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1. Introduction

Adaptive methods for solving parabolic equations are mostly based on a
posteriori error estimates[1, 2, 3,5, 7, 8,9, 10, 12]. One of the most common
strategies for constructing such estimates is the finite eleppgfinement,
i.e. the computation of a second, higher order solution. The error estimate
can be computed as a correction to the original solution on each element.
This approach is very suitable for solving parabolic partial differential
equations by the method of lines. The analysis of the approximate solution at
the actual time level based on the calculation of an a posteriori error estimate
yields a new grid to be used for the time step leading to the next time level.
Experimental evidence indicates a high efficiency of this approach to
linear as well as nonlinear problems. Convergence of the error estimates to
the true error for a semidiscrete method has been shown for linear equations
in [3, 8, 12]. The paper [9] is devoted to semidiscrete error estimation in
the semilinear case and fully discrete error estimation (if SIRK or BDF
methods are used) in the nonlinear case. In the present paper, we partially
extend the semidiscrete error estimation to the nonlinear case. The results
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can be used as a basis for an adaptive numerical procedure that carries out
the fully discrete computation with an arbitrary time discretization.

In general, we use notation of [9] and prove, for the same nonlinear
problem, some stronger results than presented in [9]. In Sect. 2, the model
problem and its weak formulation are stated. We prove some properties of
the discrete solution in Sect. 3 and present results of the semidiscrete error
estimation in Sect. 4. In Sect. 5, we briefly discuss applicability of the
results to fully discrete adaptive numerical procedures.

2. Model problem

The principal ideas as well as algorithmic procedures connected with the
use of an adaptive grid for solving nonlinear parabolic partial differential
equations can be demonstrated with the help of a simple initial-boundary
value model problem.

Consider the nonlinear equation

(2.1) Owu(z,t)+ f(u) = Oz(a(u)dpu(x,t)), 0<x<l, 0<t<T,

with a fixedT' > 0 for an unknown function, where we use the notation
0, = 0/0x andd, = 0/0t. In (2.1),a and f are smooth functions with

(2.2) 0<p<a(s)<MforallseR
that satisfy the global Lipschitz conditions

(2.3) la(r) — a(s)| < L|r — s,

(2.4) |f(r)— f(s)| < Ljr —s|forallr,s e R

with constantsu, M, and L. Possible further assumptions on the model
problem will be formulated when necessary.
In addition, we impose the homogeneous Dirichlet boundary condition

(2.5) u(0,t) =u(l,t) =0, 0 <t <T,
and the initial condition
(2.6) u(z,0) = up(z), 0 <z <1,

whereug is a given smooth function. We assume that the boundary and
initial conditions are consistent.

We present the weak formulation of the model problem which is the
starting point for the finite element discretization.

Denote by

1
(v,w):/o v(z)w(x) dx
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the L, inner product of two functions antw||o the corresponding norm.
Let k be a nonnegative integer. Théff = H*(0,1) is the Sobolev space
of functions defined on the intervéd, 1) with the norm

i = 3| 22
w = - .
F pae oz llo

The case ok = 1 is important for the weak formulation. We introduce
the usual subspacH} = H{(0,1) of functionsw € H{} satisfying the
homogeneous Dirichlet boundary conditions.

We will also use the spack,, with the corresponding norfw||» =
esssup |v].

The constants”, C, C5, etc. are generic in the paper, i.e., they may
represent different constant quantities in different occurrences.

We say that a function(z, t) is theweak solutiorof the problem (2.1),
(2.5), and (2.6) ifu € H([0, T], H} (0, 1)), if the identity

(2.7) (Oru,v) + (f(u),v) + (a(u)Opu, Oyv) =0

holds for almost every € (0,7] and all functionsv € H}, and if the
identity

(2.8) (a(up)O0zu, 0zv) = (a(ug)Ozug, Oxv),

whereuy € H{, holds fort = 0 and all functions) € H{.

In this weak formulation as well as in the whole paper, the variable
appears as a parameter. Without explicitly stating, we assume that all the
statements and, in particular, constants may depertd on

Lemma 2.1 Let(2.2) hold. Then
(2.9) lolif < Ca(v)dzv, dpv)
forall v € H}.

Proof. The inequality (2.9) is a simple consequence of the Friedrichs in-
equality and (2.2). O

3. Discretization

Letus choose a positive integeMe solve the problem (2.1), (2.5), and (2.6)
or, in the weak formulation, (2.7) and (2.8) by a finite element method with
a piecewise polynomial hierarchical basis of degree 1. We introduce a
partition

O=axp<m1<...<any1<zxy=1
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of the interval[0, 1] into N subintervals(z;_1,z;), j = 1,... ,N. We
further puth; = z; —2;-1,j7=1,... ,N, and
h = max h;.
j=1,....N

Remark 3.1The following analysis can be modified to the case when the
value ofp is different for the individual subintervals:;_1, z;).

We suppose that there exist positive constanptndr such that

< hj
1 <
hj+1

<m,j=1,... , N—1,

holds for all the partitions of the intervél, 1].

Remark 3.2The above grid regularity condition may be restrictive in the
presence of adaptivity. However, there are adaptive procedures (cf. [9])
where refinement criteria satisfy this condition.

We construct a finite dimensional subsp@é\é’? C H} inthe following
way. A functionV” belongs toSéV’p if

N-1 N »p
Z Vivgn () + > > Vikpjk()
j=1 k=2
where
(3.1) (pjl(x) = (.T} — acj_l)/hj, Tj-1 <z< ZTj,
= (zj41 — @) /hjt1, z; <@ < wjy,
= 0 otherwise

22k — 1 z
oula) = YVHZEZD [ Pty o <o <,

hj i1
(3.2) = 0 otherwise
forj =1,...,Nandk = 2,...,p, and wheréV};, are coefficients. The

functionP(z) is thekth degree Legendre polynomial scaled to subinterval
[zj_1,z;]. The functions (3.1) and (3.2) formtaerarchical basisof the
subspaceS‘éV”’ [15]. The piecewise linear polynomial portion (3.1) of the
basisyp;; is nodally based while the higher-degree portion (3.2) of the basis
@ik, k > 1, is elemental. To express a functidifz, t) € Sév’p in the basis
(3.1) and (3.2) we putj;, = Vji(t).
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We will also use the local inner product

)= [ o) do

-1

and the corresponding local notfa||, ;.

To start the analysis, we introduce an elliptic projection of the solution
u. We say that a function”(z, t) is theelliptic projectionof the solution
u(z, t) ofthe problem (2.7) and (2.8)if* € H'([0, 7], Sév’p), if the identity

(3.3) (a(u)@wuh, 0.:V) = (a(u)dyu, 0, V)

holds for almost every € (0,77 and all functionsl’ e Sév”’, and if the
identity
(a(uo)dpu”, 0, V) = (a(ug)dpuo, OV)

holds fort = 0 and all functions’ € S)"”.
We further denote by

(3.4) p(z,t) = u(z,t) — u"(z,1)

the error of the elliptic projection.
Our analysis relies on the properties of the elliptic projectiérpre-
sented.

Lemma 3.1 Letu € HPt' N H} andu” € S)'? be the elliptic projection.
Then

(3.5) lpllo + Allzpllo < C(u)h?*,
(3.6) 19epllo < C(u)hP*,

and if 0;p € Lo then also

(3.7) 18eepllo < C(u)hP*.
Further

(3.8) 102" |oo < C(u)
independently of and h.

Proof. See [16] Lemmas 13.2 and 13.3, and [9] Lemma 21.

~ We now introduce the semidiscrete solution. We say that a function
U(z,t) is thesemidiscrete approximate solutiof the problem (2.7) and

(2.8)if U € H'([0,T7], S)""), if the identity
(3.9) (8T, V) + (f(0),V) + (a(0)8,T,8,V) =0
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holds for almost every € (0,77 and all functionsV” e Sév’p, and if the
identity

(3.10) (a(u0)0:U, 0: V) = (a(up)Ozug, 0z V)

holds fort = 0 and all functions’ € 5.

Note that, in contrast to [9], we treat the problem (3.9) and (3.10) with a
general coefficient(u).

We further denote by

(3.11) e(x,t) = u(x,t) — U(x,t)
the error of the semidiscrete solution.

Lemma 3.2 Letu € HP*'NH} andU € S, ” be the semidiscrete solution.
Then

lellr < C(u)h”.
Proof. See [16] Theorem 13.1 and [9] formula (3.3

The phenomenon thdf is a better approximation te” than tow is
referred to as superconvergence in [16]. Putting

(3.12) 0(x,t) = u(x,t) — U, t),

we formulate this statement as alemma. Notedhatt) = p(z,t)+6(x,t)
according to (3.4), (3.11), and (3.12).

Lemma 3.3 Letu” € Sév’p andU ¢ Sév’p be the elliptic projection and
semidiscrete solution. L&9(.,t)|lo = ||6(¢)]|o be a nondecreasing function
of the variablet. Then

(3.13) 161 < C(u, L)hPTL.

Proof. Recall thatu, v, andU are given by (2.7), (3.3), and (3.9), respec-
tively, for ¢ > 0. Substituting from (3.3) into (2.7), then subtracting (2.7)
from (3.9), and recalling further (3.4), (3.11), and (3.12), we find

(8:0,V) + (a(U)3:0,0.V) = —(8:p, V) + (f(U) = f(u),V)
(3.14) + ([a(U) — a(w)]dpu”, 8, V)

for all functionsV € Sév”’. PuttingV = 6 in (3.14) and using the obvious
formula

1d
— 15 = (9, %)

3.15 -
( ) 2dt
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that holds for any sufficiently smooth functian we arrive at

1d

Qﬁwm+<wweam
)+

—(8up,0) + (F(U) = f(u"),0) + (f(u") = f(u),0)
(3.16)  + ([a(U) — a(u")]0zu", 0,8) + ([a(u") — a(u)]0zu", 0,6).
We now bound the individual terms in (3.16). We have
(3.17) 0 < pl|020|2 < (a(U)d0,0.6)

according to (2.2). On the right-hand part, we employ a positive constant
K to be fixed later. From the Schwarz inequality, (2.3), (2.4), and (3.8) we
then have

(3.18) @ep, 0)] < 3110:plIG + 3110113,

(F(T) = f"),0)] < FI£T) = F@M)IG+ 511013
(3.19) < (L2 + )19,

|(f(u") = f(u), 0)] < SIS (u”) = Fu)llg + 3116015
(3.20) < $L2Iplg + 3116113,
([a(0) — a(u")]ozu", 0:0)| < (CVEK 1 a(T) — a(u”)|, VE|0,0))
(3.21) < $CZL2K 0| + 5K 100113,
|([a(u") — a(u)]d,u", 8:0)] < (CVKTa(u") — a(u)|, VK]d,0])
(3.22) < 3CPLPK Y pll§ + 5 K110:015-

Substituting now the bounds (3.17) to (3.22) into (3.16), we obtain

51013+ (1 — K013 < (Cy + Cok ) o]
+(C3 + CaBE )| pllg + 5118en3.
Note that
(3.23) 10]l0 < C(u)h?*

according to [16], proof of Theorem 13.1 and [9], proof of Lemma 3.1.
Fixing now K < p, and using (3.5), (3.6), and (3.23), we arrive at

d
(3.24) 1016 + Cull .01l < Cop* 2.

Since we assume¥(t)||o nondecreasingd||0||3/dt > 0 and we finally
obtain (3.13) from (3.23) and (3.24)0
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Remark 3.3The assumption thatf||o is a nondecreasing function of
holds, e.g., for linear problems with the terfnincreasing in time. Con-
sider, for example, the problem

O — 2t(t + (1 — x)) = Oggu

with u(x,0) = 0 whereu(x,t) = t?2(1 — ) and the quantity) can be
easily calculated explicitly fop = 1.

Before we state further properties of the functibwe prove a lemma
we are going to use. A weaker statement is presented in [6] Chap. 1.

Lemma 3.4 Lety, ), andy be Lebesgue integrable functions onthe interval
[0,T], x(t) > 0 almost everywhere if®), T]. Let

(3.25) ﬂﬂﬁwﬂ+AxﬁMﬁMT

hold for almost every € [0, T7.
Then

(3.26) ¢@sww+ékmwﬂa{£1wmﬁm-

for almost every € [0, 7.
Proof. We first show that if a functiod(¢) satisfies the inequality
(3.27) R'(t) = x(®)R(t) < x(t)y(t)

with the initial conditionR(0) = 0 and a functionZ(¢) is the solution of
the equation

(3.28) Z'(t) = x() Z(t) = x(t)¥(?)
with the initial conditionZ(0) = 0, then
(3.29) R(t) < Z(t).

PuttingW (t) = Z(t) — R(t) and subtracting (3.27) from (3.28), we find
out thatW (¢) is the solution of the equation

W(t) = x(O)W(t) = aft) = 0

with the initial conditioni¥ (0) = 0. The well-known formula then imme-
diately gives

(3.30) W(t) = /0 o) exp< / (o) da) dr >0,
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i.e., (3.29) holds.
Multiplying (3.25) by x(¢) and substituting then

R(t) = /O x(r)p(r) dr,

we obtain justthe inequality (3.27). Using now (3.25) and (3.29), and writing
an analog of formula (3.30) for the solutiéf(¢) of the equation (3.28), we
arrive at (3.26). O

We will denote bya'(r) and f/(r) the derivatives of the functiongr)
and f(r) with respect to the only variable

Lemma3.5 Letu” e Sév’p andU ¢ Sév’p be the elliptic projection and
semidiscrete solution. Further assume the global Lipschitz conditions

(3.31) ld’'(r) —d'(s)| < L'|r — s,

(3.32) If'(r) = f'(s)] < L'|r —s|forall r,s € R
and

(3.39) ()] < 1,

(3.34) |f'(s)| < M'forall s € R

with some positive constants and M.
Moreover, let there be a constafit > 0 such that

(3.35) [0¢ullo0 < Q,
(3.36) 10U < Q,
(3.37) 10" |0 < Q,

Letw” andU depend ort in a sufficiently smooth way, 1¢9(.,¢)||o be
a nondecreasing function of the varialtleand let

(3.38) 10:60)[lo < ChP*.
Then
(3.39) 10,60 < C(u)hPH.

Proof. Start again from the identity (3.14) that holds for all functions
Sév ? and differentiate with respect toWe have

(000, V) + (@ ()0 T0,0,0,V) + (a(T)04b, V)
= —(Oup, V) + (f(0)0T — f'(u)dyu, V)
+ ([ (0)0,U — d (u)dpu]dpu”, 8, V)
+ ([a(U) — a(w)0u", 8:V)
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and putV = 9;6. Using an analog of (3.15), we arrive at
1d

( (U)8 Ua 0, 0y0 )— (&ttﬂv ate)
F(O)dip, 0:0) — (f'(U):, 0,0)

[f'(w) = f'(U))0u, 0:0)

(0)pu"yp, 0120) — (a' (U)Dpu"840, 01,6)
d'(u) — ' (U)]0,u" Oru, 91,0)

(3.40) + ([a(U) = a(w)]yzu", 81,0).

We now bound the individual terms in (3.40). We have

(3.41) 0 < |0z < (a(U)040, D10)

according to (2.2). On the right-hand part, we will employ a constam
be fixed later. From the Schwarz inequality, (2.3), (3.8), and (3.31) to (3.37),
we then have

(' (0)8,00,0, 8,20)| < (M'QVEK=1|0,0|, VK|8:0|)

a

—(
=
—(
—(

(342) < IMPQ*K0.0l3 + L K1|0w0]3
(3.43)  [(Oup, 0:0)| < 11|0upll§ + 1100115,
(3.44)  |(f/(0)aup,00)] < M ||0wpl} + L]10:0113,
(3.45)  |(f'(0)d:0,8:0] < M"(|9,02,
([f(w) = £/(D))0wu, 3:0)] < (QIf'(w) — £'(U)], |2:0])

<(QL'|p+ 0], |0:)
(346) < QL™[pl§ + Q*L”(I0]I3 + Sl|a0II3,
(' (0)0pu" By p, D1z0)| < (M'CVEK=10,p], VK |0126))
(347) < IMPPC?K Y 0upll2 + LK |0..6]2,
((0)0,u"8,0, 0100)| < (M'CVEK=10,0], VK|9:20|)

(a
(348) < 1MPC?K Y9I + LK 0.0)2,
|([a/ (u) — ' (0)]0xu" Opu, 10) |
< (CQVEd (u) — a/(T)], VE|01a0))
(349) < C2Q*LPKY|p|} + C*Q LK Y03 + 1 K1|0:9]2,
([a(U) = a(u)]0uu", 1)

< (QVE~1a(U) - a(w)], VK|9r.0])
(3.50) < QL*Kpllf + QLA K| + 3K 1100
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Recalling now (3.5) to (3.7) and (3.13), and using the bounds (3.41) to
(3.50), we rewrite (3.40) in the form

1d

(3.51) 5190115+ (1 = SE) 0015 < CL(D]Q0IIG + Ca(t)h .

Fixing now K < %M, we can omit the ternjd..0||2 and integrate on
both parts of (3.51) to get

t
10015 < 100(0) 5 + C3(t)h* 2 + 2/ C1(9)10:6(s)IIg ds
0

if the corresponding functions are Lebesgue integrable on the inferagl

Assuming again that the corresponding functions are Lebesgue inte-
grable on the interval0, 7], and employing (3.38) and Lemma 3.4, we
finally arrive at the bound

(3.52) 10:0(1)||2 < C5(t)h?PT2 4 Co(t)h*PT2 < Ch?PT2
which is (3.39). O

Remark 3.4As follows from the proof, such a smooth dependenag'a@ind

U ontis needed in Lemma 3.5 that guarantees the integration of (3.51) and
the application of Lemma 3.4, including the upper bound for the expression
in (3.52).

4. Semidiscrete error estimation

From the formula (3.11), we have

(4.1) u(z,t) =U(x,t) + e(x,t)
and replace: by (4.1) in (2.7) and (2.8). Then

(Ore,v) + (a(U + e)dze, Oypv)
4.2) = —(f(U +e),v) — (0:U,v) — (a(U + €)0,U, 0v)

holds for almost every € (0, T'] and all functionsy € H}, and

(4.3) (a(up)Oge, 0,v) = (a(ug)Ox(ug — U), Ozv)
holds fort = 0 and all functions € H|.

An error estimate can be obtained by calculating another semidiscrete
approximate solution of (2.7) and (2.8),c Sév’p“, using (3.9) and (3.10).

Sincel is higher-order thal, |7 — U ||, can provide an estimate for the
errore. The computational efficiency of this approach is improved when
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superconvergence can be employed. Superconvergence impliefé that
U + E where

N
(4.4) Z () ejpri(®
7=1

is theerror estimate Let us introduce the spac® **' of functionsV (x)

such that
o~ N o~
T) = Z Vigjp1(z)
j=1

There are several possibilities to defifiavith the help of (4.2) and (4.3).
Ifno ambiguity can occur we denote all the error estimates introduced in what
follows by the symbolE’ and omit the indices. Recall that; ,+1(z) = 0
for x < x;_1 andz; < z according to (3.2) and notice that the identity

> S GNp+l
(), V) =0forall Ve Sy 7"
is equivalent to the system of identities
(¥, V); =0forall Ve S j=1,... N

We then say that a functioB = Epy of the form (4.4) is thenonlinear
parabolic error estimatéf the identity

@Eﬁy uU+@aEavy

(4.5) ~(f(U+E),V); — (00, V); = (a(U + E)0,U, 8,V);
holds for almost every € (0,7, 5 = 1,...,N, and all functions/ €
SgPPT and if the identity

(4.6) (a(u0)0xE, 8,V); = (a(u0)dy(ug — U), 8, V);

holds fort = 0, j = 1,..., N, and all functions/ € §(])V,p+1. Note that
(4.5) and (4.6) are a series 6f uncoupled local parabolic problems and,
therefore, the solution costs are rather low.

To save some further computation we can neglect the time change of the
error estimate. We say that a functidh= Egy of the form (4.4) is the
nonlinear elliptic error estimaté the identity

mU+@aEaﬁy
(4.7) ~(f(U+E),V); - (8U,V); — (a(U + E)3,U,3,V);

holds for almost every € (0,7], 5 = 1,...,N, and all functionsl €
SPPT and if the identity (4.6) holds far = 0 and the same functioris.
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The problem (4.7) and (4.6) represents a seri€é ahcoupled local elliptic
problems. The computational advantage of the elliptic estimate consists in
the fact that, for practical reasons, it need not be computed fortebigh
only when needed. - o

Additional savings can be realized by neglectingthierm ina (U + E)
andf(U + FE), thereby reducing (4.5) to a linear parabolic problem

(OB, V); + (a(U)8,E,0,V);
(4.8) = —(f(0),V); = (00, V); = (a(0),U, 0, V),
and (4.7) to a linear elliptic problem
(@(0)0:E,0,V); = ~(f(U),V); = (2T, V),

(4.9) — (a(0)0,T,0,V);.
The corresponding error estimates are calieear parabolic (Epy,) and
linear elliptic (Egy).

As an analog of the elliptic projectia® of the solutionu into Sév’p (cf.
(3.3)), let us introduce a functiart € S},

Z €; SOJ p+1

N,p+1

such that + e is an elliptic projection ofz into S, 7", i.e.,
(4.10) (a(u)p(u + €M), 8,V); = (a(w)dpu, ,V);
holds for almost every € [0,7],7 = 1,...,N, and all functionsl €
§N,p+1
0 .
We further put
(411) nPN(xat) :eh(x,t)— _PN(xvt)a
(4.12) npL(z,t) = " (x,t) — EpL(x,1),
neN(z,t) = e"(z,t) — Egn(z, ),
(4.13) neL(z,t) = e"(z,t) — Eg(z,1),
where, apparently; € §év’p+1. We omit the indices of) if no ambiguity
can occur.
Finally, we set
(4.14) plxz,t) = u(x, t) — ul(z,t) — "(x,t)

analogically to (3.4).
A bound for the quantityjpx is provided by the following lemma.
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Lemma 4.1 Let Epx € 5. be the error estimate given kiy.5) and
(4.6), ande™ € S)P*! afunction such that” + ¢ is an elliptic projection

of u into Sé“pﬂ according to(4.10). Let ||6(.,¢)|lo and ||npn(.,t)|lo be
nondecreasing functions of the variabland let

(4.15) I7(0)]|o < ChP*

hold for the functiomex(z,0) given by(4.11). Let the assumptions of
Lemmas3.5 be fulfilled, and let” and Epyn depend ort in a sufficiently
smooth way. Then there exists a constant 0 such that

npn|li < CRPTL,

Proof. Substituting from (4.10) into (2.7) and choosing test functibns
St ¢ HY, we arrive at

(4.16) (Bru, V) + (a(w)dp(ul + "), 8,V); = —(f(u), V);

forj =1,..., N. Subtracting now (4.16) from (4.5) and substitutingdor
from (4.14), we have

(E,V); + (a(U + E)0,E,0,V); + (8,0, V);
+(a(U + E)8,U,0,V); — (85, V); — (Ou, V);
— (0", V) — (a(w)d, (u + €),0,V);

~(f(U + E),V)j + (f(w), V).
We now rearrange the terms, and add and subtract termsaith+
E)o.e" anda(U + E)o,u" to arrive at
0, V); + (a(U + E)dyn, 8.V);
= ([a(U + BE) — a(uw))0u(u" + "), 8,V);
— (U + E)8,0,0,V); — (8:0,V); — (95, V),
(4.17) + (f(U+E) - f(u),V);.

A further course of the proof is analogous to that of Lemma 3.5. We
substitute; € S) 7+ for V into (4.17) and use (3.15) to obtain

1d
: dtunno,j (U + B)oun, 0an)

(a
= ([a(U + B) — a(u)|0, (u" + "), 0um);
—(a ( + £)0:0,9:m); — (9:6,m); — (9P, m);
(4.18) +(f(U + E) = f(u),n);
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forj=1,...,N.
We now bound the individual terms in (4.18). We have

(4.19) 0 < pll0enlls; < (a(U + E)dyn, 8:m);
according to (2.2). Note that
(4.20) 10:(u" 4 €M) ||oo < C(u)

according to (3.8) and (4.10). We employ a positive congkaimntdependent
of j to be fixed later on the right-hand part of (4.18). From the Schwarz
inequality, (2.2) to (2.4), and (4.20), we then have

|(—[a(U + E) — a(u)]dx(u" + ") + a(U + E)d.0,9:n),]
< (CVK—Ya(U + E) — a(u)| + VK-1M|8,0|,VK|d:n]);
<ACPK L2 |nl|§ 5 + 4CP K L2(|0)15 ; + 2C° K LP|pl)G
(4.21) +K'M2(|0,0|3; + LK]10113
(4.22) |(3:0,m);] < 5100155 + 5lInll5
(4.23) (9ep. )il < 310115 ; + Slml3
(4.24) |(f(U+ E) = f(u),n);] < 3IF(U+E) = f(w)§; + 5n|
< Cilnll3; + 22210112, + L2113 ;-

Substituting now the bounds (4.19) and (4.21) to (4.24) into (4.18), we
obtain

1d

2.dt

2
O’j

||77||3,j + (b — 5K)[|02n 3,;‘
< (Co + CsK_l)HUH%,j + (Cy + C5K_l)||9||%,j
(4.25) +(Co + K515 5 + 5110:0115 5 + 511060115 5

forj = 1,...,N. Summing up the inequalities (4.25) for=1,... , N,
fixing K so that

(4.26) K < 2u,

using (3.13) and (3.39), and applying Lemma 3.1 with 1 instead ofp to
the functionp given by (4.14), we finally arrive at

1d
2 dt
with someS > 0. Omitting the term withj|9,.m||3 on the left-hand part and
integrating on both parts of (4.27), we find

(4.27) 1113 + Sll0:1ll§ < Cs(@)lInllg + Co(t)n*+2

In(®)11F < [In(0)[IF + Cro(t)h** + 2/0 Cs(s)lIn(s)l5 ds
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if the corresponding functions are Lebesgue integrable on the inferagl
Employing now (4.15), assuming that the corresponding functions are again
Lebesgue integrable df, 7], and applying Lemma 3.4, we have the bound

(4.28) |n(t)||2 < C11(t)h?PT2 + Cro(t)R?PT2 < Ch?PT2,

Let us turn back to the inequality (4.27). Assuming that)||o is non-
decreasing, we can write

d
4.29 —Inl|l2 > o.
(4.29) g >0

Using (4.26), (4.28), and (4.29), we finally obtain from (4.27) that
(4.30) 0.2 < Ch?PT2,

The statement of the lemma follows from (4.28) and (4.30@).

Remark 4.1As follows from the proof, such a smooth dependence’of
and Epy ont is needed in Lemma 4.1 that guarantees the integration of
(4.27) and the application of Lemma 3.4, including the upper bound for the
expression in (4.28).

Remark 4.2The assumption of Lemma 4.1 thatpn||o IS a nondecreasing
function of ¢ holds, e.qg., for linear problems with the terfincreasing

in time. Considering the same problem as in Remark 3.3, we can easily
calculate the quantitypyx (equal tonpr, for linear problems) fop = 1
explicitly.

The same bound as fgpy can be proved fonpy,, too.
Lemma 4.2 Let Epy, € §év”’+1 be the error estimate given ky.6) and

(4.8), ande” € P+ afunction such that” + ¢” is an elliptic projection

of u into Sév’p“ according to(4.10). Let [|6(.,t)]|o and ||npL(.,t)|l0 be
nondecreasing functions of the variablkend let(4.15) hold for the function
npL(x, 0) given by(4.12). Let the assumptions of Lemma be fulfilled and

let " and E'py, depend ort in a sufficiently smooth way. Then there exists
a constantC' > 0 such that

lerll < CRPFE.
Proof. Subtracting (4.16) from (4.8), we have
(0B, V); + (a(0)0: B, 0.V); + (8,0, V); + (a(0)0,T, 8, V);
— (Bru, V)j — (a(w) e (uP + €M), 0,V);
= —(f(0),V); + (f(w),V);.
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Proceeding in the same way as in the proof of Lemma 4.1, we arrive at

1d -
5 g7 Iml6s + (a(0)dum, 0um),

= ([a(U) — a(w)]dx(u" + €"), 0un)j — (a(U)020,0,n);
(4.31) —(0:0,m); = (0o m)j + (fF(U) = f(u),n);-
We now bound the individual terms in (4.31). We have
(4.32) 0 < pll@enlls ; < (a(U)02n, 02m);

according to (2.2). A positive constaif will be fixed later. From the
Schwarz inequality, (2.2), (2.4), and (4.20), we obtain
|(~[a(0) — a(w)]du(u" + ") + a(0)8:0, un);|

< 207K LP||0)13 5 + 202K L2 ||l
(4.33) + KTIM2)|0:0)13 5 + 3K 105 5,
(4.34) |(F(O) = f(w),m);l < L2615 + L2lpli§ ; + 5lnll6 ;-

Substituting now the bounds (4.22), (4.23), and (4.32) to (4.34) into

(4.31), we obtain an analog of (4.25), whéf#(5 ; is replaced by p|[5 ;. The
same procedure as in the proof of Lemma 4.1 and, moreover, the application

of Lemma 3.1 lead to (4.27) witK fixed by (4.26). The rest of the proof is
the same as in Lemma 4.10

Remark 4.3Comments analogous to Remarks 4.1 and 4.2 are concerned
with the assumptions of Lemma 4.2, too.

The last case we are going to analyzeysg.

Lemma 4.3 Let Exy, € S be the error estimate given ky.6) and
(4.9),ande” € S)P*! afunction such that” + ¢” is an elliptic projection
of u into Sév’p“ according to(4.10). Let [|6(.,%)]|o and ||neL(.,t)|l0 be
nondecreasing functions of the variabkend let(4.15) hold for the function
neL(z,0) given by(4.13). Let the assumptions of Lemraa be fulfilled.
Than there exists a constafit > 0 such that

(4.35) 7n ]l < CRPTE.
Proof. Subtracting (4.16) from (4.9), we have
(@(0)D,E, 0, V)j + (0,U,V); + (a(U)D
—(Byu, V) — (a(u)dp(ul + €M), 0,
= —(f(0), V); + (f(u), V);.

U,0,V);
)i
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Proceeding in the same way is in the proof of Lemma 4.2, we arrive at

(4.36) (a(U)dxn, 9n);

= ([a(U) = a()]0s (u" + €"), 0m); — (a(U)0:0, 0n),
— (08, n)j - (atp, 77);‘ + (f(U) - f(U), 77)j

forj = 1,...,N. Summing up the inequalities (4.36) fpr=1,... , N,

we can bound the individual terms in the sum. Using analogs of (4.32)
and (4.33), and the consequences of the Schwarz inequality and (2.4), we
conclude that

plloen |l < 20 K=1L2 0] + 202K~ L2 | pllg + K~ M?[10:03
+ 5K [0:103 + (108110 + 19epllo + Lllpllo + L16llo)[In]o-

Fixing K so thatK < 2up and using (3.5), (3.6), (3.13), and (3.39), we
finally obtain

(4.37) Clldanl§ < Coh?*Hinllo + C3h**2.
According to Lemma 2.1, we have from (4.37)

(4.38) Cilnll§ < CohPHnllo + C3h*+2
with some positive constants;, Co, andCs, i.e.,

(4.39) Cullnllg — C2h*Hinllo — C3h™*2 < 0.
The left-hand part can be expressed as a product

(4.40) (Inllo = &)(Inllo = &2) <0,

where

2
glzzhp+102j: 02 + 4C1C5 20‘
’ 2C4

Since||n|lo > 0 cannot be less thafy < 0 the only way to satisfy (4.40)
(and (4.38) and (4.39) as well) is

(4.41) Inllo < &1 = CyhPH.
Substituting (4.41) into (4.37), we finally obtain
HaanO < CBhp+1a

which together with (4.41) implies (4.35). The lemma has been proved.
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We introduce the four quantitie®pn, @, Op1,, andOxg;,, called the
effectivity inde»of the respective error estimate and given by the formula

_ &Il
llefl1
The principal result that generalizes the statements of [9] Theorem 3.1,
Corollary 3.1, and Theorem 3.2 is the following theorem.
Theorem 4.1 Letu € HP*' N H} andU € S, be solutions of2.7),
(2.8) and(3.9), (3.10). Let & € 527t be the solution of4.5), (4.6) (for
Epn), (4.6), (4.8) (for Epy,), or (4.6), (4.9) (for Exy,). Let||0(.,t)||o and
In(.,t)||o be nondecreasing functions of the variablend let(4.15) hold.
Let the assumptions of Lemri& be fulfilled, and let”, Epy, and Epy,

depend ort in a sufficiently smooth waicf. Remarksl.1 and4.3).
Further let

(4.42) lle|ls > ChP.
Then
(4.43) lIme =1
h—0

for almost every € [0, T'], where® is Opy, Opr,, O OgL,.
Proof. Rewritee given by (4.1) as

e=u—(@W'+e")+ W -U)+("-E)+E.

Then

(4.44) E=e—p—0-n

and

(4.45) 1]l < llell + 11711 + 11611+ llnll < llell + CohP*

with respect to (4.14) and Lemma 3.1 wjih 1 instead ofp, Lemma 3.3,
and Lemmas 4.1, 4.2, and 4.3. -
Further, the equation (4.44) implies that E + p+ 0 + n, i.e.,

lell < IEl + 1ol + 101 + llnlls < Bl + Cih?*!
according to the same statements as above and

(4.46) lefly — Crh*t < |
Finally, according to (4.45) and (4.46), we arrive at
(4.47) lelli = Cy P < |Elr < [lells + CohP*!

and, dividing (4.47) by|e||; and taking (4.42) into account, at
1-Cih <0 <1+ Csh.
Then (4.43) holds foh — 0. O
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5. Conclusions

Linear and nonlinear parabolic and linear elliptic a posteriori error estimates
for nonlinear parabolic equations are shown to converge to the true error
for semidiscrete methods. This fact has been indicated by results of many
numerical experiments carried outin[1, 3,9, 11, 13, 14, 15], and many other
papers.

Every adaptive numerical procedure for solving parabolic equations is
based on some fully discrete scheme. If the method of lines is chosen for
the space discretization of the equation (2.1) a posteriori error estimates
for the fully discrete case are covered by [9] only when the singly implicit
Runge-Kutta (SIRK) method or the backward difference formula are used
for the time discretization.

Theorem 4.1 is concerned with the semidiscrete case and can be used
as a basis for an adaptive numerical procedure that uses any other time dis-
cretization, too, on the assumption that the error resulting from the numerical
solution in time is, as usually required, sufficiently small as compared with
the total error tolerance set. The relation between the error tolerances for
the time and space has been intensively studied recently.

An example of numerical values of the effectivity indéxfor the non-
linear equation (2.1) can be found, e.g., in [9] Example 5.3. The equation

Oyu = 0y (3u28$u)

is solved there fob < = < 1 andl < ¢ with boundary and initial conditions
chosen so that the exact solution is

u(z,t) =t /4 /1 - %:p%_l/z.

The method of lines with time discretization by the SIRK method is used.
The results obtained for several valuesppfand different space and time
steps are given in [9] Table 5.3. The effectivity indices depend on the relation
betweerp and the time step and range from 0.94 to 1.00.

If the diffusion term in the equation (2.1) is dominated by a reaction term
the quality of the effectivity index may be expected to deteriorate.

Babuska et al. [4] showed that the error of the finite element solution
of an elliptic partial differential equation has two parts, the local error and
the pollution error. The investigation of the effect of the pollution error on
the quality of local error indicators in the case of parabolic equations is a
subject of further research.
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