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Summary. The combination technique is a method to reduce the computa-
tional time in the numerical approximation of partial differential equations.

In this paper, we present a new technique to analyze the convergence rate
of the combination technique. This technique is applied to general second
order elliptic differential equations in two dimensions. Furthermore, it is
proved that the combination technique for Poisson’s equation convergences
in arbitrary dimensions.
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1. Introduction

The combination technique is a method for the discretization of partial dif-
ferential equations. The important property of this technique is the high
accuracy, while the computational time and the storage requirement are
low.

Let us explain this for the 2-dimensional combination technique. For
reasons of simplicity, let us restrict to the domadn=]0, 1[%. Let P, 5, (u)
be the Ritz-Galerkin approximation of the solutionf a partial differential
equation on a uniform grid of mesh sizg in z-direction andh,, in y-
direction. Then, the combination solution of deptis defined by

n n—1
u% — Z P2—i’2i—n—1 (U) — Z P2—i72i—n (U)
i=1 i=1
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whereh = 27",

The important observation is now that the approximatignof v is
nearly as accurate as the approximatioy, (u) (see [4]). But the calcula-
tion of uj costs much less computational time. Let us precise this in case
of a symmetric elliptic differential equation of second order and piecewise
bilinear finite elements. Now, the computational time for the calculation
of P, n(u) is O(h™2), if one uses a multigrid algorithm. But the computa-
tional time for the calculation of (u) is only O(h~!logh™!) . In three
dimensions this difference of the computational times is even larger. Then,
the computational time for the calculation &%, 5, ,(u) is O(h~3) while
the computational time for the calculation of the 3D combination solution
u$ (u) isO(h~t(log h~1)?). A similar effect can be observed for the storage
requirement.

Another important property of the combination technique is that it can
be parallized in a very efficient way (see [3]). Here, we will analyze the
combination technique on the unit cube for second order elliptic differential
equations. But the combination technique can also be applied to nonlinear
PDE on curvilinear bounded domains (see [5]).

Although, the implementation of the combination technique is not very
difficult, the convergence of this method cannot be proved with standard ar-
guments from finite element theory. In [1] it is proved that the combination
technique converges pointwise of orde(h? log h~!) for Laplace’s equa-
tion on the unit square. This proof uses a suitable asymptotic error expansion
for the solutionsP,, 1, (u) and Fourier analysis. Another proof of conver-
gence intwo dimensions is presented in [11] or [13] and uses Sobolev space
techniques. The proofin [11] is restricted to second order elliptic differential
equations in 2D, where the coefficients have to satisfy certain assumptions.

The aim of this paper is to present a new technique to prove the con-
vergence of the combination technique. It can be applied to a much larger
class of equations than the proofs in [1] or [11]. The advantages of this new
technique are:

— InSect. 3, we presentashort proof for the convergence of the combination
solution in theH*-norm for Poisson’s equation. This proof shows the
main ideas how to prove the convergence of the combination solution
in general. The new convergence proofs are shorter than the previous
proofs.

— It is possible to prove the convergence of the combination solution for
elliptic differential equations of second order in 2D under weaker as-
sumptions to the coefficients than in [11]. Especially, we do not have
to require that the normal derivative of some coefficients is zero at the
boundary (see Theorem 5). This is significant, if one likes to prove the
convergence of the combination solution on a curvilinear bounded do-
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main. Then, it is necessary to divide the curvilinear bounded domain
in several blocks and to transform each block onto the unit square. In
case of one block and Poisson’s equation the transformed equation on
the unit square has variable coefficients. The normal derivatives of these
coefficients are not zero at the boundary, in general. By the new tech-
nique presented in this paper, we can show for this case a convergence
of orderO(h?log h=1) in the L2-norm. So, it is proved that the com-
bination solution converges of ordéx(h?log h~!) in the L?-norm on

every curvilinear bounded domain which is a smooth transformation of
the domainj0, 1[2. This is not possible by the results in [11].
Nevertheless, we have to assume that the variable coefficients are smooth.
Atleast, the coefficients have to be in the spdcE((2) (see assumptions

A to Cin Sect. 4).

— By the new technigue, we can prove the convergence of the combination
technique in three or more dimensions (see Theorem 8). This is impor-
tant, since the reduction of the computational time by the combination
technique increases with the dimension of the problem. For simplicity,
we restrict to Poisson’s equation and the convergence iltheorm in
case of more than two dimensions. The problems of a generalization for
variable coefficients are explained at the end of Sect. 3.

In this paper, we apply a superconvergence technique which is a modifi-
cation of technique presented in [9,16] and [17]. More details about the
superconvergence analysis for Ritz-Galerkin approximations can be found
in [7,8,10,14] and references cited therein.

At the end of this introduction let us introduce the following notation:

Let d be the dimension of the space afid=]0, 1[?. Let the indices
a, 3, be of the form

a, B,y € {0,1}4.

Furthermore deno#@ = (0,...,0),e = (1,...,1)ande; = (0,...,
0,1,0,...,0). LetH = (hy,---, hy) be mesh sizes; = 27% with
k € N. Let us write

HY:=h{-...-hy? and |o|=a1+...+aq

wherea = (ai,...,aq). Fora = (ai1,...,aq) @andg = (4,...,
B4) we introduce the following ordering

a<lf <= o< Vi=1,...,d.

In the 2-dimensional case we prefer to writeandh,, instead of
andhs.
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2. Results from the basic theory of the combination formula

In this section, we describe the two and more dimensional combination
formula and give some results from the general theory of this formula.
LetbeH = (hy,...,hq) := (271,...,271), wherel = (i1,...,iq) €
N¢isamultindexand let = 2. Furthermore, letus ) ;e b€ asequence
of approximations ta € H}(2). Such approximations can be constructed
by an interpolation ofu or by a projection on suitable spaces. The com-
bined solution:; of this sequence is defined by the following combination
formula:

d L (d—1
(1) uj, = Z(_1)5+ <$ - 1) § Z UH.-

s=1 =n+d—s

This formula was already used in [2] for the construction of-eariate
Boolean interpolation.
For example, in two dimensions the combination formula is:

n n—1
c .__
(2) U =) Uk g1k = D Ug-k 2 (nhy.
k=1 k=1

The convergence of the combined solution depends on the properties of the
hierarchical surplus. The hierarchical surplus operé&tas defined by

6% (wn) = Z (_1)|me(e+ﬁ)a

0<p<a

whereH~ := (h17y1,. .., hqvaq) is the product in each componebit.(wy )
is called anja|-dimensional hierarchical surplus ofgy. Let us make two
simple examples of the operaiét. Ford = 2 anda = (1,0) itis

5(1’0)(w(h1,h2)> = W(hy,ho) — W(2h1,ho)-

Ford = 2 anda = (1, 1) we get the 2-dimensional hierarchical surplus

5(171)(w(h1,h2)) = W(hy,hg) — W(hy,2ho) — W(2hy,ha) T W(2hy,2hs)-

The basic convergence theorem of the combined solution is the following
theorem.

Theorem 1. Assume that
(3) [0%ug| g < K (u)H®
for every0 < o < e and

|lu —unll g < K(u)max{hy,...,hq},
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whereK (u) is a constant, which depends only @enThen, it follows
Ju—u§ |1 < K(u)h(logh )4t

At the end of this section, we will prove this theorem for the 2-dimensional
case. The proof for more than 2 dimensions can be found in [13].

If ugg is the interpolant ofu, then it is not very difficult to show the
assumption (3).

For this let us make a few definitions. Assue< o < e. Now, let
W& be the mixed Sobolev-space (similar spaces can be found in [6])

W .= {we H'(R2) | D’w e H'(£2) forevery 0< < al.

The norm on this space is

lwlwe = | > [D%w]3..

0<f<a

Let S& be the space of functions € H{(£2) which are continuous and
piecewise linear of mesh siZg in thei-direction, ifa; = 1 and arbitrary,
if a; = 0. For exampleS; C HZ(J0,1]) is the space of piecewise linear

functions of mesh siz&; in one dimension anﬂ((}ll’loilz) is the spac§,1“ ®

H{ (10, 1[). In two dimensions we denote the spasgsby

Shaty =55, Sneo =53, and Sy, =Sy

Now, let/{; be the natural interpolation operator in the spéige Obviously

= I1 &%
0<p<a
i6]=1
Let us make a few examples for the interpolation operagprin the 2-
dimensional case we prefer to write
1,1
In, b, = ﬁl ),

Ingy 0= Iﬁ,o), and Iop, = Iﬁ“).

Then, I, 1, is the usual bilinear interpolation operator on a grid of mesh
sizeh, andhy. I, o is the interpolation operator which interpolates only
in z-direction on lines of mesh size, etc. In the 1-dimensional case we
simply write

I =13

Now, for ug := If(u), the assumption (3) is contained in the following
lemma.
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Lemmal. If 0 < a < e andu € W<, then it follows

16%Tgulln < H|ullyee and

l0° gl < H®Jul .
We want to give only a short hint how to prove this lemma. The complete
proof can be found in [13]. For proving Lemma 1, first observe that the
operator% and/g; commutate ity; = 0. Then, apply the following basic
facts of the 1-dimensional interpolation theory:
(4) Ju—IE|2 < hi|D%ull2 and
(5) 1D (u = Ig)llgz < Rl D*ull e
By Lemma 1 and Theorem 1, we obtain:

Corollary 1. Assume: € W and putug := I§(u). Now, the function
uj, defined by (1) is called the sparse grid interpolant:oThe error of this
interpolation is

lu = ufllm < h(logh™ ) ullye.e.

Theorem 1 can be generalized for other assumption to the hierarchical
surplus (see [13]). Here, we apply such an generalization only to the 2-
dimensional case. Therefore, we formulate it only for this case.

Theorem 2. Assumel = 2 and letK (u) be a constant, which depends only
onu. Then, we get:

- If ||(5euhz,hyHH1 < K(u)hghy and |lu—upp|gr < K(u)h,
then it follows

lu—ul |1 < K(u)hlogh ™.

—If ||5eu£zx,hy||L2 < K(u)hxhymin(hx,hy) and ||u — uh,h”L2 <
K (u)h2, then it follows
lu—u§lle < K(u)hs.
— If ||5euhx,hy||H1 < K(u)hxhy max(hmhy) and H’LL — Uh7h|’H1 <

K (u)h, then it follows
lu—ul| g < K(u)h.

— If [|6up, b, |2 < K(u)hihs  and |lu—uppl2 < K(u)h?, thenit
follows
u—ulllf2 < K(u)h*logh™'.
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By the first part of this theorem, we get Theorem 1 for the 2-dimensional
cased = 2. Let us prove this part of the theorem. The rest can be proved in
a similar way.

A simple calculation shows (see [15])

n n
Z Z 0%Ug—i 9—i = Upp — U,
=2 j=n—i+2
By the assumptiof}o®us, 4, || g1 < K(u)h;h,, we get

Z Z 5eu271727j K(U)Z Z 9~ig=J

i=2 j=n—i+2 I i=2 j=n—i+2

VAN

n
< I((u)§:2_i2_"+i_1 < K(u)nh.
=2

Hencel|upp, — u$ || ;1 < K (u)hlog h~". Bythe assumptiofiu — up || 1
< K (u)h and by the triangle inequality, we conclude

llu — uj | < K(u)hlogh™t.

This completes the proof of the first part of Theorem 2 and the proof of
Theorem 1 for the 2-dimensional case.

3. The idea of the convergence proofs

In this section, we explain the main idea of the new technique to prove the
convergence of the combination solution. For reasons of simplicity, let us
restrict to the 2-dimensional case.

Leta : HY(2) x HE(£2) — R a Hi-elliptic bilinear form andf €
L%(92). Letu € HE(£2) be the solution of

a(u,v):/ fvdz forevery ve H(92).
2

The Ritz-Galerkin projectiod,, ,, H&(Q) — Shy,h, Is defined by:
a(Pn, p,u—u,v) =0, Yv & Sh,p,-
Now, let us set
Uhg by = Phyn, (1)

and define., by the combination formula (1).; is called the combination
solution. The aim of this paper is to analyze the effor- v || in different
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norms. For this we want to apply Theorem 1 and Theorem 2, respectively.
Therefore, we have to prove for example the assumption

16 Un gy |1 < K (w)hahy.

The main idea for proving this inequality is to divide this inequality in four
inequalities, which can be proved more easily. For this observe

6) I=1Inp,+U—1Ino0)+T—1Iop,)— I —1In0)I—Ion,).
Then, we get
16%Uny by 1 = 16 Pry g, (0[] 1
< [16°Phy hy (Tng by (W) | 11
+ 116 Phy py (1 — Iny0(w)) || o
+ 16 Pry iy, (I — T, (W) || 2
+110°Pry o, (I = Iny0) (I = Lo, ) (W) -

Therefore, we only have to prove

(7) 16% Pr iy, (T iy (W) 11 < K (u)hahy,

(8) 16 Phy iy (I = Ing 0(w)) |1 < K (u)hahy,

9) 16 Pryn, (I — Top, (u) || g < K (u)hy hy7 and
(10) [16°Png py, (I = Iny 0) (I = Lo, )(w)l[ 1 < K () D

The first inequality (7) follows by Lemma 1 and

110°Ph by, (Ing by (W) 1 = 116%Iny py, () |1
The last inequality (10) can be obtained easily, too. By inequality (5), we
get

| Prg iy (I = Thy0) (I — To,n, ) (W) || g (I = In, 0)(I = Ion,)(w)]
ha||0:(I — Io b, ) (W) e
he||(1 = o, ) (Ozw)|| 1

hxhy”UHHG,e.

AN N AN N2

By the triangle inequality, we obtain (10).

The inequalities (8) and (9) are very similar. So let us prove only (8). For
this we define the projection operator on the semi-discrete spage Let
Py, o(w) € Sy, o be the solution of

a(Pp, o(w) —w,v) =0 Yve S, o.
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By Cea’s Lemma, we get
1Pns0(w) = Py by (Phgo(w)) [ < by |8y Pry o(w) | 11
By the triangle inequality, we get fav = (I — I, )(u)
181 Py (= Tng o) @) = (161 Poy iy P o (T = Ty 0) ()| 111
< hyll9yPao( = I, 0) (W)l
Now, let us assume that we can show
(11) 10y P 0 (w) [ < 1|Oyw] g1
Then, by inequality (4), we obtain

16 Py, (I = Iy 0) (W) 111 hyll8y (I = Ih, 0) (W)l 1
hyll(T = Thg 0)(Oyw) || 11

< hghy||ullyee.

<
<

By the triangle inequality, we get (8). By Theorem 1, we conclude:

Theorem 3. Assume thati € W, Putuy, 5, = Ph, n,(u). Then, the
combination solution:§ converges in théf '-norm with order

lu—uj] < Hu||Wc:,ehlogh_1.

So, we only have to prove the inequality (11). For Poisson’s equation
inequality (11) is contained in Theorem 6. The proof of Theorem 3 can be
generalized to arbitrary dimensions. This generalization is explained in the
Sects. 8 to 10.

In case of general elliptic differential equations, it is difficult to prove
inequality (11). Therefore, we have to modify the proof of Theorem 3 in case
of variable coefficients. This can be done by a superconvergence technique,
which is presented in [9] and [16]. This technique uses the special form of
the functionw = I — I, o(u). Then, we get (see Proposition 2):

There is any,, € Hi(£2) N W3(£2) such that

Pp by (I = 1In,0)(w) = Ph,pn,(on,),

lonllws < hallulygs.

In this paper, we apply the superconvergence technique only for the 2D
case. In our opinion, it is possible to use this technique also for the 3D
case. Nevertheless, this would lead to a very long and very technical proof,
since we have to avoid inequality (11), which we can prove only in case of
Poisson’s equation.
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4. Special notations for the 2-dimensional case

Letus assume that’-, -) is the following boundedt }-elliptic bilinear form
on H}(2) x H (02)

a(u,v) = / 110,00V 4 a120,u0yv + a210yud,v + a220yudyv
0
+ b10,uv + ba20yuv + cuv,
wherea;; € WL (2),b;,c € L®(2) andf € L?(£2). Assume that"= is

a uniform mesh with mesh sizg, on [0, 1]. This means that

1
The = {[ihx,(iﬂ)hz] i:O,---,h—l}.
Now, denote byl"«"v = T+ x Thy the product mesh. Obviously, it is
Sy, = {v e H}(]0,1]) : v |. is linear Ve € T"=}.

The operatold}, : Cy[0, 1] — S}, is the Lagrangian interpolation operator
on the gridZ™. If we use this interpolation operator onlyiaor y-direction,
then we obtain the interpolation operatdys o and/ ., respectively.

Let us abbreviate

5% =60 and o¥ .= 10,

For proving the convergence of the combination technique, suitable
spaces are spaces with bounded mixed derivatives. For our purpose the
following spaces are useful

WS .= {w c WL (0 ‘ ) | 0y (w) € L”(Q)},
Wi = {w e wi(e ‘ Oy (W), Dy (W) € LQ(Q)} and

Wyt im {w € W3(92) | Duagy (1), Oy (1), Dy () € LA(2)}
with their natural normgf - [/, ., || - s and|| - HWK4, respectively.

Observe thatVs™? = WCe,
We define different assumptionsdcand the coefficients,;, b;, andc,
which lead to different convergence results (see Theorem 5):

Assumption A: u € W3, a1y, a1, ag1, agy € WL (£2), by, by € L®(£2),
andc € L>(£2).

Assumption B:u € W2G’3, air,az € Wi
L>(82), Oyb1,0yby € L*°(£2), andc € L™

Assumption C:u € W%, a1, agy € W2
L*>(82), 0xb1, 0yba € L*°(£2), andc € L™=

G2
ya12,a21 € Wi, by, ba €

G2
,a12,a21 € Woo?, by, by €

oo
(
5o
(
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5. Unidirectional difference for Galerkin approximations

Proposition 1. Letw € H}(£2) andh, = 27", wheren, € N. Then it
follows

189 Py o, ()l g2 < hoyllw]] -
If w e H}(2) N WE(£2), then
169 Py i, (W)l < hyllyw] i  and
189 Py oy (W)l 2 < h2[[0yw]| g1

Proof. Letg € Si*°(£2) be the solution of

a(v,g) = /QU(PhI,hy (w) — Pp,o(w)) Yove Sg”’O(Q).

By the regularity of the semi-discrete solution (see Satz 4.3 in [11]), we
obtain

10ygll e < [ Phy oy (0) = Prg0(w)| 2
Observely s, (9) € Sh,,n,- Thus, we get
1Ph h, (w) = Pryo(w) |72 = a(Pa, b, (w) = Pr,o(w), g)
a(Phy b, (0) = Ph, 0(w), g — Lo, (9))

< [Phgny (w) = Pogo(w) g1 lg = Lon, (9) ||

< MNP ny (W) = Prgo(w) | 1 hyl|0y gl

< hyl|Prg ny (w) = Py o(w)l g || Prg iy (w) = Prgo(w)] 12
This implies

(12)  ||Phyhy(w) = Pryo(w)ll2 < hyl[Prgon, (W) — Pr, o(w)] g2
and ||y, p, (W) — Py o(w)]z < hyllwl|g

By the triangle inequality we get the first inequality. Now, let us assume
w € W2(£2). By the regularity of the semi-discrete solution (see Satz 4.3
in [11]) and a short calculation, we get

10y Pr0(w) |1 < [|Oyw]| g
Now, Cea’s Lemma gives
1Pha iy (W) = Prg o)l = [Py, (Phgo(w)) = Prgo(w)
hyl|Oy Pr,0(w)l[ g1 < hyllOyw] g1

AN

By (12), we obtain

1 Prs iy (w) = Pryo(w)ll2 < BgllOyw] .
The triangle inequality completes the proof
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6. Error resolution for integrals

Similar to [9,16], and [17], in this section, we have to study error resolution
for some integrals. Integration by parts leads to the following lemma.

Lemma 2. Fore = [z, — % 2. + %] € T"=, we have

/w —Ip,w= /Eew”,
e e

whereE, = 3(z — z¢)? — $h2.

Lemma 3. (i). If ¢ € L°°(£2), then there existg,, € L?(£2) such that
(13) / d(w — I, ow)0zv = (fn,,v), Yv € Sg’“o(ﬁ),
7

(14) frllie < o0l e,
(ii). If ,0.¢ € L>(£2), then there exist$;} , f2 < L?(2) such that

(15) / ow — In, ow)dev = (fi.0), Vo€ S=0(),
(9]

(16) /¢8x(wfhx7gw)v = (fgx,v), VUGng’O(Q),
(P4

hllogw 2, i =1,2.

A

(17) 7z

Proof. Itis simple to prove (13) with (14).
It is only necessary to prove (4), (5) with (6), or

(18))| /Q b(w — In, )3y | + | /Q 60, (1 — In, o) |
< Oh2||0%w]| 2| |vll 2 Vv € S50 ().

By Lemma 2, we have
/Q I, 00(w — Ip, ow)0pv
= /Q(Ihx,oqbw — Iy 0, 00wW)

— (In, 00In, ow — In, o(In, 0@In, ow)))Ozv
=y / E.02((w — In, ow) I, 09)dxv

ecTha
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1

e€Thz ex[0,1]
+2 ) / Eedy(w — Iy, ow) eIy, 06050
ecTha ex[0,1]
Note that
hZ 1
E. = _Tg + E(Eez)”

Then, we obtain
/9 I, 00(w — Ip, ow)0pv

h? 5 1
=15 /an((?mwlhx’ogi))v ~3

e€Thx

+2 / E.0y(w — In, ow)0pIn, 0p0sv
ex[0,1]

e€The
= O(h)[|5w]| 2| [v]| 2,

which together with the following identities

/ d(w — Ip, pw)0yv
(0]

- / 0e((6 — I, 06) (w — Iy, gw))v + / In, 0w — In, ow)yv
2 (9

/g $0x(w — Ip, pw)v
= / (¢ — I, 00)0z(w — In, pw)v — / (w — In, ow)0y(In, 0P)v
Q Q

—/Q(w — Iy, ow)Ip, 0$pOyv

produce (7). This completes the proofa

Proposition 2. (i). If the assumptionA holds, then there exists;, <

H (2) N W2(£2) such that

(20) langllwz < hallullyes.

/ (Eg)’ax(ﬁgwlhmogb)aiv
ex[0,1]

339
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(ii). If the assumptiorB holds, then there exists,, € H}(2) such that
(22) lan, [ < B2 [Jully .-

(ii). If the assumptiorC holds, then there exists,, € Hi(2) N WZ(£2)
such that

(23) Phyny (I = In,0)(w) = Pu,p,(an,),

(24) o, llwg < hillullyxa.

Proof. Integration by parts yields far € Sg””’o(ﬁ)
a((I = In, 0)u,v)
= —/ Opa11(I — In, 0)u0zv 4 Oya120.(1 — Ip, o)uv
+a1[228x(1 — 1Ip, 0)0yuv
—az1(I — In, 0)0yu0yv + Oy(aga(l — Ip, 0)O0yu)v
—010;(I — In, o)uv — ba(I — Iy, 0)Oyuv — c(I — I, o)uv.
Thus, by Lemma 2, there exisfs, € L?(2) such that

a((I = In,0)uv) = (fu, 0), Vo€ 557 (),
Mrllze < helullygs.
On the other hand, there exists, € H}(£2) N W3(12) satisfying
a(an,,v) = (fr,.v), Yo € Hy(2),

lon,llwzg < Il Fne 2

Therefore, combining these equations, we obtain (19) and (20). Analogously,
we obtain (23) and (24).
Note that

/ 0ya1205 (1 — In, 0)uv + a120,(1 — Ip, 0)0yuv — b10, (I — Ip, o)uv
(0]

= — / (I — Ihmo)uax(ayalgv) + (I — Ihmyo)ayuax(algv)
2
- (I - Ihmo)u@;(blv).
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This implies
~ hz,0
a((I = In,0)u,v) < Millullyeslvlm, Yo e S5 "(12).

Hence, there exists),, € H} (£2) satisfying (21) and (22). This completes
the proof. O

Proposition 3. Letry, 4, (u,v) = a((I — In,0)(I — Iop,)u,v).
(i) If the assumptio holds, then

Phay (w0 0)] < hahyllullyosllolm, Vo € Shyn, (2).
(ii) If the assumptiorB holds, then
|’rha:7hy (u,v)] 2 hyhy min(hy, hy)HUHWQGﬁHaxayU”L?a
Yo € th’hy(ﬁ).
(iii) If the assumptiorC holds, then
Py (1w, 0)] < hyhy min(hy, hy)llully zallvll e, Vo € Shyn, (£2),

Proof. (i) is obvious.
Setw = (I — Ip,0)(I — Io,pn,)u. Integration by parts leads to

Thy,hy (U, V) = — /Q 0za11W0LV + w0y (a120yv) + wy(a210,v)

+0ya20w0yv + w0 (b1v) + woy (bav) — cww.

Hence, we have

[he ey (s 0)] < hahgllullyes020yvllL2, Yo € Sh,n, (£2),
[Phe iy (s 0)] < hhyllullye.s020yvll 2, Yo € Sh,n, (£2),
he iy (s 0)] < g llully xallOndyvl 2, Vo € Spyn, (£2).

By the inverse inequality, we obtain

|7y (0 V)] < hmthung,leavaL% Vv € Sh, n, (12),
|7 hg iy (1, V)| < hihy||uHW2K,4||avaL2, Vv € Sp, n, (£2).

This completes the proof.O
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7. Convergence of the combination solution in 2D

Let us first estimate the 2-dimensional hierarchical surplus.
For this, we prove two consequences of the last two sections.

Proposition 4. (i) If the assumptio\ holds, then we obtain
169 Pry i, (1 = Tng ) @)l < hahyllullygs.
(ii) If the assumptiorB holds, then we obtain
18 Py (I = T ) (@)llzz < by min (A, )l -
(iit) If the assumptiorC holds, then we obtain
18 Py (1 = Do) @)l < By max(ha, hy) ]y 0,
18" Py (I = T 0)@)llzz < 122l

Proof. By Proposition 1 and 2, we obtain

169 Py o, (1 = Inp0) @)l = 16V Phy o, (n,)ll o
hyll9y(an )l < hahyllully s,
16 P b, (@n,. )| 22
B0, (n)m < heh2lullyoos,

16Y Phy oy (ot )| 22

AN

169 Prg oy (I = Iy 0) () 2

Al

16Y Prg iy, (I = Tz 0) ()| 2

< hyllonllm < B2hy|lullyos,
169 Poy oy (1 = Tng0) @)l = 16V P, ()l

< hylldy(an,)llm < Bty ]y s,
16Y Poy i, (I = Iy o))z = [16Y Pay o, (@n, )| 2

N GO PR T /B

This completes the proof.00
Proposition 5. (i) If the assumptio\ holds, then we obtain
[Py (= Ty 0) (I = Top, ) ()|t < hahylullyy e

(i) If the assumptiorB holds, then we obtain

P (1 = T ) = To, )@l < by min(he, byl .
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(i) If the assumptiorC holds, then we obtain

~

[Py (I = Ty 0) (I = Top, )W) |1 < haly max(ha, hy)|ulfyy s,

| Prghy (I = Ty 0) (L — o, ) (w)) |2

A

hihjuuu%m.

Proof. The estimates in th& !-norm follow directly by Proposition 3.

Let us definery,, p,(u,v) like in Proposition 3. For the estimates in
the L?-norm we use a duality argument. Let= Py, 5, (1 — Ip,0)(I —
Ion, ) ().

Let us assumB. Letw € S;** be the solution of
a(v,w) :/ qu Yv € Sg’z’o.
0

Then we obtairj|0,w|| ;1 < llallze- Ity b, (w) = I, (w) is the projec-

tion of w in the spacesg””’h” with respect to the bilinear forrwy, vo) —
[ 020,v10,0yv2. Thus, we get

1020, o, ()]l 12 < 10:0,0]1 2 < |9y .

This shows

a7 = alg.w) = alg,w — Iop, (w)) + 4, b, (4, Lo, (w))
lall o llw = To.n, (W)l 12 + [rhg oy, (w5 Lo, (w))]

gl 1 by l|Oywl g1 + 71y (5 Lo,p, (w)]

AR VAR AR

hahiyl[ullyosl|Oywl + hohyllullye.sl1020yIon, ()] 2

A

B2l lall 2

Therefore, we get

1Ph iy (4 = Ty 0) (I = To, )W)z < hahiglullyses.
Analogously, we obtain
| Pryny (L = Ty o) = Top, ) (u)llr2 < hithUHWZKA-

This completes the proof.O

Now, we can estimate the 2-dimensional hierarchical surplus.
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Theorem 4. (i) If the assumptio\ holds, then we obtain
105,y (@)l < Byl
(i) If the assumptiorB holds, then we obtain
19k, (W2 < hhy minhe, hy)|[ully,o.s-
(i) If the assumptiorC holds, then we obtain
19k, s, (Wt < hahy max (e, hy)[lull e,
105, p, (Wllz2 < h2hgllullyxa.

Proof. A short calculation shows (see [12] ):
If the assumptio\ holds, then we obtain

167 0 8% I, (W)l < Pyl s
If the assumptioB holds, then we obtain
167 0 8 Tn, o, (W)ll1y < Prohy min(hy, ) ul s
If the assumptior€ holds, then we obtain
167 0 6% I, ()l < hshy max(ho, by Jully .,
167 0 %I, (w)ll 2 < 2R lully s
Observe that
I—TIn,py=U~1In,0)+U—Ion,)— = 1In0—Ion,)
Let| - || be the normj| - || 51 or | - || 2. Then we obtain
165, 1, (W) (W) = 116% © 6% P, ()]

< 6% 0 6Y(Phyny — Ihy b)) (W + (67 0 6Y 1k, p, (W]
< 6% 00Y Pry iy, (I — Ing ) ()| + (|07 0 6Y 15, 1, ()]
< 6% 06Y Py oy (I = In, 0)(w)|| + (|67 0 6Y Py, p, (I — Lo, ) (u)]|
+[|6% 0 6Y Py hy (I = I,y 0) (I = To,n, ) (w)]| + |67 0 6Y 1k, b, ()]
< max oY P I—1I; u
pohax I oy ( o) (W]

! ﬁy=hrf%;{=2hy 1Py, 5, (I = 1o, )W)
e P, (= T o)~ Loz )W)
ﬁ:=h;:fz;:2h;

+ 1167 0 6%In, b, (w)]]-
Applying Proposition 4 and 5 completes the proofl
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Now, we can complete our analysis of the combination technique in 2D.
By Theorem 4, Theorem 2 and well-know convergence properties of the
finite element solutiorP}, 5, («), we obtain the following theorem.

Theorem 5. Putuy,, , = Py, n,(u). Then, the the combination solution
uj, has the following convergence properties:
(i) If the assumptior holds, then we obtain

Ju— il < hlog(h™")|ullye.s.
(i) If the assumptiorB holds, then we obtain
. c = 315
lu—uflle < A3ullyes,
(i) If the assumptiorC holds, then we obtain
lu=willm < Bllulym,

he— il < B dog(h™) full

8. Special notations for the case of arbitrary dimensions

In the case of arbitrary dimensions, we restrict to the bilinear form

a(u,v) = /Q (Vu, Vo) dz.

We have to define a few operators:

— Let P& : H}(£2) — S& N H}(£2) be the orthogonal projection operator
with respect to the bilinear forrma.
— Define the operator

Fa= ] 0-1p.
0<fB<a
[8]=1

— Let Max* be the following simple maximum operator:
Max (wp) := max |whers)]
wherewy is a real number which depends Bh

These operators have the following properties.

Lemma 4.

16°(qr) | < 21*IMax* (|l gza)).
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Lemma 5.
I-Ip== 3 (D

0<a<p
[al 21

Proof. Obviously, itis

Therefore, we get

DI I T SN D e !

0<a<p 0<a<p y<a
la|>1 la|>1
== (0" 0 (=n
7=h st
=1- Iy O

Lemma 6. Assumex, 8, + 3 € {0,1}¢ andw € W25, Then, the
following inequality holds:

1Fg (W) lywes < HEJwllywe.ass.

For the proof of this lemma apply the inequalities (4) and (5).

9. Regularity results

HZ(92) is a Hilbert space with scalar productThe orthogonal projection
Pf(w) onto the spacéy; has the following regularity property:

Theorem 6. If v € {0,1}¢, then it follows

1P (w)llwen < llwllwes
for everyw € W& n HL(02).
Proof. Let us first introduce the spaces

I = {(:Bl,...,l'd)GQ‘xiZO\/xizl},

«

cx={pec=(@|¢ln=0 if ai=1} and

Now, we prove the following general statement by inductiork te-
0,...,]7
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Assumeca| = k anda < . Then, it follows

(25) 1P (w)llwee < llwlwe.a

Beginning of the inductiok = 0: Trivial.

Induction0 < k —1+— k < |v[:

Assumea| = k anda < 4. The projectionPg " (w) is the unique function
Pg 7(w) € Sg ' N HL(£2) such that

a(Pg " (w),v) = a(w,v) foreveryv € S§; 7 N HE(9).

Let 3 < awand|f| = |a| — 1. By (25), we obtainPg " (w) € W5, Thus,
by partial integration, we get fab” P (w) € Sg; " N H}_5(£2)

a(D°Pg " (w),v) = a(DPw,v) foreveryv € Sg 7 N HL_4(12).

Without loss of generality, we assume— 5 = (1,0,0,...,0). Now we

use a finite difference operator to prove regularity. £ebe the symmetric
difference operator in the;-direction. To apply this operator to functions
on the domainf2, we extend each functiog on {2 in a point-symmetric
way to the functiorj on a band. For more details about the properties of the
extension operatdrand the finite difference operatdl see [11]. Then, we
get by discrete partial integration

|6:D° Py ()| = a(6; D7 Py " (w),6; D7 P (w))
= —a(D" Py " (w),6;6; D" Py (w))
= —a(DPw, 5161 DP P ()
= a(61DPw, 5LDP PETY (w))
< 16; D@ 1|6, D7 Py ()| g
< |[wl o0 |62 D7 P (@) | -

This implies

SLDP P (@) g1 < |lw] e
Thus, we get

1D*Py (W) < [[w] g6

Therefore, we get (25).0
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10. Convergence of the combination solution in arbitrary dimensions

Let us first estimate the hierarchical surplus.

Theorem 7. Assume tha® < a < e andu € W&e N H&(Q). Then, it
follows

(26) 16 PRl < H[ullwe.o-

Proof. Let us first prove the following statement by inductiorjdo = k& =
1,...,d.

If w e Sg* N W HE(12), then it follows
(27) 160% P (w)l[m < H*|wllyc.a.

Beginning of the inductio = 1: Let |a| = k£ = 1. By the interpolation
theory, we obtain

Jw = Ig(w)[[m < HY|wllye.a.

By w € S5y “ N HY(2), we getlg(w) € Sg N HL(2). Thus, by Cea’s
Lemma, we obtain

lw = P (w)llgr < HY[wl[we.a.

By the triangle inequality, we get (27).

Inductionl < k—1+— k < d: Let|a| = k. By w € S5y * N H(£2), we
getlg(w) € S§ N H(£2). Thus, by Lemma 5, we obtain

0% Pr(w) = 0" Pz (w — Iz (w)) + 6% Py Iy (w)

= 0Py | Y ()R (w) | + 6T (w).
BLla
8121

By Lemma 1, we obtain
16° T (w)[| g < H|wlle.a.
Therefore it is enough to show

16 P& (Fiy(w) | g < HE[Jw]lye.o
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for || > 1andf < a. Assumég| > 1 andf < «. This impliesja — | <
la] < k and we can apply inequality (27) for the index— . Thus, by
Lemma 4, it follows

16260 P&y (Fyy (w)) |
Max? (1627 P (Fy (w))llm )

16° P (Fp (w)) | 1

A

VAN

Max? (02~ PP P (F () )

A

Max? (Ha—ﬁ |]P§*(a*5’ffl(w)|ywc,m)

By Theorem 6 and Lemma 6, we conclude

AR

I6° P(Fe()) . < Max (B2 B F (w) yo.as )

A

Max” (| 7 (w) oo

AR

Max® (Ha—ﬁﬂﬂuwnwc,a)
< Hanan,a.
Now we have proved (27). By Theorem 6, we conclude
109 Pr(u)lgr = [0 PPy “(w)llm
H*||Pg *(u)lle.a

Hullgeo. O

VAN

A

Now, we can prove the convergence of the combination solution for
Poisson’s equation in arbitrary dimensions.

By Theorem 7 and Theorem 1 and by the convergence of the finite
element solutiorPy (u), we obtain the following theorem.

Theorem 8. Putug = Pg§(u). Assume that € W& N H}(£2). Then,
the combination solutiomj, converges in théZ ' -norm with the following
order: N

lu —ufllgr < hlog(h™h)lullye.e.
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