.
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3. Bänsch, E. (1991): Local mesh refinement in 2 and 3 dimensions. Impact of Computing
in Science and Engineering3: 181–191

4. Bastian, P. (1996): Parallele adaptive Mehrgitterverfahren. Teubner Skripten zur Nu-
merik, Teubner, Stuttgart, Leipzig

5. Beck, R. Erdmann, B. Roitzsch, R. (1995): KASKADE 3.0, an object-oriented
adaptive finite element code. Technical Report TR 95-4, Konrad-Zuse-Zentrum für
Informationstechnik, Berlin

6. Bey, J. (1995): Tetrahedral grid refinement. Computing55, 355–378
7. Bey, J. (1998): Adaptive refinement of simplicial grids. Report. Institut für Geometrie

und Praktische Mathematik, RWTH Aachen
8. Bey, J. (1998): Finite-Volumen- und Mehrgitterverfahren für elliptische Randwert-

probleme. Advances in Numerical Mathematics, Teubner, Stuttgart, Leipzig
9. Choquet-Bruhat, Y., de Witt-Morette, C., Dillard-Bleick, M. (1977): Analysis, Mani-

folds and Physics. North-Holland
10. Ciarlet, P.G. (1978): The Finite Element Method for Elliptic Problems. North Holland
11. Dahmen, W.A., Micchelli, C.A. (1982): On the linear independence of multivariate

B-splines. I. Triangulations of simploids. SIAM J. Numer.19(5), 993–1012
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