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Summary. Aresidual based error estimator for the approximation of linear
elliptic boundary value problems by nonconforming finite element methods
is introduced and analyzed. In particular, we consider mortar finite ele-
ment techniques restricting ourselves to geometrically conforming domain
decomposition methods using P1 approximations in each subdomain. Ad-
ditionally, a residual based error estimator for Crouzeix-Raviart elements of
lowest order is presented and compared with the error estimator obtained in
the more general mortar situation. It is shown that the computational effort
of the error estimator can be considerably reduced if the special structure of
the Lagrange multiplier is taken into account.
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1. Introduction

We will consider the following model problem

Lu := —div (aVu) + bu=f in §2,

(1.1) u=0 on I':=091

where{? is a bounded, polygonal domainR? and f € L?(£2). Further-
more, we assume = (aij)%jzl to be a symmetric, uniformly positive
definite matrix-valued function witl;; € L>(£2),1 < 4,5 < 2, and
0 < b e L*™(42). The largest eigenvalue ofrestricted to a subsd? C {2
is denoted byyp.
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The paper is organized as follows: In Sect. 2, we consider the mortar
finite element method for the special case of coupling conforming P1 finite
element methods on nonmatching simplicial triangulations. Generally, each
subdomain can be associated with different discretization techniques and
or different triangulations. The mortar finite element method is a domain
decomposition technique which requires no pointwise continuity across the
interface between the subdomains; a characteristic feature of this method is
that the solutions on the subdomains are only coupled in a weak sense.

A residual based error estimator is studied in Sect. 3. The main technical
problem results from the discontinuity of the mortar finite element solution
across the boundaries of the subdomains. To obtain satisfactory upper and
lower bounds for the discretization error, we have to take the nonconformity
of the mortar finite element solution into account.

In Sect. 4, we consider the Crouzeix-Raviart finite elements of lowest order
associated with a simplicial regular triangulation on the whole dorfvain

We analyze a residual based error estimator and observe that it has exactly
the same structure as the error estimator studied in Sect. 3. The characteristic
feature of both error estimators is a weightetnorm of the jump of the

finite element solution across the subdomain boundaries. We show that this
part provides an appropriate measure of the nonconformity of the finite
element solution.

In Sect. 5, we interpret the Crouzeix-Raviart discretization as a mortar finite
element method. We show the local equivalence of the error estimators
introduced in Sects. 3 and 4 and analyze the relation between the Lagrange
multiplier and the normal derivative of the Crouzeix-Raviart finite element
solution. The main result of this section provides a simplified error estimator
which is locally equivalent to the original ones.

Finally, in Sect. 6 we present some numerical results illustrating the adaptive
refinement process as well as the efficiency of the error estimators. We
consider cases with boundary layers and with discontinuous coefficients. In
the first case, we obtain an almost matching triangulation. However, there
is a sharp interface between adaptive refined and unrefined regions in the
second case because of the discontinuity of the coefficients.

2. A mortar finite element discretization

A description of a mortar finite element method begins with a decomposition
of the initial domainf? into non-overlapping subdomaitig,, 1 < k£ < K,

2= ﬁk with N2, =0, k#L

=

k=1
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Without loss of generality, we assume that the subdomains are polygons.
We restrict ourselves to the geometrical conforming situation where the
intersection between the boundary of two different subdomaigs 92y,

k # 1 aswell ash(2; N df2 is either empty, a vertex, or a common edge (see
Fig. 2.1).

Fig. 2.1. Geometrically conforming (left) and nonconforming (right) situation

If two subdomaing?; and {2, have a common side, the intersection is
called an interface and is denoted By, = I';,; := 02, N 02;,. ny;, stands
for the unit normal vector fronf; to {2;.. The union of all interfaces is called
the skeletors := Uy ,_, Tix-

An arbitrary discretization scheme can be used on each subdomain for
the numerical solution of (1.1). Across the interfdgg, the discrete solu-
tions have to satisfy adequate matching conditions. A number of cases have
been analyzed such as the coupling of different finite element methods, the
coupling of spectral and finite element methods, and the combination of
boundary element methods with finite element methods; see [1,4,5,14-17,
23,27,28,32].

A lot of work has also been done recently on the construction of effi-
cient iterative solvers based on multilevel techniques [1-3,23,31,33,34]. In
contrast, there are so far only a few papers considering adaptive refinement
techniques and a posteriori error estimators [18, 36].

A regular simplicial triangulatiory;, is associated to each subdomain
2,1 <k < K. Let&,, andP;, denote the sets of edges and vertices
of the triangulatiori;, , respectively. The sets of all triangles, vertices and
edges are denoted by, Py, and&y, respectively.

In the following, we refer t&5 (2;; 7, ) as the standard conforming P1
finite element space defined locally 6 by

Sl(‘Qk;’ﬁLk) = {’U S C(Qk) ‘ U‘T c P1(T), T e 77%7 U‘agmagk = 0} .
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Then, the global discrete sanEgl(Q) is defined by

>

X, H02) = || S1(2; Thy)-

k

I
—

In general, afunction € X,jl (£2) will be discontinuous across the skeleton
S.

Typically, a priori error estimates of a finite element solution involve two
terms: the approximation error and the consistency error. If we use the global
spaceXh‘l(Q) as the finite element ansatz space, the approximation error
would be of ordetO(h), but sinceX, ! (£2) requires no continuity across
the interfaces, the consistency error would be unlimited.

To define an appropriate finite element ansatz space, we have to intro-
duce some matching conditions across the skeleton of the decomposition. In
particular, a weak continuity condition has to be imposed on each interface.
This can be done by using Lagrange multipliers on the skeleton. Before pro-
ceeding further, we have to consider the skeléfon more detail. For each
interface of the skeletoh;; = I';;, we choose one of the two associated sub-
domains, eithef?; or £2;. Here, we will select without loss of generaliy.

The finite dimensional space given by the trace of functiorts (i2;; 7, )
restricted on/’;; is then called the mortar space and the opposite side is
called non-mortar side. Now, the skeleton can be directly decomposed in

S= U e

e€lr,
&,i={ee &l Ji,j 1 <i<K, je M(i) such that e € &, N I};}
S= U e

e€én

Em = {eeé’h\ Ji,j 1 <i<K, je M(i) such that eEghjﬁFij}

where M (i) := {1 < j < K| the mortar space ofy;; inheriting its 1D
mesh front;,; ons2;}. The setM (i) can be empty. We introduce appropriate
matching conditions on the skeleton by means of the spagess) c L?(S)

of Lagrange multipliers

K
Wi(S) =11 I W(lij;Th,),
i=1jeM(i)
W(Lij; Tr,) i= {p € L*(I3j) | p=wlr,, we Si(2;Th,),
wle = const., if e contains an endpoint df;;, e € &} .

Note that the Lagrange multiplier spaceids, j € M(3) is associated with
the non-mortar side in contrast to the mortar space. The space for the mortar
finite element method is now defined as

Xp(82) = {v € X}jl(!?) | b(p,v) =0, pe Wh(S)},
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where the bilinear fornb (-, -) is given by

ZZ/ wl; do, werﬂ ). me L%(S),

=1 jeM(@) p oy

and the jump orl’;, j € M(i) by [w]; := w|g, — wlg;.
The mortar finite element solutian, € X, (£2) is deflned as the unique
solution of the following discrete variational problem

(21) a (UM,’U) = (f,?})(), v E Xh(“Q)7

wherea (-, -),

K
w) = Zai (v,w),
=1

K
a; (v, w) ::/aVv-Vw—i-bvwdx, v,wEHHl(Q

defines the discrete bilinear form, and the broken energy norm is given
by [|[v]|* := a(v,v). If we use the primal hybrid formulation, the varia-
tional problem yields the following saddle point problem: Fiag;, A\\) €

X, 1(2) x W,(S) such that

(2 2) (I(UI\/I,U)‘f‘b()\M,U) = (f,’l))o, v eXizl(‘Q)

. b (MauM) = 07 ne Wh(S)

is satisfied. Because of the second equation of the saddle point problem,
the solution of (2.1) and the first component of the solution of (2.2) are the
same. If the solutiom is smooth enough, the following a priori estimate is
well known

K
llu —unll® < C Y B |lull3.q,;
i=1

(see [16-18] and the references therein). In the following, we will use the
constant®) < ¢, C < oo as generic constants which only depend on the
initial coarse triangulation, the local ratio of the smallest and largest eigen-
values ofa and the local ratio ofh? and the largest eigenvalue@afbut not

on the refinement level or the elemdni 7.
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3. A residual based error estimator

In this section, we introduce an error estimator which is based on the dual
norm of the residual. We recall that the concept of residual based error
estimation can be found in the early work of B&ka and Rheinboldt [8, 9]
and has been further developed by others [12,13, 26, 39]. These estimators
are well established for conforming, nonconforming Crouzeix-Raviart, and
mixed finite elements. An overview of the concepts and techniques for the
conforming setting is given in [19, 40], whereas [6,20-22, 25, 29, 30, 38,41]
refer to more general variational formulations.

If the weak solution of (1.13 is contained irﬂfil H?(£2;) and the jump
of the normal derivativeVu - n vanishes on the skeleton, then it can be
easily seen, by using Green’s formula, that the error satisfies a continuous
variational problem

K
(3.1) a(u—uy,v)=r), ve HHl(_Ql)
i=1

where the residual is given byr(v) := (f,v)o — b (A, v) — a (uy, v) With
Alr, == aVu-n;, 1 <i < K, j € M(i).

3.1. A saturation assumption

A weighted norm| - ||1, on the skeleton is given by} := > ¢, hea’
[lv3... Herea, := ar,if eisanedge of” € T, anda, := 0.5(ar, +ar,)

if e is an interior edge € &, \ S, e = 911 N 9Tx. If the solution(u, A) is
smooth enough, the energy norm of the effor .|| is of orderO(h) (see

e.g. [16-18]) whereaisif ,c 1y, (s) | A — 1l|1. is at least of orde©(1?/2).

To some extent, these a priori estimates justify the following saturation
assumption

3.2 inf ||\ — < Cpllu —unmlf, Cn >0
@2 nt A=yl < Cullu =l G

with C, < Cy < oo for h — 0.

Lemma 3.1 Under the saturation assumption (3.2), there exists a constant
C), > 0independent of the refinement level such that

A = Al < Cayllle — undll-
Proof. We obtain, from the triangle inequality,

A = AullL S (A = plle + [l = Al -

f
EWRL(S)
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Inview of the saturation assumption (3.2), we need only consider the second
term of the right hand side further. By construction of the discrete space of
Lagrange multipliers),, is not necessarily continuous at the crosspoints of
the skeleton. Itis therefore in general not possible to findaX , * (£2) such
that[v]; = Ay on the skeleton or such thidy ||z, - ||[[v]7]lL-1 = b (1, v),
where|[v[|7 _, == 3" e, 5<llvlG.. By usingAy|e = const. on the edges
containing one endpoint of the interfaces, the weighting factors, the inverse
inequality for polynomials and (2.2), we obtain

[ = Al
<SC s b(a— o) | Ik
vGX,?l(Q)

< s inf a(us —uw)- | fwly I + 1A - pl)
veX; () IIEG]X}L[(]Q)
w]g=vl g

< O (fluse = wll + 1A = pllL)

where X; '(2) == {v € X;'(2)| (vlg)ln, =0, 1 < i<k je
M@} O

3.2. The projection operataPs

Let D be an open subset ¢P associated with a simplicial conforming
triangulation 7p and let S1(D;7p) be the corresponding P1 conform-
ing finite element space with homogeneous boundary conditiorsbn
dD. For each vertey € Pp, we define a domai, by D, := {T €
Tp | p avertex of7’'} and denote the number of elements containef,jn
by np < npmax < 00.

We will use a projectionPs.p : Hj.o(D) — Si(D;Tp), with the
following properties:
(S1) Ps.pv =v,v € S1(D;Tp),
(S2) Ps.pv(p) is uniquely defined by|5p,

(S3) J|v — Ps;D’UH(Q);e < CSZ—ZH\UM%E whereD, := 1<U<2 D,, andp;, 1

IN

7 < 2, are the vertices aof,

h2
(S4) ||lv — Ps;DUHg;T < CS%”’””PDT whereDr := |J D,, andp;, 1
1<i<3

IN

1 < 3, are the vertices df’,
(S9) [I1Ps;poll7 < Csllvll,.

where the constartfs depends only on the shape regularity7ef and the
local ratio of the smallest and largest eigenvalues. of

We then can define the global operafey by Ps := Zfil Ps.q, and
get a constant in (S3)-(S5) which is independenT’'cf 7,. Note that the
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well-known interpolation operator of €ment [24] satisfies (S2)-(S5) but
not (S1).

Example.There are several possibilities to define the oper&gp. The
following projection operatoPs.p is a simple modification of the operator
proposedin [37] (see also [35Fs.pv € S1(D; Tp) is uniquely determined
by its values at the verticesof the triangulatiori7p. They are given by

w2 Jwyrds,  peD,
TcD,T
Ps.pu(p) := : EC;D [ vipedo, pedD\ O,
pa vertexpof e N
0, p € ID NI

where,.r and,.. are the dual basis functions of the local nodal basis
function¢,.7 in the sense that

/@%;T Ypiyr dx = 0y, /¢pJ;T Vpize do = ij.
T e

In [37], Ps;p is defined byPs.pv(p) = [, vi)p,. do wheree is an arbitrary
edge containing the vertgx We note thatfe vy do can be replaced by

fT v, dz WhereT' is an arbitrary element containing the vergexX no
boundary condition has to be preserved. Here, we take the average of all
possible elements.

3.3. Local a posteriori error estimator

Our introduction of the a posteriori error estimator is based on duality tech-
niques applied to the residual. Using the same arguments as in the conform-
ing setting [40], we evaluate the residual as a continuous linear functional.
We obtain from (3.1) fow € [TF_, H'(1)

a(u—uy,v) = (f — Luy, v)g — b (AN v) — Z aVuynvdo,
T€Th oT
(3.3)

wherelL is applied elementwise t@,,. Using the definition oPs and (2.2),
we get

K
34)  a(u—uy, Psv)=b(A—XPsv), ve[[H ()
=1
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Using (3.3) and (3.4), the variational problem can be written as
a(u— uy,v) = (f — Luy, v — Psv)g — b(\v)

— Z aVuyn(v — Psv) do + b (A, Psv) .
T€Tn o1

Forv € HE(2) + X1, (£2), we end up with

a(u—uy,v) < Y |If = Luxllorllv — Psvllor

TET,

+ > HaVuunel; lloell [v — Psvl,
eesh\S

+ 2 A = aVuung|zfoell(v = Psv)lr. [|o;e
eeERNS

4+ inf  |b(p— A,v)]|.
ueWh(S)l (1 )|

By means of the saturation assumption (3.2), (S3)-(S4), and choosing
u — Uy, We obtain

flw — UMH|2 < CN'M If — LUMHT + > ZZ | [avuMne]J ||(2];e
eesh S

(35) + Z aeHavuMmJ )‘MHO;e

e€fy,

+ 3 aellaVuny — Mllg, + [ Tusd Hi-1>

e€Em
2
where the weighted north- ||7; is defined aglv[|7. = > 7. Z—;HUHE)_T.

These preliminary computations motivate the definition of the local a
posteriori residual based error estimajar:= > ., n., Where

h2 2
U%{;T = ﬁ”nlf - LUMHCZ);T + % > ,%” [aVuyme] Hg;e

anyten)”  Gis
eCOTNS
+ E: %f”[uMJJHgﬁa Twe 7%.
eCOTNEYL,

Heree = 011 N 01y for e € &, \ S. The first two terms of the error
estimator are exactly the same as in the conforming setting while the third
and fourth terms are associated with the skeleton. In particular, the third term
is connected with the Neumann boundary values at the interior subdomains
boundaries. The fourth part reflects the nonconformity of the finite element
solution and only comes into play on the non-mortar side.
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For the rest of this section, we assume that there exists a codsant
independent of the refinement level, such that

h3
(3.6) ﬂa,% <Cs, e €&, em€ &y ander, Ney # 0.

aeM heL
Within the adaptive refinement process, we should make sureCthas
reasonable bounded.

Theorem 3.2 Under the weak saturation assumption (3.2) and (3.6) there
exist constants;cs, Cres > 0 and cpigh, Chigh > 0 independent of the
refinement level, such that

Cresn%{ - Chigh”f - Hlf“'%'h < |HU - UM|H2
(3.7) < Cres7712{ + Chithf - Hlf“’QTh

Proof. The upper bound is an immediate consequence of (3.5) and of the
local definition of the a posteriori error estimator.

To establish the lower bound féji. — ||, we have to consider the four
different parts of the error estimator separately. Using the same arguments
as in the conforming setting [40], we obtain upper bounds for the first two
parts of the error estimator. This can be achieved by using cubic bubble
functions®r for T' € T, and quadratic bubble functiods fore € &, \ S
(see [40]). The proof that this works is well known and is therefore omitted.
There remains to establish upper bounds for the third and fourth part of the
error estimator. On the non-mortar side& u\m;;|7, — Au), restricted on
e € &1, is alinear function (see the left part of Fig. 3.1).

PN
— /\ et Iy \ N
e€ &L NIy ec NIy
GV’U«M|Qi n;; — Am QVUM‘QJ- n;; — Am

Fig. 3.1. Vuun,; — Ay restricted ons;

Using quadratic bubble function&,, e € &, N I; living in the non-
mortar subdomaing&;, we obtain fore C 0T

C||avu1\/1nij|T - )\M||(2);e < / (avuMnij|T - )\M)2 b, do

€

—a (UM —u, (aVuyngj|r — M)t @e>
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+(f — Luy,, (/\M - CLVUMTLZ‘]"T)T @6)0§T
—b (A = A, (@Vuymnij|r — M) De)
1/2
Qe
gc((h) Hm—umu+w¥%f—memw+M—AmmJ

e

x[l[aVunnis|r — Aullose-

Here,(aVuyni;|r — AM)T is alinear function off’ with traceaVuy n; | 7—
Au ONe. Summing over akk € &, and using Lemma 3.1, the following upper
bound holds:

h
> —llaVunmylr, - Millde < O (llu = unll® + If = I fI17) -

e€ly, €

In contrast to the non-mortar sidéa,NV uyni;|7, — Au)le, € € Em IS gen-
erally not a linear function om (see the right part of Fig. 3.1). Thus, the
upper bound for

h
Z ;e||avuh4mj‘Te - )‘MH(%;e

ecén €

cannot be established as easily as the previous onellLet L?(¢) —
Py(e), be the weighted.?-projection given by

/Hevgbeda: /vd)e do, v e L*(e).
e e
Then, it can be easily seen that
[vl3e < CUIHev|3e + B2V]E), v e H(e)

holds. Using the same techniques as before, we get

|aVuymij|r — Hedlloe

0\ /2 "
sc((;) Hw—umw+hT\f—me¢+wA—me>

fore € & N OT N OT;. In addition, we obtain

heP\Mh;e < HCLVUM'nij|TE - )‘M|

O;ey € € gL

and thus

h=
> —llaVusmijlr, — Millde < Om (llu = unll® + [1f = 1 fII7,) -
e

ecénm
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To control the last term of the error estimator, we consider ithe
orthogonal projection operatd?; : L%(I5;) — W (I;;; Tr,) defined by

[ Pyondo = [ondo, pew(rT)

Then, there exits a constafit- independent of andj, 1 < i < K, j €
M(i), such that

1
38 Y oo = Pyolge < Crlvlijor,, veHY(Iy).
eEgLﬂFZ‘j €

(3.8) can be proved by using a locally defined quasi-interpolant with this
property and by taking the stability property &f;, with respect to the
weightedZ?-norm|| - || -1, into account. By means of (3.8) afit} (u.|0,)

= Pij(ul\/I’Qj)7 we get

« «
Z i“ [un] 5 ||%;e = Z hieH [um — u — Pyj(unm — u)]; H(Q);e
e€lr, e
K

2 2
<2Cr Z Z (O‘Qi‘“MW —uliyyr, + o luale, — “|1/2;Fz-j)

< Crllu — .

O

Remark 3.1The constanty; depends oi’s (see definition (3.6)), which
should be kept reasonable small, as well as on the variation of the eigenval-
ues ofa across the skeleton. The constaht depends on the variation of

the eigenvalues of on the subdomains. Therefore, the decomposition into
subdomains should preferable be done taking the matrix-valued function
into account. If we examine the constants that depend on the eigenvalues
of a in more detail, it turns out that they are better in the case when the
non-mortar side is associated with the smaller coefficieiihis can be also
seen by a careful a priori analysis and is supported by our numerical results.
In the numerical results, it can be very often observed that the local ratio
he, /he,, tends asymptotically ta., /ae,,. Starting with a quasi-uniform
global discretization and taking the non-mortar side where the coefficient is
smaller yield a constarits of order one.

Remark 3.2In general, the ternif — IT, f||3. is of higher order and can
be neglected. This also holds true if we replétef by 11, f.
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4. Crouzeix—Raviart discretization

We now consider a nonconforming discretization with Crouzeix-Raviart
finite elements of lowest order. This method is closely related to mixed finite
element discretizations [7]. A residual based a posteriori error estimator for
Crouzeix-Raviart finite elements has been introduced and analyzed in our
earlier work [41]. There a weak saturation assumption was used to prove
upper and lower bounds for the true error in the energy norm. Here, we
will prove the efficiency and reliability of the error estimator without any
saturation assumption. A similar result can be found in [22,25]. There, the
introduction of a residual based error estimator is based on a Helmholtz
type decomposition of the gradient of the error. The results in [22,25] are
restricted to the special case of a vanishing zero order teridere, we
consider the more general cdse 0.

4.1. Variational problem

We consider a simplicial triangulatidf of {2 obtained from an initial coarse
triangulation7, by the adaptive refinement process of Bank et al. [11]. The
sets of vertices and edges ffare denoted by, and&;, respectively. We
assume that each edge & is either contained in the interior éf or that
e C 012. Let SZB C & stand for the set of all edges on the boundary2of
and letm,. denote the midpoint for every edgec &;: There existl; andT,
with 9T; N 0T, = e, if e € &\ P and aT; with e C 9T; N 012, if e € EP.
The subdomaitD., is given byD, := T; UT, andD, :=T; if e € & \ EP
ande € EZB, respectively. The unit outer normal @) is denoted byn,.
The orientation of the vecton, is arbitrary but fixed. We recall that the
largest eigenvalue of restricted oril” is denoted byyr, anda. is defined
by a. := 3(ar, + ar,) if e € &\ EP and bya, := ar, if e € EP. Finally,
h. andhp denote the length of the edgeand the diameter of the element
T, respectively.

The Crouzeix-Raviart space of lowest order associated with the triangu-
lation7;, [ > 0, is defined by

CR(2:T) = {v e L2(0) |v|r € PUT), T €T,
v(m6)|Ti =0, ec€ ng
olr,(me) = vln,(me), e € &\ &P},

We can then consider the discrete variational problem: kinde C R({2;
7;) such that

4.1) acg (Ucr,v) = (f,v)o, veCR(2;T)
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where the bilinear formcy, (-, -) is given byacy (v, w) := > pcr [raVv

x Vwdz + [, bvw dz. The discrete energy norm is denoted|fyf|? :=

acr (v,v). The variational problem (4.1) is solved iteratively, and we let
ticr, Stand for the available approximate solution so obtained.

4.2. Nonconformity of Crouzeix-Raviart finite elements

As we have seen in Sect. 3, we have to take the jump of the nonconforming
finite element solution into account in the definition of a residual based error
estimator. In a first step, we decompose the nonconforming space locally
into a conforming space and a nonconforming surplus space.

For eactp € P;, we consider the subdomain, which contains all ele-
ments having the vertexin common,D,, := | J{T € 7;| p a vertex of'},
and we denote by, < nmax < oo the number of elements contained in
D, (see Fig. 4.1).

D P [

\ i ez C

Case1: my=0 Case2:mp=2

Celh e

-

Fig. 4.1. Definition of D, andép (edges marked by dashed lines)

We now focus on the splitting of the nonconforming spade(D,; 7;)
restricted taD,, given by

CR(Dy;Ti) :={v e LQ(DP)\ v=w|p,, we€ CR(§2; T)}.

Let S(D,;T;) be the space of conforming P1 finite elements/gnwith
homogeneous boundary conditionsdi,, N df2. To obtain a direct decom-
position of CR(D,; 7;) into S(D,; 7;) and a nonconforming surplus ansatz
spaceN (D,; 7;), we have to distinguish between several casesé?ﬁdﬂe
the set of all edges € & contained in the interior ab,, and let£] be the set

of edges on the bounda8yD,,. Two different cases have to be considered.
We first focus on the case th@D, does not contain any boundary vertex
of 2 (see case 1 of Fig. 4.1). If the numbey of elements ofD,, is odd, let

gp::{eeé’;\ e#é}
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where¢ is a fixed but arbitrary element &f. If n,, is even, let
&= {eEEII)| e¢6T}U{e€€5’| e CoT}

whereT is a fixed but arbitrary element @, (see left part of Fig. 4.1).

In the second casé,D,, contains at least one vertex on the boundary
of (2 (see case 2 of Fig. 4.1). For each connected’seb < i < m,, of
boundary edges dP, which are in the interior of2, we fix onee; such that
e; C C; N 811,3 contains an endpoint @;. Note thatm,, = 0 if and only if

D, = 2. Now, &, is given by

& ={e€&}U U{ei},
i=1
if p € 012, and by
gp ={ee€ SII)\ e#é U U{ei}7
i=1

if p € 2, whereé; € 8;, andé; ande; are edges of one triangﬁ Cc D,
if m, > 1 (see right part of Fig. 4.1), and is arbitrary ifm,, = 0.
The definition of the nonconforming surpld§(D,,; 7;) is now given by

N(DyT) = {v € L(Dy)] v=Y_ welelp,. we € R},
ecép

whered, denotes the standard nonconforming nodal basis function associ-
ated with the edge.

Lemma 4.1 For eachp € P, the nonconforming spac€R(D,; 7;) can
be decomposed as a direct sum

CR(Dp;Ti) = S(Dp; Ti) @ N(Dp; Ti).

Proof. We formally setm,, = 0 in the case tha? D,, does not contain any
boundary vertex of2. Thendim CR(Dy; Ty) = #&; +#EL—#(EPNER),
dim S(Dp; Tr) = #E5+1=0p00—#(EPNEP)—myanddim N (Dy; Tr) =
#511)* 1+5p;ag+mp, Whereép;@g =0ifp e 2, andép;ag =1lifp € 012
Thus, we get

(4.2) dim CR(Dyp; T;) = dim S(Dp; T;) + dim N (Dp; T;).

In a next step, we show that

(4.3) S(Dyp; Tr) N N(Dyp; Ti) = {0}
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Letv € S(Dp; 7)) N N(D,;T;). Then,v is continuous across the interior
edges ofD,, and zero at the vertices 6D, N 912. In the first case where
0D,, does not contain any boundary vertex(®f v can be written ag =

Z?ﬁfl w;®;| p,; the notation is explained in Fig. 4.2.

np=>5 np==6
Wy ) Wy
G W, T W,

(,\)3 w 3

Fig. 4.2. Enumeration of the edges € &, (case 1)

We obtain the following conditions
w1 =W FWit1 =wp,-1, 1<i<n,—2
if n,, is odd and
Wl = Wi T Wit1 = Wpyp—2 = —Wn,—1, 1<7<ny,—3

if n,, is even. It follows thaiv; = 0,1 < i < n, — 1, and thusy = 0.

In the second case whedk,, contains at least one boundary vertex of
12, the proof of (4.3) is somewhat more technical but as easy as in the first
case. Basically, we have to consider only the cage= 0; the proof for
m, > 1 is obtained by induction. The details are omitted. Equation (4.2)
together with (4.3) gives the direct decompositiorCaR(D,; 7;). O

We now use the same type of projection operdor:= Ps.; as in
Subsect. 3.2 which should satisfy (S1)-(S5)doe CR(£2;T;) + HL(£2).
Following the same lines as in [37], the estimates (S1)-(S5) can be easily
established for the concrete choice B§ given in Subsect. 3.2 for €
CR(;T)) + HA ().

Let

3
Er = U Epis Epi = Ep; U U Ep
i=1

PEINNP;
p avertex ufe€£pi

with &, := {e € &, p avertexofe}, p € P, andp;, 1 < i < 3 are the
vertices ofT'. In Fig. 4.3 the edges &, c‘fp and&r are marked by dashed
lines.
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Fig. 4.3. The set of edges, (left), ép (middle) andEr (right)

The following lemma provides a measure of the nonconformity of a
Crouzeix-Raviart finite element function. In particular, the discontinuity of
v € CR(2;T;) across the edges of the triangulation is boundelby- v||
wherew € Hj(£2) is arbitrary. The definition of the jump depends on the
orientation ofn,

1
W]y =vln —vln, [v]a:= §(U\Ti +o|r,), e€&\EP

1
[v]; :==vlr, [v]a:= §U|Ti, [aVune]; =0,

[aVune] , := aVune|r,, e€&P.

Lemma 4.2 There exists a constariis< C, independent of the refinement
levell, such that

~ Qle
(4.4) ||Psv—llF < C7 D SNl e, T €T veCRUZT),

ecEr €
and
e ~
Il | be < Chllw — oI,
(4.5) ee&,ve CR(2T), we H&(Q)

Proof. We start with the proof of (4.4). On each triangle, an upper bound
for the energy norm of the linear functidfsv — v is given by

3
clPsv —vllf < ar ) (Psv—0)7(pi).
i=1

Lemma 4.1 shows that each € CR(S2;7,;), restricted toD,, can be
uniquely decomposed into

U‘DP = vs + Uy

wherevs € S(Dp;T;) andoy € N(Dp;T;). We extendiy to vy €
CR(£2;T;) on £2 by settinguy|p, = 9y andvy(m.) = 0 fore € & \
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(€ U&). Thenwy = 3 ¢ webe and[oy]; = [v]; for e € &, The
continuity of Pg, (S1)-(S2), and Psv — v)|p € P,(T) yield

(Psv = v)[7(p) = (Psun —vn)[7(p) < Clonlf < C 30 w2

ecép
<Oo( T htllilte+ X % o)
<5 T
<C X b3
ecép

For the last inequality, we have to use that;(p) = v|;(p), T' C Dy, can
be written as a sum db] ;(p), and that the number of terms is bounded by
1/2nmax + 1. Thus, by summing over the three vertices of the elerfient
(4.4) is established.

The second estimate in Lemma 4.2 can be shown easilyILie¢ thel?-
orthogonal projection operator frof¥(e) onto Py(e). Using IT.(v|r,) =
H.(v|r,) e € &\ EE andIl.(v|1,) = 0, e € £, we obtain

he_IH[U]JH%;e h_l Hw_v]JHg;e

= e
<2h;t 3 (w—v— He(w =) 7|
1TCDe 9
<2h; 3 (w—v—1I(w—v))|rl,.
TCDe
<c jw =iy, we Hy(R2),
TCDe.

wherell, is the L2-projection onPy(T'). Thus, (4.5) holds. O

If we use the operataPs proposed in Subsect. 3.2, we immediately get

w2 vr(p), peNP,
Psv(p) = TCDp
0, p EINNP.

Thus, we obtain

(0= Pso)fip) = (vl — — 3 vln()?
pT'Cﬁp
<= Y Gl - o))
pT'cﬁp

<¢ Y hMll

e€&;
p a vertexof e
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for all p € 2 NP, where the constanf’ depends only om,,.. For a
boundary vertex, we have the same type of upper bound.

Remark 4.1The estimate (4.4) holds true for each projection operator satis-
fying (S1)-(S5) and”, depends only on the constant in (S3)-(S5), the shape
regularity of7y, the local variation of the eigenvaluesaménd the local ratio

of a andh?b.

4.3. Definition of the residual based error estimator

As mentioned in Sect. 3, the main difficulty in the construction of an ef-
ficient and reliable error estimator is the nonconformity of the space. In
general, the available approximatitg, of the solutionuqy of (4.1), is not
contained inH{ (£2), and we have to take the discontinuity if, across
the edges into account. We assume that the weak soluii®nontained in
[rer H?(T), that the jump ofzVun, vanishes across the interior edges
and thats restricted tdl" € 7y is a polynomial.

Itis easy to see that the erray := u — i Satisfies the following defect
problem

acg (ue,v) =7r(v), vE H&(Q) + CR(2;T)),

where the residual(-) is defined by

fvdx + [aVune] 4 [v]; do
o= [t 2

e€&) e

— Z /aVuCRVv da:—/buCRv dr.

TeT 2

In order to study this error estimator, it is sufficient to consider the residual
in detail. Integrating by parts, we obtain

Z/ f — Licg) vdx—l—Z/aVu—u(;R ne) 4 [v]; do

Teﬁ T eEEl e
— Z/ [aVicrne] 5 [v] 4 do
ec&; e

where the differential operatdr is applied elementwise td.. The dis-
cretization errorn — ucy is orthogonal orb (£2; 7)) = CR(2; T) NHL ()
with respect to the bilinear formacx, (-, -). Thus,

T(U) == CLCR (uCR - 'LALCR, U) B v 6 Sl(Q,’H)
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Given that]|u — @cg||?> = r(u — dcr), we get

llu —dacall* = > | (f = Liicn) (v — Psu) dz
TeT T

— Z [aVicrne] ; [u — Psul 4 do

e€&
+acr (U — Gcr, Pslicy — Ucr)
+acr (uCR — ticr, Ps (U - aCR)) .
Taking (S3)-(S5) into account, the following estimate holds
cflu = acrll* < Csllu = Psull (Ilf = Lacxll7 + lllaVacrne le)
(4.6) Hlu — der || (Csllucr — torl + || Pstor — tderll) ,
where the weighted nornmjs||7; and||-||¢, are defined by

h2 h
lloli% = > “Elolgr:  Mollg = >_ —=llvl.

Ter; T ecg €
The triangle inequality and the continuity 6% yield

ll = Psull < (1 + Cs)llu = tdex| + || Pstcr — der]-

To establish an upper bound fd. — acr||, there remains to consider
[l Psticr — tcrl| in more detail. We note that local estimates are given in
Lemma 4.2. Due ta, < n,.x, We obtain the corresponding global esti-
mates from (4.4) and (4.5) with a const@nt. Combining Lemma 4.2 and
(4.6), we finally get an upper bound of the true error in the energy norm

Corrlt = tor|l < If = Liorll7; + [l[aVicrne] /e,
1/2

Qe o N
(4.7) +(> 7|l der], [ + llucr — derll-

e€es; e

The first three terms of the right hand side in (4.7) are independent of the
weak solution: and can be evaluated easily. The fourth term is the iteration
error and has to be controlled in the iterative solution process.

These considerations lead to the definition of a residual based a posteriori
error estimaton := > ;. N7 With

h2 ) >k, S
nﬁ;T = a—i”ﬂlf — LuCRH%;T + Z;WiCJ; / [aVicrne]; do
1= e

3
ar .
+ Z wzhi / [U/CR]3 dU,
i=1 €

€i
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wheree;, 1 < i < 3, denote the edges of the elem@htThe weightsw;
andd; are given byw; = 1, @; = ( 20T 0Ty it o0 € & \EE,TINT, = e,

04T0+04Ti)

andbywi:uﬁizlifeieng.

Theorem 4.3 There exist constanfs< cr < Cg andyg > 0, independent
of the refinement levél> 1, such that

flu = dcr|| < Cr (r + I.f — 1 fll7 + lldcr — ucrll) ,

(4.8) .
llv — terll = er (nr = el f — I fll7)-

Proof. The upper bound is an easy consequence of the triangle inequality,
(4.7), and the definition of the error estimator.

To prove the lower bound, we have to consider the three parts of the error
estimator separately. Upper bounds dfll;f — Lucgl|lo,r and
|[[aVicrme] ;]|0;e follow exactly as in the conforming setting [40]. The third
term||| [QTLCR]J’HO;gl—l is already considered in Lemma 4.2. Estimate (4.5) even

guarantees a local upper bound mﬁCR]JmO_gl,l. 0

A careful analysis guarantees not only global estimates, but also

2
NR;T

h2
< C | flu = @cnllp, + llucn — derllip, + Z f\\f - Hlng;T
TcDr T

5. Comparison of the residual based error estimators

In this section, we will interpret the Crouzeix-Raviart finite element dis-
cretization as a mortar finite element method. We will denote the residual
based error estimator obtained in the mortar context pgnd the error esti-
mator investigated for the Crouzeix-Raviart finite element discretization by
ncr. The two estimators are compared, and the Lagrange multipliend

the normal derivative Vucg n. are compared. For simplicity, we assume,
for the rest of this section, that the exact Crouzeix-Raviart approximation
ucy IS available and that the coefficientandb are piecewise constant in
the elements of the initial triangulation.

5.1. Crouzeix-Raviart finite elements — mortar finite elements

The nonconforming Crouzeix-Raviart finite elements can be viewed as a
mortar finite element discretization. In this case, each subdomain consists
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of one triangle and the skeleton is the union of all edges

ﬁzUT, S:Ue.

TET, ecs;

The mortar finite element spaceXs, ' (£2) x W;,(S) where
XN =[] @, Wil(S):=[] Pole).
TET, ec&;

Thus, the elements of the Lagrange multiplier space are constants on each
edge. The mortar finite element solution is given in terms of the following
saddle point problem: Finflig, Av) € X, ' (£2) x W},(S) such that

(5.1) a (U, v) + b (A, v) = (f, v)o, UEXh_l(_Q),

. b (,LL,UM) = 07 ®e Wh(S)

Here, the bilinear forma (-, -) andb (-, -) are given by
a(v,w) = Z /(aVva +bvw) dz, b(p,v) =— Z /u [v]; do.
TE'TZT e€c&; e

In comparison to Sect. 2, we have modified the variational problem in one
respect. The boundary @ is now part of the skeleton and thus, the homo-
geneous Dirichlet boundary condition is satisfied only in the weak form

/uMdU:O, e € 012

e

The Lagrange multiplier can be eliminated locally, and we obtain the fol-
lowing positive definite variational problem: Fingd, € X},({2) such that

(5.2) a (i, v) = (fv)o, v € Xp(2)

where

() = {v e X, ()] /[U]Jda 0, ccs).

Sincelv] s is alinear function om, the matching condition simply means that
vlr, (me) = vl1, (Me), e = OT; N T, andv|r. (me) = 0, e C 92 N IT.
Thus, the continuity of a piecewise linear ansatz functian X}, ({2) at the
midpoint of the edges is guaranteed,

Xn($2) = CR(2;Th),
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and the variational problem (5.2) is exactly the same as (4.1) and therefore
Uy = Ucr-

Inthe next step, we consider the first equation of the saddle point problem
(5.1) in more detail. Lety.,r € X;l((z), e C JT, be the nodal noncon-
forming basis function), restricted to the elemefit. It is easy to see that

_(n67 nT)
he

Recall that the scalar produth., nr) is equal to one ifl’ = T; and to
minus one, ifl" = T,. Thus, the Lagrange multiplier can be obtained easily
by a local postprocessing af.. In particular, it can be expressed in terms
of ucg |1, OF Ucr|T, -

(53) )\M’e = (f_LuCR7 ¢6;T>O;T+GVUCRne’T7 T C be-

5.2. A simplified residual based error estimator

In this subsection, we will show that the two error estimaigrandrcr are
locally equivalent. Taking (5.3) into account, we will introduce a simplified
error estimator which only depends on the jump@f and on( f — Lucg) |1
but not on the jump ofiVucg ..

We recall that the estimatag, is defined by (see Sect. 3):

h2
UI%I;T = l||H1f - LUCRH%;T
ar
2 /h ar
y
+ 3 (Z2 laVucnlrne, = Auld, +w; 7 lucals I3, )
= ar €;

wheree;, 1 < j < 3, denote the edges of the elemé@htandw; is given
by w; = 3, if e; is an inner edge and by; = 1, if ¢; is an edge on the
boundary. Since each edge= & belongs to the skeleton, we do not have
any interior edge in the sense of the definition of Sect. 3.

In contrast to Sect. 3, we will add the tef'[|[ucx] s[5, to both sub-
domainsT; andT,. If we change the orientation ef., the sign of\|. will
change, but we still obtain the samegy. Therefore, we do not distinguish
betweenrl; andT, in the definition of the error estimator.

In Sect. 4, the error estimatgey is defined by

2
77(23R;T = l||H1f - LUCRH(Q);T
ar

3
~ he- aT
+ 3 (@5 =20 Vucanelslie, + w7 Nucalsll, )
j=1 ar €5
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where the weighto; is given by, = 20To0T; g e; is an inner edge,

ar,+ar;)

ej = 0T; N 0T, and byw; = 1, if e; is an edge on the boundary.

To obtain local equivalence betweg. andncr.7, we have to consider
[[aVucrne] 1113, and||aVucr|rne — Aul|3,. in more detail. Equation (5.3)
yields

(nea nT)

(54) aquR|T'nfe - )\M|e — h

(f - LaCRa we;T)O;T7 T C 567

he
|

1 N
(aVucnnel | < hellaVucn|r, me—Mllfe+ BT~ Litcrl I,

holds for eacke € & \ EZB. By definition [aVucgne]; = 0 for e € EZB.
Combining these formulas, we obtain the following estimate

2 2 2 3 2 G 2
gﬁM;T < NcRr;T < inM;T + Z T
i=1

whereT;, 1 < i < ip < 3 are the neighbor elements bf
Using (5.4), itis easy to see that the te||r{nVuCRne}J||3;e, in the defi-

nition of the error estimator, is redundant and can be left out. The simplified
error estimatonz , := > ¢ ii¢:r.r IS then defined by

. h? > ar
UQCR;T = ﬁ”ﬂlf - LUMH%;T + ijh*H[UCR]J’ %;ej'

j=1 €j

Theorem 5.1 There exist constants< ¢r < Cr andqygr > 0, independent
of the refinement levél> 1 such that

llv = ucell < Cr (icr + If = I flll7)
lw = ucrll > cr (her — AR — 1 fll7) -

Proof. These assertions are proved by using the definition of the error esti-
mator, Theorem 4.3, and (5.4)0
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6. Numerical results

In this section, we will present some numerical results illustrating the adap-
tive refinement process and the efficiency of the different error estimators.
We consider the error estimator of Sect. 3 for the mortar situation as well as
the error estimator introduced in Sect. 4 for the Crouzeix-Raviart discretiza-
tion.

Starting from a coarse triangulation, the discretized problems are solved
on each refinement level by a preconditioned iteration scheme, see [41] for
the Crouzeix-Raviart case and [2,31] for the mortar method. The iteration
process on levél+ 1 is stopped if the estimated iteration erepr; satisfies
ey < 0.017} N]lvil wherer, is the estimated error on levelnd N; and
N1 stand for the number of nodes on levednd! + 1, respectively. In
the mortar situation, we use the adaptive refinement procesarsfdd [10]
which is based on a bisection strategy whereas, in the Crouzeix-Raviart
setting, we use the refinement algorithm of Bank et. al. [11].

Both error estimators are applied to the following test exampléu, +
100u = f on(0,1)?, where the right hand sidéand the Dirichlet boundary
conditions are chosen so that the exact soluti@@ i®sh 10) ! (cosh(10z)
+cosh(10y)). This solution has a pronounced boundary layer. We start with
an initial triangulation consisting of four isosecles triangles.

25 |
Mortar finite elements Crouzeix-Raviart finite elements

Fig. 6.1. Adaptive refined triangulations (Example 1)

In the mortar case, we also use this coarse triangulation to define the
subdomains. Figure 6.1 shows the grids generated by adaption. Although
the triangulations on the four subdomains are obtained independently, we
get almost conforming triangulations at the interfages x andy = 1 — .

In such a situation, there is no real benefit from mortar finite element method.
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The efficiency index is given in Fig. 6.2. It is asymptotically constant in
both cases. For this problem, the error estimator for the Crouzeix-Raviart
finite element discretization is more accurate than that of the mortar method.

18

5 Crouzeix-Raviart -—
Mortar —— 1.7 + 4

16

15

14

13

Efficiency index
w
Efficiency index

12

11

10000 10 100 1000 10000

10 0 100¢
Number of nodes Number of nodes

Fig. 6.2. Mortar (left) and Crouzeix-Raviart (right) finite elements (Example 1)

We next apply our error estimators to a second example with discontinu-
ous coefficients. Here, we can see the advantage of the mortar discretization.
We consider the elliptic equationdivaVu = f, on(0, 1), where the right
hand sidef and the Dirichlet boundary conditions are chosen such that the
exact solution is given byy — x)(1 — z — y)(z — 0.5)%(y — 0.5)?/a and
a is discontinuous wittu = 1 forx <y <1 —zandz >y > 1 — x and
a = 100 elsewhere.

For the mortar method, no matching of the triangulations is required
across the skeleton. Strongly nonconforming global triangulations are gen-
erated by the adaptive refinement process (see left part of Fig. 6.3). In con-
trast, a conforming triangulation has to be produced in the Crouzeix-Raviart
setting, and we observe a strong adaptive refinement on both sides of the

Mortar finite elements Crouzeix-Raviart finite elements

Fig. 6.3. Adaptive refined triangulations (Example 2)
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Table 6.1. Estimated and true errors for the mortar finite element discretization
(Example 2)

level nodes estimated error true error eff. index
0 24  0.25910°7 0.15710" 1 1.65
1 42 0.911102 0.15810~' 0.578
2 60  0.86910°? 0.8621072 1.01
3 126 0.4561072 0.46510~2 0.979
4 206  0.2651072 0.2531072 1.05
5 454  0.1531072 0.1421072 1.08
6 1190 0.8891073 0.82810~% 1.07
7 3470 0.51110°3 0.476107% 1.07
8 9830 0.303073 0.281107% 1.08

interfacesy = x andy = 1 — x (see right part of Fig. 6.3). On the sides
wherea = 100, this local refinement is caused by the refinement rules and
not by the error estimator. In such a situation, mortar methods are better than
standard finite element methods on conforming triangulations.

Table 6.1 gives the efficiency index as well as the error of the mortar
finite element discretization. In contrast to the first example, the efficiency
index tends to one with an increasing number of nodes.
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