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Summary. A residual based error estimator for the approximation of linear
elliptic boundary value problems by nonconforming finite element methods
is introduced and analyzed. In particular, we consider mortar finite ele-
ment techniques restricting ourselves to geometrically conforming domain
decomposition methods using P1 approximations in each subdomain. Ad-
ditionally, a residual based error estimator for Crouzeix-Raviart elements of
lowest order is presented and compared with the error estimator obtained in
the more general mortar situation. It is shown that the computational effort
of the error estimator can be considerably reduced if the special structure of
the Lagrange multiplier is taken into account.

Mathematics Subject Classification (1991):65N15, 65N30, 65N50, 65N55

1. Introduction

We will consider the following model problem

Lu := −div (a∇u) + b u = f in Ω,
u = 0 on Γ := ∂Ω

(1.1)

whereΩ is a bounded, polygonal domain inIR2 andf ∈ L2(Ω). Further-
more, we assumea = (aij)2i,j=1 to be a symmetric, uniformly positive
definite matrix-valued function withaij ∈ L∞(Ω), 1 ≤ i, j ≤ 2, and
0 ≤ b ∈ L∞(Ω). The largest eigenvalue ofa restricted to a subsetD ⊂ Ω
is denoted byαD.
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The paper is organized as follows: In Sect. 2, we consider the mortar
finite element method for the special case of coupling conforming P1 finite
element methods on nonmatching simplicial triangulations. Generally, each
subdomain can be associated with different discretization techniques and
or different triangulations. The mortar finite element method is a domain
decomposition technique which requires no pointwise continuity across the
interface between the subdomains; a characteristic feature of this method is
that the solutions on the subdomains are only coupled in a weak sense.
A residual based error estimator is studied in Sect. 3. The main technical
problem results from the discontinuity of the mortar finite element solution
across the boundaries of the subdomains. To obtain satisfactory upper and
lower bounds for the discretization error, we have to take the nonconformity
of the mortar finite element solution into account.
In Sect. 4, we consider the Crouzeix-Raviart finite elements of lowest order
associated with a simplicial regular triangulation on the whole domainΩ.
We analyze a residual based error estimator and observe that it has exactly
the same structure as the error estimator studied in Sect. 3. The characteristic
feature of both error estimators is a weightedL2-norm of the jump of the
finite element solution across the subdomain boundaries. We show that this
part provides an appropriate measure of the nonconformity of the finite
element solution.
In Sect. 5, we interpret the Crouzeix-Raviart discretization as a mortar finite
element method. We show the local equivalence of the error estimators
introduced in Sects. 3 and 4 and analyze the relation between the Lagrange
multiplier and the normal derivative of the Crouzeix-Raviart finite element
solution. The main result of this section provides a simplified error estimator
which is locally equivalent to the original ones.
Finally, in Sect. 6 we present some numerical results illustrating the adaptive
refinement process as well as the efficiency of the error estimators. We
consider cases with boundary layers and with discontinuous coefficients. In
the first case, we obtain an almost matching triangulation. However, there
is a sharp interface between adaptive refined and unrefined regions in the
second case because of the discontinuity of the coefficients.

2. A mortar finite element discretization

A description of a mortar finite element method begins with a decomposition
of the initial domainΩ into non-overlapping subdomainsΩk, 1 ≤ k ≤ K,

Ω =
K⋃

k=1

Ωk with Ωl ∩Ωk = ∅, k 6= l.
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Without loss of generality, we assume that the subdomains are polygons.
We restrict ourselves to the geometrical conforming situation where the
intersection between the boundary of two different subdomains∂Ωl ∩∂Ωk,
k 6= l as well as∂Ωl ∩ ∂Ω is either empty, a vertex, or a common edge (see
Fig. 2.1).

Ω6

Γ69 = Γ96

1

9

Ω

Ω

Ω

Fig. 2.1. Geometrically conforming (left) and nonconforming (right) situation

If two subdomainsΩl andΩk have a common side, the intersection is
called an interface and is denoted byΓ lk = Γ kl := ∂Ωl ∩ ∂Ωk. nlk stands
for the unit normal vector fromΩl toΩk. The union of all interfaces is called
the skeletonS :=

⋃K
k,l=1 Γ lk.

An arbitrary discretization scheme can be used on each subdomain for
the numerical solution of (1.1). Across the interfaceΓlk, the discrete solu-
tions have to satisfy adequate matching conditions. A number of cases have
been analyzed such as the coupling of different finite element methods, the
coupling of spectral and finite element methods, and the combination of
boundary element methods with finite element methods; see [1,4,5,14–17,
23,27,28,32].

A lot of work has also been done recently on the construction of effi-
cient iterative solvers based on multilevel techniques [1–3,23,31,33,34]. In
contrast, there are so far only a few papers considering adaptive refinement
techniques and a posteriori error estimators [18,36].

A regular simplicial triangulationThk
is associated to each subdomain

Ωk, 1 ≤ k ≤ K. Let Ehk
andPhk

denote the sets of edges and vertices
of the triangulationThk

, respectively. The sets of all triangles, vertices and
edges are denoted byTh, Ph, andEh, respectively.

In the following, we refer toS1(Ωk; Thk
) as the standard conforming P1

finite element space defined locally onΩk by

S1(Ωk; Thk
) := {v ∈ C(Ωk) | v|T ∈ P1(T ), T ∈ Thk

, v|∂Ω∩∂Ωk
= 0} .
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Then, the global discrete spaceX−1
h (Ω) is defined by

X−1
h (Ω) :=

K∏
k=1

S1(Ωk; Thk
).

In general, a functionv ∈ X−1
h (Ω) will be discontinuous across the skeleton

S.
Typically, a priori error estimates of a finite element solution involve two

terms: the approximation error and the consistency error. If we use the global
spaceX−1

h (Ω) as the finite element ansatz space, the approximation error
would be of orderO(h), but sinceX−1

h (Ω) requires no continuity across
the interfaces, the consistency error would be unlimited.

To define an appropriate finite element ansatz space, we have to intro-
duce some matching conditions across the skeleton of the decomposition. In
particular, a weak continuity condition has to be imposed on each interface.
This can be done by using Lagrange multipliers on the skeleton. Before pro-
ceeding further, we have to consider the skeletonS in more detail. For each
interface of the skeletonΓij = Γji, we choose one of the two associated sub-
domains, eitherΩi orΩj . Here, we will select without loss of generalityΩj .
The finite dimensional space given by the trace of functions inS1(Ωj ; Thj

)
restricted onΓij is then called the mortar space and the opposite side is
called non-mortar side. Now, the skeleton can be directly decomposed in

S =
⋃

e∈EL

e,

EL := {e ∈ Eh| ∃i, j 1 ≤ i ≤ K, j ∈ M(i) such that e ∈ Ehi
∩ Γij}

S =
⋃

e∈EM

e,

EM := {e ∈ Eh| ∃i, j 1 ≤ i ≤ K, j ∈ M(i) such that e ∈ Ehj
∩ Γij}

whereM(i) := {1 ≤ j ≤ K| the mortar space onΓij inheriting its 1D
mesh fromThj

onΩj}. The setM(i)can be empty. We introduce appropriate
matching conditions on the skeleton by means of the spaceWh(S) ⊂ L2(S)
of Lagrange multipliers

Wh(S) :=
K∏

i=1

∏
j∈M(i)

W (Γij ; Thi
),

W (Γij ; Thi
) :=

{
µ ∈ L2(Γij) | µ = w|Γij , w ∈ S1(Ωi; Thi

),
w|e = const., if e contains an endpoint ofΓij , e ∈ EL} .

Note that the Lagrange multiplier space onΓij , j ∈ M(i) is associated with
the non-mortar side in contrast to the mortar space. The space for the mortar
finite element method is now defined as

Xh(Ω) :=
{
v ∈ X−1

h (Ω) | b (µ, v) = 0, µ ∈ Wh(S)
}
,
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where the bilinear formb (·, ·) is given by

b (µ,w) := −
K∑

i=1

∑
j∈M(i)

∫
Γij

µ [w]J dσ, w ∈
K∏

i=1

H1(Ωi), µ ∈ L2(S),

and the jump onΓij , j ∈ M(i) by [w]J := w|Ωi − w|Ωj .
The mortar finite element solutionuM ∈ Xh(Ω) is defined as the unique

solution of the following discrete variational problem

a (uM, v) = (f, v)0, v ∈ Xh(Ω),(2.1)

wherea (·, ·),

a (v, w) :=
K∑

i=1

ai (v, w) ,

ai (v, w) :=
∫
Ωi

a∇v · ∇w + b vw dx, v, w ∈
K∏

i=1

H1(Ωi),

defines the discrete bilinear form, and the broken energy norm is given
by |||v|||2 := a (v, v). If we use the primal hybrid formulation, the varia-
tional problem yields the following saddle point problem: Find(uM, λM) ∈
X−1

h (Ω) ×Wh(S) such that

a (uM, v) + b (λM, v) = (f, v)0, v ∈ X−1
h (Ω)

b (µ, uM) = 0, µ ∈ Wh(S)
(2.2)

is satisfied. Because of the second equation of the saddle point problem,
the solution of (2.1) and the first component of the solution of (2.2) are the
same. If the solutionu is smooth enough, the following a priori estimate is
well known

|||u− uM|||2 ≤ C

K∑
i=1

h2
i ‖u‖2

2;Ωi
;

(see [16–18] and the references therein). In the following, we will use the
constants0 < c, C < ∞ as generic constants which only depend on the
initial coarse triangulation, the local ratio of the smallest and largest eigen-
values ofa and the local ratio ofbh2 and the largest eigenvalue ofa, but not
on the refinement level or the elementT ∈ Th.
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3. A residual based error estimator

In this section, we introduce an error estimator which is based on the dual
norm of the residual. We recall that the concept of residual based error
estimation can be found in the early work of Babus̆ka and Rheinboldt [8,9]
and has been further developed by others [12,13,26,39]. These estimators
are well established for conforming, nonconforming Crouzeix-Raviart, and
mixed finite elements. An overview of the concepts and techniques for the
conforming setting is given in [19,40], whereas [6,20–22,25,29,30,38,41]
refer to more general variational formulations.

If the weak solution of (1.1)u is contained in
∏K

i=1H
2(Ωi) and the jump

of the normal derivativea∇u · n vanishes on the skeleton, then it can be
easily seen, by using Green’s formula, that the error satisfies a continuous
variational problem

a (u− uM, v) = r(v), v ∈
K∏

i=1

H1(Ωi)(3.1)

where the residualr is given byr(v) := (f, v)0 − b (λ, v) − a (uM, v) with
λ|Γij := a∇u · nij , 1 ≤ i ≤ K, j ∈ M(i).

3.1. A saturation assumption

A weighted norm‖ · ‖L on the skeleton is given by‖v‖2
L :=

∑
e∈EL

heα
−1
e

·‖v‖2
0;e. Hereαe := αT , if e is an edge ofT ∈ Thi

andαe := 0.5(αT1 +αT2)
if e is an interior edgee ∈ Eh \ S, e = ∂T1 ∩ ∂T2. If the solution(u, λ) is
smooth enough, the energy norm of the error|||u−uM||| is of orderO(h) (see
e.g. [16–18]) whereasinfµ∈Wh(S) ‖λ− µ‖L is at least of orderO(h3/2).
To some extent, these a priori estimates justify the following saturation
assumption

inf
µ∈Wh(S)

‖λ− µ‖L ≤ Ch|||u− uM|||, Ch > 0(3.2)

with Ch ≤ C0 < ∞ for h → 0.

Lemma 3.1 Under the saturation assumption (3.2), there exists a constant
CλM > 0 independent of the refinement level such that

‖λ− λM‖L ≤ CλM |||u− uM|||.
Proof. We obtain, from the triangle inequality,

‖λ− λM‖L ≤ inf
µ∈Wh(S)

(‖λ− µ‖L + ‖µ− λM‖L) .
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In view of the saturation assumption (3.2), we need only consider the second
term of the right hand side further. By construction of the discrete space of
Lagrange multipliers,λM is not necessarily continuous at the crosspoints of
the skeleton. It is therefore in general not possible to find av ∈ X−1

h (Ω) such
that [v]J = λM on the skeleton or such that‖λM‖L · ‖[v]J‖L−1 = b (µ, v),
where‖v‖2

L−1 :=
∑

e∈EL
αe
he

‖v‖2
0;e. By usingλM|e = const. on the edgese

containing one endpoint of the interfaces, the weighting factors, the inverse
inequality for polynomials and (2.2), we obtain

‖µ− λM‖L

≤ C sup
v∈X̃−1

h (Ω)
b (µ− λM, v) · ‖ [v]J ‖−1

L−1

≤ C
(

sup
v∈X̃−1

h (Ω)
inf

w∈X−1
h

(Ω)
[w]J=[v]J

a (uM − u,w) · ‖ [w]J ‖−1
L−1 + ‖λ− µ‖L

)

≤ C (|||uM − u||| + ‖λ− µ‖L) ,

whereX̃−1
h (Ω) := {v ∈ X−1

h (Ω) | (v|Ωj )|Γij = 0, 1 ≤ i ≤ k, j ∈
M(i)}. ut

3.2. The projection operatorPS

Let D be an open subset ofΩ associated with a simplicial conforming
triangulationTD and letS1(D; TD) be the corresponding P1 conform-
ing finite element space with homogeneous boundary conditions on∂Ω ∩
∂D. For each vertexp ∈ PD, we define a domainDp by Dp := {T ∈
TD | p a vertex ofT} and denote the number of elements contained inDp

by np ≤ nmax < ∞.
We will use a projectionPS;D : H1

0;∂Ω(D) → S1(D; TD), with the
following properties:

(S1)PS;Dv = v, v ∈ S1(D; TD),
(S2)PS;Dv(p) is uniquely defined byv|Dp

,

(S3) ‖v − PS;Dv‖2
0;e ≤ CS

he
αe

|||v|||2De
whereDe :=

⋃
1≤i≤2

Dpi andpi, 1 ≤
i ≤ 2, are the vertices ofe,

(S4) ‖v − PS;Dv‖2
0;T ≤ CS

h2
T

αT
|||v|||2DT

whereDT :=
⋃

1≤i≤3
Dpi andpi, 1 ≤

i ≤ 3, are the vertices ofT ,
(S5) |||PS;Dv|||2T ≤ CS|||v|||2DT

,

where the constantCS depends only on the shape regularity ofTD and the
local ratio of the smallest and largest eigenvalues ofa.

We then can define the global operatorPS by PS :=
∑K

i=1 PS;Ωi and
get a constant in (S3)-(S5) which is independent ofT ∈ Th. Note that the
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well-known interpolation operator of Clément [24] satisfies (S2)-(S5) but
not (S1).

Example.There are several possibilities to define the operatorPS;D. The
following projection operatorPS;D is a simple modification of the operator
proposed in [37] (see also [35]):PS;Dv ∈ S1(D; TD) is uniquely determined
by its values at the verticesp of the triangulationTD. They are given by

PS;Dv(p) :=




1
np

∑
T⊂Dp

∫
T

vψp;T dx, p ∈ D,

1
2

∑
e⊂∂Dp

p a vertex of e

∫
e
vψp;e dσ, p ∈ ∂D \ ∂Ω,

0, p ∈ ∂D ∩ ∂Ω
whereψp;T andψp;e are the dual basis functions of the local nodal basis
functionφp;T in the sense that∫

T

φpj ;T ψpi;T dx = δij ,

∫
e

φpj ;T ψpi;e dσ = δij .

In [37], PS;D is defined byPS;Dv(p) =
∫
e vψp;e dσ wheree is an arbitrary

edge containing the vertexp. We note that
∫
e vψp;e dσ can be replaced by∫

T vψp;T dx whereT is an arbitrary element containing the vertexp if no
boundary condition has to be preserved. Here, we take the average of all
possible elements.

3.3. Local a posteriori error estimator

Our introduction of the a posteriori error estimator is based on duality tech-
niques applied to the residual. Using the same arguments as in the conform-
ing setting [40], we evaluate the residual as a continuous linear functional.
We obtain from (3.1) forv ∈∏k

i=1H
1(Ωi)

a (u− uM, v) = (f − LuM, v)0 − b (λ, v) −
∑

T∈Th

∫
∂T

a∇uMnv dσ,

(3.3)

whereL is applied elementwise touM. Using the definition ofPS and (2.2),
we get

a (u− uM, PSv) = b (λM − λ, PSv) , v ∈
K∏

i=1

H1(Ωi).(3.4)
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Using (3.3) and (3.4), the variational problem can be written as

a (u− uM, v) = (f − LuM, v − PSv)0 − b (λ, v)

−
∑

T∈Th

∫
∂T

a∇uMn(v − PSv) dσ + b (λM, PSv) .

Forv ∈ H1
0 (Ω) +Xh(Ω), we end up with

a (u− uM, v) ≤
∑

T∈Th

‖f − LuM‖0;T ‖v − PSv‖0;T

+
∑

e∈Eh\S
‖ [a∇uMne]J ‖0;e‖ [v − PSv]A ‖0;e

+
∑

e∈Eh∩S
‖λM − a∇uMnij |Te‖0;e‖(v − PSv)|Te‖0;e

+ inf
µ∈Wh(S)

|b (µ− λ, v) |.

By means of the saturation assumption (3.2), (S3)-(S4), and choosingv =
u− uM, we obtain

|||u− uM|||2 ≤ C̃M

(
‖f − LuM‖2

Th
+

∑
e∈Eh\S

he
αe

‖ [a∇uMne]J ‖2
0;e

+
∑

e∈EL

he
αe

‖a∇uMnij − λM‖2
0;e

+
∑

e∈EM

he
αe

‖a∇uMnij − λM‖2
0;e + ‖ [uM]J ‖2

L−1

)(3.5)

where the weighted norm‖ · ‖Th
is defined as‖v‖2

Th
:=
∑

T∈Th

h2
T

αT
‖v‖2

0;T .

These preliminary computations motivate the definition of the local a
posteriori residual based error estimatorηR :=

∑
T∈Th

η2
R;T , where

η2
R;T := h2

T
αT

‖Π1f − LuM‖2
0;T + 2αT1αT2

(αT2+αT1 )2
∑

e⊂∂T\S
he
αT

‖ [a∇uMne]J ‖2
0;e

+
∑

e⊂∂T∩S
he
αe

‖a∇uMnij |T − λM‖2
0;e

+
∑

e⊂∂T∩EL

αe
he

‖ [uM]J ‖2
0;e, T ∈ Th.

Here e = ∂T1 ∩ ∂T2 for e ∈ Eh \ S. The first two terms of the error
estimator are exactly the same as in the conforming setting while the third
and fourth terms are associated with the skeleton. In particular, the third term
is connected with the Neumann boundary values at the interior subdomains
boundaries. The fourth part reflects the nonconformity of the finite element
solution and only comes into play on the non-mortar side.
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For the rest of this section, we assume that there exists a constantCS ,
independent of the refinement level, such that

h3
eM

aeM

aeL

h3
eL

≤ CS , eL ∈ EL, eM ∈ EM and eL ∩ eM 6= ∅.(3.6)

Within the adaptive refinement process, we should make sure thatCS is
reasonable bounded.

Theorem 3.2 Under the weak saturation assumption (3.2) and (3.6) there
exist constantscres, Cres > 0 and chigh, Chigh > 0 independent of the
refinement level, such that

cresη
2
R − chigh‖f −Π1f‖2

Th
≤ |||u− uM|||2
≤ Cresη

2
R + Chigh‖f −Π1f‖2

Th
.(3.7)

Proof. The upper bound is an immediate consequence of (3.5) and of the
local definition of the a posteriori error estimator.

To establish the lower bound for|||u−uM|||, we have to consider the four
different parts of the error estimator separately. Using the same arguments
as in the conforming setting [40], we obtain upper bounds for the first two
parts of the error estimator. This can be achieved by using cubic bubble
functionsΦT for T ∈ Th and quadratic bubble functionsΦe for e ∈ Eh \ S
(see [40]). The proof that this works is well known and is therefore omitted.
There remains to establish upper bounds for the third and fourth part of the
error estimator. On the non-mortar sides(a∇uMnij |Te − λM), restricted on
e ∈ EL, is a linear function (see the left part of Fig. 3.1).

@
@��HHH@

@@�
�
��

A
A
AA

@@

��HH

HH
@@

@@�
��

��A
AA

AAΓij

e ∈ EL ∩ Γij e ∈ EM ∩ Γij

a∇uM|Ωinij − λM a∇uM|Ωjnij − λM

Fig. 3.1. ∇uMnij − λM restricted onΓij

Using quadratic bubble functionsΦe, e ∈ EL ∩ Γij living in the non-
mortar subdomainsΩi, we obtain fore ⊂ ∂T

c‖a∇uMnij |T − λM‖2
0;e ≤

∫
e

(a∇uMnij |T − λM)2 Φe dσ

= a
(
uM − u, (a∇uMnij |T − λM)T Φe

)
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+(f − LuM, (λM − a∇uMnij |T )T Φe)0;T
−b (λ− λM, (a∇uMnij |T − λM)Φe)

≤ C

((
αe

he

)1/2

|||u− uM|||T + h
1/2
T ‖f − LuM‖0;T + ‖λ− λM‖0;e

)

×‖a∇uMnij |T − λM‖0;e.

Here,(a∇uMnij |T − λM)T is a linear function onT with tracea∇uMnij |T −
λM one. Summing over alle ∈ EL and using Lemma 3.1, the following upper
bound holds:∑

e∈EL

he

αe
‖a∇uMnij |Te − λM‖2

0;e ≤ C
(|||u− uM|||2 + ‖f −Π1f‖2

Th

)
.

In contrast to the non-mortar sides,(a∇uMnij |Te − λM)|e, e ∈ EM is gen-
erally not a linear function one (see the right part of Fig. 3.1). Thus, the
upper bound for ∑

e∈EM

he

αe
‖a∇uMnij |Te − λM‖2

0;e

cannot be established as easily as the previous one. LetΠē : L2(ē) −→
P0(ē), be the weightedL2-projection given by∫

ē

Πēvφē dσ =
∫
ē

vφe dσ, v ∈ L2(ē).

Then, it can be easily seen that

‖v‖2
0;ē ≤ C(‖Πēv‖2

0;ē + h2
ē|v|21;ē), v ∈ H1(ē)

holds. Using the same techniques as before, we get

‖a∇uMnij |T −ΠēλM‖0;ē

≤ C

((
αē

hē

)1/2

|||u− uM|||T + h
1/2
T ‖f − LuM‖0;T + ‖λ− λM‖0;ē

)

for ē ∈ EM ∩ ∂T ∩ ∂Γij . In addition, we obtain

he|λM|1;e ≤ ‖a∇uMnij |Te − λM‖0;e, e ∈ EL

and thus∑
ē∈EM

hē

αē
‖a∇uMnij |Tē − λM‖2

0;ē ≤ CM
(|||u− uM|||2 + ‖f −Π1f‖2

Th

)
.
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To control the last term of the error estimator, we consider theL2-
orthogonal projection operatorPij : L2(Γij) −→ W (Γij ; Thi

) defined by∫
Γij

Pijvµ dσ =
∫

Γij

vµ dσ, µ ∈ W (Γij ; Thi
).

Then, there exits a constantCΓ independent ofi andj, 1 ≤ i ≤ K, j ∈
M(i), such that

∑
e∈EL∩Γij

1
he

‖v − Pijv‖2
0;e ≤ CΓ |v|21/2;Γij

, v ∈ H1/2(Γij).(3.8)

(3.8) can be proved by using a locally defined quasi-interpolant with this
property and by taking the stability property ofPij , with respect to the
weightedL2-norm‖ · ‖L−1 , into account. By means of (3.8) andPij(uM|Ωi)
= Pij(uM|Ωj ), we get

∑
e∈EL

αe

he
‖ [uM]J ‖2

0;e =
∑
e∈EL

αe

he
‖ [uM − u− Pij(uM − u)]J ‖2

0;e

≤ 2CΓ

K∑
i=1

∑
j∈M(i)

(
αΩi |uM|Ωi − u|21/2;Γij

+ αΩj |uM|Ωj − u|21/2;Γij

)

≤ ĈΓ |||u− uM|||2.

ut

Remark 3.1.The constantCM depends onCS (see definition (3.6)), which
should be kept reasonable small, as well as on the variation of the eigenval-
ues ofa across the skeleton. The constantĈΓ depends on the variation of
the eigenvalues ofa on the subdomains. Therefore, the decomposition into
subdomains should preferable be done taking the matrix-valued functiona
into account. If we examine the constants that depend on the eigenvalues
of a in more detail, it turns out that they are better in the case when the
non-mortar side is associated with the smaller coefficienta. This can be also
seen by a careful a priori analysis and is supported by our numerical results.
In the numerical results, it can be very often observed that the local ratio
h4

eL
/h4

eM
tends asymptotically toaeL/aeM . Starting with a quasi-uniform

global discretization and taking the non-mortar side where the coefficient is
smaller yield a constantCS of order one.

Remark 3.2.In general, the term‖f − Π1f‖2
Th

is of higher order and can
be neglected. This also holds true if we replaceΠ1f byΠ0f .
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4. Crouzeix–Raviart discretization

We now consider a nonconforming discretization with Crouzeix-Raviart
finite elements of lowest order. This method is closely related to mixed finite
element discretizations [7]. A residual based a posteriori error estimator for
Crouzeix-Raviart finite elements has been introduced and analyzed in our
earlier work [41]. There a weak saturation assumption was used to prove
upper and lower bounds for the true error in the energy norm. Here, we
will prove the efficiency and reliability of the error estimator without any
saturation assumption. A similar result can be found in [22,25]. There, the
introduction of a residual based error estimator is based on a Helmholtz
type decomposition of the gradient of the error. The results in [22,25] are
restricted to the special case of a vanishing zero order termb. Here, we
consider the more general caseb ≥ 0.

4.1. Variational problem

We consider a simplicial triangulationTl ofΩ obtained from an initial coarse
triangulationT0 by the adaptive refinement process of Bank et al. [11]. The
sets of vertices and edges ofTl are denoted byPl andEl, respectively. We
assume that each edgee ∈ El is either contained in the interior ofΩ or that
e ⊂ ∂Ω. Let EB

l ⊂ El stand for the set of all edges on the boundary ofΩ,
and letme denote the midpoint for every edgee ∈ El: There existTi andTo
with ∂Ti ∩ ∂To = e, if e ∈ El \ EB

l and aTi with e ⊂ ∂Ti ∩ ∂Ω, if e ∈ EB
l .

The subdomainDe is given byDe := Ti ∪ To andDe := Ti if e ∈ El \ EB
l

ande ∈ EB
l , respectively. The unit outer normal onTi is denoted byne.

The orientation of the vectorne is arbitrary but fixed. We recall that the
largest eigenvalue ofa restricted onT is denoted byαT , andαe is defined
byαe := 1

2(αTi + αTo) if e ∈ El \ EB
l and byαe := αTi if e ∈ EB

l . Finally,
he andhT denote the length of the edgee and the diameter of the element
T , respectively.

The Crouzeix-Raviart space of lowest order associated with the triangu-
lationTl, l ≥ 0, is defined by

CR(Ω; Tl) :=
{
v ∈ L2(Ω) | v|T ∈ P1(T ), T ∈ Tl,

v(me)|Ti = 0, e ∈ EB
l

v|Ti(me) = v|To(me), e ∈ El \ EB
l

}
.

We can then consider the discrete variational problem: FinduCR ∈ CR(Ω;
Tl) such that

aCR (uCR, v) = (f, v)0, v ∈ CR(Ω; Tl)(4.1)
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where the bilinear formaCR (·, ·) is given byaCR (v, w) :=
∑

T∈Tl

∫
T a∇v

× ∇w dx +
∫
Ω bvw dx. The discrete energy norm is denoted by|||v|||2 :=

aCR (v, v). The variational problem (4.1) is solved iteratively, and we let
ûCR stand for the available approximate solution so obtained.

4.2. Nonconformity of Crouzeix-Raviart finite elements

As we have seen in Sect. 3, we have to take the jump of the nonconforming
finite element solution into account in the definition of a residual based error
estimator. In a first step, we decompose the nonconforming space locally
into a conforming space and a nonconforming surplus space.

For eachp ∈ Pl, we consider the subdomainDp which contains all ele-
ments having the vertexp in common,Dp :=

⋃{T ∈ Tl | p a vertex ofT},
and we denote bynp ≤ nmax < ∞ the number of elements contained in
Dp (see Fig. 4.1).
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Fig. 4.1. Definition ofDp andẼp (edges marked by dashed lines)

We now focus on the splitting of the nonconforming spaceCR(Dp; Tl)
restricted toDp given by

CR(Dp; Tl) := {v ∈ L2(Dp)| v = w|Dp , w ∈ CR(Ω; Tl)}.

Let S(Dp; Tl) be the space of conforming P1 finite elements onDp with
homogeneous boundary conditions on∂Dp ∩∂Ω. To obtain a direct decom-
position ofCR(Dp; Tl) intoS(Dp; Tl) and a nonconforming surplus ansatz
spaceN(Dp; Tl), we have to distinguish between several cases. LetE I

p be
the set of all edgese ∈ El contained in the interior ofDp and letEB

p be the set
of edges on the boundary∂Dp. Two different cases have to be considered.
We first focus on the case that∂Dp does not contain any boundary vertex
of Ω (see case 1 of Fig. 4.1). If the numbernp of elements ofDp is odd, let

Ẽp := {e ∈ E I
p| e 6= ê}
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whereê is a fixed but arbitrary element ofE I
p. If np is even, let

Ẽp := {e ∈ E I
p| e 6⊂ ∂T̂} ∪ {e ∈ EB

p | e ⊂ ∂T̂}

whereT̂ is a fixed but arbitrary element ofDp (see left part of Fig. 4.1).
In the second case,∂Dp contains at least one vertex on the boundary

of Ω (see case 2 of Fig. 4.1). For each connected setCi, 0 ≤ i ≤ mp, of
boundary edges ofDp which are in the interior ofΩ, we fix oneei such that
ei ⊂ Ci ∩ EB

p contains an endpoint ofCi. Note thatmp = 0 if and only if

Dp = Ω. Now, Ẽp is given by

Ẽp := {e ∈ E I
p} ∪

mp⋃
i=1

{ei},

if p ∈ ∂Ω, and by

Ẽp := {e ∈ E I
p| e 6= ê1} ∪

mp⋃
i=1

{ei},

if p ∈ Ω, whereê1 ∈ E I
p, andê1 ande1 are edges of one trianglêT ⊂ Dp

if mp ≥ 1 (see right part of Fig. 4.1), and̂e1 is arbitrary ifmp = 0.
The definition of the nonconforming surplusN(Dp; Tl) is now given by

N(Dp; Tl) :=
{
v ∈ L2(Dp)| v =

∑
e∈Ẽp

ωeΦe|Dp , ωe ∈ IR
}
,

whereΦe denotes the standard nonconforming nodal basis function associ-
ated with the edgee.

Lemma 4.1 For eachp ∈ Pl, the nonconforming spaceCR(Dp; Tl) can
be decomposed as a direct sum

CR(Dp; Tl) = S(Dp; Tl) ⊕N(Dp; Tl).

Proof. We formally setmp = 0 in the case that∂Dp does not contain any
boundary vertex ofΩ. Then,dimCR(Dp; Tl) = #EB

p +#E I
p−#(EB

p ∩EB
l ),

dimS(Dp; Tl) = #EB
p +1−δp;∂Ω−#(EB

p ∩EB
l )−mp anddimN(Dp; Tl) =

#E I
p −1+δp;∂Ω +mp, whereδp;∂Ω = 0 if p ∈ Ω, andδp;∂Ω = 1 if p ∈ ∂Ω.

Thus, we get

dimCR(Dp; Tl) = dimS(Dp; Tl) + dimN(Dp; Tl).(4.2)

In a next step, we show that

S(Dp; Tl) ∩N(Dp; Tl) = {0}.(4.3)
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Let v ∈ S(Dp; Tl) ∩ N(Dp; Tl). Then,v is continuous across the interior
edges ofDp and zero at the vertices of∂Dp ∩ ∂Ω. In the first case where
∂Dp does not contain any boundary vertex ofΩ, v can be written asv =∑np−1

i=1 ωiΦi|Dp ; the notation is explained in Fig. 4.2.
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Fig. 4.2. Enumeration of the edgesei ∈ Ẽp (case 1)

We obtain the following conditions

ω1 = ωi + ωi+1 = ωnp−1, 1 ≤ i ≤ np − 2

if np is odd and

ω1 = ωi + ωi+1 = ωnp−2 = −ωnp−1, 1 ≤ i ≤ np − 3

if np is even. It follows thatwi = 0, 1 ≤ i ≤ np − 1, and thusv = 0.
In the second case where∂Dp contains at least one boundary vertex of

Ω, the proof of (4.3) is somewhat more technical but as easy as in the first
case. Basically, we have to consider only the casemp = 0; the proof for
mp ≥ 1 is obtained by induction. The details are omitted. Equation (4.2)
together with (4.3) gives the direct decomposition ofCR(Dp; Tl). ut

We now use the same type of projection operatorPS := PS;Ω as in
Subsect. 3.2 which should satisfy (S1)-(S5) forv ∈ CR(Ω; Tl) +H1

0 (Ω).
Following the same lines as in [37], the estimates (S1)-(S5) can be easily
established for the concrete choice ofPS given in Subsect. 3.2 forv ∈
CR(Ω; Tl) +H1

0 (Ω).
Let

ET :=
3⋃

i=1

Êpi , Êpi := Epi ∪
⋃

p∈∂Ω∩Pl
p a vertex ofe∈Epi

Ep

with Ep := {e ∈ El, p a vertex ofe}, p ∈ Pl andpi, 1 ≤ i ≤ 3 are the
vertices ofT . In Fig. 4.3 the edges ofEp, Êp andET are marked by dashed
lines.
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Ω

p

Ω

p

Ω

T

Fig. 4.3. The set of edgesEp (left), Êp (middle) andET (right)

The following lemma provides a measure of the nonconformity of a
Crouzeix-Raviart finite element function. In particular, the discontinuity of
v ∈ CR(Ω; Tl) across the edges of the triangulation is bounded by|||w − v|||
wherew ∈ H1

0 (Ω) is arbitrary. The definition of the jump depends on the
orientation ofne

[v]J := v|Ti − v|To , [v]A :=
1
2
(v|Ti + v|To), e ∈ El \ EB

l ,

[v]J := v|Ti , [v]A :=
1
2
v|Ti , [a∇vne]J := 0,

[a∇vne]A := a∇vne|Ti , e ∈ EB
l .

Lemma 4.2 There exists a constants0 < C̃J independent of the refinement
levell, such that

|||PSv − v|||2T ≤ C̃2
J

∑
e∈ET

αe

he
‖ [v]J ‖2

0;e, T ∈ Tl, v ∈ CR(Ω; Tl),(4.4)

and

αe

he
‖ [v]J ‖2

0;e ≤ C̃2
J |||w − v|||2De

,

e ∈ El, v ∈ CR(Ω; Tl), w ∈ H1
0 (Ω).(4.5)

Proof. We start with the proof of (4.4). On each triangle, an upper bound
for the energy norm of the linear functionPSv − v is given by

c|||PSv − v|||2T ≤ αT

3∑
i=1

(PSv − v)|2T (pi).

Lemma 4.1 shows that eachv ∈ CR(Ω; Tl), restricted toDp, can be
uniquely decomposed into

v|Dp = vS + ṽN

where vS ∈ S(Dp; Tl) and ṽN ∈ N(Dp; Tl). We extendṽN to vN ∈
CR(Ω; Tl) on Ω by settingvN |Dp = ṽN andvN(me) = 0 for e ∈ El \
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(EB
p ∪ E I

p). Then,vN =
∑

e∈Ẽp
ωeΦe and [vN ]J = [v]J for e ∈ E I

p. The
continuity ofPS , (S1)-(S2), and(PSv − v)|T ∈ P1(T ) yield

(PSv − v)|2T (p) = (PSvN − vN)|2T (p) ≤ C|vN |21 ≤ C
∑

e∈Ẽp

ω2
e

≤ C
( ∑

e∈EI
p

h−1
e ‖[vN ]J‖2

0;e +
∑

p̂ a vertex of
∂Ω∩∂Dp

∑
T̂⊂Dp

p̂ a vertex ofT̂

vN |2
T̂
(p̂)
)

≤ C
∑

e∈Êp

h−1
e ‖[v]J‖2

0;e.

For the last inequality, we have to use thatvN |T̂ (p̂) = v|T̂ (p̂), T̂ ⊂ Dp, can
be written as a sum of[v]J(p̂), and that the number of terms is bounded by
1/2nmax + 1. Thus, by summing over the three vertices of the elementT ,
(4.4) is established.

The second estimate in Lemma 4.2 can be shown easily. LetΠe be theL2-
orthogonal projection operator fromL2(e) ontoP0(e). UsingΠe(v|Ti) =
Πe(v|To), e ∈ El \ EB

l andΠe(v|Ti) = 0, e ∈ EB
l , we obtain

h−1
e ‖[v]J‖2

0;e = h−1
e ‖[w − v]J‖2

0;e
≤ 2h−1

e

∑
T⊂De

‖(w − v −Πe(w − v))|T ‖2
0;e

≤ 2h−1
e

∑
T⊂De

‖(w − v −Π0(w − v))|T ‖2
0;e

≤ c
∑

T⊂De

|w − v|21;T , w ∈ H1
0 (Ω),

whereΠ0 is theL2-projection onP0(T ). Thus, (4.5) holds. ut
If we use the operatorPS proposed in Subsect. 3.2, we immediately get

PSv(p) =




1
np

∑
T⊂Dp

v|T (p), p ∈ Ω ∩ Pl,

0, p ∈ ∂Ω ∩ Pl.

Thus, we obtain

(v − PSv)|2T (p) = (v|T − 1
np

∑
T ′⊂Dp

v|T ′(p))2

≤ 1
np

∑
T ′⊂Dp

(v|T − v|T ′)2(p)

≤ C
∑
e∈El

p a vertex of e

h−1
e ‖[v]J‖2

0;e
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for all p ∈ Ω ∩ Pl where the constantC depends only onnmax. For a
boundary vertex, we have the same type of upper bound.

Remark 4.1.The estimate (4.4) holds true for each projection operator satis-
fying (S1)-(S5) and̃CJ depends only on the constant in (S3)-(S5), the shape
regularity ofT0, the local variation of the eigenvalues ofa and the local ratio
of a andh2b.

4.3. Definition of the residual based error estimator

As mentioned in Sect. 3, the main difficulty in the construction of an ef-
ficient and reliable error estimator is the nonconformity of the space. In
general, the available approximationûCR, of the solutionuCR of (4.1), is not
contained inH1

0 (Ω), and we have to take the discontinuity ofûCR across
the edges into account. We assume that the weak solutionu is contained in∏

T∈T0
H2(T ), that the jump ofa∇une vanishes across the interior edges

and thata restricted toT ∈ T0 is a polynomial.
It is easy to see that the errorue := u− ûCR satisfies the following defect

problem

aCR (ue, v) = r(v), v ∈ H1
0 (Ω) + CR(Ω; Tl),

where the residualr(·) is defined by

r(v) :=
∫
Ω

fv dx+
∑
e∈El

∫
e

[a∇une]A [v]J dσ

−
∑
T∈Tl

∫
T

a∇ûCR∇v dx−
∫
Ω

bûCRv dx.

In order to study this error estimator, it is sufficient to consider the residual
in detail. Integrating by parts, we obtain

r(v) =
∑
T∈Tl

∫
T

(f − LûCR) v dx+
∑
e∈El

∫
e

[a∇(u− ûCR)ne]A [v]J dσ

−
∑
e∈El

∫
e

[a∇ûCRne]J [v]A dσ

where the differential operatorL is applied elementwise tôuCR. The dis-
cretization erroru−uCR is orthogonal onS1(Ω; Tl) = CR(Ω; Tl)∩H1

0 (Ω)
with respect to the bilinear formaCR (·, ·). Thus,

r(v) = aCR (uCR − ûCR, v) , v ∈ S1(Ω; Tl).



162 B.I. Wohlmuth

Given that|||u− ûCR|||2 = r(u− ûCR), we get

|||u− ûCR|||2 =
∑
T∈Tl

∫
T

(f − LûCR) (u− PSu) dx

−
∑
e∈El

∫
e

[a∇ûCRne]J [u− PSu]A dσ

+aCR (u− ûCR, PS ûCR − ûCR)
+aCR (uCR − ûCR, PS (u− ûCR)) .

Taking (S3)-(S5) into account, the following estimate holds

c|||u− ûCR|||2 ≤ CS|||u− PSu||| (|||f − LûCR|||Tl
+ |||[a∇ûCRne]J |||El

)
+|||u− ûCR||| (CS|||uCR − ûCR||| + |||PS ûCR − ûCR|||) ,(4.6)

where the weighted norms|||·|||Tl
and|||·|||El

are defined by

|||v|||2Tl
:=
∑
T∈Tl

h2
T

αT
‖v‖2

0;T , |||v|||2El
:=
∑
e∈El

he

αe
‖v‖2

0;e.

The triangle inequality and the continuity ofPS yield

|||u− PSu||| ≤ (1 + CS)|||u− ûCR||| + |||PS ûCR − ûCR|||.
To establish an upper bound for|||u− ûCR|||, there remains to consider
|||PS ûCR − ûCR||| in more detail. We note that local estimates are given in
Lemma 4.2. Due tonp ≤ nmax, we obtain the corresponding global esti-
mates from (4.4) and (4.5) with a constantCJ . Combining Lemma 4.2 and
(4.6), we finally get an upper bound of the true error in the energy norm

cerr|||u− ûCR||| ≤ |||f − LûCR|||Tl
+ |||[a∇ûCRne]J |||El

+


∑

e∈El

αe

he
‖ [ûCR]J ‖2

0;e




1/2

+ |||uCR − ûCR|||.(4.7)

The first three terms of the right hand side in (4.7) are independent of the
weak solutionu and can be evaluated easily. The fourth term is the iteration
error and has to be controlled in the iterative solution process.

These considerations lead to the definition of a residual based a posteriori
error estimatorη2

R :=
∑

T∈Tl
η2
R;T with

η2
R;T :=

h2
T

αT

‖Π1f − LûCR‖2
0;T +

3∑
i=1

ŵi
hei

αT

∫
ei

[a∇ûCRne]
2
J dσ

+
3∑

i=1

wi
αT

hei

∫
ei

[ûCR]2J dσ,
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whereei, 1 ≤ i ≤ 3, denote the edges of the elementT . The weightswi

andŵi are given bywi = 1
2 , ŵi = 2αToαTi

(αTo+αTi
)2 if ei ∈ El \ EB

l , Ti ∩ To = ei,

and bywi = ŵi = 1 if ei ∈ EB
l .

Theorem 4.3 There exist constants0 < cR ≤ CR andγR > 0, independent
of the refinement levell ≥ 1, such that

|||u− ûCR||| ≤ CR (ηR + |||f −Π1f |||Tl
+ |||ûCR − uCR|||) ,

|||u− ûCR||| ≥ cR (ηR − γR|||f −Π1f |||Tl
) .

(4.8)

Proof. The upper bound is an easy consequence of the triangle inequality,
(4.7), and the definition of the error estimator.

To prove the lower bound, we have to consider the three parts of the error
estimator separately. Upper bounds of‖Π1f − LûCR‖0;T and
‖[a∇ûCRne]J‖0;e follow exactly as in the conforming setting [40]. The third
term|||[ûCR]J |||0;E−1

l
is already considered in Lemma 4.2. Estimate (4.5) even

guarantees a local upper bound for|||[ûCR]J |||0;E−1
l

. ut

A careful analysis guarantees not only global estimates, but also

η2
R;T

≤ C


|||u− ûCR|||2DT

+ |||uCR − ûCR|||2DT
+
∑

T̂⊂DT

h2
T̂

αT̂

‖f −Π1f‖2
0;T̂


 .

5. Comparison of the residual based error estimators

In this section, we will interpret the Crouzeix-Raviart finite element dis-
cretization as a mortar finite element method. We will denote the residual
based error estimator obtained in the mortar context byηM and the error esti-
mator investigated for the Crouzeix-Raviart finite element discretization by
ηCR. The two estimators are compared, and the Lagrange multiplierλM and
the normal derivativea∇uCRne are compared. For simplicity, we assume,
for the rest of this section, that the exact Crouzeix-Raviart approximation
uCR is available and that the coefficientsa andb are piecewise constant in
the elements of the initial triangulation.

5.1. Crouzeix-Raviart finite elements – mortar finite elements

The nonconforming Crouzeix-Raviart finite elements can be viewed as a
mortar finite element discretization. In this case, each subdomain consists
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of one triangle and the skeleton is the union of all edges

Ω =
⋃

T∈Tl

T, S =
⋃
e∈El

e.

The mortar finite element space isX−1
h (Ω) ×Wh(S) where

X−1
h (Ω) :=

∏
T∈Tl

P1(T ), Wh(S) :=
∏
e∈El

P0(e).

Thus, the elements of the Lagrange multiplier space are constants on each
edge. The mortar finite element solution is given in terms of the following
saddle point problem: Find(uM, λM) ∈ X−1

h (Ω) ×Wh(S) such that

a (uM, v) + b (λM, v) = (f, v)0, v ∈ X−1
h (Ω),

b (µ, uM) = 0, µ ∈ Wh(S).
(5.1)

Here, the bilinear formsa (·, ·) andb (·, ·) are given by

a (v, w) =
∑
T∈Tl

∫
T

(a∇v∇w + bvw) dx, b (µ, v) = −
∑
e∈El

∫
e

µ [v]J dσ.

In comparison to Sect. 2, we have modified the variational problem in one
respect. The boundary ofΩ is now part of the skeleton and thus, the homo-
geneous Dirichlet boundary condition is satisfied only in the weak form∫

e

uM dσ = 0, e ∈ ∂Ω.

The Lagrange multiplier can be eliminated locally, and we obtain the fol-
lowing positive definite variational problem: FinduM ∈ Xh(Ω) such that

a (uM, v) = (f, v)0, v ∈ Xh(Ω)(5.2)

where

Xh(Ω) :=
{
v ∈ X−1

h (Ω) |
∫
e

[v]J dσ = 0, e ∈ El

}
.

Since[v]J is a linear function one, the matching condition simply means that
v|Ti(me) = v|To(me), e = ∂Ti ∩ ∂To andv|Te(me) = 0, e ⊂ ∂Ω ∩ ∂Te.
Thus, the continuity of a piecewise linear ansatz functionv ∈ Xh(Ω) at the
midpoint of the edges is guaranteed,

Xh(Ω) = CR(Ω; Tl),
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and the variational problem (5.2) is exactly the same as (4.1) and therefore
uM = uCR.

In the next step, we consider the first equation of the saddle point problem
(5.1) in more detail. Letψe;T ∈ X−1

h (Ω), e ⊂ ∂T , be the nodal noncon-
forming basis functionψe restricted to the elementT . It is easy to see that

λM|e =
−(ne,nT )

he
(f−LuCR, ψe;T )0;T +a∇uCRne|T , T ⊂ De.(5.3)

Recall that the scalar product(ne,nT ) is equal to one ifT = Ti and to
minus one, ifT = To. Thus, the Lagrange multiplier can be obtained easily
by a local postprocessing ofuCR. In particular, it can be expressed in terms
of uCR|Ti or uCR|To .

5.2. A simplified residual based error estimator

In this subsection, we will show that the two error estimatorsηM andηCR are
locally equivalent. Taking (5.3) into account, we will introduce a simplified
error estimator which only depends on the jump ofuCR and on(f−LuCR)|T
but not on the jump ofa∇uCRne.

We recall that the estimatorηM is defined by (see Sect. 3):

η2
M;T =

h2
T

αT
‖Π1f − LuCR‖2

0;T

+
3∑

j=1

(hej

αT
‖a∇uCR|Tnej − λM‖2

0;ej
+ wj

αT

hej

‖[uCR]J‖2
0;ej

)
,

whereej , 1 ≤ j ≤ 3, denote the edges of the elementT , andwj is given
by wj = 1

2 , if ej is an inner edge and bywj = 1, if ej is an edge on the
boundary. Since each edgee ∈ El belongs to the skeleton, we do not have
any interior edge in the sense of the definition of Sect. 3.

In contrast to Sect. 3, we will add the termh−1
ej

‖[uCR]J‖2
0;ej

to both sub-
domainsTi andTo. If we change the orientation ofne, the sign ofλM|e will
change, but we still obtain the sameuCR. Therefore, we do not distinguish
betweenTi andTo in the definition of the error estimator.

In Sect. 4, the error estimatorηCR is defined by

η2
CR;T =

h2
T

αT
‖Π1f − LuCR‖2

0;T

+
3∑

j=1

(
ŵj
hej

αT
‖[a∇uCRne]J‖2

0;ej
+ wj

αT

hej

‖[uCR]J‖2
0;ej

)
,
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where the weight̂wj is given byŵj = 2αToαTi
(αTo+αTi

)2 , if ej is an inner edge,

ej = ∂Ti ∩ ∂To and byŵj = 1, if ej is an edge on the boundary.

To obtain local equivalence betweenηM;T andηCR;T , we have to consider
‖[a∇uCRne]J‖2

0;e and‖a∇uCR|Tne −λM‖2
0;e in more detail. Equation (5.3)

yields

a∇uCR|Tne − λM|e =
(ne,nT )
he

(f − LûCR, ψe;T )0;T , T ⊂ De,(5.4)

and thushe‖a∇uCR|Tne − λM‖2
0;e ≤ 1

6h
2
T ‖Π1f − LûCR‖2

0;T . In addition,

he

2
‖[a∇uCRne]J‖2

0;e ≤ he‖a∇uCR|Tine−λM‖2
0;e+

1
6
h2

T ‖Π1f−LûCR‖2
0;To

holds for eache ∈ El \ EB
l . By definition [a∇uCRne]J = 0 for e ∈ EB

l .
Combining these formulas, we obtain the following estimate

2
3
η2

M;T ≤ η2
CR;T ≤ 3

2
η2

M;T +
iT∑
i=1

η2
M;Ti

,

whereTi, 1 ≤ i ≤ iT ≤ 3 are the neighbor elements ofT .

Using (5.4), it is easy to see that the term‖[a∇uCRne]J‖2
0;e, in the defi-

nition of the error estimator, is redundant and can be left out. The simplified
error estimator̂η2

CR :=
∑

T∈Tl
η̂2

CR;T is then defined by

η̂2
CR;T :=

h2
T

αT
‖Π1f − LuM‖2

0;T +
3∑

j=1

wj
αT

hej

‖[uCR]J‖2
0;ej

.

Theorem 5.1 There exist constants0 < ĉR ≤ ĈR andγ̂R > 0, independent
of the refinement levell ≥ 1 such that

|||u− uCR||| ≤ CR (η̂CR + |||f −Π1f |||Tl
) ,

|||u− uCR||| ≥ cR (η̂CR − γ̂R|||f −Π1f |||Tl
) .

Proof. These assertions are proved by using the definition of the error esti-
mator, Theorem 4.3, and (5.4).ut
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6. Numerical results

In this section, we will present some numerical results illustrating the adap-
tive refinement process and the efficiency of the different error estimators.
We consider the error estimator of Sect. 3 for the mortar situation as well as
the error estimator introduced in Sect. 4 for the Crouzeix-Raviart discretiza-
tion.

Starting from a coarse triangulation, the discretized problems are solved
on each refinement level by a preconditioned iteration scheme, see [41] for
the Crouzeix-Raviart case and [2,31] for the mortar method. The iteration
process on levell+1 is stopped if the estimated iteration errorεl+1 satisfies
ε2l+1 ≤ 0.01η2

l
Nl

Nl+1
whereηl is the estimated error on levell andNl and

Nl+1 stand for the number of nodes on levell and l + 1, respectively. In
the mortar situation, we use the adaptive refinement process of Bänsch [10]
which is based on a bisection strategy whereas, in the Crouzeix-Raviart
setting, we use the refinement algorithm of Bank et. al. [11].

Both error estimators are applied to the following test example:−∆u+
100u = f on(0, 1)2, where the right hand sidef and the Dirichlet boundary
conditions are chosen so that the exact solution is(2 cosh 10)−1(cosh(10x)
+cosh(10y)). This solution has a pronounced boundary layer. We start with
an initial triangulation consisting of four isosecles triangles.

Mortar finite elements Crouzeix-Raviart finite elements

Fig. 6.1. Adaptive refined triangulations (Example 1)

In the mortar case, we also use this coarse triangulation to define the
subdomains. Figure 6.1 shows the grids generated by adaption. Although
the triangulations on the four subdomains are obtained independently, we
get almost conforming triangulations at the interfacesy = x andy = 1−x.
In such a situation, there is no real benefit from mortar finite element method.
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The efficiency index is given in Fig. 6.2. It is asymptotically constant in
both cases. For this problem, the error estimator for the Crouzeix-Raviart
finite element discretization is more accurate than that of the mortar method.
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Fig. 6.2. Mortar (left) and Crouzeix-Raviart (right) finite elements (Example 1)

We next apply our error estimators to a second example with discontinu-
ous coefficients. Here, we can see the advantage of the mortar discretization.
We consider the elliptic equation−div a∇u = f , on(0, 1)2, where the right
hand sidef and the Dirichlet boundary conditions are chosen such that the
exact solution is given by(y − x)(1 − x − y)(x − 0.5)2(y − 0.5)2/a and
a is discontinuous witha = 1 for x < y < 1 − x andx > y > 1 − x and
a = 100 elsewhere.

For the mortar method, no matching of the triangulations is required
across the skeleton. Strongly nonconforming global triangulations are gen-
erated by the adaptive refinement process (see left part of Fig. 6.3). In con-
trast, a conforming triangulation has to be produced in the Crouzeix-Raviart
setting, and we observe a strong adaptive refinement on both sides of the

Mortar finite elements Crouzeix-Raviart finite elements

Fig. 6.3. Adaptive refined triangulations (Example 2)
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Table 6.1. Estimated and true errors for the mortar finite element discretization
(Example 2)

level nodes estimated error true error eff. index
0 24 0.259·10−1 0.157·10−1 1.65
1 42 0.911·10−2 0.158·10−1 0.578
2 60 0.869·10−2 0.862·10−2 1.01
3 126 0.456·10−2 0.465·10−2 0.979
4 206 0.265·10−2 0.253·10−2 1.05
5 454 0.153·10−2 0.142·10−2 1.08
6 1190 0.889·10−3 0.828·10−3 1.07
7 3470 0.511·10−3 0.476·10−3 1.07
8 9830 0.303·10−3 0.281·10−3 1.08

interfacesy = x andy = 1 − x (see right part of Fig. 6.3). On the sides
wherea = 100, this local refinement is caused by the refinement rules and
not by the error estimator. In such a situation, mortar methods are better than
standard finite element methods on conforming triangulations.

Table 6.1 gives the efficiency index as well as the error of the mortar
finite element discretization. In contrast to the first example, the efficiency
index tends to one with an increasing number of nodes.
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