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Summary. Inthe present paperwe investigate Freudenthal's simplex refine-
ment algorithm which can be considered to be the canonical generalization
of Bank’s well knownred refinement strategy for triangles. Freudenthal’s
algorithm subdivides any givem)-simplex into2™ subsimplices, in such

a way that recursive application results in a stable hierarchy of consistent
triangulations. Our investigations concentrate in particular on the number of
congruence classes generated by recursive refinements. After presentation
of the method and the basic ideas behind it, we will show that Freuden-
thal’'s algorithm produces at most/2 congruence classes for any initial
(n)-simplex, no matter how many subsequent refinements are performed.
Moreover, we will show that this number is optimal in the sense that re-
cursive application of any affine invariant refinement strategy @itsons

per element results iat leastn!/2 congruence classes faimost all (n)-
simplices.

Mathematics Subject Classification (199&5N50

1. Introduction

Along with the growing acceptance of adaptive discretization methods for
partial differential equations, a number of adaptive mesh refinement al-
gorithms have been developed during the last years. Much attention has
been paid in particular to the refinement of simplicial gridi(gulations,

which have some advantages, compared to cubic-type meshes, concerning
the approximation of curved domains and the preservation of consistency
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after adaptive refinements. Usually, simplicial meshes obtained by subse-
qguent refinements are required to fulfill at least two conditistebility and
consistency

The stability condition means that the simplicede(ments generated
during the refinement process must not degenerate, i.e., the interior angles
of all elements have to be bounded uniformly away from zero. Consistent
triangulations are characterized by the fact that the intersection of each pair
of adjacent elements is either a common vertex, a common edge, or, in
general, a common lower-dimensional subsimplex. Note that in most cases
consistency is required rather for the sake of convenience than on account
of mathematical necessity. In contrast, stability is essential for example for
the approximation properties of finite element spaces and the convergence
behaviour of multigrid and multilevel algorithms.

Besides the numerical solution of partial differential equations there are
many other fields where mesh refinementtechniques are of particular interest
(see [26] for an overview). In two and three space dimensions, for example,
adaptively refined meshes are used for realistic surface and volume rendering
in computer graphics or for the resolution of details in geometric design, cf.
[15]. Higher-dimensional meshes are applied in combinatorical algorithms
for the computation of fixed points or in financial mathematics to determine
fair prices of options. In most of these cases stability and consistency are
important properties.

For triangular and tetrahedral grids there exist several refinement algo-
rithms satisfying both conditions for arbitrary consistent input triangula-
tions. These algorithms can be divided into two major classes depending on
the basic subdivision scheme and on the way how stability and consistency
are preserveded/green refinement algorithng, 6,21, 33] andbisection
methodd1, 3,20, 22, 25,27, 28].

There also exist more general refinement algorithms for simplicial grids
in n space dimensions. Most of these methods, however, are not fully sat-
isfactory. The bisection methods of Maubach [23,24] and Traxler [31], for
example, are based on certain rather restrictive assumptions concerning the
initial triangulation that are often hard to fulfill in practice. For Rivara’s
longest edge bisection [28], on the other hand, which indeed applies to any
consistent triangulation, it has not been proved yet that it is stable fop.

Subject of the present paper is a refinement strategy which has been
published already in 1942 by H. Freudenthal [13]. Freudenthal’s algorithm
subdivides any give(n)-simplexT into 2" subsimplices of equal volume
in such a way that recursive refinementfyields stable and consistent
triangulations off". Moreover, the method can be applied to arbitrary con-
sistent triangulations. Inspired by [2], we refer to such subdivisions2fith
sons per element asgular (or red) refinements. In fact, the famous red
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refinement strategy for triangles, proposed by Bank [2], and also the corre-
sponding 3D refinement strategy proposed by the author in [6], are special
cases of Freudenthal’'s method.

Freudenthal’s algorithm is frequently used in, for example, fixed point
computations, cf. [30]. The method, however, is not well-known in the field
of numerical solution of partial differential equations. The original paper of
Freudenthal [13], which is indeed very interesting for historical reasons, is
not very suitable as an introduction for engineers and application program-
mers. Therefore we will present a detailed description of the method and
the basic idea behind it. The algorithm itself will be presented in a some-
what more modern form which comes closer to what is usually called a
“ready-to-implement” formulation.

After presentation of the method we concentrate on the number of con-
gruence classes generated in subsequentrefinement steps. As afirstresult we
will show that Freudenthal’s algorithm produces at mag congruence
classes for any initialr{)-simplex7’, no matter how many subsequent re-
finement steps are performed. Of course, this resultimplies stability. We will
also show that a finite number of congruence classes is not only sufficient but
also necessary for stability, provided we restrict ourselves to regular refine-
ment schemes. For practical reasons, however, it is often desirable that the
number of congruence classes is not only finite but even as small as possi-
ble. In many applications such as finite element computations, for example,
there are data depending on the element’s congruence class and refinement
level only. Such applications can often be significantly accelerated if data
of this type are calculated and stored only once.

In this respect, the following result — which can be considered to be the
main result of this paper — seems to be interesting: We will prove that recur-
sive application ofinyregular and affine invariant refinement strategy pro-
duces at least!/2 congruence classes for almost(ai)-simplices. Hence,
Freudenthal’s algorithm is optimal in that sense. In fact one can show that
the bisection methods mentioned above generate up 82 congruence
classes if» subsequent bisection steps are considered to be one single reg-
ular refinement, cf. [1]. Consequently, Freudenthal’s algorithm has at least
two advantages compared to bisection: It applies to any given consistent
triangulation and it produces significantly fewer congruence classes.

It should be mentioned at this point that Freudenthal’s algorithm with-
out modification can be used faniformrefinements only. In contrast, the
bisection methods mentioned above yield consistent triangulations also in
the case ofdaptiverefinements. In order to extend Freudenthal’s method
to a fully adaptive algorithm, it has to be combined with some suitable set
of additionalirregular refinement rules for the so callgdeen closureThis
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topic, however, will be addressed in a forthcoming paper, cf. [7]. Here we
are mainly concerned with recursive, uniform refinements.

The remainder of this paper is organized as follows: Sect. 2 contains
basic definitions and some elementary geometric results. In Sect. 3 we give
a short survey of existing grid refinement algorithms in two, three, and more
space dimensions. In Sect. 4 we derive Freudenthal's algorithm and show
that it generates at most/2 congruence classes for any initial element
Finally, in Sect. 5, we prove that this number is optimal for any regular and
affine invariant refinement strategy.

2. Basic definitions

We start with the definition of basic notions and recall some elementary
results from geometry. Most of the material presented here can be found
in [10]. One result (Theorem 2.1), however, appears to be new and will
therefore be proved at the end of this section.

2.1. Simplices

A closed subsel” ¢ IR" is called a(k)-simplex 0 < k < n, if T is the
convex linear hull ofc + 1 verticesz(®, ..., z®) ¢ R" :

Q) 7 =129 . 20

k k
={e=3 2P| Y=Ly e, 0< <k}
j=0 J=0

The vertex ordering of each such){simplexT is assumed to be fixed.
Hence, two simplice®” = [z, ... 20|, 7" =[O, ... 4®*)] are de-
fined to be equal, i.el’ = 77, if zU) = yU) for 0 < j < k. If the vertex
numbering is different buf’ and7” still denote the same subsetlBf*, we
say thatl’ coincides withl” in the sense of setnd writeT" == T".

If &k = n thenT is simply calledsimplexor elementof IR". (2)- and
(3)-simplices are calletriangles and tetrahedraas usual. Note that the
vertex ordering plays an important role in many grid refinement algorithms
and in particular in the algorithm considered in this paper. The boundary of
a (k)-simplex consists of lower-dimensional subsimplices: Aasfmplex
S = [y, ... y©O]is called an(¢)-subsimpleof T = [z, ... z*)],

0 < ¢ < k < n, if the vertices ofS are vertices ofl” and if their ordering
coincides with the ordering induced by the vertex numbering afe., if
there are indiced < ip < i1 < --- < iy < k such thatyV) = (%) for
0 < j < £.0Obviously, the (0)- and (1)-subsimplicesbfre just its vertices
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an%eldges, respectively. The number@fqubsimplices of ak()-simplexT’
is (51).

fﬁ\le k-dimensional volume of ak)-simplexT" is denoted by vdll’)
if & = n and by vol(T") otherwise. If vo,(7") = 0 or, equivalently, if
the vertices ofl" belong to a(k — 1)-dimensional hyperpland; is called
degenerateln many applications, for example in the discretization of partial
differential equations, such degenerate simplices should be avoided. A more
refined quality measure for the shape bj-§implices is themeasure of

degeneracy
) 6(T) := h(T)/o(T),

whereh(T") denotes the length of the longest edgelpfand o(T') is the
diameter of the biggegt-dimensional ball contained . It is easily seen
thatT" is degenerate if and only &(7") = oo. Other shape measures and
their relations are considered in [19], for example. Our choice is motivated
by the finite element convergence analysis in [10]. To calcyléig for a
(k)-simplexT’, in practice one may use the formula

h(T") voly_1(0T)
2nvolg(T)

oT) =

which can be shown to hold using similar arguments as in the proof of the
corresponding three-dimensional result in [33].

2.2. Affine transformations

To carry over certain results from one simplex to another, affine transfor-
mations have proved to be a useful tool. &ffine transformationn IR" is
a mappingF' : R — IR" of the form

F(z) = v+ Bz, zelR",

wherev € IR” is an arbitrary translation vector arigl € IR"*" is a non-
singular transformation matrix. In most cases we wkiteinstead ofF'(z).
For any subsef/ C IR", the transformed se¥/’ = F(M) is given by
FM):={Fz|ze M}

Every affine transformatio#’ : x — v + Bx iS one-to-one, and the
inverse mapping®~!, given by F~! : 2+ B~z —v), z € IR", is
also an affine transformation. Furthermore, the image of &jwsimplex
T =[2O,...,2®] c R" under some affine transformatidnis again a
(k)-simplex. The vertex ordering of the transformed simp@léx= F(T) is
induced by the vertex ordering if, i.e., F'(T') is defined by

F(T) := [Fz©,. .. Fa®].
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For F(T) we also use the notatiafi(7) = v + BT. If B = cI for some
c#0,wewriteF(T) =v+cT.

Since bothT" and F(T') have a given vertex ordering, it follows that
for any two non-degenerate simplic€s7” c IR” there is a unique affine
transformation?’ satisfying7” = F(T). If T’ equalsT in the sense of sets,

T' = T, thenF is calledrenumberingof 7. Renumberings can be used to
replace relations of the forffi = 7" by equations of the forfi” = F(T).
Considering simplices as subsetslief makes sense if a certain simplex
property is independent of the actual vertex ordering. In the present paper
the most important property of this type is the congruence property: Two
simplicesT, T’ c IR™ are calledcongruentto each other if there exists a
translation vector € IR", a scaling factor > 0, and an orthogonal matrix

Q@ € IR™*" such that

3) T = v+c¢QT.

In this casel’ and7” are elements of the samengruence classSince (3)
reads?’’ = v + c¢QT but notT” = v + ¢Q T, the congruence class of a
simplex is independent of its vertex ordering. Clearly, any two simplices of
the same congruence class have the same measure of degeneracy.

2.3. Triangulations

A finite set7 of non-degenerate simplicds C IR" with pairwise non-
overlapping interior is called @iangulation(in IR™). The vertices of/ are

just the vertices of its elements. A triangulatipris calledconsistent if the
intersection of any two distinct simplicds 7" € T is either empty or —in
the sense of set- a common lower-dimensional subsimplex. If each such
subsimplex is a common subsimplex not only in the sense of sets but even
in the sense of equality of simplices (cf. Sect. 2.1), then we sayJthat
consistently numbered/ore precisely:T is called consistently numbered

if for any two simplicesl” = [2©), ... 2™ ], 7" = [y© ... y™] e T
with non-empty intersectio N 7" # () there are a numbér< ¢ < n and
indicesig < i1 < -+ < g, jo < j1 < --- < jesuch that

TAT = (209, 20] = [y0), . 4007,

Examples of consistently numbered triangulationsin 2D and 3D are shownin
Fig. 1. We note that the consistent-numbering-property is of greatimportance
when applying Freudenthal’s algorithm globally to all simplices of a given
triangulation — at least if. > 3, cf. Sect.4.4. Incase of = 2orn = 3 it
usually suffices to consider consistent triangulations.

1 Some authors prefer the termegular, conforming or compatible
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Fig. 1. Consistently numbered triangulations in 2D and 3D

Themeasure of degeneracoy a triangulatior/ is defined by

oT) = max §(T).
For any triangulatiory” and any affine transformatiofi in IR", the trans-
formed triangulatior¥'(7) is given by

F(T) == {F(T)|TeT).

It is easily verified that?'(7") is consistent (consistently numbered) if and
only if 7 has this property.

2.4. Refinements

Refinement is the key operation in various grid adaptation algorithms. Here
we consider only such refinements where the new vertices coincide with edge
midpoints of refined simplices. To be more precise/llet IR" be a non-
degenerate simplex. fefinemenbf 7' is a triangulationR (T") consisting
of at least two elements such that each verteR@I') is either a vertex or
an edge midpoint df". The elements iR (7") are calledsonsof 7" while T’
is calledfather of the elements iR (T"). It follows from the definition that
each refined simplex can have at m@'stsons. According to [2], we refer
to refinements witlR™ sons asegular refinementdNote that the volume of
any sonl” of aregular refinemerR(T) is given by vo(7") = 27" vol(T).

A (regular) refinement strategig a mappingR associating with each
non-degenerate simplék C IR" a (regular) refinemerR (7). A refine-
ment strategyR is calledaffine invariantf F(R(T)) = R(F(T)) for each
non-degenerate simpl&xand any affine transformatian. Affine invariant
strategies are fully determined by the corresponding refinement of an arbi-
trary reference elemefit. In contrast, non-affine invariant strategies often
depend on some geometric property of the simplex under consideration, as
for example the longest-edge-bisection method of Rivara [27,28] and the
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shortest-interior-edge strategy of Zhang [33]. For a description of these and
other methods we refer to Sect. 3.

So far we have considered the refinement of single simplices only. Now
we consider the refinement of a triangulation. Te# 7' be two triangula-
tions covering the same regish:= J{T|T € T} =U{T"|T' € T' }.
ThenT" is called aefinemenbf 7 if for each simplext” € T eitherT € T’
or there is a refinemerR (T") C 7'. Repeating the refinement process, we
obtain a(nested) hierarchy of triangulationse. a sequendgy ) e, Start-
ing with somanitial triangulation 7y such thaf; . ; is a refinement o, for
eachk > 0. Such a hierarchyT;)ren, is calledstableif 6(7%) is bounded
uniformly in k.

Hierarchies of triangulations are often produced by recursive application
of some refinement stratedy. Let 7, be an initial triangulation; then the
hierarchy of triangulation$7;).c,, generatedy recursive application
of R to 7y, is defined by

Ter1 = J{RD) T €T}, k>0.

If 7, consists of a single simplek, we say that 7 ) ke, IS generated by
recursive application oR to 7. Note that at this point we mainly consider
uniform rather than adaptive refinements.

A refinement strateg is calledstableif for any non-degenerate sim-
plex1 the corresponding hierarchy of triangulations, generated by recursive
application ofR to 7', is stable. Clearly, iR generates only a finite number
N = N(T) of congruence classes for any initial elem&nthenR is stable.
Surprisingly, the reverse implication also holds, at least in the case of regular
refinements:

Theorem 2.1 A regular refinement strategit is stable if and only if for
each non-degenerate initial simpléxthe number of congruence classes
generated by recursive applicationBfto 7' is finite.

Proof. We have to show that stability implies a finite number of congruence
classes. We therefore consider an arbitrary regular and stable refinement
strategyR. LetT = [2(©), ..., 2] c IR" be a non-degenerate simplex
and let(7;)ren, be the hierarchy of triangulations generated by recursive
application ofR to 7'. Without loss of generality we can assumf® = 0.

Due to the regularity oR, the volume of each elemefite 7; is given by

(4) vol(T) = 27 Fvol(T).

For the diameter of the biggestdimensional ball contained ifi, denoted
again byo(T"), we obtain the estimate

(5) o(T) < Cvol(T)'/" = C27Fvol(T)V/™ < C27F h(T),
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whereC = C(n) is a positive constant depending aronly. The stability
condition in combination with (2) implies that there exists (another) con-
stantC' independent ok such that for alk > 0

(6) MT) < C27FnT), TeT.

Now we make use of the fact that all verticesqf are either vertices or
edge midpoints off;,_;. Usingz(®) = 0, it follows by induction that the
vertices of7; are contained in the set

Z.h = {x:zn:r’%jx(ﬁjxjez, 1§j§n}.

’ J:1
For each elemenft = [xg)), e xg?)] € Ti letT* be the simplex obtained
from T by translating its first vertex to the origin and scaling the resulting
simplex by the facto2” :

@) 7% = (1T -2y, TeT, k>0.

Clearly, T* is congruent t@". Moreover,h(T*) = 2* h(T) holds for each
elementl” € T,. From (6) we conclude that

WMT*Y<CWT), TeTgk>0.

Since the first vertex of every simpl@x® is the origin, it follows that all
simplicesT™ are contained in a closed bd}l of radiusC h(T') around the
origin. Moreover, from the fact that the vertices of each elenfemt 7,
belong Z,, ;. it follows that the vertices of the corresponding elemefit
belongZ,, o. The number of points in the s&}, o N B depends oﬁ(T) but

is finite. Hence the number of possible eleméfitswith vertices in this set
is also finite. Since for any simplék € T, k € INy, the corresponding
elementl’™, defined by (7), is congruent 6, we conclude that the number
of congruence classes in the hierar¢fy)cn, must be finite. O

3. Survey of grid refinement algorithms

Before we discuss and analyze Freudenthal’s algorithm, we first give a short
overview of existing refinement methods in two, three, and more space
dimensions. According to the topic treated in this paper, the emphasis here
is on recursive refinement and stability. One main goal in this section is to
make clear which of these methods can be considered to be regular and affine
invariant because these are the only assumptions for the main theorem in
Sect. 5.2. As mentioned inthe introduction, (adaptive) refinement algorithms
can in general be divided into two classexi/green refinement algorithms
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Fig. 2. Red/green refinement Fig. 3. Bisection

andbisection method$n order to get a first impression of this classification,
consider the triangulation snapshots in Fig. 2 and Fig. 3.

As arule of thumb one can say that red/green refinement in 2D produces
triangulations having alocal structure asin Fig. 2 (atleastin the uniformly re-
fined regions and after some suitable affine transformation), while bisection
methods usually lead to triangulations as in Fig. 3. In the higher-dimensional
case a similar statement holds for the 2D-faces of refined simplices.

3.1. Red/green refinement algorithms

The most characteristic feature of red/green refinement is the strict distinc-
tion between refinement of marked simplices, selected for example by a
suitable error estimator, and refinements that are applied for the sake of
consistency preservation only. The latter procedure is usually called the
green closureln general, a red/green refinement algorithm consists of the
following three components:

— A stableregular refinement strategy for the marked simplices,

— a set of additionalkregular refinement rules for the green closure,

— aglobal algorithmcombining regular and irregular refinements in such
a way that the resulting triangulations are consistent and stable.

Prototype for this kind of method is Bank’s well-known 2D refinement
algorithm [2]. His method can be summarized as follows: Marked triangles
are subdivided into four subtriangles by connecting the three edge midpoints,
cf. Fig. 4. The four subtriangles have the same volume and are congruent
to the original one. Hence, this red refinement strategy is stable. In order to
preserve consistency, bisection is applied to triangles with one refined edge.
Triangles with two or three refined edges are refined regularly. Elements
resulting from bisection are not refined further but may be replaced by a
regular refinement. Hence, stability is guaranteed even in the case of adaptive
refinements.

The stable refinement of tetrahedral grids is more complex. In contrast
to the 2D case, a tetrahedron can in general not be subdivided into eight
(or 2™) subtetrahedra of the same congruence class. Nevertheless, Bank'’s
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Fig. 4. Red refinement in 2D Fig. 5. Red refinement in 3D

red refinements have a canonical generalization in three dimensions which
was found independently by Zhang [33] and the author [6]. The resulting
3D refinement strategy is illustrated in Fig. 5. It subdivides any given tetra-
hedron into eight subtetrahedra of equal volume. In general, however, only
four of these subtetrahedra are congruent to their father.

After cutting off four subtetrahedra at the corners, the remaining octahe-
dron can be subdivided further in three different ways each corresponding to
one of three possible interior diagonals. In subsequent refinement steps, this
interior diagonal has to be chosen carefully in order to satisfy the stability
condition. Indeed it was shown by Zhang that always selecting the longest
diagonal will in general lead to non-stable triangulations [33].

In [6] we proposed a simple algorithm which arranges the 3D red re-
finement in such a way that recursive application to any initial tetrahedron
yields elements of at most three congruence classes, no matter how many
subsequent refinements are performed. In the meantime this algorithm forms
the backbone of various adaptive refinement algorithms for tetrahedral grids
[4-6]. LetT = [z, 2(1) 2(2) 2] be the tetrahedron to be refined and
denote by:(%7) the edge midnode betweeff) andz?). Then the algorithm
reads as follows:

Algorithm RedRefinement3m( = [z, z(1) () z(3)])

P 20,2000z, Ty = [p01)2(02)(03)503)
Ty = [x(m)x 12) ] Ty = [x(012x(022$(122x(13)];
Ty = [x(o 12) x(2 ], T = [x(022$(032$(132$(23)];
T, = [x(o 13) 23) 3[:(3)], Ty = [x(022$(122$(132x(23)];
}

The diagonal chosen runs frarf??) to (1) and hence is given implicitly
by the vertex ordering df'. The vertex ordering of the soff3, 1 < ¢ < 8,
is crucial for the stability of the algorithm. If we exchange the order of the
verticest (O, 2(92)in Ty, for example, the resulting algorithm will in general
not be stable anymore. By construction, algorithm RedRefinement3D is
affine invariant.
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Zhang also investigated a second strategy selecting always the shortest
diagonal for refinement [33]. This so calletortest-interior-edgstrategy
turned out to be equivalent to Algorithm RedRefinement3D as long as it
is applied to initial elements with non-obtuse faces and a suitable vertex
ordering. For elements with at least one obtuse triangle, however, the stabil-
ity of his method has not been proved yet. Note that shortest-interior-edge
refinement is not affine invariant.

Bank’s red refinements in 2D and Algorithm RedRefinement3D turned
out to be special cases of a refinement algorithm which has been published
already in 1942 by H. Freudenthal [13]. This method applies to simplices of
arbitrary dimension. The method is regular and affine invariant. Moreover,
it can be extended to a fully adaptive red/green refinement algorithm, cf.
[7]. Since Freudenthal’s algorithm will be discussed in detail in Sect. 4, we
proceed at this point and turn to the second class of refinement algorithms.

3.2. Bisection methods

This second class contains those algorithms using only simplex bisection
for subdivision. The main advantage of these methods is that bisection may
result in more local refinements compared to regular subdivision because
elements are divided into only two instea8fsons. Therefore these meth-
ods may be preferable if is large and a subdivision int* sons yields a

too strong refinement. On the other hand, as we shall see later, bisection
methods also have some clear disadvantages.

Bisection methods differ by the way the bisection edge is selected and
consistency is preserved. In 2D there are two basic techniques. The first
one goes back to Mitchell and is referred tonasvest-vertex-bisectig@5].

In this method always the triangle edge opposite to the vertex created last
(newest vertexs used for refinement. As can be seen from Fig. 6, recursive
application of this method generates at most four congruence classes for any
initial triangle. Hence, the method is stable. Moreover, it is affine invariant.
Consistency is obtained by a recursive process refining simultaneously pairs
of triangles with acommon bisection edge. Ifthe bisection edges of the initial
triangulation are chosen properly, this recursive procedure terminates after a
finite number of steps. As Mitchell was able to show this can be done without
further restrictions offy. Consequently, newest-vertex-bisection in 2D can
be applied to any consistent initial triangulation.

The second approach, due to Rivara, is based on using the triangle’s
longest edge for refinement [27]. The stability of this method follows from
the fact thatlongest-edge-bisectiochanges into newest-vertex-bisection
after a finite number of refinement steps [29]. Hence, the number of congru-
ence classes is also finite but in general it depends(@g). Consistency
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Fig. 6. Newest-Vertex-Bisection
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Fig. 7. Subsequent bisections in 3D

is achieved by a recursive process similar to the one of Mitchell. Rivara’s
method applies to any consistent triangulation. In contrast to newest-vertex-
bisection it is not affine invariant.

Both the method of Rivara and the one of Mitchell have been generalized
to three and even higher dimensions. For the longest-edge-bisection method
this was done by Rivara [28]. Indeeddimensional longest-edge-bisection
can be applied to any consistent triangulation. The stability of this method,
however, has not been proved yet for- 2.

3D versions of Mitchell’s algorithm have been developed bByp&ch [3],
Maubach [22], Liu Joe [20], and Arnold et al. [1]. These methods are stable
and apply to any consistent triangulation. In fact, they are all equivalent and
affine invariant when applied recursively to a single element. In this case at
most 36 congruence classes can appear, as was shown in [1, 24]. From these
papers we also know that this bound is sharp. Fig. 7 illustrates the result of
three subsequent bisection steps. Here “subsequent” means that each but the
first bisection step is applied to all elements generated in the previous step.

Generalizations of Mitchell's method todimensions have been devel-
oped by Maubach [23,24] and Traxler [31]. Both methods are equivalent
and affine invariant when applied recursively to a single element. In this
case at most - n!-2"~2 congruence classes are generated, and this bound is
sharp, cf. [1, 24]. In order to satisfy the consistency condition, however, both
algorithms make some restrictive assumptions on the initial triangulaiion
The method of Traxler, for example, requires the number of elements shar-
ing any interion(n—2)-subsimplex off; to be even. Although this condition
is easily checked in practice, it is not clear how to modigyf it is violated.

Remark 3.1As illustrated in Fig. 6 and Fig. # subsequent bisection steps
(newest-vertex-bisection or one of its generalizations) can be regarded as
one single regular refinement step. Hence, itis possible to compare bisection
methods with regular refinement schemes, for example with respect to the
number of congruence classes, cf. Theorem 5.1. It follows from the results in
[1,24] thatrecursive application of such aregular bisection strategy produces
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at mostn! - 2"~2 congruence classes for any initial element. Moreover, this
bound can be shown to be sharp.

We briefly summarize the main points of this section. Bank’s red re-
finement strategy in 2D, Algorithm RedRefinement3D, and, more general,
Freudenthal’s algorithm in dimensions, are regular, affine invariant, and
stable. Ifn subsequent bisection steps are considered as one refinement, then
Mitchell's newest-vertex-bisection and its higher-dimensional variants are
also regular, affine invariant, and stable. The higher-dimensional variants
of Mitchell's method, however, can not be applied to arbitrary consistent
triangulations ifn > 3. Zhang’s shortest-interior-edge strategy in 3D is
regular but not affine invariant. Rivara’s longest-edge-bisection in two and
higher dimensions is neither regular nor affine invariant. Both methods ap-
ply to any consistent triangulation. Stability, however, has been proved for
2D longest-edge-bisection only.

4. Freudenthal’s algorithm

Freudenthal’s algorithm can be considered to be the canonical generaliza-
tion of Bank’s red refinement strategy and of Algorithm RedRefinement3D
ton space dimensions. Though published already in 1942 [13], it seems that
Freudenthal’s algorithm is hardly known in the field of numerical methods
for partial differential equations. Maybe this is explained by the fact that
Freudenthal's paper was not motivated by finite element or multigrid meth-
ods. In effect, Freudenthal mentioned in [13] that his main motivation was a
guestion of Brouwer concerning the construction of nested and stable hierar-
chies of triangulations. The intention of Brouwer, however, is not clear from
[13]. Freudenthal only mentioned that his method may be of use in analysis
and in the limit field between analysis and topology. Todd assumed in [30]
that Brouwer intended to apply the method for the computation of fixed
points. In fact, this seems to be the field of research where Freudenthal's
algorithm is best known today.

4.1. The basic idea: Kuhn's triangulation

The basic idea of Freudenthal’s algorithm can be explained best by consid-
ering the 2D case. Fig. 8 shows different triangulations of the unit square.
The triangulation in the middle of the lower row can be obtained in two
ways: by subdividing the square into two triangles each of which is then
refined red or by subdividing the square into four equally sized subsquares
each of which is then divided into two triangles. Here it is important that the
diagonal subdividing each square has the same orientation as the diagonal
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Fig. 8. Unit square triangulations

— 5 @y (t.11)
0o —» (0,0,0)
Fig. 9. How to reach vertex (1,1) ? Fig. 10. Kuhn's triangulation in 3D

of the square at the lower left corner. Both procedures can be repeated to
obtain equivalent triangulations of arbitrary refinement depth.

In order to derive from this observation a refinement strategy(#ior
simplices, we first have to construct a suitable triangulation ofitdemen-
sional unit cube” := [0, 1]". Therefore, in Fig. 9, we consider the unit
square triangulation once again. Starting from the origin, the vertices of the
lower triangle are obtained by following first the edgexinand then the
edge iny-direction. In the same way the vertices of the upper triangle are
obtained by going first iy- and then inz-direction. In both cases we end
at the vertex1,1)T.

In the n-dimensional case there are exactlyof such paths from the
origin over the unit cube’s edges to the vertéxi, ..., 1), each one pass-
ing exactlyn + 1 vertices if start and endpoint are included. These vertices
define ann)-simplex and the set of all! simplices is in fact a triangulation
of C'. This follows from Lemma 4.1b) below. Due to [17], this triangulation
is usually calleuhn’s triangulationof C'. We note, however, that the same
subdivision already appears in the paper of Freudenthal [13].

To be more precise, let, .. ., ¢(™ be the standard unit vectors 5"
and denote by, the group of permutations §f1, ..., n }. Form € S,,, the
simplexT;; = [, ..., 2" ]is defined by

@) 2 =(0,0,...,00T, 20 =20V 1) 1< j<n.

The set(C) = {T |7 € S, } is calledKuhn’s triangulationof C. For
any affine transformatiod’, Kuhn's triangulation ofF’(C') is defined by
K(F(C)) := F(K(C)).
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Kuhn’s triangulation of the 3D cube is shown in Fig. 10. Some basic
properties ofC(C') are stated in the following Lemma.

Lemma 4.1 Kuhn's triangulationC(C') has the following properties:

a) (0,0,...,0)T and (1,1,...,1)T are common vertices of all elements
T., m™€S,.
b) For each elemerif,;, = € S, the following representation holds:

9) Tﬂ-g{l‘60|0§$ﬂ(n)§~'-§x7r(1)§1}.

c) K(C) is a consistent triangulation af'.

d) K(C) is compatible with translation, i.e., for each vectoe {0,1 }"
the union ofC(C) andC(v + C) is a consistent triangulation of the set
CuU(v+0C).

A rigorous proof of these results, in particular those in Lemma 4.1c)
and d), is hard to find though these properties are already known for a long
time and used by many authors, cf. [11,17,30]. A proof of Lemma 4.1,
which is indeed rather technical, can be found in [8].

4.2. Refinement of Kuhn’s triangulation

Figure 8 suggests the next step towards Freudenthal’s algorithm: We subdi-
vide C' into 2™ subcubes

Cy =v + 3C, ve{0,3}".
ThenK(C,) consists of the tetrahedia . := v+ % Ty, ™ € S,. The union
of all triangulationsiC(C,), v € {0, 1 }", yields
(10) T o= {TUJ‘UE{O,%}H,TFES”}.

Clearly, 77 is a triangulation ofC'. The consistency of; follows from
Lemma 4.1c), d). We shall now show th@at is in fact a refinement of
To := K(C). The proof of the following Lemma represents the main part
of Freudenthal’s paper.

Lemma 4.2 The triangulation7; in (10) is a refinement df (C).

Proof. Given anyv € {0, 3 }" andr € S,,, we will show that there exists
a unique permutatiofr = 7 (v, ) such thatl,, . C T%. To this end, let
0 < k < n be the number of entries of v such that; = 1/2. It follows
that there aré unique indices;, ..., i € {1,...,n } satisfying

(11) 1<ip <--- <ig < n, Un(iy) = * = Un(ip) = 3
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and the remaining — k indicesig1,...,i, € {1,...,n}\{i1,..., ik }
can be ordered such that

12) 1<ip1 <---<ip<n, Un(ippr) =" = Un(in) = 0.

Here and in the sequel, for the cages= 0 andk = n, we skip those
parts of the corresponding (in)equalities that make no sense. We now define
a permutationt by 7(j) = n(i;), 1 < j < n. From the equality results

in (11), (12) we conclude

(13) vy = =Vak) =5 UVk(kt1) = = Va(n) = 0.

Now assume: € %Tﬂ or, equivalently) < x,(,) < -+ < xp(y < % cf.
Lemma 4.1b). Using the inequality results in (11), (12), we obtain

(14) 0< T (k) <. < Zz(1) < %, 0< T (n) <... < T (kt1) < %

Combination of (13) and (14) yields

0 < Vi(n) + Trm) < -+

< Vi(k+1) T Ta(k+1)
< Uik T Trgk) S

V(1) t (1)

= ol

<
<

IAINA

)

or, equivalentlyp +x € T;. Hence we have provet, , = v+ % Ty C T;.

By construction, the vertices @f, . are either vertices or edge midpoints
of T;. SinceT, . € 71 was chosen arbitrarily, we conclude thatis a
refinement ofC(C). O

4.3. Freudenthal’s algorithm

The proof of Lemma 4.2 already contains the main idea underlying Freu-
denthal’s algorithm. In this section we want to present this algorithm in a
somewhat more modern form compared to [13]. To this end, for any simplex
Ti: € K(C), letR(T%) = U{Tvr € T1|Tvx C T; } be the refinement
induced byT7;. It then follows from the proof of Lemma 4.2 th&(T5)
contains precisely those simplicés . € 7; for which there is a number

0 < k < n such that the paiv, 7 satisfies (13) and

(15a) (rlom)(1) << (7 lod)(k),

(15b) (rlom)(k+1) <---< (mlor)(n).

In particularR(Tr,,), ma = (1,2,...,n), consists of all simplice§’, -
such that takes the form

(16) v=(4,...,40,...,07
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for some0 < k < n, andr satisfies

17) =Y <---<a k), i k+1) < <7 ).

We will now show that/; can be generated by an affine invariant refinement
strategy. To this end, I&t; : x — P;x be the affine transformation defined
by thepermutation matrixP; = (J; #(;) )ij=1, and this for eactr € S,,.

A simple calculation show$; = F;(Tr,,), 7 € S,. Now fix anyw € S,

and consider an arbitrary elemefit . € R(Tr,,). Usingo = P;v and
7l = (#om)~ o, (16), (17) can be written as

bay =+ =Da(r) = 3 » Vp(kt1) = = Uz(n) =0,
and

((rom)~tod)(1) < < ((Rom)Thom)(k),

(Fom)~tom)(k+1) < --- < ((Fom)~lod)(n).

From (13), (15) we conclude thdt, . € R(T%,,) holds if and only if
T 70r € R(T%). Using the relationP,., = Py Py, it is not difficult to
show thatT} sor = Fi (7). It follows thatR(T%) = F;z R(Ix,,) holds
for 7 € S,. Hence,T; can be generated froii(C') by an affine invariant
refinement strategy.

To find such a strategy, we reformulate (16), (17) in an affine invariant
way. Letv, 7 be such that (16), (17) hold. It follows from (8) that the first

vertex ofT,, » = v+ 1 T is given byo® = v = L1 (2% + 2%)). The re-

maining vertices®, . . ., (™ can be expressed in terms of the verticg$
as follows:

l
o = p 4 1a® =y 1Ym0

s

j=1
N %e(ﬂ(f)) — oD 4 % (x;ﬁf)) _ w;ﬁf)—l)).
Replacingrgr?()l, .. ,mgrng by the vertices of an arbitrary simplé@xwe end

up with Freudenthal’s algorithm:
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Algorithm RedRefinementND( = [z(©), ..., z(™])

{
for(0<k<n)do Q)
{ 00 = 1 (20 1 40y, @)
for (e S,)do 3)
if(r (1) < - <a k) (4)
and (7 Y(k+1)<---<71(n))then (5)
{
for(1</£<n)do (6)
@ = (D) 4 1(a(r0) _ f(rO-1). ()
Tyo) 7 = [0©) . o™ (8)
}
}
}

By construction, Algorithm RedRefinementND is affine invariant. Note that
for eachk there are preciself))) permutationsr satisfying the if-condition

in line (4), (5). It follows tha2™ sons are generated in line (8) and hence,
Algorithm RedRefinementND is a regular refinement strategy. The stability
condition is proved in the following Theorem which also provides an upper
bound for the number of congruence classes. This upper bound is in fact the
main new result of this section.

Theorem 4.1 For any non-degenerate simpl&k C IR", recursive appli-
cation of Algorithm RedRefinementND results in a stable hierarchy of con-
sistent triangulations of'. Moreover, the number of generated congruence
classes is at most! /2.

Proof. Let(7%)ren, be the hierarchy of triangulations generated by recur-
sive application of Algorithm RedRefinementNDTp := IC(C). Clearly,
71 has the representation (10). By induction we obtain

7;:{Tv77r::v—|—27kT7r\v€Zn7k;WESR}, k>0,

wherez,, ;== {v € [0,1)" | 2¥v; € Z, 1 < i < n}is a subset of the
vertices of7;. From Lemma 4.1c), d) we conclude thatis consistent for
all k > 0.

Now letT = [z(©, ... z(™ ] be any non-degenerate simplex and let
(Tr(T))ren, be the hierarchy of triangulations generated by recursive ap-
plication of Algorithm RedRefinementND t&. The affine invariance of
Algorithm RedRefinementND leads us to the representation

Te(T) = {FT")|T €T, T' CTryy }, k>0,
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whereF' : T, — T is the unique affine transformation betwegp,
andT'. The consistency of, implies the consistency of(T") for k£ > 0.
Moreover, since any elemefit € 7, is of the formT’ = v 4+ 2% T, for
somev € Z,, , ™ € Sy, it follows thatF'(T”) is congruent with¥'(T7;) for
somer € S,. Hence, the number of congruence classes in the hierarchy
(Tr(T))ken, is at mostn!. This bound can be improved: Let ' € S,
be permutations such that(j) = n(n+1—j),j = 1,...,n. Using the

vectorl := (1,1,...,1)T, the vertices of};, T} are related by
2 = 3766 = 7 elrtn 1) — g " (7)) — g g (n)
j=1 j=1 j=1

for0 <i < n.ThisimpliesT;, = 1-T. ItfollowsthatF'(7)is congruent
to F(T,). Hence, the number of congruence classe$Ti(T))ken, iS
bounded by:!/2. This implies stability. O

Remark 4.1Condition (17) means that= ( (1), ..., (n) ) contains the
numberdl, 2,..., k and the numberk+1, ..., nin their natural order, that

is, 1 appears somewhere on the left of 2, 2 appears somewhere on the left
of 3, and so on, up té&—1 which appears somewhere on the leftiofand
likewise fork—+1,...,n. If, for example,n = 3 andk = 1, then condition

(17) is satisfied for all permutationse { (1,2,3), (2,1,3), (2,3,1) }.

Remark 4.20ne may easily verify that Algorithm RedRefinementND for
n=3 is equivalent to Algorithm RedRefinement3D.

4 .4. Global refinements

In the previous subsection we have seen that recursive application of Freu-
denthal’'s algorithm to a single simpléX produces consistent and stable
triangulations off". In the 3D case Freudenthal’s algorithm can in fact be
applied to any consistent triangulation, due to the symmetric subdivision of
triangular faces, cf. Fig. 5. In higher dimensions, however, the refinement
of adjacent simplices may give rise to consistency problems at their com-
mon lower-dimensional subsimplex. Nevertheless, as the following theorem
shows, Freudenthal’s algorithm can be successfully applied tc@amsis-
tently numberedéhitial triangulation, cf. Sect. 2.3. The result appears already
in Freudenthal’s paper [13] but he did not prove it. For a proof of Theorem
4.2 we refer to [8].

Theorem 4.2 Let 7 be a consistently numbered triangulationiRf*. Then
the triangulationsyy, k > 0, obtained by recursive application of Algorithm
RedRefinementND ff), are consistently numbered as well.
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Note that, by definition, “consistently numbered” implies consistency.
Also note that any consistent triangulation can be made consistently num-
bered by fitting the local vertex ordering of each element to an arbitrary
global numbering of the vertices of the triangulation. Hence, in contrast
to the bisection methods mentioned in Sect. 3.2 Freudenthal’s algorithm
applies toany consistent initial triangulation. Note, however, that the basic
form of Freudenthal’s algorithm can be used to produtrmrefinements
only. In order to obtain a fullladaptiverefinement algorithm it has to be
combined with additional irregular refinement rules for the green closure.
This will be the subject of a forthcoming paper, cf. [7].

5. The optimal number of congruence classes

Theorem 4.1 shows that recursive application of Freudenthal’'s algorithm
to any initial elementl” produces simplices of at most/2 congruence
classes. In special cases, of course, lessthahcongruence classes may
appear. All elements obtained by subsequent refinement of Kuhn’s triangu-
lation I£(C'), for example, belong to the same congruence class. Sufficient
conditions for tetrahedra having this property can be found in [14]. On the
other hand, there are several refinement schemes producing significantly
more tham!/2 congruence classes. For the bisection methods of Maubach
and Traxler, for example, it is known that these may generate ap 52
congruence classes for general initial elements gubsequent bisection
steps are regarded as a single regular refinement step, cf. Remark 3.1.

We emphasize that the number of congruence classes is of great practical
importance. In many applications there are data which depend on the ele-
ment's congruence class and refinement level only. These applications can
often be considerably accelerated if such data are calculated and stored only
once. The assembling of stiffness matrices in finite element computations
is a typical example. Also note that, if the number of congruence classes is
small, one may expect better shaped triangulations in ters(gof Hence,
itis beneficial to have the number of congruence classes as small as possible.

At this point the following question arises: Is it possible to construct
a refinement algorithm which generates less thgi2 congruence classes
for any initial elementl” ? We will show in the remainder of this section
that the answer is negative — at least if we restrict our considerations to
refinement strategies which are regular and affine invariant. More precisely:
we will prove that recursive application ahyregular and affine invariant
refinement strategy must prodwatdeastn! /2 congruence classés almost
all (n)-simplicesT".

The formulation “for almost all” allows exceptions as the application of
Freudenthal’s algorithm to the elementstofC'). The precise meaning of
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this formulation is the following: Every«)-simplex represents a pointin the
Euclidean spaci&™ (1), A certain assertion is said to hdior almost all
simplicesl” C IR" if the set of simplices violating this assertion corresponds
to a set of Lebesgue measure zertif(*+1). Note that the set of degenerate
simplices inR™ corresponds to a set of measure zefd&ih™*), Hence, the
formulations “for almost all simplices” and “for almost all non-degenerate
simplices” are equivalent.

5.1. A special property of the polar decomposition

The proof of our theorem is based on a certain regularity property of the
polar decomposition. In this subsection we will formulate and prove this
property. Here and in the sequel, fore IN fixed, we use the following
matrix set notation:

GL = {AcR™™|det A#£0},

O ={QeR™"|QTQ=1T},

S ={AcR™™ | A=AT},
Si:={AcS|zTAz >0, 2 € R"\ {0} }.

The setiL is usually referred to ageneral linear grouplt is known, cf. [16],
that each elememt of this group has a uniqueolar decompositioof the
form

(18) A= Qx'V?, QeO, Xed,.

Clearly, the matrixX in (18) satisfies¥ = AT A. As we shall see later, this
polar decomposition plays an important role in the proof of our theorem. In
particular the following regularity property will be used:

Lemma5.1 Let M C S be a proper subspace of dimensior: 5 (n+1).
Then the set

(19) B:={A=0QX"?|Qc0; XeMnS;}
is a set of Lebesgue measure zer@f*".

Proof. This Lemma can be proved elegantly by using the concept of real
manifolds, cf. [9,18].

Itis known thatO is a real manifold of dimensiok(n — 1), cf. [9]. The
setS,, which is an open subset ¢f, can be regarded as a real manifold
of dimensiong (n + 1). It follows that theproduct manifoldO x S, has
dimensionn?. Clearly, the open subsét. ¢ IR"*" is also a real manifold
of dimensiom?.

The mappingX — X1/2 is the inverse of th&>°-bijection X — X2
on S,. From the inverse function theorem (cf. [12]) it follows that the
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mappingX — X !/2is aC-bijection onS,, see [16]. Hence, the mapping
F:0OxS8, — GL,defined by (Q, X) = Q X'/2,isC*, too. Moreover,
fromthe existence and uniqueness of the polar decomposition for all matrices
A € gLitfollows thatF'is one-to-one. We conclude that F i€’&°-bijection
from the real manifold? x S, onto the real manifoldiL.

Now suppose thaM is a proper subspace of dimensibr< 5 (n + 1)
in S. Then for the seB from (19) we haveél = F'(O x (M NS, )). Hence,
B is asubmanifoldof dimension< n? in G£, cf. [9, 18]. This implies that
B is a set of Lebesgue measure zerd®Rh*". O

5.2. The optimality result

We are now in a position to prove the main theorem of this paper:

Theorem 5.1 Let R be a regular and affine invariant refinement strategy
for simplices inIR™. Then for almost all simplice$’ C IR", recursive
application ofR to T" generates at least!/2 congruence classes.

Proof. Let againTy,, be the reference simplex from Kuhn’s triangulation
K(]0,1]™) and let(7x)rew, be the hierarchy of triangulations obtained by
recursive application ok to 77,,. Fork > 0 fixed we divide the simplices
T € T into equivalence classes

[T]:={T' €T | T'=2v+Tforsomeve R" }, T € T.
A second set of equivalence classes can be defined by
T :={T' €T | T'=Zv+TorT =v—T for somev € R" }

for all T € T;. The number of different equivalence clas§Esand[T]*,

T € Ty, is denoted byu, uif. Clearly,yu, < 2 uif. Note that an arbitrary

but fixed affine transformatioi” maps all simplices of the saneuiva-
lence clasgT] (or [T]*) into the samecongruence classAlso note that
affine transformations can be regarded as poinii3'in< IR"*". Hence, the
Lebesgue measure of a set of affine transformations is well defined. We are
now going to prove the following assertions:

Assertion 1. Fork sufficiently largeyy, > n! and henceys™ > nl/2.

Assertion 2. Assunig 7" € T such thafT]* # [T]*. Then the set of
affine transformationg’ mapping7 and7” into the same
congruence classis a set of Lebesgue measure z#0 in
IRnxn.

It follows from these two assertions and from the finitenegsofor eachk
that for sufficiently large: the element§” € 7, are mapped to at least/2
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congruence classes by almost all affine transformattar&nceR is affine
invariant, we conclude that for almost all affine transformatiéhsecur-

sive application of? to F'(T%,,) produces at least! /2 congruence classes.

We note that there is a one-to-one correspondence between affine transfor-
mations and non-degenerate simplices, which is in addition easily shown
to be Lipschitz-continuous. This implies that a zero measure set of affine
transformations corresponds to a zero measure set of simplices, cf. [32].
Hence, if Assertion 1 and 2 hold true, it follows that recursive application
of R produces at least!/2 congruence classes for almost all initial sim-
plicesT c IR".

Proof of Assertion 1We choosée: > 0 large enough such that some){
cubeC' with axis-parallel edges of lengr* is contained inl’,,. Then
we fix an arbitrary elemerif’ € 7. Intersection of” with the union of all
simplicesT” € [T] yields

cnir = J (@€©nT), TET.
T'e[T]

We are going to estimate the volume®f [T]. Since different elements in
T overlap at most at their boundaries, we can write

vol(CNI[T]) = Y vol(CNT').

T'€[T]
The vertices off;, belong to the set of grid points
Zog = {veR" | 2%y, €Z, 1<i<n}.

It follows that for any simpleX” € [T'] there is a vectov € Z,, ;, such that
T' =~ v + T. Hence we have the estimate

vol(Cn[r]) < 3 wol(Cn(w+1)).

UEZn,k

The intersection o and the translates df is illustrated in Fig. 11. The
shaded regions are parts of translate§ athich have been clipped at the
larger square’s boundary. Of course, instead’ @lsoC' might be moved.
UsingCN(v+T) = (—v+C)NTforv e IR™ we obtain

> vol(Cn@+T))= Y vol( (~v+C)NT)

veZn,k UEZ’"«,IC

= > voI((v+C)mT).

UEZn,k



Simplicial grid refinement 25

Fig. 11. Intersection ofC and the translates af

Thetranslates+C,v € 2, ;, intersect pairwise at most at their boundaries.
Hence we conclude

> vol((v+C)mT):vol(Tﬂ( U (v+0)))

vEZn,k ’Ueznyk

=vol(TNIR") = vol(T).
SinceT € T, was chosen arbitrarily we end up with the estimate
vol(C'N[T]) < vol(T), TecT.

Now we use the assumption thRis a regular refinement strategy. It follows
that all element§” € 7;, have the same volume

. 2—kn
vol(T) = 2 % vol(T) =

n!

By construction(' C Tr,, is completely covered by simplicdse 7. We
therefore obtain

27kn

27 = vol(C) = Y vol(CNIT]) < D vol(T) = py —,
7] 7] "

thatisu, > n! and hence/,tf > n!/2. This proves Assertion 1.

Proof of Assertion 2We have to show that different equivalence classes
[T)* # [T')* are mapped into different congruence classes by almost all
affine transformationg’. To this end, consider two simplicdsT" € Ty,
such tha{T|* # [T']*. Let furtherG : x — v + Az be the unique affine
transformation satisfying” = G(T'). Then volT) = vol(7”) implies

| det A| = 1 and, due tT]* # [T']*, neither A nor —A can be the
matrix of a renumbering of’, cf. Sect.2.2. Now lef" : z — w + Bz

be an arbitrary affine transformation. As the congruence clagg§Bj and
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of F(T") is independent ofv, we can assume = 0. By definition, F(T)
andF'(T") are congruent to each other if and only if

(20) BT = z+c¢QBT

holds for some: > 0, z € IR", and@ € O. From vo(BT') = vol(BT")
we conclude: = 1. Using a suitable renumbering— v + Uz of T7, (20)
can be rewritten as

Bw+UT') = 2+ QBT.
Inserting?” = G(T') we obtain
Bu+BUv + BUAT = 2+ QBT.

Now vol(T") > 0 impliesz = Bu+ BUv and henceBUA = @ B. It
follows that F(T'), F(T") are congruent if and only if there exists some
renumbering of” with matrix U such that3 U A B~! is orthogonal. Using
the notationd = U A it follows that

(BAB™HY = (BAB™H!
should hold or, equivalently
BB = ATBTBA.

Thus,F(T) and F(T") are congruent to each other if and only if the polar
decomposition ofB, i.e. B = VXY2withV € O, X € S, yields a
symmetric positive definite matriX satisfying

(21) X = ATX A

with A = UA and a suitable renumberirig. Let M C S be the set of
all matricesX € S (not necessarX € S,) satisfying (21). ClearlyM

is a linear subspace df. A simple comparison of coefficients shows that
M = SimpliesA = +7 and hencel = +U . In this case eithed or — A
would be the matrix of a renumberingBfin contradiction tdT)* # [T']*.
Thus, M must be a proper subspace®and we can apply Lemma 5.1. It
follows that the set

B:={B=VX'"?|VeO, XeMnS,}

is a set of Lebesgue measure zerit*". Hence, the set of all affine trans-
formationsF with transformation matrix3 € B is of Lebesgue measure
zero inR™ x R™*". This, however, proves Assertion 2 becalise B and
the congruence of (T'), F'(T") are equivalent. O
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Remark 5.1t can be shown by induction that an)fcubeC with axis-
parallel edges of length* fits into7%,, if £ > n—1. From this observation

it follows that Freudenthal’'s algorithm stops generating new congruence
classes aften — 1 refinement steps.

Remark 5.2Theorem 5.1 in combination with Theorem 4.1 shows that
Freudenthal’s algorithm is optimal with respect to the number of congru-
ence classes. This, of course, does not imply that Freudenthal’s algorithm
is also optimal with respect to the measure of degeneracy of the resulting
triangulations. Compared to the bisection algorithms of Maubach [23, 24]
and Traxler [31], however, we can make the following observation: The
n-n!- 272 congruence classes (of- 2”2 if n subsequent bisections are
regarded as one regular refinement) generated by recursive bisection con-
tain thosen!/2 congruence classes generated by Freudenthal’s algorithm.
Hence, assuming identical initial triangulations, the measure of degeneracy
of the triangulation hierarchy generated by Freudenthal’s algorithm cannot
be worse than the one obtained by recursive bisection.

Remark 5.3Although Theorem 5.1 applies to affine invariant strategies
only, it is in our opinion very unlikely that there exists a non-affine in-
variant recursive refinement strategy generating less#héahcongruence
classes for any initial element. For Rivara’s longest edge bisection [27,28]
and for Zhang’s shortest interior edge refinement [33] itis in fact known that
in general the number of congruence classes dependd9@and may be ar-
bitrarily large. Hence, with respect to minimizing the number of congruence
classes affine invariant methods are preferable.

The proof of Theorem 5.1 is based on the fact that the verticég of
belong to some rectangular g}, ;.. The refinement assumption, however,
is not used at all. In fact, we have proved the following more general result:

Corollary 5.1 Let7 be a triangulation of some regioff C IR". Assume
thereissomé > 0suchthat (i) the vertices f belongto arectangular grid
of meshwidtth, (i) some @)-cube with axis-parallel edges of lengitfits
into £2, and (iii), all elementd” € T have the same volume V@l) = A" /n!.
Then almost every affine transformatiérresults in a triangulation?'(7)
with elements in at least! /2 different congruence classes.
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