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Summary. A nonstationary multiresolution ofL2(Rs) is generated by a
sequence of scaling functionsφk ∈ L2(Rs), k ∈ Z. We consider(φk)
that is the solution of the nonstationary refinement equationsφk = |M |∑

j hk+1(j)φk+1(M · −j), k ∈ Z, wherehk is finitely supported for
eachk andM is a dilation matrix. We study various forms of convergence
in L2(Rs) of the corresponding nonstationary cascade algorithmφk,n =
|M |∑j hk+1(j)φk+1,n−1(M · −j), ask or n tends to∞. It is assumed
that there is a stationary refinement equation at∞ with filter sequenceh and
that

∑
k |hk(j) − h(j)| < ∞. The results show that the convergence of the

nonstationary cascade algorithm is determined by the spectral properties of
the transition operator associated withh.

Mathematics Subject Classification (1991):41A15, 41A30, 42C05, 42C15

1. Introduction

In the applications of stationary wavelet decomposition and reconstruction,
the filter sequences are independent of the resolution levels. In some cases,
especially in multiwavelet decomposition and reconstruction, preprocessing
is necessary. Preprocessing can be viewed as a step in the decomposition us-
ing a different filter sequence. Different filter sequences at different multires-
olution levels give rise to different scaling functions and different wavelets
at different multiresolution levels. This leads to nonstationary multireso-
lution. Stationary multiresolution does not exist in Hilbert spaces, such as
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Sobolev spaces and periodicL2-spaces, where unitary dilation operators do
not exist. Therefore, in the multiresolution decomposition of such a space,
it is natural to consider nonstationary multiresolution.

In this paper we study the solution of nonstationary refinement equa-
tions associated with nonstationary multiresolution ofL2(Rs), wheres is a
positive integer. A characterization ofφk ∈ L2(Rs), k ∈ Z, that generate a
nonstationary multiresolution has been established by deBoor, DeVore and
Ron in [1]. We shall assume thatφk = φ0 for k < 0. Then their results can
be succinctly stated as follows.

Theorem 1.1 ( deBoor, DeVore and Ron)Suppose that{φk( · − 2kj) :
j ∈ Z

s} is a Riesz basis of its closed linear spanVk and assume that
Vk ⊂ Vk+1, k ∈ Z. Then(Vk) is a multiresolution ofL2(Rs) if and only if⋂

k∈Z

{
u ∈ R

s : φ̂k(u) = 0
}

is a null set.

The above theorem assumes thatVk ⊂ Vk+1, k ∈ Z, which is equivalent to

φk(x) =
∑
j∈Z

s

2shk+1(j)φk+1(x− 2k+1j), x ∈ Z
s, k = 0, 1, . . . ,

for some family of sequenceshk ∈ `2(Zs), k = 1, 2, . . . .
We shall consider the following more general form ofnonstationary

refinement equations

φk(x) = |M |
∑
j∈Ω

hk+1(j)φk+1(Mx− j),

x ∈ R
s, k = 0, 1, 2, . . . ,(1.1)

where fork = 0, 1, 2, . . . , φk is a tempered distribution onRs, hk is a finitely
supported sequence with support inΩ, a bounded subset ofZ

s, andM is
ans× s integer matrix with determinant|M | ≥ 2 andlimn→∞M−n = 0.
We shall assume throughout that there is a sequenceh supported onΩ such
that for eachj ∈ Ω,

∞∑
k=1

|hk(j) − h(j)| < ∞,(1.2)

and ∑
j∈Ω

h(j) = 1.(1.3)

It follows that ∞∑
k=1

|
∑

j

hk(j) − 1| < ∞.(1.4)
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In the Fourier domain, (1.1) is equivalent to

φ̂k(u) = Hk+1(Nu)φ̂k+1(Nu), u ∈ R
s,(1.5)

whereN = (M−1)T, and

Hk(u) =
∑
j∈Ω

hk(j)e−iju, k = 0, 1, 2, . . . , u ∈ R
s.(1.6)

For convenience we shall callHk the Fourier transform ofhk. A sequence
(φk) is asolutionof (1.1) if it satisfies (1.1) or (1.5) and

φ̂k+n(Nnu) → 1, asn → ∞,(1.7)

uniformly in k ≥ 1 and locally uniformly inu ∈ R
s.

If hk = h is independent ofk, thenφk = φ is also independent ofk,
and the equations in (1.1) reduce to the ordinary refinement equation

φ(x) = |M |
∑
j∈Ω

h(j)φ(Mx− j), x ∈ R
s.(1.8)

In this case (1.7) is equivalent tôφ(0) = 1. Equation (1.8) has been exten-
sively studied recently in connection with wavelets analysis ([4, 6, 9–15, 19,
20, 22–30, 36–39]). Equation (1.8) can also be viewed as the limiting case
of the nonstationary refinement equation (1.1), and we shall refer to it as the
ideal refinement equationassociated with (1.1).

Let Γ comprise coset representatives ofZ
s/MZ

s. We say thath is fun-
damentalif for any γ ∈ Γ,∑

j

h(Mj + γ) =
1

|M | .(1.9)

Clearlyh satisfies (1.3) if it is fundamental.
We choose a bounded setK ⊂ R

s satisfying⋃
j∈Ω

M−1(K + j) ⊂ K.(1.10)

We now choose a sequenceφk,0, k = 0, 1, 2, . . . , in L2(Rs) with support in
K satisfying

φk,0 → φ̃0 in L2(Rs), ask → ∞,(1.11)

and
φ̂k+n,0(Nnu) → 1, asn → ∞,(1.12)

uniformly ink and locally uniformly inu. Trivially (1.11) is satisfied ifφk,0

is independent ofk. We note that̂φk,0 is continuous andlimn→∞Nn = 0.
Thus (1.12) is satisfied ifφk,0 is independent ofk andφ̂k,0(0) = 1.
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Now for n = 1, 2, . . . , k = 0, 1, 2, . . ., we defineφk,n in L2(Rs) by

φk,n(x) = |M |
∑
j∈Ω

hk+1(j)φk+1,n−1(Mx− j), x ∈ R
s.(1.13)

We call (1.13) anonstationary cascade algorithm.By (1.10) we see by
induction onn thatφk,n has support inK for all k andn. Applying the
relation (1.13) iteratively leads to

φk,n(x) = |M |
∑
j∈Ω

sk,n(j)φk+n,0(Mnx− j), x ∈ R
s,(1.14)

where
sk,n := Sk+n · · ·Sk+1δ0,

andSm : `∞(Zs) → `∞(Zs) is the subdivision operatorwith maskhm

defined by

(Smb)(j) = |M |
∑
ν∈Z

s

hm(j −Mν)b(ν), j ∈ Z
s.(1.15)

The sequence of subdivision operators(Sm)∞
m=1 is called anonstationary

subdivision process.The process is said toconvergeif for eachk = 0, 1, . . . ,
there is a compactly supported functionφk ∈ C(Rs) such that

lim
n→∞ ||sk,n − φk(M−n · )||∞ = 0.

If φk,0 is stable, then the nonstationary subdivision process(Sm)∞
m=1 con-

verges to(φk) if and only if

lim
n→∞ ||φk,n − φk||∞ = 0.

Thus the limiting sequence of functions of a nonstationary subdivision pro-
cess is the solution of the corresponding nonstationary refinement equations.
Convergence of nonstationary subdivision processes with dilationM = 2I,
and the smoothness of the limiting functions were recently studied in [13,
2, 14] and [11]. The stationary case in whichhk = h for all k, has been
studied earlier in [3], [17] and [22], and the corresponding stationary refine-
ment equations are very much investigated in the theory of wavelets. In [14],
Dyn and Levin showed that if (1.2) holds, theL∞-convergence of a non-
stationary subdivision process(Sk) with mask sequence(hk) follows from
that of the equivalent stationary subdivision processS with maskh. They
also obtained sufficient conditions based on the convergence of(Sk) toS, in
order that the solutions of the nonstationary refinement equations with mask
sequence(hk) would inherit the stability and smoothness from the solution
of the ideal stationary refinement equation with maskh. In this paper we
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shall investigate the convergence inL2(Rs) of the cascade sequences(φk,n)
to the solution(φk) of (1.1) asn → ∞. We consider both weak and strong
convergence of the cascade algorithms and also the weak convergence of
the derivatives of the cascade sequences.

Forf, g inL2(Rs) we write〈f, g〉 =
∫
R

s fḡ. Fork, n = 0, 1, . . ., j ∈ Z
s,

define a sequencebk,n(j) by

bk,n(j) = 〈φk,n, φk,n(· − j)〉.(1.16)

As φk,n has support in the bounded setK, we may choose a finite set
I ⊂ Z

s so thatbk.n(j) = 0 for j 6∈ I and for all k, n = 0, 1, 2, . . ..
In fact I can be chosen so thatK ∩ (K + j) = ∅ for j 6∈ I. Now for
n = 1, 2, . . . , k = 0, 1, 2, . . ., (1.13) and (1.16) give

bk,n(j) = |M |
∑
ν∈Z

s

gk+1(Mj − ν)bk+1,n−1(ν), j ∈ I,(1.17)

wheregk+1 is the autocorrelation ofhk+1, i.e.

gk+1(j) :=
∑
`∈Ω

hk+1(`)hk+1(`− j), j ∈ Z
s.(1.18)

To simplify the relation (1.17) we introduce thetransition operatorsTk :
C

I → C
I , k = 1, 2, . . . , by defining

Tka(j) = |M |
∑
ν∈Z

s

gk(Mj − ν)a(ν), j ∈ I, a ∈ C
I .(1.19)

Then (1.17) becomes

bk,n = Tk+1bk+1,n−1, k = 0, 1, . . . , n = 1, 2, . . . .(1.20)

Iterating (1.20) leads to

bk,n =

(
k+n∏

`=k+1

T`

)
bk+n,0, k, n = 0, 1, 2, . . . .(1.21)

By (1.2), forj ∈ Z
s,

∞∑
k=0

|gk(j) − g(j)| < ∞,(1.22)

whereg is the autocorrelation ofh. Let T : C
I → C

I be defined byg asTk

is defined bygk in (1.19) so that

Ta(j) = |M |
∑
ν∈Z

s

g(Mj − ν)a(ν), j ∈ I, a ∈ C
I .(1.23)



6 T.N.T. Goodman, S.L. Lee

Then (1.19), (1.22) and (1.23) lead to
∞∑

k=0

‖Tk − T‖ < ∞.(1.24)

We now introduce some terminology before we state our main results on
theL2-convergence of nonstationary cascade algorithms. A square matrix
A is said to satisfyConditionE∗∗ if it has unit spectral radius and all its
eigenvalues on the unit circle are nondegenerate. If in addition,1 is the only
eigenvalue on the unit circle, thenA is said to satisfyConditionE∗. We say
thatA satisfiesCondition Eif it satisfies ConditionE∗ and1 is a simple
eigenvalue.

Theorem 1.2 Suppose that(1.2)and(1.3)hold. The following are equiva-
lent.

(a) T satisfies ConditionE∗∗.
(b) For any (φk,0) satisfying(1.11) and (1.12), φk,n converges weakly

to φk in L2(Rs) asn → ∞, uniformly ink, where(φk) is theL2-
solution of(1.1), andφk converges weakly inL2(Rs) to φ which is
the solution of the ideal refinement equation(1.8).

(c) For any(φk,0) satisfying(1.11)and(1.12), φk,n converges weakly to
φ̃n in L2(Rs) ask → ∞, uniformly inn, where(φ̃n) is the cascade
sequence forhwith starting functioñφ0, andφ̃n converges weakly in
L2(Rs) to φ which is the solution of(1.8).

Theorem 1.3 Suppose that(1.2)and(1.3)hold. The following are equiva-
lent.

(a) T satisfies conditionE andh is fundamental.
(b) For any(φk,0) satisfying(1.11), (1.12),and∑

j∈Z
s

φ̃0(· − j) = 1, almost everywhere,(1.25)

the cascade sequenceφk,n converges strongly toφk in L2(Rs) as
n → ∞, uniformly ink, where(φk) is the solution of(1.1), andφk

converges strongly inL2(Rs) to φ which is the solution of(1.8).
(c) For any (φk,0) satisfying(1.11), (1.12)and (1.25) the cascade se-

quenceφk,n converges strongly tõφn inL2(Rs) ask → ∞, uniformly
in n, where(φ̃n) is the cascade sequence forh with starting function
φ̃0, and φ̃n converges strongly inL2(Rs) to φ which is the solution
of (1.8).

Remark 1.The conditions on(φk,0) in Theorems 1.2 and 1.3 are easily
satisfied if(φk,0) is independent ofk.
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Corollary 1.1 Supposehk = h for all k. Then the following are equivalent.

(a) T satisfies ConditionE∗∗.
(b) For any initial functionφ̃0,with ̂̃φ0(0) = 1, the cascade sequenceφ̃n

converges weakly toφ in L2(Rs) asn → ∞, whereφ is the solution
of the ideal refinement equation(1.8).

Corollary 1.2 Supposehk = h for all k. Then the following are equivalent.

(a) T satisfies ConditionE andh is fundamental.

(b) For any initial function φ̃0, satisfyinĝ̃φ0(0) = 1 and (1.25), the
cascade sequencẽφn converges strongly toφ in L2(Rs) asn → ∞,
whereφ is the solution of the ideal refinement equation(1.8).

The result (a) implies (b) in Corollary 1.1 was proved by Lawton, Lee
and Shen [33]. In this case, the equivalence of (a) and (b) was subsequently
established by Cohen, Gröchenig and Villemoes [7]. Corollary 1.2 was the
main result in [33]. It was independently established by Han Bin and Jia [18]
in a more general setting ofLp-convergence. In one dimension it was first
considered by Strang [40]. The same result in a different form embedded in
the theory ofLp-convergence of subdivision processes was obtained slightly
earlier by Goodman, Micchelli and Ward [17] and also independently by Jia
[22]. Recently, Shen [39] has extended Corollary 1.2 to the vector case.

In Sect. 2 we shall prove Theorem 1.2 and 1.3, while in Sect. 3 we con-
sider the weak convergence of the derivatives of the nonstationary cascade
algorithm.

2. Convergence of nonstationary cascade algorithms inL2(R
s)

LetB be any compact set inRs containing the origin. Since(hk) is uniformly
bounded andlimn→∞Nn = 0, for k = 0, 1, . . . , andu ∈ B,

|Hk(N `u) −Hk(0)| ≤ Cη`,

for some0 < η < 1 andC independent ofk andu. Since|Hk(N `u)−1| ≤
Cη` + |Hk(0) − 1|, we see from (1.4) that

∞∑
`=1

|Hk+`(N `u) − 1| < ∞(2.1)

uniformly for u in B andk ≥ 0 and the sum is bounded ink andu ∈ B. It
follows that the infinite product

Pk(u) :=
∞∏

`=1

Hk+`(N `u), u ∈ R
s,(2.2)
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converges uniformly ink ≥ 0 andu in B. A standard argument shows that
for k = 0, 1, . . . , Pk(u) is of polynomial growth as|u| → ∞. Thus, it is
the Fourier transform of a tempered distribution. By (2.1),∣∣∣∣∣

n∏
`=1

Hk+`(N `u)

∣∣∣∣∣ ≤ C,

for all k andn and for allu ∈ B, whereC is an absolute constant. Thus∣∣∣∣∣
∞∏

`=1

Hk+n+`(Nn+`u) − 1

∣∣∣∣∣ ≤ C

∞∑
`=n+1

|Hk+`(N `u)−1| → 0, asn → ∞,

(2.3)
uniformly in k ≥ 0 and locally uniformly inu ∈ R

s. It follows that
Pk+n(Nnu) → 1, asn → ∞. Further,

Pk(u) =
∞∏

`=1

Hk+`(N `u) = Hk+1(Nu)Pk+1(Nu).(2.4)

ThusPk is the Fourier transform of a distributional solution of (1.1). The
solution is unique. For, if(φk) is a solution of (1.1), iterating (1.5) leads to

φ̂k(u) =
n∏

`=1

Hk+`(N `u)φ̂k+n(Nnu), u ∈ R
s,(2.5)

for all n ≥ 1. Taking the limit asn → ∞, and using (1.7) we have

φ̂k(u) =
∞∏

`=1

Hk+`(N `u) = Pk(u), u ∈ R
s.(2.6)

Now, taking the Fourier transforms of the functions in (1.13) gives

φ̂k,n(u) = Hk+1(Nu)φ̂k+1,n−1(Nu),(2.7)

whereHk is given in (1.6). Thus we have fork, n = 0, 1, 2, . . . ,

φ̂k,n(u) =
n∏

`=1

Hk+`(N `u)φ̂k+n,0(Nnu), u ∈ R
s.(2.8)

Then by (1.12) and (2.8),

lim
n→∞ φ̂k,n(u) = Pk(u)(2.9)

where the convergence is uniform overk ≥ 1 and locally uniform inu.
The analysis on the convergence of the nonstationary cascade algorithm

requires results on products of matrices. The space of all complex-valued
r × r matrices will be denoted byCr×r.
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Proposition 2.1 Let ‖ · ‖ be an operator norm onCr×r, A` ∈ C
r×r, ` =

1, 2, . . . , and suppose there is anA ∈ C
r×r of spectral radiusρ(A) ≥ 1

satisfying
∞∑

`=1

‖A` −A‖ < ∞.(2.10)

Then
∥∥∥∏k+n

`=k+1A`

∥∥∥ is bounded for alln and k if and only ifA satisfies

ConditionE∗∗.

Proof. Suppose thatA satisfies ConditionE∗∗. Then we may choose an
operator norm onCr×r with ‖A‖ = 1, and (2.10) still holds. Then

‖
k+n∏

`=k+1

A`‖ ≤
k+n∏

`=k+1

(‖A` −A‖ + 1)

≤
k+n∏

`=k+1

exp(‖A` −A‖)

≤ exp(
∞∑

`=1

‖A` −A‖)

for allk andn.Conversely, suppose that‖∏k+n
`=k+1A`‖ is uniformly bounded

in k andn. For eachn,

‖An −
k+n∏

`=k+1

A`‖ ≤ Cn

k+n∑
`=k+1

‖A` −A‖ → 0, ask → ∞.

For alln andk,

‖An‖ ≤ ‖An −
k+n∏

`=k+1

A`‖ + ‖
k+n∏

`=k+1

A`‖

≤ ‖An −
k+n∏

`=k+1

A`‖ + C.

Taking the limit ask → ∞, gives‖An‖ ≤ C, for all n. Since the spectral
radius ofρ(A) ≥ 1, it follows thatA satisfies ConditionE∗∗. ut

We also need the following theorem in [16].

Theorem 2.1 Suppose thatA`, ` = 1, 2, . . . , andA are matrices inCr×r

satisfying(2.10). Then the following are equivalent.

(a) A satisfies ConditionE∗.
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(b) The matrix product
∏k+n

`=k+1A` converges asn → ∞, uniformly in
k.
Moreover, if(a) or (b) holds, then

lim
k→∞

lim
n→∞

k+n∏
`=k+1

A` = lim
n→∞ lim

k→∞

k+n∏
`=k+1

A` = lim
n→∞An.

Proof of Theorem 1.2.SupposeT satisfies conditionE∗∗. By Proposition
2.1,

∏k+n
`=k+1 T` is uniformly bounded ink andn. By (1.21) and (1.11),

‖bk,n‖ is bounded ink andn. In particular,bk,n(0) = ‖φk,n‖2
2 is bounded in

k andn. So for eachk ≥ 0, there is a subsequence(φk,nj
) which converges

weakly to some functionφk inL2(Rs) asj → ∞. Thusφ̂k,nj
→ φ̂k weakly

asj → ∞. On the other hand, by (2.9),̂φk,nj
(u) converges to

Pk(u) :=
∞∏

`=1

Hk+`(N `u),

asj → ∞ uniformly in k and locally uniformly inu. Thus

φ̂k(u) = Pk(u), u ∈ R
s,(2.11)

and φ̂k,nj
(u) converges tôφk(u) as j → ∞ uniformly in k and locally

uniformly in u.
Note that for eachk, 〈φ̂k,nj

, φ̂k〉 converges to〈φ̂k, φ̂k〉 = ‖φ̂k‖2
2 as

j → ∞, and since|〈φ̂k,nj
, φ̂k〉| ≤ ‖φ̂k,nj

‖2‖φ̂k‖2 and‖φ̂k,nj
‖2 is bounded

in k andj, it follows that‖φ̂k‖2 is bounded ink. Thus‖φk‖2 is bounded in
k.

Now takek ≥ 0 andf in L2(Rs). Since‖φ̂k,n‖2 is bounded ink andn,
and‖φ̂k‖2 is bounded ink, we can chooseK with ‖φ̂k,n − φ̂k‖2 ≤ K for
all k andn. Takeε > 0 and chooseN with

∫
|u|≥N |f(u)|2du < ε2. Then∣∣∣∣∣

∫
|u|≥N

f(u)(φ̂k,n(u) − φ̂k(u))du

∣∣∣∣∣ ≤ εK for all k, n.

Also ∣∣∣∣∣
∫

|u|≤N
f(u)(φ̂k,n(u) − φ̂k(u))du

∣∣∣∣∣
≤ ‖f‖2

(∫
|u|≤N

|φ̂k,n(u) − φ̂k(u))|2du
)1/2

,
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which tends to zero uniformly ink asn → ∞. Thus
∫
R

s f(φ̂k,n − φ̂k)
tends to zero uniformly ink asn → ∞. So φ̂k,n → φ̂k weakly asn → ∞
uniformly in k. Thusφk,n → φk weakly asn → ∞ uniformly in k.

We note that‖φk‖2 is uniformly bounded and

φ̂k(u) =
∞∏

`=1

Hk+`(N `u), u ∈ R
s.

By (2.4),(φk) satisfies (1.1). By (2.3),̂φk satisfies (1.7). Hence,(φk) is the
solution of (1.1).

Since‖φk‖2 is bounded there is a subsequence(φnj ) which converges
weakly toϕ in L2(Rs). Now by (1.2),

∞∑
k=0

|Hk(u) −H(u)| < ∞, for all u ∈ R
s,(2.12)

where
H(u) :=

∑
j∈Ω

h(j)e−iju.(2.13)

The infinite product
∏∞

`=1H(N `u) is of power growth as|u| → ∞. Thus
it is the Fourier transform of a distributionφ which is the solution of the
refinement equation (1.8). We now show that ifT satisfies ConditionE∗∗
thenφ̂k(u) converges locally uniformly inu to φ̂(u), ask → ∞. As in the
derivation of (2.3), foru in any compact setB,

|φ̂k(u) − φ̂(u)| = |
∞∏

`=1

Hk+`(N `u) −
∞∏

`=1

H(N `u)|

≤ C

∞∑
`=k+1

|H`(N `−ku) −H(N `−ku)|.

This leads to

|φ̂k(u) − φ̂(u)| ≤ C
∑
j∈Ω

∞∑
`=k+1

|h`(j) − h(j)|,

which tends to0 uniformly in u ∈ B, ask → ∞, by (1.2). By the same
argument as above we conclude thatφ = ϕ and thatφk converges weakly
to φ in L2(Rs).

Now we assume that (b) is satisfied. Letb(j) = 〈φ, φ(· − j)〉, j ∈ I.
By (1.23) and (1.8),Tb = b. Thusb is an eigenvector ofT with eigenvalue
1. In particularρ(T ) ≥ 1. Without loss of generality we may assume that
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[0, 1]s ⊂ K, and we choose any functionψ inL2(Rs) with support in[0, 1]s

andψ̂(0) = 1. Take an arbitrarily fixed̀ ∈ I and fork = 0, 1, 2, . . . , define

ψk,0 = ψ, φk,0 = ψ(· + `).

Note that(φk,0) and(ψk,0) satisfy (1.11) and (1.12). Fork, n = 0, 1, 2, . . .,
we defineφk,n by (1.13) and similarly we defineψk,n by (1.13) withφk,0
replaced byψk,0. Fork, n = 0, 1, 2, . . ., j ∈ Z

s, we defineck,n(j) by

ck,n(j) = 〈ψk,n, φk,n(· − j)〉.
Note thatck,n(j) = 0 for j 6∈ I and

ck,0(j) = δj,`, j ∈ I.(2.14)

It follows from (1.13), as in the derivation of (1.21), that

ck,n =

(
k+n∏

ν=k+1

Tν

)
ck+n,0, n, k = 0, 1, 2, . . . .(2.15)

Now by (b),φk,n → φk andψk,n → φk weakly inL2(Rs) asn → ∞ uni-
formly in k. By the Uniform Boundedness Theorem,‖φk,n‖2 and‖ψk,n‖2
are uniformly bounded ink andn. Since

|ck,n(j)| ≤ ‖φk,n‖2 ‖ψk,n‖2,

cn,k(j) is uniformly bounded ink andn. Recalling (2.14) and (2.15), it
follows that ‖∏k+n

ν=k+1 Tν‖ is bounded ink andn. Sinceρ(T ) ≥ 1, it
follows thatT satisfies ConditionE∗∗.

The equivalence of (a) and (c) is proved in the same way.ut
The proof of Theorem 1.3 requires the following lemma.

Lemma 2.1 Suppose thatA`, ` = 1, 2, . . . , andA are matrices inC
r×r

satisfying(2.10),andA satisfies ConditionE∗. LetE1 be the eigenspace
of A corresponding to the eigenvalue1, and C

r = E1 ⊕ Q, whereQ is
invariant underA. Then for any sequence(qn) in C

r converging toq ∈ Q,

lim
n→∞

(
k+n∏

`=k+1

A`

)
qn = 0, uniformly ink.

Proof. Choose an operator norm onC
r×r with ‖A‖ = 1. Then fork, n ≥ 0,

Proposition 2.1 gives ∥∥∥∥∥
k+n∏

`=k+1

A`

∥∥∥∥∥ ≤ C,
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whereC is a constant independent ofk andn. Then for anyk ≥ 0, 1 ≤
m ≤ n, ∥∥∥∥∥

(
k+n∏

`=k+1

A`

)
−
(

k+m∏
`=k+1

A`

)
An−m

∥∥∥∥∥
≤ C2

k+n∑
`=k+m+1

‖A` −A‖.(2.16)

For anyq ∈ Q,∥∥∥∥∥
(

k+n∏
`=k+1

A`

)
q −

(
k+m∏

`=k+1

A`

)
An−mq

∥∥∥∥∥ ≤ C2‖q‖
k+n∑

`=k+m+1

‖A` −A‖.

Since the spectral radiusρ(A|Q) < 1, An−mq → 0 asn−m → ∞. Letting

m → ∞ andn − m → ∞, this implies that
(∏k+n

`=k+1A`

)
q → 0, and

hence
(∏k+n

`=k+1A`

)
qn → 0 asn → ∞ uniformly in k. ut

Proof of Theorem 1.3.Suppose that (a) holds. SinceT satisfies Condition
E, Theorem 1.2 implies that the cascade sequenceφk,n converges weakly
to φk in L2(R) asn → ∞ uniformly in k, for any starting sequence(φk,0)
satisfying (1.11) and (1.12). Further,(φk) is the solution of the nonstationary
refinement equation (1.1), and(φk) converges weakly to the solutionφ of
(1.8) inL2(Rs). We shall establish (b) by showing that fork = 0, 1, . . . ,
‖φk,n‖ → ‖φk‖ asn → ∞, and‖φk‖ → ‖φ‖ ask → ∞.

Recall that fork, n = 0, 1, . . . ,

bk,n(j) = 〈φk,n, φk,n(· − j)〉, j ∈ Z
s,

and(bk,n) satisfies (1.20) and (1.21) and are finitely supported with common
supportI ⊂ R

s. Fork = 0, 1, . . . , define

bk(j) := 〈φk, φk(· − j)〉, j ∈ Z
s,(2.17)

and
b(j) := 〈φ, φ(· − j)〉, j ∈ Z

s,(2.18)

which are all supported onI.
As in the derivation of (1.20), the equation (2.17) gives

bk = Tk+1bk+1, k = 0, 1, . . . .(2.19)

Similarly, (2.18) givesb = Tb.Thusb is the eigenvector ofT with eigenvalue
1.Since1 is a simple eigenvalue ofT : C

I → C
I and all its other eigenvalues

lie inside the unit circle, we can decomposeC
I = M ⊕Q, where

M = {αb : α ∈ C} and the spectral radiusρ(T |Q) < 1.
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Then fork = 0, 1, . . . ,

bk,0 = αkb+ qk, αk ∈ C, andqk ∈ Q.(2.20)

By Theorem 1.2,̂φk converges locally uniformly tôφ and by (1.7),
∫
φ(t)dt

= 1. Sinceh is fundamental,
∑

j φ(· − j) = 1 which implies that∑
j

b(j) = 1.(2.21)

The conditions (1.11) and (1.12) imply that̂̃φ0(0) = 1. This together with
(1.25) gives

lim
k→∞

∑
j∈I

bk,0(j) =
∑
j∈I

〈φ̃0, φ̃0( · − j)〉 = 1.(2.22)

Sinceqk ∈ Q, it follows (see for instance Lemma 3.4 of [33]) that∑
j∈Z

s

qk(j) = 0, k = 0, 1, . . . .(2.23)

By (2.20), (2.21), (2.22) and (2.23), we deduce thatαk → 1 ask → ∞.
It follows from (1.11) and (2.20) thatqk converges, ask → ∞, to some
q ∈ Q. Fork = 0, 1, . . . ,

bk,n =

(
k+n∏

`=k+1

T`

)
bk+n,0.(2.24)

By (2.20)

bk,n = αk+n

(
k+n∏

`=k+1

T`

)
b+

(
k+n∏

`=k+1

T`

)
qk+n.(2.25)

Thus,

lim
n→∞ bk,n =

( ∞∏
`=k+1

T`

)
b, uniformly in k,(2.26)

by Lemma 2.1 and Theorem 2.1. SinceT satisfies ConditionE, (2.24),
(1.11) and Theorem 2.1 give

lim
k→∞

lim
n→∞ bk,n = lim

n→∞ lim
k→∞

bk,n.

From (2.25) and Theorem 2.1, recallingTb = b,

lim
n→∞ lim

k→∞
bk,n = b+ lim

n→∞Tnq = b.



Convergence of nonstationary cascade algorithms 15

Therefore,
lim

k→∞
lim

n→∞ bk,n = b.(2.27)

In particularlimk→∞ limn→∞ bk,n(0) = b(0), i.e.

lim
k→∞

lim
n→∞ ‖φk,n‖2 = ‖φ‖2.

But Fatou’s Lemma gives

lim
k→∞

lim
n→∞ ‖φk,n‖2 ≥ lim

k→∞
‖φk‖2 ≥ ‖φ‖2.

Therefore,
lim

k→∞
‖φk‖2 = ‖φ‖2,

from which we conclude thatφk converges strongly toφ in L2(Rs) ask →
∞.

The strong convergence ofφk toφ implies thatbk → b.Now (2.19) gives

bk =

(
k+n∏

`=k+1

T`

)
bk+n, k, n = 0, 1, . . . .(2.28)

Lettingn → ∞, we have

bk =

( ∞∏
`=k+1

T`

)
b, k = 0, 1, . . . .(2.29)

Combining (2.26) and (2.29) givesbk,n → bk asn → ∞, uniformly in k.
In particular,

‖φk,n‖2
2 = bk,n(0) → bk(0) = ‖φk‖2

2.

Therefore,(φk,n) converges strongly toφk asn → ∞, uniformly in k =
0, 1, . . . .

Conversely, suppose (b) holds. Letψ be the characteristic function of
[0, 1]s ⊂ K. For ν ∈ I andk = 0, 1, . . . , defineφk,0 := ψ(· + ν), as in
the proof of Theorem 1.2. The sequenceφk,0 is independent ofk and thus
satisfies all the conditions in (b). With(φk,0) as an initial sequence, define
the cascade sequence(φk,n) by (1.13). Then(φk,n) converges inL2(Rd) to
φk asn → ∞, uniformly in k = 0, 1, . . . . The sequencebk,n defined in
(1.16) by this cascade sequence satisfies

bk,n =

(
k+n∏

`=k+1

T`

)
bk+n,0 and bk,0(j) = δν(j) ,
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for k, n = 0, 1, . . . . Thus

bk,n =

(
k+n∏

`=k+1

T`

)
δν .(2.30)

Sincebk,n converges asn → ∞ uniformly ink, it follows that
(∏k+n

`=k+1 T`

)
δν , converges for allν ∈ I, asn → ∞ uniformly in k. Thus

∏k+n
`=k+1 T`

converges asn → ∞ uniformly ink.By Theorem 2.1,T satisfies Condition
E∗.

Sinceφk,n converges in norm toφk in L2(Rs) asn → ∞, uniformly in
k, it follows thatbk,n → bk asn → ∞, uniformly in k, wherebk is defined
in (2.17). Thus (2.30) gives( ∞∏

`=k+1

T`

)
δν = bk,(2.31)

for all ν ∈ I. Sinceφk converges in norm toφ in L2(Rs), bk converges to
b ask → ∞, whereb(j) = 〈φ, φ(· − j)〉. We know thatb is an eigenvector
of T with eigenvalue1. To show thatT satisfies ConditionE, it remains to
show thatb is unique up to a constant multiple.

Let v ∈ C
I be any eigenvector ofT with eigenvalue1. By (2.31)( ∞∏

`=k+1

T`

)
v = βbk,(2.32)

whereβ =
∑

j∈I v(j). We now show that

lim
k→∞

( ∞∏
`=k+1

T`

)
v = v.(2.33)

To prove this, consider∥∥∥∥∥
(

k+n∏
`=k+1

T`

)
v − v

∥∥∥∥∥ =

∥∥∥∥∥
(

k+n∏
`=k+1

T`

)
v − Tnv

∥∥∥∥∥ ≤ C‖v‖
∞∑

`=k+1

‖T`−T‖.

It follows that∥∥∥∥∥
( ∞∏

`=k+1

T`

)
v − v

∥∥∥∥∥ ≤ C‖v‖
∞∑

`=k+1

‖T` − T‖,

which tends to0 ask → ∞. Thus (2.33) holds. Taking the limits ask → ∞
of (2.32) givesv = βb. ThusT satisfies ConditionE.
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To show thath is fundamental, it suffices to show that its autocorrelation
g defined in (1.18) is fundamental. For anyν ∈ I, (2.31) implies

lim
k→∞

( ∞∏
`=k+1

T`

)
δν = b.(2.34)

By Theorem 2.1, the relation (2.34) implies that

lim
n→∞Tnδν = b.(2.35)

Let v ∈ C
I be a left eigenvector ofT with eigenvalue1. Then for each

ν ∈ I,

v(ν) = vTn(ν) = (vTn)δν = v(Tnδν), for all n = 0, 1, . . . .

It follows from (2.35) that

v(ν) = vb =
∑

j

v(j)b(j) =: µ.

This means thatv = µe wheree =
∑

ν∈I δν . HenceeT = e, which is
equivalent to

|M |
∑

j

g(Mj − `) = 1, for all ` ∈ Z
s.

Therefore,g is fundamental. Henceh is fundamental.
The equivalence of (a) and (c) is established in the same way following

the same argument as in [34].ut
Remark 2.Starting with a stationary mask or filterh that satisfies Condition
E orE∗∗,one can construct many nonstationary maskshk that satisfies(1.2).
By Theorem 1.2 (respectively Theorem 1.3) the corresponding nonstationary
cascade algorithm converges weakly (respectively strongly) inL2(Rs) to the
solution(φk) of the nonstationary refinement equations with mask(hk).

Example 1.Takes = 1 and(h(j))3j=0 = {1/8, 3/8, 3/8, 1/8}, the mask for
the uniform quadratic B-spline. It is easy to see that the transition operator
T for h satisfies ConditionE. The nonstationary mask sequencehk, k =
2, 3, . . . , with

hk(0) = 1/8, hk(1) = 3/8 − 1/2k, hk(2) = 3/8 − 1/2k,

hk(3) = 1/8, hk(j) = 0, otherwise,

clearly satisfies (1.2) and therefore defines a system of nonstationary re-
finement equations with solutionsφk ∈ L2(Rs). The scaling sequenceφk
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Fig. 1. Nonstationary scaling functions tending to the uniform quadraticB-spline-φ2 – · –;
φ4 – –;φ8 —

converges to the uniform quadratic B-spline. Figure 1 shows the graph of
φ2, φ4 andφ8.

Example 2.The most common examples of solutions of nonstationary re-
finement equations are the exponential B-splines and theup-function. These
examples were discussed in detail in [14]. Theup-function is not covered
by our theory since the supports of its masks are not uniformly bounded.

The exponential B-splinesφk, k = 0, 1, . . . , whose Fourier transforms
are

φ̂k(u) :=

∏N
j=0(e

−2−kλj − e−iu)∏N
j=0(iu− 2−kλj)

,

whereλ0, . . . , λN ∈ R, are solutions of the nonstationary refinement equa-
tions with mask sequence(hk) where

∑
j

hk(j)zj ≡ Hk(z) :=
N∏

j=0

(
e−2−kλj + z

2

)
.

Clearly,

lim
k→∞

Hk(z) =
(

1 + z

2

)N+1

,

and it is easy to see thathk andh satisfy (1.2).
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Remark 3.More examples, including a nonstationary analogue of Dau-
bechies orthonormal scaling functions, can be found in [35].

3. Convergence of derivatives

For any functionf on R
s andu ∈ Z

s, we define the difference operator

∆uf(x) := f(x) − f(x− u), x ∈ R
s.

For u1, . . . , um ∈ Z
s, let π(u1, . . . , um) denote all polynomials in the

null space of∆u1 · · ·∆um . We note that∆um mapsπ(u1, . . . , um) onto
π(u1, . . . , um−1).

Let V0 be the space of all sequences onZ
s with finite support, and for

u1, . . . , um ∈ Z
s, we define

V (u1, . . . , um)

:=

v ∈ V0 :
∑
j∈Z

s

p(j)v(j) = 0, ∀p ∈ π(u1, . . . , um)

 .(3.1)

Similarly we defineF0 to be all functionsf inL2(Rs) with compact support
andF (u1, · · · , um) to be all functions inF0 satisfying∑

j∈Z
s

p(j)f(· − j) = 0, ∀p ∈ π(u1, . . . , um).(3.2)

If m = 0, we defineF (u1, . . . , um) = F0.

Lemma 3.1 For u1, . . . , um ∈ Z
s, ∆um : F (u1, . . . , um−1) → F (u1,

· · · , um) is a bijection. In particularF (u1, . . . , um) = ∆u1 · · ·∆umF0.

Proof. Takef ∈ F (u1, . . . , um−1), p ∈ π(u1, . . . , um). Then∑
i∈Z

s

p(i)∆umf(x− i) =
∑
i∈Z

s

p(i)(f(x− i) − f(x− i− um))

=
∑
i∈Z

s

∆ump(i)f(x− i) = 0,

since∆ump ∈ π(u1, . . . , um−1). So ∆um mapsF (u1, . . . , um−1) into
F (u1, . . . , um). If ∆umf = 0 andf has compact support, thenf = 0.
It remains to show that∆um mapsF (u1, . . . , um−1) ontoF (u1, . . . , um).

Takef ∈ F (u1, . . . , um). Let g(x) =
∑∞

`=0 f(x − `um). Sincef ∈
F (um),

∑∞
`=−∞ f(x− `um) = 0 and sincef has compact support,g also

has compact support and is inL2(Rs). Also∆umg = f . It remains to show
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thatg ∈ F (u1, . . . , um−1). Takep ∈ π(u1, . . . , um−1). Thenp = ∆umq
for someq in π(u1, . . . , um) and∑

i∈Z
s

p(i)g(x− i) =
∑
i∈Z

s

∆umq(i)g(x− i)

=
∑
i∈Z

s

q(i)∆umg(x− i)

=
∑
i∈Z

s

q(i)f(x− i) = 0. ut

We now construct functionsf with Du1 · · ·Dumf ∈ F (u1, . . . , um).
Take any functionf0 in F0 and setf(·|∅) = f0. We may recursively define
f(·|u1, . . . , um) for anyu1, . . . , um ∈ Z

s by

f(x|u1, . . . , um) =
∫ 1

0
f(x− tum|u1, . . . , um−1)dt.

By induction we see thatf(·|u1, . . . , um) ∈ F0. Clearly

Dumf(·|u1, . . . , um) = ∆umf(·|u1, . . . , um−1).

HenceDu1 · · ·Dumf = ∆u1 · · ·∆umf0 and by Lemma 3.1,Du1 · · ·Dumf
∈ F (u1, . . . , um). As a particular example we can takef0 to be the charac-
teristic function of[0, 1]s. Thenf(·|u1, . . . , um) is a box spline of degree
m.

Now for v ∈ V0 andu ∈ Z
s, we define the difference operator

∇uv(i) = v(i) − v(i− u), i ∈ Z
s.

Let δ denote the sequence inV0 given byδ(j) = δj,0.

Lemma 3.2 If f0 has support in[0, 1]s with
∫ |f0|2 = σ, f(·|u1, . . . , um)

is defined as above, andf(·|v1, . . . , vm) is similarly defined with respect to
vectorsv1, . . . , vm ∈ Z

s, then for` ∈ Z
s,

〈Du1 · · ·Dumf(·|u1, . . . , um), Dv1 · · ·Dvmf(· − `|v1, . . . , vm)〉
= (−1)mσ∇v1 · · · ∇vm∇u1 · · · ∇umδ(l + v1 + · · · + vm).

Proof.

〈Du1 · · ·Dumf(·|u1, . . . , um), Dv1 · · ·Dvmf(· − `|v1, · · · , vm)〉
= 〈∆u1 · · ·∆umf0, ∆v1 · · ·∆vmf0(· − `)〉
= (−1)m〈∆v1 · · ·∆vm∆u1 · · ·∆umf0, f0(· − `− v1 − · · · − vm)〉
= (−1)m∇v1 · · · ∇vm∇u1 · · · ∇um〈f0, f0(· − `− v1 − · · · − vm)〉
= (−1)mσ∇v1 · · · ∇vm∇u1 · · · ∇umδ(`+ v1 + · · · + vm). ut
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In analogy with Lemma 3.1 we have the following

Lemma 3.3 For u1, . . . , um ∈ Z
s, ∇um : V (u1, . . . , um−1) → V (u1,

· · · , um) is a bijection. In particularV (u1, . . . , um) = ∇u1 · · · ∇umV0.

Proof. The proof is very similar to that of Lemma 3.1. Takev ∈ V (u1, . . . ,
um−1) andp ∈ π(u1, . . . , um). Then∑

i∈Z
s

p(i)∇umv(i) = −
∑
i∈Z

s

∆ump(i+ um)v(i) = 0.

So∇um mapsV (u1, . . . , um−1) into V (u1, . . . , um). Since∇um is injec-
tive on the spaceV (u1, . . . , um−1), we need only show that it maps onto
V (u1, . . . , um). Takev ∈ V (u1, . . . , um) and let

w(i) =
∞∑

`=0

v(i− `um).

Thenw has finite support and∇umw = v. For p ∈ π(u1, . . . , um−1),
p = ∆umq for someq ∈ π(u1, . . . , um), and∑
i∈Z

s

p(i+um)w(i) =
∑
i∈Z

s

∆umq(i+um)w(i) = −
∑
i∈Z

s

q(i)∇umw(i) = 0.

Sow ∈ V (u1, . . . , um−1). ut
Lemma 3.4 Suppose thatf ∈ F (u1, . . . , um), g ∈ F (v1, . . . , vm), and for
` ∈ Z

s, b(`) := 〈f, g(· − `)〉. Thenb ∈ V (u1, . . . , um, v1, . . . , vm).

Proof. Takef ∈ F (u1, . . . , um) andg ∈ F (v1, . . . , vm). By Lemma 3.1,
there aref0, g0 in F0 with

f = ∆u1 · · ·∆umf0

and
g = ∆v1 · · ·∆vmg0.

Then forp ∈ π(u1, . . . , um, v1, . . . , vm),∑
`∈Z

s

p(`)b(`) =
∑
`∈Z

s

p(`)〈∆u1 · · ·∆umf0, ∆v1 · · ·∆vmg0(· − `)〉

=
∑
`∈Z

s

p(`)(−1)m〈f0(· − u1 − · · · − um),

∆u1 · · ·∆um∆v1 · · ·∆vmg0(· − `)〉
= (−1)m〈f0(· − u1 − · · · − um),
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`∈Z

s

p(`)∆u1 · · ·∆um∆v1 · · ·∆vmg0(· − `)〉

= (−1)m〈f0(· − u1 − · · · − um),∑
`∈Z

s

∆v1 · · ·∆vm∆u1 · · ·∆ump(`)g0(· − `)〉 = 0,

since∆v1 · · ·∆vm∆u1 · · ·∆ump = 0. ut
Recall thatM is an integer matrix withdet(M) ≥ 2, andΓ comprises

a coset representatives ofZ
s/MZ

s. For any vector spaceπ of polynomials
on R

s we say thath in V0 satisfies thesum rules forπ if for all γ in Γ and
p in π, ∑

β∈Z
s

h(Mβ)p(Mβ) =
∑

β∈Z
s

h(Mβ + γ)p(Mβ + γ).(3.3)

Whenπ comprises all polynomials of degree≤ k − 1, the above definition
becomes the sum rules of orderk as defined in [24]. Recall that ifh satisfies
(1.3), thenh is fundamental if and only if it satisfies the sum rules of order
1.

Lemma 3.5 If h satisfies the sum rules forπ and

a(`) =
∑
j∈Z

s

h(j)h(j − `), ` ∈ Z
s,

thena satisfies the sum rules forπ′ := {p : p(x+ y) =
∑

i∈K qi(x)ri(y),
whereK is finite and for eachi ∈ K, qi ∈ π or ri ∈ π}.

Proof. Take anyγ in Γ andp in π′. Then∑
β∈Z

s

p(Mβ + γ)a(Mβ + γ)(3.4)

=
∑

j,β∈Z
s

p(Mβ + γ)h(j)h(j −Mβ − γ)

=
∑

β,`∈Z
s

∑
η∈Γ

p(Mβ + γ)h(M`+ η)h(M`+ η −Mβ − γ)

=
∑

`,m∈Z
s

∑
η∈Γ

p(M`−Mm+ γ)h(M`+ η)h(Mm+ η − γ)

=
∑
i∈K

∑
η∈Γ

∑
`∈Z

s

qi(M`+ η)h(M`+ η)

×
∑

m∈Z
s

ri(Mm+ η − γ)h(Mm+ η − γ),



Convergence of nonstationary cascade algorithms 23

whereK is a finite set, and for eachi ∈ K, eitherqi ∈ π or ri ∈ π. If
qi ∈ π, then by the sum rules∑

η∈Γ

∑
`∈Z

s

qi(M`+ η)h(M`+ η)
∑

m∈Z
s

ri(Mm+ η − γ)h(Mm+ η − γ)

=
∑
`∈Z

s

qi(M`)h(M`)
∑
η∈Γ

∑
m∈Z

s

ri(Mm+ η − γ)h(Mm+ η − γ)

=
∑
`∈Z

s

qi(M`)h(M`)
∑
j∈Z

s

ri(j)h(j).

Similarly if ri ∈ π, then∑
η∈Γ

∑
`∈Z

s

qi(M`+ η)h(M`+ η)
∑

m∈Z
s

ri(Mm+ η − γ)h(Mm+ η − γ)

=
∑

m∈Z
s

ri(Mm)h(Mm)
∑
j∈Z

s

qi(j)h(j).

So for eachi in K, the terms in the sum in (3.4) are independent ofγ. Thus
a satisfies the sum rules forπ′. ut

For a spaceπ of polynomials onRs, let

Vπ := {v ∈ V0 :
∑

j

p(j)v(j) = 0, for all p ∈ π}.

According to our previous notation, foru1, . . . , um ∈ Z
2, Vπ(u1,...,um) =

V (u1, . . . , um).

Lemma 3.6 Suppose thatπ is a space of polynomials such that for anyp
in π, p(x) = q(Mx), whereq satisfiesq(x+y) =

∑
i∈K qi(x)ri(y), where

K is finite and for eachi ∈ K, qi, ri ∈ π. Suppose thata in V0 satisfies the
sum rules forπ and define the matrixA = (Aij)i,j∈Z

s byAij = a(Mi−j).
ThenAVπ ⊂ Vπ.

Proof. Forp ∈ π, v ∈ Vπ,∑
i∈Z

s

p(i)Av(i)

=
∑
i∈Z

s

p(i)
∑
j∈Z

s

a(Mi− j)v(j)

=
∑

i,`∈Z
s

∑
α∈Γ

q(Mi)a(Mi−M`− α)v(M`+ α)

=
∑

j,`∈Z
s

∑
α∈Γ

q(Mj +M`)a(Mj − α)v(M`+ α)
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=
∑
i∈K

∑
α∈Γ

∑
j∈Z

s

qi(Mj − α)a(Mj − α)
∑
`∈Z

s

ri(M`+ α)v(M`+ α)

=
∑
i∈K

∑
j∈Z

s

qi(Mj)a(Mj)
∑
`∈Z

s

ri(`)v(`) = 0,

sinceri ∈ π for i ∈ K andv ∈ Vπ. SoAv ∈ Vπ and soAVπ ⊂ Vπ. ut
We now consider some examples ofπ to illustrate Lemmas 3.5 and 3.6.

First letπ = πm−1, the space of all polynomials of total degree≤ m − 1.
Then clearly the conditions of Lemma 3.6 are satisfied. In this case the
result was proved in Jia [24]. Ifπ = πm−1, thenπ′ (as in Lemma 3.5)
equalsπ2m−1.

Next suppose thatπ = π(u1, . . . , um), whereu1, . . . , um are eigenvec-
tors ofM . We may suppose(u1, . . . , um) = (v1, . . . , v1, v2, . . . , v2, . . . , vr,
. . . , vr), wherev1, . . . , vr are linearly independent and fori = 1, . . . , r, vi

occurs with multiplicityαi ≥ 1. Choosevr+1, . . . , vs so thatv1, . . . , vs are
linearly independent and take a basisw1, . . . , ws so that forj = 1, . . . , s,
wj is orthogonal tovi, 1 ≤ i ≤ s, i 6= j. We claim thatπ(u1, . . . , um)
is the linear span of all polynomials of formp(x) = (w1x)j1 · · · (wsx)js

where for somè = 1, . . . , r, j` ≤ α` − 1, a space we denote temporar-
ily by π̃(u1, . . . , um). We prove by induction onm thatπ(u1, . . . , um) =
π̃ (u1, . . . , um). Clearly it is true form = 1. Suppose that for somem ≥ 2,
π(u1, . . . , um−1) = π̃(u1, . . . , um−1). Clearly π̃(u1, . . . , um) ⊂ π(u1,
. . . , um). Takep ∈ π(u1, . . . , um) and, without loss of generality, suppose
um = v1. Then∆v1p ∈ π(u1, . . . , um−1). Since∆v1p ∈ π̃(u1, . . . , um−1),
there is a polynomialq in π̃(u1, . . . , um) with ∆v1q = ∆v1p. Thenp − q
is a polynomial inw2x, . . . , wsx and sop is in π̃(u1, . . . , um). Thus our
claim is proved. We can now see thatπ(u1, . . . , um) satisfies the condi-
tions of Lemma 3.6. Note that in this caseVπ = V (u1, . . . , um). Also
π′ = π(u1, . . . , um, u1, . . . , um).

For our final example takeu1, . . . , um as above withr = s and letπ be
π(v1, . . . , v1) ∩ · · · ∩ π(vs, . . . , vs), where fori = 1, . . . , s, vi occurs with
multiplicity αi ≥ 1. From our above characterisation ofπ(u1, . . . , um)
we see thatπ is the linear span of all polynomials of the formp(x) =
(w1x)j1 · · · (wsx)js , where for̀ = 1, . . . , s, j` ≤ α` − 1. It follows thatπ
satisfies the conditions of Lemma 3.6. In this caseπ′ is the linear span of
all polynomials of the formp(x) = (w1x)j1 · · · (wsx)js , where for some
n = 1, . . . , s, jn ≤ 2αn − 1, andj` ≤ α` − 1 for all ` = 1, . . . , s, ` 6= n.
We see thatπ′ also satisfies the conditions of Lemma 3.6.

We chooseK as before and choose a bounded setI ⊂ Z
s so thatK ∩

(K + j) = ∅ for j 6∈ I. Forφk,0 ∈ L2(Rs) with support inK satisfying
(1.11) and (1.12), and forn = 0, 1, . . ., defineφk,n as in (1.13).
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Theorem 3.1 Suppose that(1.2) and (1.3) hold. Letu1, . . . , um be eigen-
vectors ofM in Z

s with corresponding eigenvaluesλ1, . . . , λm.LetW ⊂ C
I

be the least subspace containingC
I ∩ V (u1, . . . , um, u1, . . . , um) that is

invariant underTk for all k ≥ 0, and suppose thatT satisfies Condition
E∗∗. If
(a) (λ1 · · ·λm)2T restricted toW satisfies ConditionE∗∗, then
(b) for anyφk,0 satisfying(1.12)withDu1 · · ·Dumφk,0 ∈ F (u1, . . . , um),
the sequence(Du1 · · ·Dumφk,n) converges weakly inL2(Rs) to Du1 · · ·
Dumφk asn → ∞, uniformly ink, whereφk is the solution of(1.1), and
Du1 · · ·Dumφk converges weakly toDu1 · · ·Dumφ ask → ∞, whereφ is
the solution of(1.8).

Conversely if(b)holds, then(λ1 · · ·λm)2T restricted tõW satisfies Con-
ditionE∗∗, whereW̃ ⊂ C

I is the least invariant subspace ofT containing
C

I ∩ V (u1, . . . , um, u1, . . . , um).

Remark 4.By our remarks after Lemma 1 we may chooseK large enough
so that there are functionsφk,0 satisfying the conditions in(b), for instance,
φk,0 = φ0 for all k andφ0 is the box-spline of degreem with directions
(1, 0, . . . , 0), . . . , (0, . . . , 0, 1), u1, . . . , um.

Proof. We first prove (a) implies (b). Fork, n = 0, 1, 2, . . ., defineφk,n as
in (1.13) and let

bk,n(`) = 〈Du1 · · ·Dumφk,n, Du1 · · ·Dumφk,n(· − `)〉, ` ∈ Z
s.

Differentiating (1.13) gives

Du1 · · ·Dumφk,n(x) = |M |λ1 · · ·λm

∑
j∈Ω

hk+1(j)Du1 · · ·Dum

×φk+1,n−1(Mx− j), x ∈ R
s,

and hence
bk,n = (λ1 · · ·λm)2Tk+1bk+1,n−1.

It follows that

bk,n = (λ1 · · ·λk)2n

(
k+n∏

`=k+1

T`

)
bk+n,0.

SinceDu1 · · ·Dumφk,0 ∈ F (u1, . . . , um), by Lemma 3.4,

bk,0 ∈ V (u1, . . . , um, u1, . . . , um).

SinceDu1 · · · , Dumφk,0 has support inK,Du1 · · · , Dumφk,n also has sup-
port inK. Hencebk,n has support inI for all n. Thus

bk,0 ∈ C
I ∩ V (u1, . . . , um, u1, . . . , um).
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It follows that fork, n = 0, 1, . . ., bk,n lies inW .
By Proposition 2.1, the product(λ1 · · ·λm)2n

∏k+n
`=k+1 T` restricted to

W is uniformly bounded inn andk, and sobk,n is uniformly bounded inn
andk. In particularbk,n(0) = ‖Du1 · · ·Dumφk,n‖2

2 is uniformly bounded
in n andk. So for eachk, there is a subsequence(Du1 · · ·Dumφk,nj

) which
converges weakly inL2(Rs) to some functionψk in L2(Rs) as j → ∞
uniformly in k. So(Du1 · · ·Dumφk,nj

)̂converges weakly tôψk asj → ∞
uniformly in k.

Now

(Du1 · · ·Dumφk,n)̂(u) = (−iuu1) · · · (−iuum)φ̂k,n(u)

which, by (2.9), converges to(−iuu1) · · · (−iuum)Pk(u) asn → ∞ uni-
formly in k and locally uniformly inu. Thus

ψ̂k(u) = (−iuu1) · · · (−iuum)Pk(u), u ∈ R
s,(3.5)

and(Du1 · · ·Dumφk,n)̂(u) converges tôψk(u) asn → ∞ locally uniformly
in u and uniformly ink. By the argument in the proof of Theorem 1.2, it
follows that(Du1 · · ·Dumφk,n)̂converges weakly tôψk asn → ∞, and so
Du1 · · ·Dumφk,n converges weakly toψk asn → ∞ uniformly in k.

SinceT satisfies ConditionE∗∗, φk,n converges weakly toφk asn →
∞ uniformly in k, whereφk is the solution of (1.1), andφk converges
weakly toφ ask → ∞, whereφ is the solution of (1.8). Further,̂φk(u) =
Pk(u), u ∈ R

s. By (3.5) ψ̂k(u) = (−iuu1) · · · (−iuuk)φ̂k(u), which
givesψk = Du1 · · ·Dumφk. As in the proof of Theorem 1.2,̂φk con-
verges locally uniformly toφ̂, ask → ∞. Therefore,(Du1 · · ·Dumφk)̂

converges locally uniformly to(Du1 · · ·Dumφ)̂, ask → ∞. As in the proof
of Theorem 1.2,‖Du1 . . . Dumφk‖2 is uniformly bounded and it follows that
(Du1 · · ·Dumφk)̂converges weakly inL2(Rs) to (Du1 · · ·Dumφ)̂, ask →
∞. ThusDu1 · · ·Dumφk converges weakly inL2(Rs) toDu1 · · ·Dumφ, as
k → ∞.

Now we assume that (b) is satisfied. By Lemma 3.3,V (u1, . . . , um, u1,
. . . , um) is spanned by∇2

u1
· · · ∇2

um
δ(· + j), j ∈ Z

s. ThusC
I ∩ V (u1,

. . . , um, u1, . . . , um) is spanned by those∇2
u1

· · · ∇2
um
δ(· + j), j ∈ Z

s,
whose supports lie inI. Choosej ∈ Z

s so that this holds. Takef(·|u1, . . . ,
um) as in Lemma 3.2. We note that by choosingf0 smooth enough we
can makef(·|u1, . . . , um) arbitrarily smooth. Moreover iff0 ≥ 0 then
f(·|u1, . . . , um) ≥ 0 and so iff0 does not vanish identically then

∫
f(·|u1,

. . . , um) 6= 0, and we normalizef0 so that
∫
f(·|u1, . . . , um) = 1.

Let φk,0 = f(· − α|u1, . . . , um), ψk,0 = f(· − β|u1, . . . , um) for some
α, β ∈ Z

s, and for allk. By Lemma 3.2,

〈Du1 · · ·Dumφk,0, Du1 · · ·Dumψk,0(· − `)〉
= (−1)mσ∇2

u1
· · · ∇2

um
δ(`+ u1 + · · · + um + β − α).
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We can then chooseα, β so thatu1 + · · · + um + β −α = j andφk,0, ψk,0
have support inK. Now we defineφk,n, ψk,n, n = 1, 2, . . . , as in (1.13) and
for n = 0, 1, 2, . . .,

ck,n(`) = 〈Du1 · · ·Dumφk,n, Du1 · · ·Dumψk,n(· − `)〉, ` ∈ Z
s.

Thus

ck,0 = (−1)mσ∇2
u1

· · · ∇2
um
δ(· + j) ∈ C

I ∩ V (u1, . . . , um, u1, . . . , um)

and

ck,n = (λ1 · · ·λm)2n

(
k+n∏

`=k+1

T`

)
ck+n,0, n = 1, 2, . . . .

By (b) we knowDu1 · · ·Dumφk,n andDu1 · · ·Dumψk,n converge weakly
inL2(Rs) asn → ∞, uniformly ink.Hencebk,n is uniformly bounded inn
andk. Thus by Lemma 3.3, for eachv in C

I ∩V (u1, . . . , um, u1, . . . , um),
(λ1 · · ·λm)2n

(∏k+n
`=k T`

)
v is bounded inn andk. It follows that (λ1 · · ·

λm)2nTnv is bounded inn for eachv in C
I ∩ V (u1, . . . , um, u1, . . . , um).

Hence(λ1 · · ·λm)2nTn restricted tõW is bounded inn.
It remains to show that(λ1 · · ·λm)2nTn restricted toW̃ has spectral

radius1. Take any starting sequenceφ0 = φk,0 for all k, satisfying the
conditions of (b), and let

bk,n(`) = 〈Du1 · · ·Dumφk,n, Du1 · · ·Dumφk,n(· − `)〉, ` ∈ Z
s.

Then

bk,n(0) = ‖Du1 · · ·Dumφk,n‖2
2 = ‖(Du1 · · ·Dumφk,n)̂‖2

2.

Since for eachk,

lim
n→∞(Du1 · · ·Dumφk,n)̂= (Du1 · · ·Dumφk)̂ locally uniformly ,

by Fatou’s Lemma

limn→∞bk,n(0) ≥ ‖Du1 · · ·Dumφk‖2
2 > 0.

We note that

bk,n = (λ1 · · ·λm)2n

(
k+n∏

`=k+1

T`

)
b0, n = 1, 2, . . . .(3.6)

Further, sinceDu1 · · ·Dumφ0 ∈ F (u1, . . . , um), by Lemma 3.4

b0 ∈ C
I ∩ V (u1, . . . , um, u1, . . . , um) ⊂ W̃ .

If the spectral radius of(λ1 · · ·λm)2nTn is strictly less than1, it follows
from (3.6) by taking the limits asn → ∞, that bk,n → 0, which is a
contradiction. ut
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Imposing various conditions onhk gives various invariant subspaces
of Tk in C

I which containW . We consider three examples. First suppose
thathk satisfies the sum rules forπ(u1, . . . , um) for all k ≥ 0. Then by
Lemma 3.5 and the remarks after Lemma 3.6, the autocorrelationgk of
hk satisfies the sum rules forπ(u1, . . . , um, u1, . . . , um). By Lemma 3.6,
V (u1, . . . , um, u1, . . . , um) is invariant underTk and hence

W = C
I ∩ V (u1, . . . , um, u1, . . . , um).

Next suppose thathk satisfies the sum rules forπm−1. Then by Lemma
3.5, gk satisfies the sum rules forπ2m−1. By Lemma 3.6,Vπ2m−1 is in-
variant underTk. Sinceπ2m−1 ⊂ π(u1, . . . , um, u1, . . . , um), we see that
V (u1, . . . , um, u1, . . . , um) ⊂ Vπ2m−1 . ThusW ⊂ C

I ∩ Vπ2m−1 .
Finally suppose that(u1, . . . , um, u1, . . . , um) = (v1, . . . , v1, . . . , vs,

. . . , vs) where fori = 1, 2 . . . , vi occurs with multiplicityαi ≥ 1 and
v1, . . . , vs are linearly independent. Suppose thathk satisfies the sum rules
forπ, whereπ = π(v1, . . . , v1)∩· · ·∩π(vs, . . . , vs), where fori = 1, . . . , s,
vi occurs with multiplicityαi ≥ 1.By Lemma 3.5,gk satisfies the sum rules
for π′ described in the final example after Lemma 3.6. By Lemma 3.6,Vπ′ is
invariant underTk. Fors ≥ 2, π′ ⊂ π(u1, . . . , um, u1, . . . , um) and hence
V (u1, . . . , um, u1, . . . , um) ⊂ Vπ′ . ThusW ⊂ C

I ∩ Vπ′ .
For s = 1, the nonstationary refinement equation can be written in the

form

φk(x) = M

N∑
j=0

hk+1(j)φk+1(Mx− j), x ∈ R,(3.7)

whereM ≥ 2 is a integer. HereΩ = {0, 1, . . . , N} and we can take
K = [0, N ], I = {−N + 1, . . . , N − 1}. In this case Theorem 3.1 leads to
the following:

Corollary 3.1 Takem ≥ 0. LetW ⊂ C
I be the least subspace containing

C
I ∩ Vπ2m−1 that is invariant underTk for all k ≥ 0, and suppose thatT

satisfies ConditionE∗∗. If
(a)M2mT restricted toW satisfies conditionE∗∗, then
(b) for any sequence of functionsφk,0 with support in[0, N ] satisfying(1.11)

with φ(m)
k,0 ∈ L2(R), and

∞∑
`=−∞

p(`)φk,0(· − `) ∈ πm−1, for all p ∈ πm−1,(3.8)

φ
(j)
k,n converges weakly inL2(R) to φ(j)

k as n → ∞, uniformly in k, for

j = 0, . . . ,m,where(φk) is the solution of(3.7), andφ(j)
k converges weakly
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in L2(R) to φ(j) ask → ∞, for j = 0, . . . ,m, whereφ is the solution of

φ(x) = M

N∑
j=0

h(j)φ(Mx− j), x ∈ R.(3.9)

Conversely if(b) holds, thenM2mT restricted toW̃ satisfies Condition
E∗∗, whereW̃ ⊂ C

I is the least invariant subspace ofT containingC
I ∩

Vπ2m−1 .

Remark 5.If hk satisfies the sum rules forπm−1 for all k ≥ 0, thenVπ2m−1

is invariant underTk andW = C
I ∩ Vπ2m−1 . If N ≥ m+ 1 we can find a

sequence of functionsφk,0 satisfying the conditions in(b), e.g. the B-spline
of degreem with knots0, 1, . . . ,m+ 1.

Proof of Corollary 3.1. That (b) implies (a) follows immediately from
Theorem 3.1. On the other hand, if (a) holds, it follows from Theorem 3.1
thatφ(m)

k,n converges weakly toφ(m)
k , asn → ∞, uniformly in k, andφ(m)

k

converges weakly toφ(m), ask → ∞, where(φk) is the solution of (3.7)
andφ is the solution of (3.9).

Now takek, n ≥ 0 and 0 ≤ j < m. For |u| ≥ 1, |(φ(m)
k,n )̂ (u)| =

|u|m−j |(φ(j)
k,n)̂ (u)| ≥ |(φ(j)

k,n)̂ (u)|. For |u| ≤ 1, (φ(j)
k,n)̂ (u) converges to

(φ(j)
k )̂(u) asn → ∞, uniformly in k andu. Since‖(φ(m)

k,n )̂‖ is uniformly

bounded ink andn, it follows that ‖(φ(j)
k,n)̂‖2 is bounded ink andn. So

by our previous argument,(φ(j)
k,n)̂ converges weakly to(φ(j)

k )̂ asn → ∞
uniformly in k, and soφ(j)

k,n converges weakly toφ(j)
k asn → ∞, uniformly

in k. Similarly for j = 1, 2 . . . ,m− 1, φ(j)
k → φ(j) weakly ask → ∞. ut

Theorem 3.2 Suppose that(1.2)and(1.3)hold, and thatM hass linearly
independent eigenvectors inZ

s with eigenvaluesλ1, . . . , λs, hk satisfies the
sum rules forπm−1 for somem ≥ 1, for all k ≥ 0, andT satisfies Condition
E∗∗. ThenVπ2m−1 is an invariant subspace ofTk, and(a) implies(b), where
(a) and(b) are as follows.

(a) ρ(M)2mT restricted toC
I ∩ Vπ2m−1 satisfies ConditionE∗∗.

(b) For any eigenvectorsu1, . . . , um ofM and any sequence of functions
φk,0 with support inK satisfying(1.11),Du1 · · ·Dumφk,0 ∈ L2(Rs),
and ∑

`∈Z
s

p(`)Du1 · · ·Dumφk,0(· − `) = 0, for all p ∈ πm−1,(3.10)

Du1 · · · , Dumφk,n converges weakly inL2(Rs) to Du1 · · · , Dumφk

asn → ∞, uniformly in k, whereφk is the solution of(1.1), and
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Du1 · · ·Dumφk converges weakly toDu1 · · ·Dumφask → ∞,where
φ is the solution of(1.8).

Moreover if|λ1| = |λ2| = · · · = |λs|, then(b) implies(a).

Proof. To prove that (a) implies (b) we follow the proof of (a) implies
(b) in Theorem 3.1 except that we havebk,0 lies in Vπ2m−1 rather than
V (u1, . . . , um, u1, . . . , um).

Now suppose that|λ1| = |λ2| · · · = |λs| = ρ(M) and (b) holds. We
apply the method of the proof that (b) implies (a) in Theorem 3.1 except that
now we takeφk,0 = f(· −α|u1, . . . , um), ψk,0 = f(· − β|um+1, . . . , u2m)
for any choice of the eigenvectorsu1, . . . , u2m. We see that(ρ(M)2mT )n

restricted toC
I ∩ V (u1, . . . , u2m) is bounded inn. Since the eigenvec-

tors ofM spanR
s, the intersection ofπ(u1, . . . , u2m) over all choices of

u1, . . . , u2m equalsπ2m−1. ThusVπ2m−1 is the linear span of the spaces
V (u1, . . . , u2m) over all choices ofu1, . . . , u2m. Thus (ρ(M)2mT )n re-
stricted toC

I ∩ Vπ2m−1 is bounded. A similar argument as in the proof
of Theorem 3.1 shows that1 is an eigenvalue ofρ(M)2mT restricted to
C

I ∩ Vπ2m−1 . Thus (a) holds. ut
Corollary 3.2 Assume the conditions of Theorem 3.2 and suppose that(a)
of Theorem 3.2 holds. Take any functionφk,0 with support inK satisfying
(1.11)and(1.12)withDαφk,0 ∈ L2(Rs) for all α ∈ Z

s with |α| = m, and∑
`∈Z

s

p(`)φk,0(· − `) ∈ πm−1, for all p ∈ πm−1.(3.11)

Then for anyβ ∈ Z
s with |β| ≤ m,Dβφk,n converges weakly inL2(Rs) to

Dβφk asn → ∞, uniformly ink, where(φk) is the solution of(1.1), and
Dβφk converges weakly toDβφ ask → ∞,whereφ is the solution of(1.8).

Proof. Suppose thatφk,0 satisfies the conditions of Corollary 3.2. Then for
any eigenvectorsu1, . . . , um of M ,∑

`∈Z
s

p(`)Du1 · · ·Dumφk,0(· − `) = 0, for all p ∈ πm−1.

So by Theorem 3.2, the sequence(Du1 · · ·Dumφk,n) converges weakly in
L2(Rs) to (Du1 · · ·Dumφk) asn → ∞, uniformly ink.Since the eigenvec-
tors ofM spanR

s, it follows that for anyα in Z
s with |α| = m, (Dαφk,n)

converges weakly inL2(Rs) to (−iu)αφk(u). It then follows, as in the proof
of Corollary 3.1, that for allβ with |β| ≤ m, (Dβφk,n) converges weakly in
L2(Rs) toDβφk asn → ∞, uniformly in k. Similarly, (Dβφk) converges
weakly inL2(Rs) toDβφ ask → ∞. ut
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Remark 6.For a functionφk,0 that satisfies the conditions of Corollary 3.2,
we can take a suitable translate ofN(x1, . . . , xs) := Nm(x1) · · ·Nm(xs),
whereNm is the univariate B-spline of degreemwith knots at0, . . . ,m+1.
If p(x) = xα1

1 · · ·xαs
s , 0 ≤ αj ≤ m, j = 1, . . . , s, then∑

`∈Z
s

p(`)N(x− `) =
∑
`∈Z

xα1
1 Nm(x1 − `) · · ·

∑
`∈Z

xαs
s Nm(xs − `)

= P1(x1) · · ·Ps(xs),

where for` = 1, . . . , s, P` has degree≤ α`. In particular, if
∑s

j=1 αj ≤
m − 1, thenP1(x1) · · ·Ps(xs) lies in πm−1. Thus (3.11) is satisfied for
φk,0 = N for all k.
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