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1. Introduction

Adaptive methods for solving parabolic equations are mostly based on a
posteriori error estimates [1, 2, 3, 5, 7, 8, 9, 10, 12]. One of the most common
strategies for constructing such estimates is the finite elementp-refinement,
i.e. the computation of a second, higher order solution. The error estimate
can be computed as a correction to the original solution on each element.

This approach is very suitable for solving parabolic partial differential
equations by the method of lines. The analysis of the approximate solution at
the actual time level based on the calculation of an a posteriori error estimate
yields a new grid to be used for the time step leading to the next time level.

Experimental evidence indicates a high efficiency of this approach to
linear as well as nonlinear problems. Convergence of the error estimates to
the true error for a semidiscrete method has been shown for linear equations
in [3, 8, 12]. The paper [9] is devoted to semidiscrete error estimation in
the semilinear case and fully discrete error estimation (if SIRK or BDF
methods are used) in the nonlinear case. In the present paper, we partially
extend the semidiscrete error estimation to the nonlinear case. The results
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can be used as a basis for an adaptive numerical procedure that carries out
the fully discrete computation with an arbitrary time discretization.

In general, we use notation of [9] and prove, for the same nonlinear
problem, some stronger results than presented in [9]. In Sect. 2, the model
problem and its weak formulation are stated. We prove some properties of
the discrete solution in Sect. 3 and present results of the semidiscrete error
estimation in Sect. 4. In Sect. 5, we briefly discuss applicability of the
results to fully discrete adaptive numerical procedures.

2. Model problem

The principal ideas as well as algorithmic procedures connected with the
use of an adaptive grid for solving nonlinear parabolic partial differential
equations can be demonstrated with the help of a simple initial-boundary
value model problem.

Consider the nonlinear equation

(2.1) ∂tu(x, t)+f(u) = ∂x(a(u)∂xu(x, t)), 0 < x < 1, 0 < t ≤ T,

with a fixedT > 0 for an unknown functionu where we use the notation
∂x = ∂/∂x and∂t = ∂/∂t. In (2.1),a andf are smooth functions with

(2.2) 0 < µ ≤ a(s) ≤ M for all s ∈ R

that satisfy the global Lipschitz conditions

|a(r) − a(s)| ≤ L|r − s|,(2.3)
|f(r) − f(s)| ≤ L|r − s| for all r, s ∈ R(2.4)

with constantsµ,M , andL. Possible further assumptions on the model
problem will be formulated when necessary.

In addition, we impose the homogeneous Dirichlet boundary condition

(2.5) u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,

and the initial condition

(2.6) u(x, 0) = u0(x), 0 < x < 1,

whereu0 is a given smooth function. We assume that the boundary and
initial conditions are consistent.

We present the weak formulation of the model problem which is the
starting point for the finite element discretization.

Denote by

(v, w) =
∫ 1

0
v(x)w(x) dx
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theL2 inner product of two functions and‖w‖0 the corresponding norm.
Let k be a nonnegative integer. ThenHk = Hk(0, 1) is the Sobolev space
of functions defined on the interval(0, 1) with the norm

‖w‖k
2 =

k∑
i=0

∥∥∥∂iw

∂xi

∥∥∥2

0
.

The case ofk = 1 is important for the weak formulation. We introduce
the usual subspaceH1

0 = H1
0 (0, 1) of functionsw ∈ H1

0 satisfying the
homogeneous Dirichlet boundary conditions.

We will also use the spaceL∞ with the corresponding norm‖w‖∞ =
esssup |v|.

The constantsC,C1, C2, etc. are generic in the paper, i.e., they may
represent different constant quantities in different occurrences.

We say that a functionu(x, t) is theweak solutionof the problem (2.1),
(2.5), and (2.6) ifu ∈ H1([0, T ], H1

0 (0, 1)), if the identity

(2.7) (∂tu, v) + (f(u), v) + (a(u)∂xu, ∂xv) = 0

holds for almost everyt ∈ (0, T ] and all functionsv ∈ H1
0 , and if the

identity

(2.8) (a(u0)∂xu, ∂xv) = (a(u0)∂xu0, ∂xv),

whereu0 ∈ H1
0 , holds fort = 0 and all functionsv ∈ H1

0 .
In this weak formulation as well as in the whole paper, the variablet

appears as a parameter. Without explicitly stating, we assume that all the
statements and, in particular, constants may depend ont.

Lemma 2.1 Let (2.2) hold. Then

(2.9) ‖v‖2
1 ≤ C(a(v)∂xv, ∂xv)

for all v ∈ H1
0 .

Proof. The inequality (2.9) is a simple consequence of the Friedrichs in-
equality and (2.2). ut

3. Discretization

Let us choose a positive integerp. We solve the problem (2.1), (2.5), and (2.6)
or, in the weak formulation, (2.7) and (2.8) by a finite element method with
a piecewise polynomial hierarchical basis of degreep ≥ 1. We introduce a
partition

0 = x0 < x1 < . . . < xN−1 < xN = 1
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of the interval[0, 1] into N subintervals(xj−1, xj), j = 1, . . . , N . We
further puthj = xj − xj−1, j = 1, . . . , N , and

h = max
j=1,... ,N

hj .

Remark 3.1The following analysis can be modified to the case when the
value ofp is different for the individual subintervals(xj−1, xj).

We suppose that there exist positive constantsτ1 andτ2 such that

τ1 ≤ hj

hj+1
≤ τ2, j = 1, . . . , N − 1,

holds for all the partitions of the interval[0, 1].

Remark 3.2The above grid regularity condition may be restrictive in the
presence of adaptivity. However, there are adaptive procedures (cf. [9])
where refinement criteria satisfy this condition.

We construct a finite dimensional subspaceSN,p
0 ⊂ H1

0 in the following
way. A functionV belongs toSN,p

0 if

V (x) =
N−1∑
j=1

Vj1ϕj1(x) +
N∑

j=1

p∑
k=2

Vjkϕjk(x),

where

ϕj1(x) = (x− xj−1)/hj , xj−1 ≤ x < xj ,(3.1)
= (xj+1 − x)/hj+1, xj ≤ x ≤ xj+1,

= 0 otherwise

for j = 1, . . . , N − 1,

ϕjk(x) =

√
2(2k − 1)
hj

∫ x

xj−1

Pk−1(y) dy, xj−1 ≤ x < xj ,

= 0 otherwise(3.2)

for j = 1, . . . , N andk = 2, . . . , p, and whereVjk are coefficients. The
functionPk(x) is thekth degree Legendre polynomial scaled to subinterval
[xj−1, xj ]. The functions (3.1) and (3.2) form ahierarchical basisof the
subspaceSN,p

0 [15]. The piecewise linear polynomial portion (3.1) of the
basisϕj1 is nodally based while the higher-degree portion (3.2) of the basis
ϕjk, k > 1, is elemental. To express a functionV (x, t) ∈ SN,p

0 in the basis
(3.1) and (3.2) we putVjk = Vjk(t).



A posteriori error estimation for a nonlinear parabolic equation 459

We will also use the local inner product

(v, w)j =
∫ xj

xj−1

v(x)w(x) dx

and the corresponding local norm‖v‖s,j .
To start the analysis, we introduce an elliptic projection of the solution

u. We say that a functionuh(x, t) is theelliptic projectionof the solution
u(x, t) of the problem (2.7) and (2.8) ifuh ∈ H1([0, T ], SN,p

0 ), if the identity

(3.3) (a(u)∂xu
h, ∂xV ) = (a(u)∂xu, ∂xV )

holds for almost everyt ∈ (0, T ] and all functionsV ∈ SN,p
0 , and if the

identity
(a(u0)∂xu

h, ∂xV ) = (a(u0)∂xu0, ∂xV )

holds fort = 0 and all functionsV ∈ SN,p
0 .

We further denote by

(3.4) ρ(x, t) = u(x, t) − uh(x, t)

the error of the elliptic projection.
Our analysis relies on the properties of the elliptic projectionuh pre-

sented.

Lemma 3.1 Letu ∈ Hp+1 ∩H1
0 anduh ∈ SN,p

0 be the elliptic projection.
Then

‖ρ‖0 + h‖∂xρ‖0 ≤ C(u)hp+1,(3.5)

‖∂tρ‖0 ≤ C(u)hp+1,(3.6)

and if∂ttρ ∈ L2 then also

(3.7) ‖∂ttρ‖0 ≤ C(u)hp+1.

Further

(3.8) ‖∂xu
h‖∞ ≤ C(u)

independently oft andh.

Proof. See [16] Lemmas 13.2 and 13.3, and [9] Lemma 2.1.ut
We now introduce the semidiscrete solution. We say that a function

Ū(x, t) is thesemidiscrete approximate solutionof the problem (2.7) and
(2.8) if Ū ∈ H1([0, T ], SN,p

0 ), if the identity

(3.9) (∂tŪ , V ) + (f(Ū), V ) + (a(Ū)∂xŪ , ∂xV ) = 0
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holds for almost everyt ∈ (0, T ] and all functionsV ∈ SN,p
0 , and if the

identity

(3.10) (a(u0)∂xŪ , ∂xV ) = (a(u0)∂xu0, ∂xV )

holds fort = 0 and all functionsV ∈ SN,p
0 .

Note that, in contrast to [9], we treat the problem (3.9) and (3.10) with a
general coefficienta(u).

We further denote by

(3.11) e(x, t) = u(x, t) − Ū(x, t)

the error of the semidiscrete solution.

Lemma 3.2 Letu ∈ Hp+1∩H1
0 andŪ ∈ SN,p

0 be the semidiscrete solution.
Then

‖e‖1 ≤ C(u)hp.

Proof. See [16] Theorem 13.1 and [9] formula (3.3).ut
The phenomenon that̄U is a better approximation touh than tou is

referred to as superconvergence in [16]. Putting

(3.12) θ(x, t) = uh(x, t) − Ū(x, t),

we formulate this statement as a lemma. Note thate(x, t) = ρ(x, t)+θ(x, t)
according to (3.4), (3.11), and (3.12).

Lemma 3.3 Let uh ∈ SN,p
0 and Ū ∈ SN,p

0 be the elliptic projection and
semidiscrete solution. Let‖θ(., t)‖0 = ‖θ(t)‖0 be a nondecreasing function
of the variablet. Then

(3.13) ‖θ‖1 ≤ C(u, L)hp+1.

Proof. Recall thatu, uh, andŪ are given by (2.7), (3.3), and (3.9), respec-
tively, for t > 0. Substituting from (3.3) into (2.7), then subtracting (2.7)
from (3.9), and recalling further (3.4), (3.11), and (3.12), we find

(∂tθ, V ) + (a(Ū)∂xθ, ∂xV ) = −(∂tρ, V ) + (f(Ū) − f(u), V )

+ ([a(Ū) − a(u)]∂xu
h, ∂xV )(3.14)

for all functionsV ∈ SN,p
0 . PuttingV = θ in (3.14) and using the obvious

formula

(3.15)
1
2
d

dt
‖ψ‖2

0 = (∂tψ,ψ)
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that holds for any sufficiently smooth functionψ, we arrive at

1
2
d

dt
‖θ‖2

0 + (a(Ū)∂xθ, ∂xθ)

= −(∂tρ, θ) + (f(Ū) − f(uh), θ) + (f(uh) − f(u), θ)

+ ([a(Ū) − a(uh)]∂xu
h, ∂xθ) + ([a(uh) − a(u)]∂xu

h, ∂xθ).(3.16)

We now bound the individual terms in (3.16). We have

(3.17) 0 < µ‖∂xθ‖2
0 ≤ (a(Ū)∂xθ, ∂xθ)

according to (2.2). On the right-hand part, we employ a positive constant
K to be fixed later. From the Schwarz inequality, (2.3), (2.4), and (3.8) we
then have

|(∂tρ, θ)| ≤ 1
2‖∂tρ‖2

0 + 1
2‖θ‖2

0,(3.18)

|(f(Ū) − f(uh), θ)| ≤ 1
2‖f(Ū) − f(uh)‖2

0 + 1
2‖θ‖2

0

≤ 1
2(L2 + 1)‖θ‖2

0,(3.19)

|(f(uh) − f(u), θ)| ≤ 1
2‖f(uh) − f(u)‖2

0 + 1
2‖θ‖2

0

≤ 1
2L

2‖ρ‖2
0 + 1

2‖θ‖2
0,(3.20)

|([a(Ū) − a(uh)]∂xu
h, ∂xθ)| ≤ (C

√
K−1|a(Ū) − a(uh)|,

√
K|∂xθ|)

≤ 1
2C

2L2K−1‖θ‖2
0 + 1

2K‖∂xθ‖2
0,(3.21)

|([a(uh) − a(u)]∂xu
h, ∂xθ)| ≤ (C

√
K−1|a(uh) − a(u)|,

√
K|∂xθ|)

≤ 1
2C

2L2K−1‖ρ‖2
0 + 1

2K‖∂xθ‖2
0.(3.22)

Substituting now the bounds (3.17) to (3.22) into (3.16), we obtain

1
2
d

dt
‖θ‖2

0 + (µ−K)‖∂xθ‖2
0 ≤ (C1 + C2K

−1)‖θ‖2
0

+(C3 + C4K
−1)‖ρ‖2

0 + 1
2‖∂tρ‖2

0.

Note that

(3.23) ‖θ‖0 ≤ C(u)hp+1

according to [16], proof of Theorem 13.1 and [9], proof of Lemma 3.1.
Fixing nowK < µ, and using (3.5), (3.6), and (3.23), we arrive at

(3.24)
d

dt
‖θ‖2

0 + C1‖∂xθ‖2
0 ≤ C2h

2p+2.

Since we assumed‖θ(t)‖0 nondecreasing,d‖θ‖2
0/dt ≥ 0 and we finally

obtain (3.13) from (3.23) and (3.24).ut
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Remark 3.3The assumption that‖θ‖0 is a nondecreasing function oft
holds, e.g., for linear problems with the termf increasing in time. Con-
sider, for example, the problem

∂tu− 2t(t+ x(1 − x)) = ∂xxu

with u(x, 0) = 0 whereu(x, t) = t2x(1 − x) and the quantityθ can be
easily calculated explicitly forp = 1.

Before we state further properties of the functionθ we prove a lemma
we are going to use. A weaker statement is presented in [6] Chap. 1.

Lemma 3.4 Letϕ,ψ, andχbe Lebesgue integrable functions on the interval
[0, T ], χ(t) ≥ 0 almost everywhere in[0, T ]. Let

(3.25) ϕ(t) ≤ ψ(t) +
∫ t

0
χ(τ)ϕ(τ) dτ

hold for almost everyt ∈ [0, T ].
Then

(3.26) ϕ(t) ≤ ψ(t) +
∫ t

0
χ(τ)ψ(τ) exp

( ∫ t

τ
ψ(σ) dσ

)
dτ

for almost everyt ∈ [0, T ].

Proof. We first show that if a functionR(t) satisfies the inequality

(3.27) R′(t) − χ(t)R(t) ≤ χ(t)ψ(t)

with the initial conditionR(0) = 0 and a functionZ(t) is the solution of
the equation

(3.28) Z ′(t) − χ(t)Z(t) = χ(t)ψ(t)

with the initial conditionZ(0) = 0, then

(3.29) R(t) ≤ Z(t).

PuttingW (t) = Z(t) − R(t) and subtracting (3.27) from (3.28), we find
out thatW (t) is the solution of the equation

W ′(t) − χ(t)W (t) = α(t) ≥ 0

with the initial conditionW (0) = 0. The well-known formula then imme-
diately gives

(3.30) W (t) =
∫ t

0
α(τ) exp

( ∫ t

τ
χ(σ) dσ

)
dτ ≥ 0,
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i.e., (3.29) holds.
Multiplying (3.25) byχ(t) and substituting then

R(t) =
∫ t

0
χ(τ)ϕ(τ) dτ,

we obtain just the inequality (3.27). Using now (3.25) and (3.29), and writing
an analog of formula (3.30) for the solutionZ(t) of the equation (3.28), we
arrive at (3.26). ut

We will denote bya′(r) andf ′(r) the derivatives of the functionsa(r)
andf(r) with respect to the only variabler.

Lemma 3.5 Let uh ∈ SN,p
0 and Ū ∈ SN,p

0 be the elliptic projection and
semidiscrete solution. Further assume the global Lipschitz conditions

|a′(r) − a′(s)| ≤ L′|r − s|,(3.31)
|f ′(r) − f ′(s)| ≤ L′|r − s| for all r, s ∈ R(3.32)

and

|a′(s)| ≤ M ′,(3.33)
|f ′(s)| ≤ M ′ for all s ∈ R(3.34)

with some positive constantsL′ andM ′.
Moreover, let there be a constantQ > 0 such that

‖∂tu‖∞ ≤ Q,(3.35)
‖∂tŪ‖∞ ≤ Q,(3.36)

‖∂txu
h‖∞ ≤ Q,(3.37)

Letuh andŪ depend ont in a sufficiently smooth way, let‖θ(., t)‖0 be
a nondecreasing function of the variablet, and let

(3.38) ‖∂tθ(0)‖0 ≤ Chp+1.

Then

(3.39) ‖∂tθ‖0 ≤ C(u)hp+1.

Proof. Start again from the identity (3.14) that holds for all functionsV ∈
SN,p

0 and differentiate with respect tot. We have

(∂ttθ, V ) + (a′(Ū)∂tŪ∂xθ, ∂xV ) + (a(Ū)∂txθ, ∂xV )
= −(∂ttρ, V ) + (f ′(Ū)∂tŪ − f ′(u)∂tu, V )

+ ([a′(Ū)∂tŪ − a′(u)∂tu]∂xu
h, ∂xV )

+ ([a(Ū) − a(u)]∂txu
h, ∂xV )



464 K. Segeth

and putV = ∂tθ. Using an analog of (3.15), we arrive at

1
2
d

dt
‖∂tθ‖2

0 + (a(Ū)∂txθ, ∂txθ)

= −(a′(Ū)∂tŪ∂xθ, ∂txθ) − (∂ttρ, ∂tθ)
− (f ′(Ū)∂tρ, ∂tθ) − (f ′(Ū)∂tθ, ∂tθ)
− ([f ′(u) − f ′(Ū)]∂tu, ∂tθ)

− (a′(Ū)∂xu
h∂tρ, ∂txθ) − (a′(Ū)∂xu

h∂tθ, ∂txθ)

− ([a′(u) − a′(Ū)]∂xu
h∂tu, ∂txθ)

+ ([a(Ū) − a(u)]∂txu
h, ∂txθ).(3.40)

We now bound the individual terms in (3.40). We have

(3.41) 0 < µ‖∂txθ‖2
0 ≤ (a(Ū)∂txθ, ∂txθ)

according to (2.2). On the right-hand part, we will employ a constantK to
be fixed later. From the Schwarz inequality, (2.3), (3.8), and (3.31) to (3.37),
we then have

|(a′(Ū)∂tŪ∂xθ, ∂txθ)| ≤ (M ′Q
√
K−1|∂xθ|,

√
K|∂txθ|)

≤ 1
2M

′2Q2K−1‖∂xθ‖2
0 + 1

2K‖∂txθ‖2
0,(3.42)

|(∂ttρ, ∂tθ)| ≤ 1
2‖∂ttρ‖2

0 + 1
2‖∂tθ‖2

0,(3.43)

|(f ′(Ū)∂tρ, ∂tθ)| ≤ 1
2M

′2‖∂tρ‖2
0 + 1

2‖∂tθ‖2
0,(3.44)

|(f ′(Ū)∂tθ, ∂tθ| ≤ M ′2‖∂tθ‖2
0,(3.45)

|([f ′(u) − f ′(Ū)]∂tu, ∂tθ)| ≤ (Q|f ′(u) − f ′(Ū)|, |∂tθ|)
≤ (QL′|ρ+ θ|, |∂tθ|)
≤ Q2L′2‖ρ‖2

0 +Q2L′2‖θ‖2
0 + 1

2‖∂tθ‖2
0,(3.46)

|(a′(Ū)∂xu
h∂tρ, ∂txθ)| ≤ (M ′C

√
K−1|∂tρ|,

√
K|∂txθ|)

≤ 1
2M

′2C2K−1‖∂tρ‖2
0 + 1

2K‖∂txθ‖2
0,(3.47)

|(a′(Ū)∂xu
h∂tθ, ∂txθ)| ≤ (M ′C

√
K−1|∂tθ|,

√
K|∂txθ|)

≤ 1
2M

′2C2K−1‖∂tθ‖2
0 + 1

2K‖∂txθ‖2
0,(3.48)

|([a′(u) − a′(Ū)]∂xu
h∂tu, ∂txθ)|

≤ (CQ
√
K−1|a′(u) − a′(Ū)|,

√
K|∂txθ|)

≤ C2Q2L′2K−1‖ρ‖2
0 + C2Q2L′2K−1‖θ‖2

0 + 1
2K‖∂txθ‖2

0,(3.49)

|([a(Ū) − a(u)]∂txu
h, ∂txθ)|

≤ (Q
√
K−1|a(Ū) − a(u)|,

√
K|∂txθ|)

≤ Q2L2K−1‖ρ‖2
0 +Q2L2K−1‖θ‖2

0 + 1
2K‖∂txθ‖2

0.(3.50)



A posteriori error estimation for a nonlinear parabolic equation 465

Recalling now (3.5) to (3.7) and (3.13), and using the bounds (3.41) to
(3.50), we rewrite (3.40) in the form

(3.51)
1
2
d

dt
‖∂tθ‖2

0 + (µ− 5
2K)‖∂txθ‖2

0 ≤ C1(t)‖∂tθ‖2
0 + C2(t)h2p+2.

Fixing nowK < 2
5µ, we can omit the term‖∂txθ‖2

0 and integrate on
both parts of (3.51) to get

‖∂tθ(t)‖2
0 ≤ ‖∂tθ(0)‖2

0 + C3(t)h2p+2 + 2
∫ t

0
C1(s)‖∂tθ(s)‖2

0 ds

if the corresponding functions are Lebesgue integrable on the interval[0, T ].
Assuming again that the corresponding functions are Lebesgue inte-

grable on the interval[0, T ], and employing (3.38) and Lemma 3.4, we
finally arrive at the bound

(3.52) ‖∂tθ(t)‖2
0 ≤ C5(t)h2p+2 + C6(t)h2p+2 ≤ Ch2p+2,

which is (3.39). ut
Remark 3.4As follows from the proof, such a smooth dependence ofuh and
Ū on t is needed in Lemma 3.5 that guarantees the integration of (3.51) and
the application of Lemma 3.4, including the upper bound for the expression
in (3.52).

4. Semidiscrete error estimation

From the formula (3.11), we have

(4.1) u(x, t) = Ū(x, t) + e(x, t)

and replaceu by (4.1) in (2.7) and (2.8). Then

(∂te, v) + (a(Ū + e)∂xe, ∂xv)
= −(f(Ū + e), v) − (∂tŪ , v) − (a(Ū + e)∂xŪ , ∂xv)(4.2)

holds for almost everyt ∈ (0, T ] and all functionsv ∈ H1
0 , and

(4.3) (a(u0)∂xe, ∂xv) = (a(u0)∂x(u0 − Ū), ∂xv)

holds fort = 0 and all functionsv ∈ H1
0 .

An error estimate can be obtained by calculating another semidiscrete
approximate solution of (2.7) and (2.8),¯̄U ∈ SN,p+1

0 , using (3.9) and (3.10).
Since ¯̄U is higher-order than̄U , ‖ ¯̄U − Ū‖1 can provide an estimate for the
error e. The computational efficiency of this approach is improved when
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superconvergence can be employed. Superconvergence implies that¯̄U ≈
Ū + Ē where

(4.4) Ē(x, t) =
N∑

j=1

Ēj(t)ϕj,p+1(x)

is theerror estimate. Let us introduce the spacêSN,p+1
0 of functionsV̂ (x)

such that

V̂ (x) =
N∑

j=1

V̂jϕj,p+1(x).

There are several possibilities to defineĒ with the help of (4.2) and (4.3).
If no ambiguity can occur we denote all the error estimates introduced in what
follows by the symbolĒ and omit the indices. Recall thatϕj,p+1(x) = 0
for x ≤ xj−1 andxj ≤ x according to (3.2) and notice that the identity

(ψ, V̂ ) = 0 for all V̂ ∈ ŜN,p+1
0

is equivalent to the system of identities

(ψ, V̂ )j = 0 for all V̂ ∈ ŜN,p+1
0 , j = 1, . . . , N.

We then say that a function̄E = ĒPN of the form (4.4) is thenonlinear
parabolic error estimateif the identity

(∂tĒ, V̂ )j + (a(Ū + Ē)∂xĒ, ∂xV̂ )j

= −(f(Ū + Ē), V̂ )j − (∂tŪ , V̂ )j − (a(Ū + Ē)∂xŪ , ∂xV̂ )j(4.5)

holds for almost everyt ∈ (0, T ], j = 1, . . . , N , and all functionsV̂ ∈
ŜN,p+1

0 , and if the identity

(4.6) (a(u0)∂xĒ, ∂xV̂ )j = (a(u0)∂x(u0 − Ū), ∂xV̂ )j

holds fort = 0, j = 1, . . . , N , and all functionŝV ∈ ŜN,p+1
0 . Note that

(4.5) and (4.6) are a series ofN uncoupled local parabolic problems and,
therefore, the solution costs are rather low.

To save some further computation we can neglect the time change of the
error estimate. We say that a function̄E = ĒEN of the form (4.4) is the
nonlinear elliptic error estimateif the identity

(a(Ū + Ē)∂xĒ, ∂xV̂ )j

= −(f(Ū + Ē), V̂ )j − (∂tŪ , V̂ )j − (a(Ū + Ē)∂xŪ , ∂xV̂ )j(4.7)

holds for almost everyt ∈ (0, T ], j = 1, . . . , N , and all functionsV̂ ∈
ŜN,p+1

0 , and if the identity (4.6) holds fort = 0 and the same functionŝV .
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The problem (4.7) and (4.6) represents a series ofN uncoupled local elliptic
problems. The computational advantage of the elliptic estimate consists in
the fact that, for practical reasons, it need not be computed for eacht but
only when needed.

Additional savings can be realized by neglecting theĒ term ina(Ū+Ē)
andf(Ū + Ē), thereby reducing (4.5) to a linear parabolic problem

(∂tĒ, V̂ )j + (a(Ū)∂xĒ, ∂xV̂ )j

= −(f(Ū), V̂ )j − (∂tŪ , V̂ )j − (a(Ū)∂xŪ , ∂xV̂ )j(4.8)

and (4.7) to a linear elliptic problem

(a(Ū)∂xĒ, ∂xV̂ )j = −(f(Ū), V̂ )j − (∂tŪ , V̂ )j

− (a(Ū)∂xŪ , ∂xV̂ )j .(4.9)

The corresponding error estimates are calledlinear parabolic(ĒPL) and
linear elliptic (ĒEL).

As an analog of the elliptic projectionuh of the solutionu intoSN,p
0 (cf.

(3.3)), let us introduce a functioneh ∈ ŜN,p+1
0 ,

eh(x, t) =
N∑

j=1

ehj (t)ϕj,p+1(x),

such thatuh + eh is an elliptic projection ofu into SN,p+1
0 , i.e.,

(4.10) (a(u)∂x(uh + eh), ∂xV̂ )j = (a(u)∂xu, ∂xV̂ )j

holds for almost everyt ∈ [0, T ], j = 1, . . . , N , and all functionsV̂ ∈
ŜN,p+1

0 .
We further put

ηPN(x, t) = eh(x, t) − ĒPN(x, t),(4.11)

ηPL(x, t) = eh(x, t) − ĒPL(x, t),(4.12)

ηEN(x, t) = eh(x, t) − ĒEN(x, t),

ηEL(x, t) = eh(x, t) − ĒEL(x, t),(4.13)

where, apparently,η ∈ ŜN,p+1
0 . We omit the indices ofη if no ambiguity

can occur.
Finally, we set

(4.14) ρ̂(x, t) = u(x, t) − uh(x, t) − eh(x, t)

analogically to (3.4).
A bound for the quantityηPN is provided by the following lemma.
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Lemma 4.1 Let ĒPN ∈ ŜN,p+1
0 be the error estimate given by(4.5) and

(4.6), andeh ∈ ŜN,p+1
0 a function such thatuh +eh is an elliptic projection

of u into SN,p+1
0 according to(4.10). Let ‖θ(., t)‖0 and ‖ηPN(., t)‖0 be

nondecreasing functions of the variablet and let

(4.15) ‖η(0)‖0 ≤ Chp+1

hold for the functionηPN(x, 0) given by(4.11). Let the assumptions of
Lemma3.5 be fulfilled, and leteh and ĒPN depend ont in a sufficiently
smooth way. Then there exists a constantC > 0 such that

‖ηPN‖1 ≤ Chp+1.

Proof. Substituting from (4.10) into (2.7) and choosing test functionsV̂ ∈
ŜN,p+1

0 ⊂ H1
0 , we arrive at

(4.16) (∂tu, V̂ )j + (a(u)∂x(uh + eh), ∂xV̂ )j = −(f(u), V̂ )j

for j = 1, . . . , N . Subtracting now (4.16) from (4.5) and substituting foru
from (4.14), we have

(∂tĒ, V̂ )j + (a(Ū + Ē)∂xĒ, ∂xV̂ )j + (∂tŪ , V̂ )j

+(a(Ū + Ē)∂xŪ , ∂xV̂ )j − (∂tρ̂, V̂ )j − (∂tu
h, V̂ )j

−(∂te
h, V̂ )j − (a(u)∂x(uh + eh), ∂xV̂ )j

= −(f(Ū + Ē), V̂ )j + (f(u), V̂ )j .

We now rearrange the terms, and add and subtract terms witha(Ū +
Ē)∂xe

h anda(Ū + Ē)∂xu
h to arrive at

(∂tη, V̂ )j + (a(Ū + Ē)∂xη, ∂xV̂ )j

= ([a(Ū + Ē) − a(u)]∂x(uh + eh), ∂xV̂ )j

− (a(Ū + Ē)∂xθ, ∂xV̂ )j − (∂tθ, V̂ )j − (∂tρ̂, V̂ )j

+ (f(Ū + Ē) − f(u), V̂ )j .(4.17)

A further course of the proof is analogous to that of Lemma 3.5. We
substituteη ∈ ŜN,p+1

0 for V̂ into (4.17) and use (3.15) to obtain

1
2
d

dt
‖η‖2

0,j + (a(Ū + Ē)∂xη, ∂xη)j

= ([a(Ū + Ē) − a(u)]∂x(uh + eh), ∂xη)j

− (a(Ū + Ē)∂xθ, ∂xη)j − (∂tθ, η)j − (∂tρ̂, η)j

+ (f(Ū + Ē) − f(u), η)j(4.18)
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for j = 1, . . . , N .
We now bound the individual terms in (4.18). We have

(4.19) 0 < µ‖∂xη‖2
0,j ≤ (a(Ū + Ē)∂xη, ∂xη)j

according to (2.2). Note that

(4.20) ‖∂x(uh + eh)‖∞ ≤ C(u)

according to (3.8) and (4.10). We employ a positive constantK independent
of j to be fixed later on the right-hand part of (4.18). From the Schwarz
inequality, (2.2) to (2.4), and (4.20), we then have

|(−[a(Ū + Ē) − a(u)]∂x(uh + eh) + a(Ū + Ē)∂xθ, ∂xη)j |
≤ (C

√
K−1|a(Ū + Ē) − a(u)| +

√
K−1M |∂xθ|,

√
K|∂xη|)j

≤ 4C2K−1L2‖η‖2
0,j + 4C2K−1L2‖θ‖2

0,j + 2C2K−1L2‖ρ̂‖2
0,j

+K−1M2‖∂xθ‖2
0,j + 1

2K‖∂xη‖2
0,j ,(4.21)

|(∂tθ, η)j | ≤ 1
2‖∂tθ‖2

0,j + 1
2‖η‖2

0,j ,(4.22)

|(∂tρ̂, η)j | ≤ 1
2‖∂tρ̂‖2

0,j + 1
2‖η‖2

0,j ,(4.23)

|(f(Ū + Ē) − f(u), η)j | ≤ 1
2‖f(Ū + Ē) − f(u)‖2

0,j + 1
2‖η‖2

0,j(4.24)

≤ C1‖η‖2
0,j + 2L2‖θ‖2

0,j + L2‖ρ̂‖2
0,j .

Substituting now the bounds (4.19) and (4.21) to (4.24) into (4.18), we
obtain

1
2
d

dt
‖η‖2

0,j + (µ− 1
2K)‖∂xη‖2

0,j

≤ (C2 + C3K
−1)‖η‖2

0,j + (C4 + C5K
−1)‖θ‖2

1,j

+ (C6 + C7K
−1)‖ρ̂‖2

0,j + 1
2‖∂tθ‖2

0,j + 1
2‖∂tρ̂‖2

0,j(4.25)

for j = 1, . . . , N . Summing up the inequalities (4.25) forj = 1, . . . , N ,
fixing K so that

(4.26) K < 2µ,

using (3.13) and (3.39), and applying Lemma 3.1 withp+ 1 instead ofp to
the functionρ̂ given by (4.14), we finally arrive at

(4.27)
1
2
d

dt
‖η‖2

0 + S‖∂xη‖2
0 ≤ C8(t)‖η‖2

0 + C9(t)h2p+2

with someS > 0. Omitting the term with‖∂xη‖2
0 on the left-hand part and

integrating on both parts of (4.27), we find

‖η(t)‖2
0 ≤ ‖η(0)‖2

0 + C10(t)h2p+2 + 2
∫ t

0
C8(s)‖η(s)‖2

0 ds
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if the corresponding functions are Lebesgue integrable on the interval[0, T ].
Employing now (4.15), assuming that the corresponding functions are again
Lebesgue integrable on[0, T ], and applying Lemma 3.4, we have the bound

(4.28) ‖η(t)‖2
0 ≤ C11(t)h2p+2 + C12(t)h2p+2 ≤ Ch2p+2.

Let us turn back to the inequality (4.27). Assuming that‖η(t)‖0 is non-
decreasing, we can write

(4.29)
d

dt
‖η‖2

0 ≥ 0.

Using (4.26), (4.28), and (4.29), we finally obtain from (4.27) that

(4.30) ‖∂xη‖2
0 ≤ Ch2p+2.

The statement of the lemma follows from (4.28) and (4.30).ut
Remark 4.1As follows from the proof, such a smooth dependence ofeh

and ĒPN on t is needed in Lemma 4.1 that guarantees the integration of
(4.27) and the application of Lemma 3.4, including the upper bound for the
expression in (4.28).

Remark 4.2The assumption of Lemma 4.1 that‖ηPN‖0 is a nondecreasing
function of t holds, e.g., for linear problems with the termf increasing
in time. Considering the same problem as in Remark 3.3, we can easily
calculate the quantityηPN (equal toηPL for linear problems) forp = 1
explicitly.

The same bound as forηPN can be proved forηPL, too.

Lemma 4.2 Let ĒPL ∈ ŜN,p+1
0 be the error estimate given by(4.6) and

(4.8), andeh ∈ ŜN,p+1
0 a function such thatuh +eh is an elliptic projection

of u into SN,p+1
0 according to(4.10). Let ‖θ(., t)‖0 and ‖ηPL(., t)‖0 be

nondecreasing functions of the variablet and let(4.15) hold for the function
ηPL(x, 0) given by(4.12). Let the assumptions of Lemma3.5 be fulfilled and
let eh andĒPL depend ont in a sufficiently smooth way. Then there exists
a constantC > 0 such that

‖ηPL‖1 ≤ Chp+1.

Proof. Subtracting (4.16) from (4.8), we have

(∂tĒ, V̂ )j + (a(Ū)∂xĒ, ∂xV̂ )j + (∂tŪ , V̂ )j + (a(Ū)∂xŪ , ∂xV̂ )j

− (∂tu, V̂ )j − (a(u)∂x(uh + eh), ∂xV̂ )j

= −(f(Ū), V̂ )j + (f(u), V̂ )j .
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Proceeding in the same way as in the proof of Lemma 4.1, we arrive at

1
2
d

dt
‖η‖2

0,j + (a(Ū)∂xη, ∂xη)j

= ([a(Ū) − a(u)]∂x(uh + eh), ∂xη)j − (a(Ū)∂xθ, ∂xη)j

−(∂tθ, η)j − (∂tρ̂, η)j + (f(Ū) − f(u), η)j .(4.31)

We now bound the individual terms in (4.31). We have

(4.32) 0 < µ‖∂xη‖2
0,j ≤ (a(Ū)∂xη, ∂xη)j

according to (2.2). A positive constantK will be fixed later. From the
Schwarz inequality, (2.2), (2.4), and (4.20), we obtain

|(−[a(Ū) − a(u)]∂x(uh + eh) + a(Ū)∂xθ, ∂xη)j |
≤ 2C2K−1L2‖θ‖2

0,j + 2C2K−1L2‖ρ‖2
0,j

+K−1M2‖∂xθ‖2
0,j + 1

2K‖∂xη‖2
0,j ,(4.33)

|(f(Ū) − f(u), η)j | ≤ L2‖θ‖2
0,j + L2‖ρ‖2

0,j + 1
2‖η‖2

0,j .(4.34)

Substituting now the bounds (4.22), (4.23), and (4.32) to (4.34) into
(4.31), we obtain an analog of (4.25), where‖ρ̂‖2

0,j is replaced by‖ρ‖2
0,j . The

same procedure as in the proof of Lemma 4.1 and, moreover, the application
of Lemma 3.1 lead to (4.27) withK fixed by (4.26). The rest of the proof is
the same as in Lemma 4.1.ut
Remark 4.3Comments analogous to Remarks 4.1 and 4.2 are concerned
with the assumptions of Lemma 4.2, too.

The last case we are going to analyze isηEL.

Lemma 4.3 Let ĒEL ∈ ŜN,p+1
0 be the error estimate given by(4.6) and

(4.9), andeh ∈ ŜN,p+1
0 a function such thatuh +eh is an elliptic projection

of u into SN,p+1
0 according to(4.10). Let ‖θ(., t)‖0 and ‖ηEL(., t)‖0 be

nondecreasing functions of the variablet and let(4.15) hold for the function
ηEL(x, 0) given by(4.13). Let the assumptions of Lemma3.5 be fulfilled.
Than there exists a constantC > 0 such that

(4.35) ‖ηEL‖1 ≤ Chp+1.

Proof. Subtracting (4.16) from (4.9), we have

(a(Ū)∂xĒ, ∂xV̂ )j + (∂tŪ , V̂ )j + (a(Ū)∂xŪ , ∂xV̂ )j

−(∂tu, V̂ )j − (a(u)∂x(uh + eh), ∂xV̂ )j

= −(f(Ū), V̂ )j + (f(u), V̂ )j .
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Proceeding in the same way is in the proof of Lemma 4.2, we arrive at

(a(Ū)∂xη, ∂xη)j(4.36)

= ([a(Ū) − a(u)]∂x(uh + eh), ∂xη)j − (a(Ū)∂xθ, ∂xη)j

−(∂tθ, η)j − (∂tρ, η)j + (f(Ū) − f(u), η)j

for j = 1, . . . , N . Summing up the inequalities (4.36) forj = 1, . . . , N ,
we can bound the individual terms in the sum. Using analogs of (4.32)
and (4.33), and the consequences of the Schwarz inequality and (2.4), we
conclude that

µ‖∂xη‖2
0 ≤ 2C2K−1L2||θ‖2

0 + 2C2K−1L2‖ρ‖2
0 +K−1M2‖∂xθ‖2

0

+ 1
2K‖∂xη‖2

0 + (‖∂tθ‖0 + ‖∂tρ‖0 + L‖ρ‖0 + L‖θ‖0)‖η‖0.

Fixing K so thatK < 2µ and using (3.5), (3.6), (3.13), and (3.39), we
finally obtain

(4.37) C‖∂xη‖2
0 ≤ C2h

p+1‖η‖0 + C3h
2p+2.

According to Lemma 2.1, we have from (4.37)

(4.38) C1‖η‖2
0 ≤ C2h

p+1‖η‖0 + C3h
2p+2

with some positive constantsC1, C2, andC3, i.e.,

(4.39) C1‖η‖2
0 − C2h

p+1‖η‖0 − C3h
2p+2 ≤ 0.

The left-hand part can be expressed as a product

(4.40) (‖η‖0 − ξ1)(‖η‖0 − ξ2) ≤ 0,

where

ξ1,2 = hp+1C2 ±
√
C2

2 + 4C1C3

2C1
≷ 0.

Since‖η‖0 ≥ 0 cannot be less thanξ2 < 0 the only way to satisfy (4.40)
(and (4.38) and (4.39) as well) is

(4.41) ‖η‖0 ≤ ξ1 = C4h
p+1.

Substituting (4.41) into (4.37), we finally obtain

‖∂xη‖0 ≤ C5h
p+1,

which together with (4.41) implies (4.35). The lemma has been proved.ut



A posteriori error estimation for a nonlinear parabolic equation 473

We introduce the four quantities,ΘPN, ΘEN, ΘPL, andΘEL, called the
effectivity indexof the respective error estimate and given by the formula

Θ =
‖Ē‖1

‖e‖1
.

The principal result that generalizes the statements of [9] Theorem 3.1,
Corollary 3.1, and Theorem 3.2 is the following theorem.

Theorem 4.1 Let u ∈ Hp+1 ∩ H1
0 and Ū ∈ SN,p

0 be solutions of(2.7),
(2.8) and(3.9), (3.10). LetĒ ∈ ŜN,p+1

0 be the solution of(4.5), (4.6) (for
ĒPN), (4.6), (4.8) (for ĒPL), or (4.6), (4.9) (for ĒEL). Let‖θ(., t)‖0 and
‖η(., t)‖0 be nondecreasing functions of the variablet and let(4.15) hold.
Let the assumptions of Lemma3.5 be fulfilled, and leteh, ĒPN, and ĒPL
depend ont in a sufficiently smooth way(cf. Remarks4.1 and4.3).

Further let

(4.42) ‖e‖1 ≥ Chp.

Then

(4.43) lim
h→0

Θ = 1

for almost everyt ∈ [0, T ], whereΘ isΘPN, ΘPL, orΘEL.

Proof. Rewritee given by (4.1) as

e = u− (uh + eh) + (uh − Ū) + (eh − Ē) + Ē.

Then

(4.44) Ē = e− ρ̂− θ − η

and

(4.45) ‖Ē‖1 ≤ ‖e‖1 + ‖ρ̂‖1 + ‖θ‖1 + ‖η‖1 ≤ ‖e‖1 + C2h
p+1

with respect to (4.14) and Lemma 3.1 withp+ 1 instead ofp, Lemma 3.3,
and Lemmas 4.1, 4.2, and 4.3.

Further, the equation (4.44) implies thate = Ē + ρ̂+ θ + η, i.e.,

‖e‖1 ≤ ‖Ē‖1 + ‖ρ̂‖1 + ‖θ‖1 + ‖η‖1 ≤ ‖Ē‖1 + C1h
p+1

according to the same statements as above and

(4.46) ‖e‖1 − C1h
p+1 ≤ ‖Ē‖1.

Finally, according to (4.45) and (4.46), we arrive at

(4.47) ‖e‖1 − C1 h
p+1 ≤ ‖Ē‖1 ≤ ‖e‖1 + C2h

p+1

and, dividing (4.47) by‖e‖1 and taking (4.42) into account, at

1 − C1h ≤ Θ ≤ 1 + C2h.

Then (4.43) holds forh → 0. ut
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5. Conclusions

Linear and nonlinear parabolic and linear elliptic a posteriori error estimates
for nonlinear parabolic equations are shown to converge to the true error
for semidiscrete methods. This fact has been indicated by results of many
numerical experiments carried out in [1, 3, 9, 11, 13, 14, 15], and many other
papers.

Every adaptive numerical procedure for solving parabolic equations is
based on some fully discrete scheme. If the method of lines is chosen for
the space discretization of the equation (2.1) a posteriori error estimates
for the fully discrete case are covered by [9] only when the singly implicit
Runge-Kutta (SIRK) method or the backward difference formula are used
for the time discretization.

Theorem 4.1 is concerned with the semidiscrete case and can be used
as a basis for an adaptive numerical procedure that uses any other time dis-
cretization, too, on the assumption that the error resulting from the numerical
solution in time is, as usually required, sufficiently small as compared with
the total error tolerance set. The relation between the error tolerances for
the time and space has been intensively studied recently.

An example of numerical values of the effectivity indexΘ for the non-
linear equation (2.1) can be found, e.g., in [9] Example 5.3. The equation

∂tu = ∂x(3u2∂xu)

is solved there for0 < x < 1 and1 < twith boundary and initial conditions
chosen so that the exact solution is

u(x, t) = t−1/4
√

1 − 1
12x

2t−1/2.

The method of lines with time discretization by the SIRK method is used.
The results obtained for several values ofp, and different space and time
steps are given in [9] Table 5.3. The effectivity indices depend on the relation
betweenp and the time step and range from 0.94 to 1.00.

If the diffusion term in the equation (2.1) is dominated by a reaction term
the quality of the effectivity index may be expected to deteriorate.

Babǔska et al. [4] showed that the error of the finite element solution
of an elliptic partial differential equation has two parts, the local error and
the pollution error. The investigation of the effect of the pollution error on
the quality of local error indicators in the case of parabolic equations is a
subject of further research.
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