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Summary. A nonstationary multiresolution of?(R?®) is generated by a
sequence of scaling functions, € L?(R®), k € Z. We consider(¢y)
that is the solution of the nonstationary refinement equatigns= |M |

> i ter1(9)dr+1 (M - —j), k € Z, wherehy, is finitely supported for
eachk and M is a dilation matrix. We study various forms of convergence
in L2(R*) of the corresponding nonstationary cascade algorighm =

|M| >, hi1(J)Pkr1,n—1(M - —j), ask or n tends tooo. It is assumed
that there is a stationary refinement equatiosvatith filter sequencé and
that) , |hi(j) — h(j)| < oo. The results show that the convergence of the
nonstationary cascade algorithm is determined by the spectral properties of
the transition operator associated with

Mathematics Subject Classification (1994)A15, 41A30, 42C05, 42C15

1. Introduction

In the applications of stationary wavelet decompaosition and reconstruction,
the filter sequences are independent of the resolution levels. In some cases,
especially in multiwavelet decomposition and reconstruction, preprocessing
is necessary. Preprocessing can be viewed as a step in the decomposition us-
ing a different filter sequence. Different filter sequences at different multires-
olution levels give rise to different scaling functions and different wavelets

at different multiresolution levels. This leads to nonstationary multireso-
lution. Stationary multiresolution does not exist in Hilbert spaces, such as
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Sobolev spaces and periodié-spaces, where unitary dilation operators do
not exist. Therefore, in the multiresolution decomposition of such a space,
it is natural to consider nonstationary multiresolution.

In this paper we study the solution of nonstationary refinement equa-
tions associated with nonstationary multiresolutio.éfR?®), wheres is a
positive integer. A characterization ¢f € L?(R®), k € Z, that generate a
nonstationary multiresolution has been established by deBoor, DeVore and
Ron in [1]. We shall assume thaj, = ¢ for k£ < 0. Then their results can
be succinctly stated as follows.

Theorem 1.1 ( deBoor, DeVore and Ronpuppose thafé, (- — 2¥5) :
j € Z°} is a Riesz basis of its closed linear sp&jp and assume that
Vi C Vis1, k € Z. Then(V},) is a multiresolution of.?(R?#) if and only if

N {u ER’: gp(u) = O} is a null set

keZ
The above theorem assumes thigtC Vi1, k& € Z, which is equivalent to

Sr(r) = Y hpa(Norra(e —25Y), ez’ k=0,1,...,
JEZ®
for some family of sequencés, € ¢5(Z°), k =1,2,....

We shall consider the following more general formranstationary
refinement equations

Sr(x) = [M]Y " hip1 () dr 1 (Mz — j),
jen
(1.1) rER, k=012, ..,

wherefork = 0,1,2,..., ¢, isatempered distribution a&’, h,, is afinitely
supported sequence with supportfdy a bounded subset @, and M is
ans x s integer matrix with determinanfi/| > 2 andlim,, o, M " = 0.
We shall assume throughout that there is a sequescgported or? such
that for eachj € (2,

(1.2) D 1hk(§) = h(5)] < oo,
k=1

and

(1.3) > n() =1

jen
It follows that

(1.4) SO hi(h) — 1] < oo
k=1 j
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In the Fourier domain, (1.1) is equivalent to

(1.5) Op(u) = Hyy1(Nu)dper1(Nu), u € R,
whereN = (M*l)T, and

(1.6)  Hp(u) =) hi(j)e ™, k=01,2,..., ucR"
JEN

For convenience we shall call, the Fourier transform of,. A sequence
(o) is asolutionof (1.1) if it satisfies (1.1) or (1.5) and

(1.7) pan(N™) — 1,  asn — oo,

uniformly in & > 1 and locally uniformly inu € R®.
If hy = his independent ok, then¢, = ¢ is also independent df,
and the equations in (1.1) reduce to the ordinary refinement equation

(1.8) ¢(x) = M| h(j)¢(Mz - j), = €R.
JeEN

In this case (1.7) is equivalent &(O) = 1. Equation (1.8) has been exten-
sively studied recently in connection with wavelets analysis ([4, 6, 9-15, 19,
20, 22-30, 36-39]). Equation (1.8) can also be viewed as the limiting case
of the nonstationary refinement equation (1.1), and we shall refer to it as the
ideal refinement equatiomssociated with (1.1).

Let I" comprise coset representativesZ6f M Z*. We say that is fun-
damentaif forany vy € I,

) 1
(1.9) > hMj+9) =
- [M]
Clearly h satisfies (1.3) if it is fundamental.
We choose a bounded s&t C R* satisfying

(1.10) UMK +j)cK
JEN
We now choose a sequenggy, k = 0,1,2,...,in L?(R*) with supportin
K satisfying ~
(1.11) Pro — ¢oin L*(R®), ask — oo,
and X
(1.12) Oktno(N"u) — 1, asn — oo,

uniformly in £ and locally uniformly inu. Trivially (1.11) is satisfied ity ¢
is independent of. We note that%m is continuous antim,,_,., N = 0.
Thus (1.12) is satisfied iy, o is independent of andém(o) =1.
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Now forn =1,2,..., k=0,1,2,..., we definepy ,, in L?(R?) by

(1.13) dpn(x) = M| Y hip1(Ddkr1ma (Ma —j), z €R®.
JEN

We call (1.13) anonstationary cascade algorithmBy (1.10) we see by
induction onn that ¢y, , has support ik for all k& andn. Applying the
relation (1.13) iteratively leads to

(1.14) dpn(z) = [M| Z Sk (J)Pkino(M"x — j), = €R?,
JjeEN

where
Skn = Sk+n te Sk+150a

andS,, : (>°(z°) — (>=(z?) is the subdivision operatowith maskh,,
defined by

(L15)  (Smb)(4) = IM| Y hm(j — Mu)b(v), j € Z°.
vel’®

o0

The sequence of subdivision operat0$s,),._, is called anonstationary
subdivision proces3he process is said twnvergef foreachk = 0,1, . ..
there is a compactly supported functipp € C(R®) such that

Hsk,n — (M- )| = 0.

)

lim

n—oo
If ¢10 is stable, then the nonstationary subdivision pro¢éss),>_, con-
verges ta¢y) if and only if

n—00

Thus the limiting sequence of functions of a nonstationary subdivision pro-
cess s the solution of the corresponding nonstationary refinement equations.
Convergence of nonstationary subdivision processes with dilafioa 21,

and the smoothness of the limiting functions were recently studied in [13,
2, 14] and [11]. The stationary case in whikh = h for all k£, has been
studied earlier in [3], [17] and [22], and the corresponding stationary refine-
ment equations are very much investigated in the theory of wavelets. In [14],
Dyn and Levin showed that if (1.2) holds, tli€°-convergence of a non-
stationary subdivision procesS;) with mask sequencg,) follows from

that of the equivalent stationary subdivision proc&ssith maskh. They

also obtained sufficient conditions based on the converger(¢g pfo S, in

order that the solutions of the nonstationary refinement equations with mask
sequencéhy,) would inherit the stability and smoothness from the solution
of the ideal stationary refinement equation with méaskn this paper we
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shall investigate the convergenceif(R#) of the cascade sequendes ,,)
to the solution(¢y,) of (1.1) asn — oco. We consider both weak and strong
convergence of the cascade algorithms and also the weak convergence of
the derivatives of the cascade sequences.

Forf, gin L?(R*) we write(f, g) = [ps fg.Fork,n=0,1,...,j € Z°,
define a sequendg, ,,(j) by

(1.16) bkz,n(]) = <¢k7na ¢k:,n( _])>

As ¢y, has support in the bounded skt we may choose a finite set
I C 7° so thatby,(j) = 0 for j ¢ I and for allk,n = 0,1,2,....
In fact I can be chosen so th&f N (K + j) = 0 for j ¢ I. Now for
n=12,..., k=0,1,2,...,(1.13) and (1.16) give

1.17) D) = IM| D ge1(Mj = v)bpsna(v), j€T,

VEZS
whereg;.. 1 is the autocorrelation diy. 1, i.e.
(1.18) Gh+1(7) =D 1 (Ohia (0= ), j €2,

e

To simplify the relation (1.17) we introduce theansition operatorsly, :
c! -l k=1,2,..., bydefining
(L.19) Tia(j) =IM| > ge(Mj—wv)a(v), jel, accC.

vel®
Then (1.17) becomes

(120) bk,n :Tk-i-lbk-i-l,n—l? k= 0717"'7 n= 1727""
Iterating (1.20) leads to

k+n

(1.21) bm = ( 11 T€> bhino, kn=01,2,....

(=k+1
By (1.2), forj € Z°,

(1.22) Z l9k(7) — 9(j)| < oo,

whereg is the autocorrelation df. Let T : C! — ¢! be defined by asTj,
is defined byy;, in (1.19) so that

(1.23)  Ta(j) = M| > g(Mj—v)a(v), jeI, acC.
I/EZS
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Then (1.19), (1.22) and (1.23) lead to
(1.24) D T = T < oo
k=0

We now introduce some terminology before we state our main results on
the L2-convergence of nonstationary cascade algorithms. A square matrix
A is said to satisfyCondition E** if it has unit spectral radius and all its
eigenvalues on the unit circle are nondegenerate. If in additisrthe only
eigenvalue on the unit circle, thehis said to satisfyConditionE*. We say
that A satisfiesCondition Eif it satisfies ConditionE* and1 is a simple
eigenvalue.

Theorem 1.2 Suppose thatl.2)and(1.3)hold. The following are equiva-
lent.

(a) T satisfies Conditiory™*.

(b) For any (¢ ) satisfying(1.11)and (1.12), ¢y, converges weakly
to ¢y in L2(R%) asn — oo, uniformly ink, where(¢y) is the L2-
solution of(1.1), and ¢;, converges weakly in?(R*) to ¢ which is
the solution of the ideal refinement equat(@ng).

(c) Forany(¢y ) satisfying(1.11)and(1.12) ¢, converges weakly to
én in L2(R®) ask — oo, uniformly inn, where(¢,,) is the cascade
sequence foh with starting functionp,, and¢,, converges weakly in
L?(R?®) to ¢ which is the solution of1.8).

Theorem 1.3 Suppose thatl.2)and(1.3) hold. The following are equiva-
lent.

(a) T satisfies conditioy andh is fundamental.
(b) Forany (¢ ) satisfying(1.11), (1.12)and

(1.25) Z do(-—j) =1, almosteverywhere,
JjeZ®

the cascade sequeneg , converges strongly tay in L?(R®) as
n — oo, uniformly ink, where(¢y) is the solution of1.1), and ¢,
converges strongly ifi?(R*) to ¢ which is the solution of1.8).

(c) For any (¢r,) satisfying(1.11), (1.12)and (1.25) the cascade se-
quencepy, ,, converges strongly 10, in L2(R*) ask — oo, uniformly
inn, whqre(én) is the cascade sequence fowith starting function
#o, and ¢,, converges strongly ih?(R*) to ¢ which is the solution
of (1.8).

Remark 1.The conditions on¢y ) in Theorems 1.2 and 1.3 are easily
satisfied if(¢ o) is independent of.
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Corollary 1.1 Supposé, = hforall k. Then the following are equivalent.
(a) T satisfies Conditiory™*.

(b) For any initial functiong, with ¢,(0) = 1, the cascade sequengg
converges weakly to in L?(R*) asn — oo, whereg is the solution
of the ideal refinement equati¢h.8).

Corollary 1.2 Supposé = hforall k. Then the following are equivalent.
(a) T satisfies ConditiorZ andh is fundamental.

(b) For any initial function ¢, satisfying¢,(0) = 1 and (1.25) the
cascade sequengs, converges strongly to in L?(R®) asn — oo,
whereg is the solution of the ideal refinement equat{@rB).

The result (a) implies (b) in Corollary 1.1 was proved by Lawton, Lee
and Shen [33]. In this case, the equivalence of (a) and (b) was subsequently
established by Cohen, Gehenig and Villemoes [7]. Corollary 1.2 was the
main resultin [33]. It was independently established by Han Bin and Jia [18]
in a more general setting df’-convergence. In one dimension it was first
considered by Strang [40]. The same result in a different form embedded in
the theory ofL.P-convergence of subdivision processes was obtained slightly
earlier by Goodman, Micchelliand Ward [17] and also independently by Jia
[22]. Recently, Shen [39] has extended Corollary 1.2 to the vector case.

In Sect. 2 we shall prove Theorem 1.2 and 1.3, while in Sect. 3 we con-
sider the weak convergence of the derivatives of the nonstationary cascade
algorithm.

2. Convergence of nonstationary cascade algorithms ifi2 (R®)

Let B be any compact set g’ containing the origin. Sincgy, ) is uniformly
bounded andim,, ..o N =0,fork =0,1,...,andu € B,

|Hp(N*u) = Hy(0)] < Cnf,
for some0 < < 1 andC independent ok andu. Since| Hy(N‘u) — 1| <
Cn' + |H(0) — 1|, we see from (1.4) that

(o.9]

(2.1) D Hipo(Nfu) = 1] < 00
=1

uniformly for « in B andk > 0 and the sum is bounded inandu € B. It
follows that the infinite product

(2.2) Pp(u) := [ [ Hese(Nw), ueR?,
=1
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converges uniformly itk > 0 andw in B. A standard argument shows that
fork =0,1,..., Py(u) is of polynomial growth asu| — oo. Thus, it is
the Fourier transform of a tempered distribution. By (2.1),

H Hk+f(Néu) < Ca

(=1

for all K andn and for allu € B, whereC is an absolute constant. Thus

<C Z |Hyo(N*u)—1] — 0, asn — oo,
{=n+1

H Hk+n+g(Nn+£u) -1
(=1

(2.3)

uniformly in £ > 0 and locally uniformly inu € R®. It follows that
Py (N™u) — 1, asn — oo. Further,

(2.4) Py(u) = [ ] Here(N*u) = Hi1(Nu) Pryr (Nu).
=1

Thus P, is the Fourier transform of a distributional solution of (1.1). The
solution is unique. For, if¢) is a solution of (1.1), iterating (1.5) leads to

(2.5) H Hio(Nu)Gpin(N™u),  u € R,

for all n > 1. Taking the limit as» — oo, and using (1.7) we have

(2.6) or(u) = [ Here(N'u) = Pi(u), ueRr".
=1

Now, taking the Fourier transforms of the functions in (1.13) gives

(2.7) G () = Hy1(N)dpp1,n—1(Nu),
whereHy is given in (1.6). Thus we have féarn =0,1,2, ...,

(2.8) Prn (u HHk:-i-E W) rno(N™u), u€ RS

Then by (1.12) and (2.8),
(2.9) lim ¢kn( ) = Px(u)

n—oo

where the convergence is uniform over 1 and locally uniform inu.

The analysis on the convergence of the nonstationary cascade algorithm
requires results on products of matrices. The space of all complex-valued
r x r matrices will be denoted bg"*".
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Proposition 2.1 Let|| - || be an operator norm o€"*", 4, € C"*", ¢ =
1,2,..., and suppose there is aft € C"*" of spectral radiugp(A) > 1
satisfying

(2.10) > 14— Al < oo
/=1

ThenH]‘[’Zj,?+1 AgH is bounded for alln and k if and only if A satisfies
Condition £**.

Proof. Suppose tha#l satisfies Condition=**. Then we may choose an
operator norm ol£”*" with || A|| = 1, and (2.10) still holds. Then

k+n k+n

I TT Adi < I (l4e— Al +1)
l=k+1 l=k+1
k+n

< JJ exolll4e— Al

{=k+1

< exp() A — All)

/=1

forall k andn. Conversely, suppose thaﬂiﬁ,ﬁ“ Ayl isuniformly bounded

in k andn. For eachn,

k+n k+n
A" = T Adl <Cn D Ac— A — 0, ask — oo.
(=k+1 (=k+1

For alln andk,

k+n k+n
A < A" = ] Ad+1 ] Al
l=k+1 l=k+1
k+n
<A™ — H Aol + C.
l=k+1

Taking the limit ask — oo, gives||A"|| < C, for all n. Since the spectral
radius ofp(A) > 1, it follows that A satisfies Conditiods**. O

We also need the following theorem in [16].

Theorem 2.1 Suppose thatl,, / = 1,2,..., and A are matrices inC"*"
satisfying(2.10) Then the following are equivalent.

(a) A satisfies Conditiors*.
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(b) The matrix producf[éfj,?;rl Ay converges as — oo, uniformly in
k.
Moreover, if(a) or (b) holds, then

k+n k+n
lim lim H Ap= lim lim H Ap= lim A™

k—00 Nn—00 n—o00 k—o00 n—00
{=k+1 l=k+1

Proof of Theorem 1.2Suppose€l’ satisfies conditior2**. By Proposition
2.1, HIZL?H Ty, is uniformly bounded ink andn. By (1.21) and (1.11),

|| bk, .|| is bounded irk andn. In particularpy, ,, (0) = ||¢x |3 is bounded in
k andn. So for eacli: > 0, there is a subsequeng@g;, ,,, ) which converges

weakly to some functiomy, in L(R®) asj — co. Thusgy, ., — ¢, weakly
asj — oo. On the other hand, by (Z.Q}km (u) converges to

Py(u) := [ [ Hire(N'w),
=1

asj — oo uniformly in k£ and locally uniformly inu. Thus
(2.11) Sr(u) = Pr(u), ueR’,

and gg)kmj (u) converges toyBk(u) asj — oo uniformly in k£ and locally
uniformly in . X R o R

Note that for eachk, (¢, ¢x) converges togy, ¢r) = ||loxl3 as
J — 00, and sinc&(dx. n; , k)| < [Pk, 2]kl @and|| ey, [|2 is bounded
in k£ andj, it follows that||¢x |2 is bounded irk. Thus||¢x||2 is bounded in
k.

Now takek > 0 andf in L?(R®). SincengASk,an is bounded ik andn,
and||¢ |2 is bounded irk, we can choos& with || ¢y, — d|l2 < K for
all k andn. Takee > 0 and chooseV with [, - v |f(u)[*du < €. Then

<eK forall k,n.

| / £ () (Gen () — (1))
[u|>N

Also

/ £ () (i (1) — i ()
lul<N

1/2
< [If]l2 </I|<N!<z3k,n(U)—¢3k(u))2dU> ,
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which tends to zero uniformly ik asn — oco. Thus [gs f(drn — br)
tends to zero uniformly ifk asn — co. SO¢,, — ¢, weakly asn — oo
uniformly in k. Thusey, ,, — ¢, weakly asn — oo uniformly in .

We note that|¢y||2 is uniformly bounded and

or(u) = HHkM(Ngu), u € RS,
=1

By (2.4),(¢y,) satisfies (1.1). By (2.3)p,, satisfies (1.7). Hencég,) is the
solution of (1.1).

Since||¢x |2 is bounded there is a subsequeli¢g; ) which converges
weakly top in L2(R*). Now by (1.2),

(2.12) Z |Hj, (u u)| < oo, forallu e R,
where
(2.13) H(u) := Y h(j)e "

JEN

The infinite producf[;2, H(N*u) is of power growth agu| — oc. Thus
it is the Fourier transform of a distributiap which is the solution of the
refinement equation (1.8). We now show thal'ikatisfies Conditiorfz**
thencbk( ) converges locally uniformly im to ¢( ), ask — oo. As in the
derivation of (2.3), for: in any compact seB,

|6k (u) = S(w)| = | [ [ Here(N*u) = [[ H(N w)
(=1

(=1

<C i |Ho(N*Fu) — H(N**u)).

{=k+1
This leads to
|6 (u) — d(u)] < C Y Z e ()
jEQ b=k+1

which tends td) uniformly inu € B, ask — oo, by (1.2). By the same
argument as above we conclude that ¢ and thaty;, converges weakly
to ¢ in L2(R®).

Now we assume that (b) is satisfied. lbéf) = (¢, (- — 7)), j € 1.
By (1.23) and (1.8)]'b = b. Thusb is an eigenvector df’ with eigenvalue
1. In particularp(7") > 1. Without loss of generality we may assume that
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[0,1]* c K, and we choose any functianin L?(R*) with support in[0, 1]*
andy(0) = 1. Take an arbitrarily fixed € I andfork = 0,1,2,..., define

Yo =1, dro=19(+1).

Note that(¢y o) and (v, o) satisfy (1.11) and (1.12). Fé,n = 0,1,2, ...,
we definegy, ,, by (1.13) and similarly we defing;, ,, by (1.13) with¢y, o
replaced by o. Fork,n =0,1,2,..., j € Z*, we definec, ,(j) by

Ck,n(j) = <wk,na ¢k,n( - ])>
Note thatcy, ,,(j) = 0 for j ¢ I and

(2.14) ck0(j) = 0je, €L
It follows from (1.13), as in the derivation of (1.21), that

k+n

(2.15) Chn = ( 11 T,,) Chino, M k=012 ...

v=k+1

Now by (D), ¢k, — ¢r andepy , — ¢ weakly in L?(R%) asn — oo uni-
formly in k. By the Uniform Boundedness Theorefay, |2 and ||y |2
are uniformly bounded it andn. Since

|Ck,n(])‘ < ||¢k’,n| 2 ”Q/)k,n

cn.k(J) is uniformly bounded irk andn. Recalling (2.14) and (2.15),
follows that || Hl’fiZHT,,H is bounded ink andn. Sincep(T) > 1, it
follows thatT" satisfies Conditior™*.

The equivalence of (a) and (c) is proved in the same way.

The proof of Theorem 1.3 requires the following lemma.

2,

it

Lemma 2.1 Suppose thatl,, £ = 1,2,..., and A are matrices inC™*"
satisfying(2.10),and A satisfies ConditiorE*. Let F; be the eigenspace
of A corresponding to the eigenvalde andC" = F; & Q, where( is
invariant underA. Then for any sequende,,) in C" converging ta; € Q,

k+n
lim < 11 Ag) ¢n =0, uniformly ink.

n—00
l=k+1

Proof. Choose an operator norm @fi*” with || A|| = 1. Thenfork,n > 0,

Proposition 2.1 gives
k+n

1T

l=k+1

<,
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whereC' is a constant independent bfandn. Then for anyk > 0,1 <

m < n,
k4+n k4+m
(i) (i 1)
l=k+1 l=k+1
k+n
(2.16) <C* Y [A—A|.
{=k+m+1
For anyq € Q,
k+n k+m k+n
( I1 Ag> q- ( I1 Ag> Al < CPlgll YD 1A Al
l=k+1 l=k+1 t=k+m+1

Since the spectral radiygA|g) < 1, A" ™¢ — 0 asn —m — oo. Letting
m — oo andn — m — oo, this implies that( e Ag) ¢ — 0, and

hence(l‘[f;“,?le Ag) gn — 0 a@sn — oo uniformly ink. O

Proof of Theorem 1.3Suppose that (a) holds. Sin€esatisfies Condition
E, Theorem 1.2 implies that the cascade sequenggconverges weakly
to ¢y in L*(R) asn — oo uniformly in &, for any starting sequendey, o)
satisfying (1.11) and (1.12). Furthégy, ) is the solution of the nonstationary
refinement equation (1.1), ari@;) converges weakly to the solutianof
(1.8) in L?(R*®). We shall establish (b) by showing that fbr= 0,1,...,
I6k.all — 6]l @sn — oo, and|jgx|| — [l¢]| ask — oo.

Recall that fork,n = 0,1, ...,

bk,n(]) = <¢k,nu ¢k,n( _j)>7 .7 € ZS;

and(by, ,,) satisfies (1.20) and (1.21) and are finitely supported with common
support! C R*. Fork =0,1,..., define

(2.17) bi(5) == (Pw, o (- — 7)), J €L,
and
(2.18) b(j) = (o,0(- —34)), JE€L,

which are all supported oh
As in the derivation of (1.20), the equation (2.17) gives

(2.19) be = Tps1bes1, k=0,1,....

Similarly, (2.18) give$ = Tb. Thusbis the eigenvector af with eigenvalue
1. Sincel is a simple eigenvalue @f : ¢! — ¢! and allits other eigenvalues
lie inside the unit circle, we can decompase= M & Q, where

M = {ab: a € C} and the spectral radiyg7'|g) < 1.
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Thenfork =0,1,...,
(2.20) beo =arb+qr, ar € C, andg, € Q.

By Theorem 1.2¢;, converges locally uniformly te and by (1.7), p(¢t)dt
= 1. Sinceh is fundamentaly_; ¢(- — j) = 1 which implies that

(2.21) > b)) =1.
J

The conditions (1.11) and (1.12) imply thg(;(o) = 1. This together with
(1.25) gives

(2.22) Jim D brold) =Y (o, do( - —4)) = 1.
> el jel
Sinceq; € Q, it follows (see for instance Lemma 3.4 of [33]) that
(2.23) > () =0, k=0,1,....
JeZ’

By (2.20), (2.21), (2.22) and (2.23), we deduce that— 1 ask — co.
It follows from (1.11) and (2.20) thaf; converges, aé — oo, to some
ge Q. Fork=0,1,...,

k+n
(2.24) bpn = ( H Te) bk+n,0-

l=k+1
By (2.20)
k+n k+n
(2.25) Dk = Qhin ( 1T T£> b+ ( 11 Tg) Tk n-
l=k+1 l=k+1
Thus,
(2.26) lim by, = (ZIZLTK) b, uniformly in k,

by Lemma 2.1 and Theorem 2.1. Sin€esatisfies Conditior®, (2.24),
(1.11) and Theorem 2.1 give

lim lim b, = lim lim by ,.
k—oon—oo n—o00 k—oo

From (2.25) and Theorem 2.1, recalliig = b,

lim lim by, =b+ lim T"qg =b.
n—oo k—oo n—00
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Therefore,
(2.27) lim lim by, = b.

k—o0 n—00

In particularlimy_, o lim,, 0 bg, (0) = b(0), i.€.
lim lim ([gpnl* = [|4].
k—oc0 n—00
But Fatou’s Lemma gives
lim lim |[ép [ > Tim [lgx]* > [|g]>.
k—o0 n—00 k—o0

Therefore,
lim || |* = [|¢]%,
k—oo

from which we conclude that;, converges strongly to in L?(R?) ask —
Q.
The strong convergence ¢f to ¢ implies that, — b. Now (2.19) gives

k+n
(2.28) by, = ( 11 T£> bisn, k,n=0,1,....

l=k+1

Lettingn — oo, we have

oo
(2.29) bk:<H Tg)b, k=0,1,....

l=k+1

Combining (2.26) and (2.29) givés ,, — by, asn — oo, uniformly in &.
In particular,

[ Grnll3 = brn(0) = be(0) = [|ill3-

Therefore,(¢y,,) converges strongly te, asn — oo, uniformly in k =
0,1,....

Conversely, suppose (b) holds. Lgtbe the characteristic function of
[0,1] ¢ K.Forv € I andk = 0,1,..., define¢o := ¥ (- +v), asin
the proof of Theorem 1.2. The sequengg, is independent of and thus
satisfies all the conditions in (b). Wity o) as an initial sequence, define
the cascade sequengg; ,,) by (1.13). Ther(¢y.,,) converges in.?(R?) to
¢r asn — oo, uniformly in k = 0,1,.... The sequencég, ,, defined in
(1.16) by this cascade sequence satisfies

k+n
b, = ( H Te) biyn,o @nd b o(j) = 6,(4) ,

l=k+1
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fork,n=20,1,.... Thus

k+n
(2.30) b = ( 11 Tg) 5y

l=k+1

Sinceb, ,, converges as — oo uniformly ink, it follows that(Hfj,?H Tg)

d,, converges for alb € I, asn — oo uniformly in . Thusl‘[ﬁijj+1 Ty
converges ag — oo uniformly in k. By Theorem 2.17 satisfies Condition
E*.

Sincegy. , converges in norm tgy, in L?(R*) asn — oo, uniformly in
k, it follows thatby, ,, — by, asn — oo, uniformly in k, whereby, is defined
in (2.17). Thus (2.30) gives

(2.31) ( ﬁ Tg) 5, = by,

l=k+1

for all v € I. Since¢;, converges in norm tg in L2(R*), b, converges to
bask — oo, whereb(j) = (¢, (- — 7)). We know thab is an eigenvector
of T" with eigenvaluel. To show thafl" satisfies Conditior, it remains to
show thath is unique up to a constant multiple.

Letv € C! be any eigenvector &f with eigenvaluel. By (2.31)

(2.32) ( 11 Tg) v = Sby,

l=k+1

whereg =3, v(j). We now show that

(2.33) kli\m ( ﬁ Tg) v =.

l=k+1

To prove this, consider

H(i[;n)v_v - H( kﬁl Te)v—T%

O=k+1
It follows that
o
l=k+1

which tends td® ask — oo. Thus (2.33) holds. Taking the limits &s— oo
of (2.32) givesy = Bb. ThusT satisfies ConditiorE.

[e.e]
<Cloll Y I1Te=T].
l=k+1

oo
< Clll Y T =TI,
l=k+1
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To show that is fundamental, it suffices to show that its autocorrelation
g defined in (1.18) is fundamental. For amye I, (2.31) implies

(2.34) lim ( ﬁ Tg) 5, =b.

k—o00
{=k+1

By Theorem 2.1, the relation (2.34) implies that
(2.35) lim 776, = b.

n—o0

Letv € C! be a left eigenvector df with eigenvaluel. Then for each
vel,

v(v) =vT"(v) = (vVI™)6, = v(T"0,), foralln=0,1,....
It follows from (2.35) that

This means that = pe wheree = )
equivalent to

ve1 0. HenceeT' = e, which is

IM|) g(Mj—0)=1, foralllez®.
J

Thereforeg is fundamental. Henck is fundamental.
The equivalence of (a) and (c) is established in the same way following
the same argument as in [34].0

Remark 2.Starting with a stationary mask or filteithat satisfies Condition

E or E**, one can construct many nonstationary magkhat satisfiegl.2).

By Theorem 1.2 (respectively Theorem 1.3) the corresponding nonstationary
cascade algorithm converges weakly (respectively stronghj (R*) to the
solution(¢y,) of the nonstationary refinement equations with mgsk.

Example 1.Takes = 1and(h(j))§:0 = {1/8,3/8,3/8,1/8},the mask for

the uniform quadratic B-spline. It is easy to see that the transition operator
T for h satisfies Conditiory. The nonstationary mask sequerige & =
2,3,...,with

hi(0) =1/8, hi(1) =3/8 —1/2F, hi(2) =3/8 —1/2",
hi(3) =1/8, hi(j) =0, otherwise

clearly satisfies (1.2) and therefore defines a system of nonstationary re-
finement equations with solutions, € L?(R?®). The scaling sequencg,
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Solutions of nonstationary refinement equations
0.025 T T T T T

0.02

0.015

0.01

0.005

0 1
0 0.5 1 15 2 25 3

Fig. 1. Nonstationary scaling functions tending to the uniform quaddatgpline-¢ — - —;
$a——i s —

converges to the uniform quadratic B-spline. Figure 1 shows the graph of

¢2, ¢4 andeg.

Example 2. The most common examples of solutions of nonstationary re-

finement equations are the exponential B-splines andpfanction. These

examples were discussed in detail in [14]. Thefunction is not covered

by our theory since the supports of its masks are not uniformly bounded.
The exponential B-splineg;,, k = 0,1, ..., whose Fourier transforms

are N
- T —e)
Palu) = [T (i — 2% );)

where), ..., Axy € R, are solutions of the nonstationary refinement equa-
tions with mask sequencé,.) where

. —27FN 4,
> () = H H ( >

9

Clearly, .
1+2\VF

lim H =(—
s = (57)

and it is easy to see thaj, andh satisfy (1.2).
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Remark 3.More examples, including a nonstationary analogue of Dau-
bechies orthonormal scaling functions, can be found in [35].
3. Convergence of derivatives

For any functionf onR*® andu € Z°, we define the difference operator

Auf(x) = f(x) — f(x —u), =z &R

For uy,...,u, € Z°, let w(uy,...,uy,) denote all polynomials in the
null space ofA,, --- A,,,. We note thatd,,, mapsn(uy,...,uy,) onto
T(ULy ey Um—1).

Let V; be the space of all sequencesZnwith finite support, and for
Ui, ..., Un € Z°, we define

V(ula"'aum)
31 :=cvely: Z p(jv(j) =0, Vp € w(u1, ..., un)
jeZ’

Similarly we defineF to be all functionsf in L?(R*) with compact support

andF'(uq, - -+, uy,) to be all functions inFj satisfying
(3.2) S P —5) =0, ¥pEm(u,....un).
jeZ®

If m =0, we defineF'(uq,...,uy) = Fp.

Lemma 3.1 For uy,...,um € Z% Ay, : Fui,...,um-1) — F(u,
-+, Uy, IS a bijection. In particularF (uy, . .., uy) = Ay, -+ Ay, Fo.

Proof. Takef € F(u1,...,Um—1),p € T(U1,...,Uny). Then

Y p(D) A, fle—i) = > pi)(fle—i) = fle—i—un))

ieZ® iceZ®
= > Ay, p(i)f(x—i) =0,
ieZ®
sinceA,,,p € m(uy,...,up—1). SO A,,, mapsF(ui,...,un—1) iNto
F(uy,...,un). If Ay, f = 0and f has compact support, theh = 0.
It remains to show that\,,, mapsF(ui,...,un—1) ONOF (u1, ..., Un).

Take f € F(ui,...,up). Letg(z) = > 2, f(z — luy,). Sincef €
F(um), > g o f(z —tuy) = 0 and sincef has compact suppog,also
has compact support and isifi(R?). Also 4A,,,g = f. It remains to show
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thatg € F(u1,...,um—1). Takep € w(uy,...,um—1). Thenp = A, g
for someg in 7w(uy, ..., uy) and

Z g(x —1) ZAumq g(x —1)

ieZ’ i€’
=D 4(i)Ay, g(x —1)
i€Z’
= ¢@)f(z—-19)=0. O
i€’
We now construct functiong with D,,, --- D, f € F(u1,...,un).

Take any functioryy in Fy and setf(-|0) = fo. We may recursively define
fClut, ... uy) foranyus, ..., u, € Z° by

1
fzlut, ... uy) = / [z — tup|ug, . .., Up—1)dt.
0
By induction we see that(-|u1, ..., u,) € Fy. Clearly

Dy, f(|ua, - um) = A, [, um—1).
HenceD,, --- Dy, f = Ay, -+ Ay, foand by Lemma 3.1D,, --- D, f

€ F(uy,...,un). As a particular example we can taketo be the charac-
teristic function of{0, 1)°. Then f(-|ui, ..., u) is a box spline of degree
m.

Now forv € Vp andu € Z*, we define the difference operator
Vuv(i) =v(i) —v(i —u), i€Z°
Let 5 denote the sequence ¥y given byd(j) = d;0.

Lemma 3.2 If fy has support irf0, 1]° with [ |fo|? = o, f(-|ut,s- -, um)
is defined as above, anfd-|v1, . . ., v, ) is similarly defined with respect to
vectorsvy, ..., v, € Z°, then forf € 77,

<DU1 T Dumf('|u1a s 7um)aDv1 e Dvmf(' - £|Ula . '7Um)>
=(=1)"0Vy, -V, Vau, -V, 0(l+v1 + -+ vp).

Proof.

<Du1 "'Dumf("ula-~-7um)aDU ' Dvmf 6’1)1, 7vm>>
:<A : Aume»Avl"'Avme( - )>

= (=1)"™(Au, - Ay, Auy - DAuy fo, fol- =L —v1 — o+ = vm))
:( )mvm' ‘vvmvul"'vum<f03f0<'_€_vl_"‘_Um)>
=(=1)"0Vy, -V, V-V, 0 (0 +v1 + -+ v). O
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In analogy with Lemma 3.1 we have the following

Lemma3.3 For uy,...,um € Z°% Vy, @ V(u,...,um-1) — V(u,
-+, Uy, IS a bijection. In particularV (uy, . . ., um) = Vy, - -+ Va,, Vo.
Proof. The proof is very similar to that of Lemma 3.1. Take V (uq, ...,
Um—1) @ndp € m(uq, ..., uy). Then

Z p(i)Vu,v(i) = — Z Ay,, (i + upm)v(i) = 0.

e’ ieZ’
SoV,,, mapsV (ui,...,uy,—1) into V(uy,...,uy). SinceV,, is injec-
tive on the spac& (u4, ..., u,—1), we need only show that it maps onto

V(ut,...,up). Takev € V(uy, ..., uy) and let

w(i) = Zv(z — ltyy).

=0
Thenw has finite support an®,, w = v. Forp € w(ui, ..., um-1),
p = Ay, qforsomeg € 7(uy,...,uy), and

> plitum)w(i) =Y Au,qlitum)w(i) = = q(i)Va,, w(i) = 0.
iel’ iel® ieZ’

Sow € V(up,...,upm-1). O

Lemma 3.4 Suppose that € F(ui,...,un),g € F(v1,...,vy),andfor
ez bl):=(f,g(-—2¢)). Thenb € V(uy,...,Un,v1,...,0Un).

Proof. Take f € F(ui,...,uy)andg € F(vi,...,vy). By Lemma 3.1,
there arefy, go in Fy with

f:Am"’Aume

and
g = Ay, -+ Ay, go-
Thenforp € w(u1, ..., Um,v1,...,U;m),

Z p(e)b(g) = Z p(ﬁ) <Au1 T AUmev Am e AUmQO(‘ - £)>

e’ ez’

= ST PO ol — - — ),
el’
Aul te AumAvl te A'Umg(](' - £)>

(=)™ (fo(- —u1 — - — um),
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Z p(f)Am o DAy Ay - AvaO(‘ - €)>

el’®

= (C1)™ ol = = ),
Z Agy o+ Doy Ay -+ Ay, p(O)go(- — €)) =0,
ez’

SinceAvl "'Avaul Aump: 0. O

Recall thatM is an integer matrix withlet (M) > 2, and” comprises
a coset representatives of/M7Z°. For any vector space of polynomials
onR?® we say that in V; satisfies thesum rules forr if for all v in I" and
pinm,

33) > W(MB)p(MB) = W(MB+)p(MB+7).
BeZ’? BeZ?

Whenz comprises all polynomials of degreek — 1, the above definition
becomes the sum rules of ordeas defined in [24]. Recall thatif satisfies
(1.3), thenh is fundamental if and only if it satisfies the sum rules of order
1.

Lemma 3.5 If & satisfies the sum rules farand
al) = > hHhG—0), ez’
JEZ®
thena satisfies the sum rules farf := {p : p(z +y) = > ;i 6(z)ri(y),
whereK is finite and for each € K, ¢; € morr; € 7}.

Proof. Take anyy in I" andp in «’. Then

34) > p(MB+7y)a(MB+7)
BeZ®
= > p(MB+y)h(j)h(j — MB —)
4,BEZ’®
= > p(MB+~)h(ME+n)h(ML+n— M3 — )
BeZ’ el

= > > p(Me— Mm+y)h(ML+n)h(Mm+1n—7)
LmeZ’ nel’

=353 G+ m)h(ME+ )

€K nel yc7’®

X Y ri(Mm+n—y)h(Mm+n—7),
meZ’
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where K is a finite set, and for eache K, eitherq; € morr; € «. If
g; € m, then by the sum rules

SN G(Me+n)h(ME+n) > ri(Mm+n—y)h(Mm+ 15— )
nel yeZ? meZ°®

=Y a(MOLMOD " " ri(Mm +n—y)h(Mm +n — )
e’ nel’ meZ’

= 3" (MO Y ri(j)h()).

e’ jez’®

Similarly if r; € «, then

SN G(ME+ph(ME+n) > ri(Mm 4 =) h(Mm -+ —7)

UEFZGZS mEZS
— Z ri(Mm)h(Mm) Z i (3)h(5)-
meZ’ JeZ’

So for each in K, the terms in the sum in (3.4) are independeni.ofhus
a satisfies the sum rules faf. O

For a spacer of polynomials orR®, let

Ve={vel: Zp(j)v(j) =0, forallp € n}.

According to our previous notation, fer, ..., u,, € Z2, Veetur i) =
V(ul, e ,um).

Lemma 3.6 Suppose that is a space of polynomials such that for gny
inm,p(x) = q(Mx), whereg satisfies;(z +y) = >, c i ¢i(x)ri(y), where
K is finite and for eachi € K, ¢;,r; € w. Suppose that in V{, satisfies the
sum rules forr and define the matrid = (A;;); ;7 by Aij = a(Mi—j).
ThenAV, C V..

Proof. Forp € m,v € V,

S pli)Ao(i)
i€Z’®
= Z p(3) Z a(Mi— j)v(j)
i€Z’ JeL’
= > > q(Mi)a(Mi— Ml - a)o(Ml + a)
i0el’ o€l

= > Y q(Mj+ MOa(Mj - ayo(ML + a)
e’ acl’
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=35 a(Mj - a)a(Mj—a) Y ri(ME+ a)u(M + a)

€K aGFjEzS V=Y
=3 ajaMh) 3 n@e(e) =o,
i€K jeZ’ el’®

sincer; € wforv €¢ K andv € V. SoAv € V; and scAV, C V.. O

We now consider some examplesrofo illustrate Lemmas 3.5 and 3.6.
First letw = m,,—1, the space of all polynomials of total degreem — 1.
Then clearly the conditions of Lemma 3.6 are satisfied. In this case the
result was proved in Jia [24]. # = m,,_1, thenn’ (as in Lemma 3.5)
equalsry;y,_1.

Next suppose that = 7(uy, .. ., un), Whereuy, ..., u,, are eigenvec-
tors of M. We may suppos@ii, . .., ) = (U1, ..., V1,02, ..., V2, ..., Up,

.,vr), Wherevy, ..., v, are linearly independent and for=1,. ..., 7, v;
occurs with multiplicitye; > 1. Choosev, 1.1, . .., vs SO thatvy, . . ., v, are
linearly independent and take a basis ..., ws so that forj = 1,...,s,
wj is orthogonal tov;, 1 < i < 5,7 # j. We claim thatr(uy, ..., un)
is the linear span of all polynomials of forp(z) = (w1z)’t - - - (wsz)’s
where for some¢ = 1,...,r, j, < ay — 1, a space we denote temporar-
ily by 7(u1,...,un). We prove by induction om thatm(uy, ..., uy,) =
7 (u1,...,un). Clearly itis true form = 1. Suppose that for some > 2,
m(ul, ..., um—1) = 7(ui,...,um—1). Clearly w(uq,...,um) C m(u1,

., Up). Takep € m(uy, ..., u,) and, without loss of generality, suppose
Uy = v1. ThenA,, p € w(uy, ..., um—1). SinceA,,p € T(ug, ..., Unp-1),
there is a polynomiaf in 7(uy, ..., uy) with A, ¢ = A, p. Thenp — g
is a polynomial inwaz, ..., wsx and sop is in 7(uy, ..., uy,). Thus our
claim is proved. We can now see thafus, ..., u,,) satisfies the condi-
tions of Lemma 3.6. Note that in this ca%% = V' (ui,...,un). Also
T = (Uy ey Uy ULy e ey Uy

For our final example take,, . . ., u,, as above withr = s and letr be
m(viy...,01) N N(vs, ..., vs), Where fori = 1, ... s, v; occurs with
multiplicity «; > 1. From our above characterisation ofu1, . . ., u;,)
we see thatr is the linear span of all polynomials of the forpiz) =
(wix)?t - - (wsx)’s, where forl = 1,...,s, j0 < ay — 1. It follows thatr
satisfies the conditions of Lemma 3.6. In this ca&és the linear span of
all polynomials of the fornp(z) = (wix)%t - - - (wsx)’s, where for some
n=1...,87, <2a, —1,andj, < ay,—1forall ¢ =1,...,s,¢ # n.
We see that’ also satisfies the conditions of Lemma 3.6.

We choosél as before and choose a boundediset Z*° so thatK N
(K +j)=10forj ¢ I.For¢go € L*(R®) with support inK satisfying
(1.11) and (1.12), and for = 0,1, .. ., definegy, ,, asin (1.13).
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Theorem 3.1 Suppose thafl.2) and (1.3) hold. Letuq, . .., u,, be eigen-
vectors of\/ in Z* with corresponding eigenvalugs, . . ., \,. Leti c ¢!
be the least subspace containi@d N V (u1, . .., Um, u1,. .., uy,) that is
invariant underT}, for all £ > 0, and suppose thdf' satisfies Condition
B If
(@) (M1 -+ A\ ) 2T restricted tolV satisfies Conditior2**, then
(b) for any ¢4, ¢ satisfying(1.12)with Dy, - - - Dy, 0 € F(u1, ..., un),
the sequencéD,,, - - - Dy, ¢x,) converges weakly i?(R®) to D,, - -
D, ¢ asn — oo, uniformly ink, wheregy is the solution o{1.1),and
Dy, --- D,,, ¢i converges weakly t®,,, --- D,,, ¢ ask — oo, whereg is
the solution 0{1.8). -

Conversely ifb) holds, ther{\; - - - \,,,)?T restricted tolV satisfies Con-
dition E**, whereW C C! is the least invariant subspace Bfcontaining
CINV(Uy ey Uy ULy - ey U

Remark 4.By our remarks after Lemma 1 we may chodsdarge enough
so that there are functions, o satisfying the conditions ifb), for instance,
or0 = ¢o for all k and ¢, is the box-spline of degree with directions
(1,0,...,0), ..., (0,...,0,1), u, ..., Up.

Proof. We first prove (a) implies (b). Fot,n = 0,1,2, ..., define¢; ,, as
in (1.13) and let

bk,n(g) = <Du1 T Dum¢k,n’ Du1 T Dum¢k,n(' - €)>, le Z°.
Differentiating (1.13) gives
Du1 e Dumgbkz,n(x) = |M’)\1 t )\m Z hk—i—l(j)Dul T Dum
jenN
X¢k+1,n_1(MI — ]), T e RS,

and hence
b = (A1 M) Thr 1k 11

It follows that
k4+n
bk,n = ()\1 . )\k‘)2n < H TZ) bk+n70-
t=k+1
SinceDy, - - Dy,, ¢r0 € F(u1,...,un), by Lemma 3.4,
bk70 S V(Ul, ey U, ULy e e ,um).

SinceD,, - -, Dy,, ¢r0 has supportitd<, Dy, - - -, Dy, ¢, also has sup-
port in K. Henceby, , has support if for all n. Thus

bro € (CIﬂV(ul,...,um,ul,...,um).
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It follows that fork,n = 0,1,. .., by, liesin .

By Proposition 2.1, the produ¢t; - - - \,,,)*" H’gj}jﬂ T, restricted to
W is uniformly bounded im andk, and saby, ,, is uniformly bounded im
andk. In particularby,;,(0) = || Dy, - - - Du,, ¢x. |3 is uniformly bounded
inn andk. So for eactk, there is a subsequeng®.,, - - - D, ¢k n;) Which
converges weakly iL?(R®) to some functiony;, in L2(R*) asj — oo
uniformly in k. So(D,, - - -Dum¢k7njfconverges weakly tdk asj — oo
uniformly in k.

Now

(Duyy -+ - Duyy Skm) () = (—iuug) - - - (—itutiy,) dpe n (w)

which, by (2.9), converges to-iuu;) - - - (—iuuy, ) Pr(u) asn — oo uni-
formly in £ and locally uniformly inu. Thus

(3.5) () = (—iuu) - - - (—ivun ) Py(u), u € R,

and(Dy, - - - Dy, é1.) (u) converges tgy, (u) asn — oo locally uniformly

in 4 and uniformly ink. By the argument in the proof of Theorem 1.2, it
follows that(D,, - - - D.,, ¢x.n) cOnverges weakly ty, asn — oo, and so
Dy, -+ - Dy,, ¢r.n converges weakly tgy, asn — oo uniformly in k.

SinceT satisfies Conditior=**, ¢, ,, converges weakly tg;, asn —
oo uniformly in k, where ¢, is the solution of (1.1), and; converges
weakly tog ask — oo, whereg is the solution of (1.8). Furtheqék(u) =
Pi(u), u € R®. By (3.5) ¢p(u) = (—iuuq)---(—iuuy)¢r(u), which
gives ¢y = Dy, --- Dy, ¢r. As in the proof of Theorem 1.2p;, con-
verges locally uniformly top, ask — oo. Therefore,(Dy, - - - Dy, é)
converges locally uniformly toD,,, - - - Dy, ¢), ask — oo. As in the proof
of Theorem1.2||D,,, ... D,,, ¢x||2 is uniformly bounded and it follows that
(Dy, -+~ Dy, ¢1) converges weakly ih?(R*) to (D, - - - Dy, ¢), ask —
0o. ThusD,, - - - D, ¢, converges weakly il (R®) to D,,, - - - D.,,, ¢, as
k — oo.

Now we assume that (b) is satisfied. By Lemma ®8y1, . .., up, u1,
..., up) is spanned b2 ---V2 (- + j), j € Z°. ThusC! NV (uy,
C U, UL, .. Uy IS SPanned by thos®Z ---V2 6(- + j), j € Z°,
whose supports lie ifi. Choosej € Z° so that this holds. Také(-|u4, ...,
u,) as in Lemma 3.2. We note that by choosifijgsmooth enough we
can makef(-|ui,...,uy,) arbitrarily smooth. Moreover iffy, > 0 then
f(lu1, ..., uy) > 0and soiffy does not vanish identically thefif (-|u1,
...y Um) # 0, and we normaliz¢y so that[ f(-|ui, ..., um) = 1.

Letoro = f(- — afut,...,um), Yo = f(- — Blur, ..., up) for some
«, 0 € z*, and for allk. By Lemma 3.2,

<Du1 e Dumd)k,O, Du1 T Dumwk,O(' - €)>
= (=1)"oV5 Vo §(l+ui+ -+ upy + B — ).
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We can then choose, 5 so thatu; + - - - 4+ w,, + f — a = j andegy o, Y0
have support id<. Now we defineby, ,,, Y5 n,n = 1,2,...,asin (1.13) and
forn=0,1,2,...,

Ck:,n(g) = <Du1 e Dum¢k,na Du1 e Dumwk,n(' - £)>7 tez’.
Thus

Cho = (—1)mJV31 . -Vim(S(- +)ectnV(ug,. .., um,ur, ..., )
and
k+n
Ck,n:()\l"')‘m)%’b < H Tg) CkJrn,O; n:1,2,....

I=k+1

By (b) we knowD,, - - - Dy, ¢, and Dy, - - - Dy, 1y , converge weakly
in L?(R®) asn — oo, uniformly in k. Henceby, ,, is uniformly bounded im
andk. Thus by Lemma 3.3, for eaahin C' NV (u1, ..., U, u1, ..., um),

(AL Am)2" ( kin Tg) v is bounded im andk. It follows that (A; - - -
Am )T is bounded im for eachv in CT NV (ug, ...\ Um, U1, - . ., Um).
Hence(\ - - - A\, )2 T restricted toV is bounded im.

It remains to show that\; - - - \,,,)?"T™ restricted tolW has spectral
radius1. Take any starting sequengg = ¢y for all &, satisfying the
conditions of (b), and let

bk7n(£) = <DU1 e ‘Du'md)kfrh ‘Dul T Dum(rbk,n(' - €)>7 e € ZS'
Then

bk‘,n(o) = ||DU1 T Dum¢k,n ‘% = H(Dm T Dumqﬁk,nf”%‘

Since for eaclk,

lim (Dy, -+ Dy, ¢kn) = (Dy, - - Dy, ¢r) locally uniformly,

n—oo

by Fatou’s Lemma
lim,, bk (0) > [[ Dy, - - Dum¢kH§ > 0.
We note that

k+n
(3.6) bk,nz(Al-..Am)%( 11 Tg) bo, n=12,....

l=k+1
Further, sinceD,,, - - - Dy, ¢o € F(uy,...,un), by Lemma 3.4
by € (CIﬁV(ul,...,um,ul,...,um) C W

If the spectral radius of\; - - - \,,,)2"T" is strictly less thar, it follows
from (3.6) by taking the limits as — oo, thatb,,, — 0, which is a
contradiction. O
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Imposing various conditions oh,, gives various invariant subspaces
of T}, in C! which containi¥. We consider three examples. First suppose
that b, satisfies the sum rules far(uy, ..., u,,) for all k& > 0. Then by
Lemma 3.5 and the remarks after Lemma 3.6, the autocorrelatiaf
hy satisfies the sum rules far(uy, ..., um, u1, ..., uy). By Lemma 3.6,
V(ut, ... Um,u1,...,uy) is invariant undefl}, and hence

W=CclnV(ul,..., um ui,...,un).

Next suppose thdt;, satisfies the sum rules far,, ;. Then by Lemma

3.5, g, satisfies the sum rules fory,,,—;. By Lemma 3.6,V ,, , is in-
variant undefTy,. Sincema,—1 C m(Ul, .« -, Um, UL, - - -, Uy ), WE See that
V (Ul ooy Uy Uty ey Um) C Vi TRUSW C CIN Vo,

Finally suppose thatu,, ..., um, u1, ..., ) = (V1,...,01,...,0s,
.,vs) where fori = 1,2..., v; occurs with multiplicitye;; > 1 and
v1,...,Us are linearly independent. Suppose thatatisfies the sum rules

for,wherer = 7w(vy,...,v1)N---Nw(vs,...,vs),Wherefor = 1,...,s,

v; occurs with multiplicitye;; > 1. By Lemma 3.5¢;, satisfies the sum rules
for 7’ described in the final example after Lemma 3.6. By Lemmal3.4as
invariant undefl. Fors > 2, 7’ C w(u1,. .., Um,u1,...,uy,) and hence
V (U, ...\ Uy UL, ...y Uny) C V. THUSW C €I N V.

For s = 1, the nonstationary refinement equation can be written in the
form

N
B7) k(@) =MD he(okr(Ma —j), w€R,
7=0

where M > 2 is a integer. Here? = {0,1,..., N} and we can take
K =[0,N],I ={—N+1,...,N —1}. In this case Theorem 3.1 leads to
the following:

Corollary 3.1 Takem > 0. LetW C C! be the least subspace containing
¢! NV, _, thatis invariant undefl}, for all k¥ > 0, and suppose th&ft
satisfies Conditior**. If

(a) M>™T restricted tolV satisfies conditiod>**, then

(b)for any sequence of functiong o with supportin0, V| satisfying(1.11)

with ¢{%) € L2(R), and

[e.e]

(3.8) > pO)dro(- =) € Ty, forallp € mp, 1,

l=—o00

EjZL converges weakly id?(R) to ¢§j) asn — oo, uniformly in k, for
j=0,...,m,where(¢y) is the solution of3.7), andgﬁ,(j') converges weakly
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in L2(R) to 1) ask — oo, for j = 0,...,m, whereg is the solution of
N

(3.9) $(x) =MD h(j)p(Mz —j), x€R.
j=0

Conversely i{b) holds, then\/?™T restricted tolW satisfies Condition
E**, whereW c ¢/ is the least invariant subspace BfcontainingC’ N
Vitom 1+
Remark 5.1f hy, satisfies the sum rules fat,,_; forall £ > 0, thenV,,, .
is invariant undefly, andW = ¢! NV, _,.If N >m+ 1 we canfind a

sequence of functiong;, ( satisfying the conditions ifb), e.g. the B-spline
of degreem with knots0, 1,...,m + 1.

Proof of Corollary 3.1. That (b) implies (a) follows immediately from
Theorem 3.1. On the other hand, if (a) holds, it follows from Theorem 3.1

thatgb,(;';) converges weakly ta,g’”), asn — oo, uniformly in k, andgbém)
converges weakly t¢("™), ask — oo, where(¢y,) is the solution of (3.7)
and¢ is the solution of (3.9).

Now takek,n > 0 and0 < j < m. For |u| > 1, |(¢](€7ZL))A(u)‘ =
a6 (@) > 18] ()l. For[u] < 1, (6, (u) converges to

m)<y

(gb,(f))A(u) asn — oo, uniformly in k£ andwu. Since||( ,(m )| is uniformly
bounded ink andn, it follows that ||(¢,(€”31)AH2 is bounded ink andn. So
by our previous argumentgbgif converges weakly t()qﬁgf))AaSn — 00
uniformly in &, and soqﬁ,(j;?)1 converges weakly t¢g) asn — oo, uniformly
in k. Similarly forj =1,2...,m—1, ¢,(€j) — ¢U) weakly ask — co. O

Theorem 3.2 Suppose thatl.2)and(1.3)hold, and that)/ hass linearly
independent eigenvectorsir with eigenvalues., . . ., A5, hy, satisfies the
sum rules forr,,_1 forsomen > 1, forall £ > 0, andT satisfies Condition
E**.ThenV,,, _, isaninvariant subspace @i, and(a)implies(b), where
(a)and(b) are as follows.

(@) p(M)?>™T restricted toC! N V., satisfies Conditiorz**.

(b) Forany eigenvectors, ..., u,, of M and any sequence of functions
bk, 0 With supportinK satisfying(1.11) Dy, - - - Dy, 0 € L*(R?),
and

(3.10) > p(6)Du, -+ Duy (- — £) =0, forall p € mp 1,
e’

Dy, -+, Dy, ér. converges weakly ifh?(R®) to Dy, - - -, Dy, &
asn — oo, uniformly in k, where ¢y, is the solution of1.1), and
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Dy, --- D,,, ¢ convergesweaklytd,, --- D, ¢ask — oco,where
¢ is the solution of1.8).

Moreover if|\1| = |A2| = -+ = |\4], then(b) implies(a).

Proof. To prove that (a) implies (b) we follow the proof of (a) implies
(b) in Theorem 3.1 except that we habg, lies in V, rather than

2m—1
V(uty ..oy Umy Uty ..oy Upy).

Now suppose that\;| = || -+ = |[As| = p(M) and (b) holds. We
apply the method of the proof that (b) implies (a) in Theorem 3.1 except that
now we takepy o = f(- — afut, ..., um), Yro = f(- = Blumt1, - - -, uam)
for any choice of the eigenvectors, . . . , uz,,. We see thatp(M)>™T)"
restricted toC! N V(u1,...,usy) is bounded inn. Since the eigenvec-
tors of M spanR?, the intersection ofr(u1, ..., us,) over all choices of
U, ..., Uz, €qualsmy,_1. ThusV,, . is the linear span of the spaces
V(uq,...,usy,) over all choices ofuy, ..., ugy,. Thus(p(M)>™T)" re-

stricted toC! N V,, _, is bounded. A similar argument as in the proof
of Theorem 3.1 shows thdtis an eigenvalue of(M)?™T restricted to

¢! NV, _,. Thus (a) holds. O

Corollary 3.2 Assume the conditions of Theorem 3.2 and supposéahat
of Theorem 3.2 holds. Take any functign, with support inK satisfying
(1.11)and(1.12)with D%¢; o € L*(R®) for all o« € Z* with || = m, and

(3.11) > pO)¢ro(- = 0) € Ty, forallp € mp 1.
el’

Then for anys € Z° with |3| < m, D%km converges weakly in?(R*) to
DB¢,. asn — oo, uniformly ink, where(¢y,) is the solution of1.1), and
DP ¢, converges weakly th°¢ ask — oo, whereg is the solution of1.8).

Proof. Suppose thap,, ( satisfies the conditions of Corollary 3.2. Then for
any eigenvectorsy, . . . , u,, of M,

> p()Dy, -+ D, po(- = £) =0, forallp € my_.
eZ’?

So by Theorem 3.2, the sequer{@®,, - - - D,,, ¢r) converges weakly in
L2(R®)t0 (Dy, - - - Dy,, é1) asn — oo, uniformly in k. Since the eigenvec-
tors of M spanR?, it follows that for anya in Z° with |a| = m, (D“¢y, )
converges weakly ifi?(R*) to (—iu)*¢x(u). It then follows, as in the proof
of Corollary 3.1, that for alB with | 3| < m, (D¢ ,,) converges weakly in
L*(R®) to D¢y, asn — oo, uniformly in k. Similarly, (D%¢;,) converges
weakly inL?(R*) to D¢ ask — co. O
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Remark 6.For a functionpy, o that satisfies the conditions of Corollary 3.2,
we can take a suitable translatefxy, ..., zs) := Ny (x1) - - Ny (zs),
whereN,, is the univariate B-spline of degreewith knots a®, ..., m+1.

If p(z) =229, 0<a; <m,j=1,...,s then

S PN =) => P Ny —£) -+ Y a2 Ny (a5 — 0)
e’ el e
= Pi(z1) - Ps(zs),

where for¢ = 1,...,s, P, has degreel «y. In particular, iij}:1 aj <

m — 1, then Py (z1) - - - Ps(x5) lies in m,,—1. Thus(3.11)is satisfied for
¢ro = N forall k.
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