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1. Introduction

The purpose of this note is three fold. We would like to extend the results
due to Bank and Rose [4], Hackbusch [9], Cai and McCormick [6,7] and
Jianguo and Shitong [11] to 3-D problems and provide a theory for non-
definite equations. Finally we give a more flexible way to obtain a priori
estimates with the flavor of the first Fix lemma in the finite element theory and
generalize the technique used by Cai [6] to analyze the effects of numerical
integration. We will demonstrate this approach on a simple upwind scheme,
although the technique can handle more sophisticated upwind strategies (see
[2] for example).

We consider the following boundary value problem:

∇ · (−A(x)∇u+ b(x)u) + c(x)u = f(x) in Ω,(1a)

u(x) = 0 on∂Ω,(1b)

whereΩ is a open subset ofR
d,d = 2 or3. We refer for the extensive discus-

sion of solvability of the problem (1) to the monograph by Ladyzhenskaya
and Ural’tseva [12].
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and ARO grant # DAAH04-96-1-0069
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Our approach is based on the generalization of Lax–Milgram lemma
due to Něcas [13] and modified by Babuška and Aziz [3]. First we introduce
some notations.

Let U andV be two real Hilbert spaces equipped with the norms‖.‖U
and‖.‖V respectively, and letA : U ×V → R be a bilinear form. We define
the following variational problem:

Find an elementu ∈ U such that

A(u, v) = f(v) ∀ v ∈ V.(2)

Theorem 1 (Babǔska and Aziz [3]).Assume that there exist positive con-
stantsC andα such that the bilinear formA : U × V → R satisfies

|A(u, v)| ≤ C‖u‖U‖v‖V ∀u ∈ U , ∀ v ∈ V,(3a)

sup
v∈ V

|A(u, v)|
‖v‖V

≥ α‖u‖U ∀u ∈ U , v 6= 0(3b)

sup
u∈ U

|A(u, v)| > 0 ∀ v ∈ V, v 6= 0,(3c)

and thatf(.) : V → R is a continuous linear form. Then the variational
problem(2) has one and only one solution and the following stability esti-
mate holds:

‖u‖U ≤ 1
α

‖f‖V ′ .

We use the standard notation for Sobolev spaces [1]. LetU = V =
H1

0 (Ω), V ′ = H−1(Ω), let the bilinear formA be defined by

A(u, v) = A(2)(u, v) + A(1)(u, v) + A(0)(u, v),(4a)

A(2)(u, v) =
∫

Ω
(A∇u,∇v) dx,(4b)

A(1)(u, v) = −
∫

Ω
(b,∇v)u dx,(4c)

A(0)(u, v) =
∫

Ω
cuv dx,(4d)

and let the linear form be given by

f(v) =
∫

Ω
fv dx.

Suppose that the boundary value problem (1) poses a unique solution.
ThenA(., .) defined by (4) satisfies the conditions (3) (see [3] for a proof).
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Note that the solutionu of (1a) satisfies the “weak” form:∫
∂Vi

(−A∇u+ bu,n) ds+
∫

Vi

cu dx =
∫

Vi

f dx,(5)

whereVi is a given control volume. This observation provides the motivation
to reformulate (5) as a Petrov–Galerkin method on given finite dimensional
spaces.

Let Vh be a finite dimensional space of piecewise constants defined on
the control volumesVi and denotevi = v(xi) for v ∈ Vh andxi ∈ ω. Let
Uh be a piecewise polynomial subspace ofU . Consider the problem:
Finduh ∈ Uh such that

B(uh, v) = f(v) ∀ v ∈ Vh,(6)

where

f(v) =
∑
xi∈ω

∫
Vi

f dx vi,

andB(., .) is a bilinear form defined inUh × Vh

B(uh, v) = B(2)(uh, v) + B(1)(uh, v) + B(0)(uh, v),(7a)

B(2)(uh, v) = −
∑
xi∈ω

∫
∂Vi

(A∇uh,n) ds vi,(7b)

B(1)(uh, v) =
∑
xi∈ω

∫
∂Vi

(b,n)uh ds vi,(7c)

B(0)(uh, v) =
∑
xi∈ω

∫
Vi

cuh dx vi.(7d)

We eventually will replace the bilinear formB(., .) with a certain approxi-
mationBh(., .), i.e., we solve the discrete problem:

Finduh ∈ Uh such that

Bh(uh, v) = f(v) ∀ v ∈ Vh.(8)

We describe the control volumesVi, piecewise polynomial spacesUh and
Vh, and the corresponding norms‖.‖1,l and‖.‖1,c in the next section.

We use Theorem 1 to prove uniqueness and existence of the solution of
(8). The second step is to show that the following a priori estimate holds

|I l
hu− uh|1,l ≤ C(‖η‖∗,l + ‖µ‖∗,l + ‖ζ‖∗∗,l),

whereI l
h is a linear interpolant and‖η‖∗,l is the error due to the approxi-

mation of the diffusion term (second derivatives),‖µ‖∗,l - convection term
(first derivatives) and‖ζ‖∗∗,l - reaction term (zero derivatives). Finally we
estimate these terms and obtain the bound for the error of approximation.
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2. Grids, control volumes and discrete norms

We consider a family of triangulationsFh ofΩ into finite elementsK regular
in sense of Ciarlet [8, p. 132]. We use the standard symbols

hi = diam(Ki) , h = max
i
hi.

Here we describe a general way to construct grids starting from a fi-
nite element triangulation. The vertices of the finite element triangulation
uniquely determine the grid, which we call the primary gridω,

ω =
{
xi ∈ Ω : xi is a vertex in a finite elementK

}
,

split into the set of interior grid pointsω and the boundary grid pointsγ;

ω = ω ∩Ω, γ = ω\ω.
We define the secondary gridωS in the following way. Choose one inte-

rior pointSK ∈ ◦
K in every finite elementK ∈ Fh. Then

ωS = {SK : K ∈ Fh}.
Given a primary grid vertexxi we define byΠ(i) the index set of all

neighbors ofxi in ω, i.e.,

Π(i) = {j : there is an edge betweenxi andxj in Fh}.
Consider a particular finite elementK with verticesxi1 , . . . , xik and

let IK be the index set{i1, . . . , ik}. Denote by{Zij}i,j∈IK
the edges and

by {Zj1...jl
}j1,... ,jl∈IK

the faces of a given finite element (the polygons
with verticesxj1 , . . . , xjl

∈ K). To describe vertex–centered control vol-
umes we select one interior point on each face of every finite elementKi,
Mj1...jl

∈ Zj1...jl
. The points on the edges are selected in the same man-

ner. Connect a given point from the secondary gridSKi , Ki ∈ Fh with
Mj1j2 , j1, j2 ∈ IKi andMi1...il , i1, . . . , il ∈ IKi . These lines and the
planes that they span form a polygonal (polyhedral) domain around each
vertex of the primary grid and are called vertex–centered control volumes.
There is one–to–one correspondence of nodes in primary grid with vertex–
centered control volumes. Ifxi ∈ ω we denote the corresponding vertex–
centered control volume withVi and with

γij = Vi ∩ Vj , j ∈ Π(i)

the face between them.
To specify a particular primary and secondary grid we have to choose

the finite elements, secondary grid points and the pointsMj1j2 on the edges,
Mj1...jl

on the faces.
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Fig. 1. Vertex–centered control volume

We choose finite elements to be triangles in 2–D and tetrahedra in 3–D.
The secondary mesh consists of the barycenters (centers of mass) of the
finite elements and the pointsM are barycenters of the edges and faces,
correspondingly. A specific 2–D example is shown on Fig. 1, where the
primary node is displayed with a filled circle and the secondary nodes are
shown with empty circles. The control volume corresponding to the primary
node is depicted by a dotted line. Note that in generalγij is not a straight
line.

We show how a 3-D finite element (tetrahedron) is split by the control
volumes on Fig. 2.

The theory presented in Sects. 3 and 4 works also for more general
positions of the points of the secondary grid and the pointsM , but in practice
the barycenters are the most frequently used.

We introduce a piecewise linear finite element space for the simplex
triangulation

Uh = {v ∈ C0(Ω) : v|K is linear for allK ∈ Fh, v|∂Ω = 0},

wherev|K is the restriction ofv to K. Functions defined forx ∈ ω are
called grid functions and the space of such functions isG(ω). To emphasize
their dependence of the triangulation we use the subscripth. Denote byχi

the characteristic functions that corresponds to the vertex–centered control
volumeVi and withVh the space spanned by{χi}xi∈ω. Let {ϕi}xi∈ω be
the basis ofUh. We define the linear interpolantI l

h : G(ω) → Uh and the
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Fig. 2. Finite elementK

“box” interpolant (constant interpolant)Ic
h : G(ω) → Vh by

I l
huh(x) =

∑
xi∈ω

uh(xi)ϕi(x), Ic
huh(x) =

∑
xi∈ω

uh(xi)χi(x).(9)

It is clear how to modify (9) to get the mappingsĪ l
h : Vh → Uh, Īc

h : Uh →
Vh andĨ l

h : Hs(Ω) → Uh, Ĩc
h : Hs(Ω) → Vh for s > 3/2. When there is

no danger of ambiguity we will skip the bars and tildes.
We define discrete inner products and norms in the following way:

(uh, vh)l = (I l
huh, I

l
hvh)L2 , ‖uh‖2

0,l = (uh, uh)l ,

|uh|1,l = |I l
huh|1,Ω, ‖uh‖2

1,l = ‖uh‖2
0,l + |uh|21,l.

We also use the norms and seminorms associated with the constant inter-
polantIc

h:

‖uh‖2
0,c =

∑
xi∈ω

m(Vi)u2
h(xi),

|uh|21,c =
1
2

∑
xi∈ω

m(Vi)
∑

j∈Π(i)

(
uh(xi) − uh(xj)

d(xi, xj)

)2

,

whered(x, y) is the Euclidean distance betweenx andy.
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The following result is well known (see for example [14] for the 2–D
case and regular geometry, [4] for the 2–D case and general geometry, and
[10] for the discussion of the finite difference case).

Lemma 1. Assume the triangulationsFh are regular and the secondary
mesh consists of the barycenters of the finite elements. Then the seminorms
|.|1,l, |.|1,c and the norms‖.‖0,l, ‖.‖0,c are equivalent onG(ω), i.e., there
exist positive constantsC1, C2, C3 andC4, independent ofh, such that for
anyuh ∈ G(ω)

C1|uh|1,l ≤ |uh|1,c ≤ C2|uh|1,l,(10)

C3‖uh‖0,l ≤ ‖uh‖0,c ≤ C4‖uh‖0,l.(11)

Remark 1.If the secondary grid is arbitrary the norms‖.‖0,l and‖.‖0,c are
not equivalent. This is seen by the following simple example. Consider one
control volumeVi, such thatm(Vi) → 0, i.e., the secondary points around
xi go toxi. Pick a functionuh = (0, . . . , 1, . . . , 0), where the only nonzero
element is on theith position. Then‖uh‖0,c → 0, but ‖uh‖0,l is bounded
from below.

The seminorms|.|1,c and|.|1,l are equivalent without any restriction on
the secondary grid.

3. Diffusion dominated problem

First we elaborate the finite volume element theory for the compact pertur-
bation of a symmetric problem. In this case we defineBh(., .) by

B(2)
h (u, v) = B(2)(u, v), B(1)

h (u, v) = B(1)(u, v),

B(0)
h (u, v) = B(0)(u, v).

We prove (3) via comparing with the bilinear forms for the finite element
method (4b), (4c) and (4d). The first result is due to Jianguo and Shitong
[11].

Lemma 2. For everyu, v ∈ Uh the following estimate holds:

|B(2)(u, Ic
hv) − A(2)(u, v)| ≤ Ch‖A‖1,∞.Ω|u|1,Ω|v|1,Ω.

We compareB(1)(u, Ic
hv) andA(1)(u, v) in the following lemma.

Lemma 3. For everyu, v ∈ Uh the following estimate holds:

|B(1)(u, Ic
hv) − A(1)(u, v)| ≤ Ch‖b‖1,∞,Ω|u|1,Ω|v|1,Ω.
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Proof.Consider the contribution of one particular elementK in the compu-
tation ofB(1)

h (u, Ic
hv) corresponding to theith node

∫
∂Vi∩K

(b.n)u ds vi =

[∫
(∂Vi∩K)∪Mi

(b.n)u ds−
∫

Mi

(b.n)u ds

]
vi

=
∫

Vi∩K
div(bu) dx vi −

∫
Mi

(b.n)u ds vi

=
∫

K
div(bu)viχi dx −

∫
∂K

(b.n)uviχi ds,

whereMi = ∂K ∩ Vi. Then, the contribution of the elementK is equal to

B(1)(u, Ic
hv)|K =

∫
K

div(bu)Ic
hv dx −

∫
∂K

(b.n)uIc
hv ds

and

B(1)(u, Ic
hv) =

∑
K∈Th

∫
K

div(bu)Ic
hv dx.

because the surface integrals vanish. Therefore,

|B(1)(u, Ic
hv) − A(1)(u, v)| ≤

∑
K∈Th

∣∣∣∣
∫

K
div(bu)(Ic

hv − v) dx
∣∣∣∣

≤ ‖b‖1,∞,Ω

∑
K∈Th

|u|1,K‖v − Ic
hv‖0,K

≤ Ch‖b‖1,∞,Ω|u|1,Ω|v|1,Ω.

2

Finally, the difference betweenB(0)(u, Ic
hv) andA(0)(u, v) is estimated

in the lemma below.

Lemma 4. For everyu, v ∈ Uh the following estimate holds:

|B(0)(u, Ic
hv) − A(0)(u, v)| ≤ Ch‖c‖0,Ω‖u‖0,Ω|v|1,Ω.

Proof.The estimate follows from the chain of inequalities:∣∣∣∣∣
∫

Ω
cuv dx−

∑
xi∈ω

∫
Vi

cu dx vi

∣∣∣∣∣ =
∣∣∣∣∣
∑
xi∈ω

[∫
Vi

cu(v − Ic
hv) dx

]∣∣∣∣∣
≤ Ch‖c‖0,Ω‖u‖0,Ω|v|1,Ω.

2
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The stability of problem (8) is established in the following theorem. We
use that for sufficiently smallh the finite element approximation of (1) is
well defined, i.e., Theorem 1 holds for the bilinear formA(., .) (4) and
U = V = Uh. (See [3] and Schatz [15] for another approach).

Theorem 2. There existsh0 such that for anyh < h0 the bilinear form
B(., .) satisfies(3) and the problem(6) has one and only one solution and
the following stability estimates holds:

|uh|1,l ≤ C‖f‖−1,c.

Proof. The continuity of the bilinear formB(., .) for sufficiently smallh
follows from Lemmas 2, 3, and 4:

|B(u, Ic
hv) − A(u, v)| ≤ C(a, b, c)h|u|1,Ω|v|1,Ω,(12)

and the continuity ofA(., .) (3a).
From (12) and the equivalence of the norms (Lemma 1) we get

B(u, Ic
hv)

|Ic
hv|1,c

≥ C1
A(u, v)
|v|1,Ω

− C2h|u|1,Ω,(13)

therefore

sup
w∈ Vh

|B(u,w)|
|w|1,c

≥ sup
Ic
hv∈ Vh

|B(u, Ic
hv)|

|Ic
hv|1,c

= sup
v∈ Uh

|B(u, Ic
hv)|

|Ic
hv|1,c

≥ α1|u|1,l ∀u ∈ Uh.

We prove the condition (3c) for the bilinear formB(., .) in the same way
as (3b) using the fact that (3c) is equivalent to:

sup
u∈ U

|A(u, v)|
‖v‖V

≥ C‖u‖U ∀u ∈ U such that‖u‖U ≤ 1, v 6= 0.

(See [3]) 2

Letu be the solution of (2) with the bilinear forms defined by (4). Define
the local truncation errorψ via:

(ψ, v) = B(u, v) − Bh(I l
hu, v)

and the components ofψ due to different terms by:

ηi,j(u) =
∫

γij

(−A(∇(u− I l
hu),n) ds,(14a)

µi,j(u) =
∫

γij

(b,n)(u− I l
hu) ds,(14b)

ζi(u) =
∫

Vi

c(u− I l
hu) dx.(14c)
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Note that

Bh(uh, v) = (f, v) and B(u, v) = (f, v),

and therefore

Bh(uh − I l
hu, v) = (ψ, v).

We prove the a priori estimate in the following lemma.

Lemma 5. The following a priori estimate holds:

|I l
hu− uh|1,w ≤ C (‖η‖∗,l + ‖µ‖∗,l + ‖ζ‖∗∗,l) .(15)

(The definition of‖.‖∗,l and‖.‖∗∗,l will become clear from the proof.)

Proof.

(ψ, v) = B(u, v) − Bh(I l
hu, v)

=
∑
xi∈ω

∑
j∈Π(i)

∫
γij

(−A∇(I l
hu− u) + b(I l

hu− u)).n ds vi

+
∑
xi∈ω

∫
Vi

c(I l
hu− u) dx vi

=


∑

xi∈ω

∑
j∈Π(i)

ηij(u)vi


+


∑

xi∈ω

∑
j∈Π(i)

µij(u)vi


+

[∑
xi∈ω

ζivi

]

= Id + Ic + Ir

Denotek2
i,j = d(xi, xj)2/m(Vi). The term due to the diffusion discretiza-

tion Id is estimated as follows:

Id =
∑
xi∈ω

∑
j∈Π(i)

ηij(u)vi

=
1
2

∑
xi∈ω

∑
j∈Π(i)

[ηij(u)vi + ηji(u)vj ] =
1
2

∑
xi∈ω

∑
j∈Π(i)

ηij(u)(vi − vj)

≤ C


∑

xi∈ω

∑
j∈Π(i)

k2
i,j |ηi,j(u)|2




1/2

×

∑

xi∈ω

m(Vi)
∑

j∈Π(i)

(
vj − vi

d(xi, xj)

)2



1/2

≤ C‖η‖∗,ω|v|1,c.
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Similarly, we prove the estimate

Ic ≤ C‖µ‖∗,ω|v|1,c.

Finally, we estimateIr:

Ir =
∑
xi∈ω

∫
Vi

c(x)(u− I l
h) dx · vi =

∑
xi∈ω

ζi(u)vi

≤
(∑

xi∈ω

1
m(Vi)

|ζi(u)|2
)1/2(∑

xi∈ω

m(Vi)v2
i

)1/2

≤ ‖ζ‖∗∗,ω|v|1,c.

In the last inequality we used (11). We can prove the estimate without the
equivalence of zero norms with more elaborate argument.

The a priori estimate (15) follows from

β|I l
hu− uh|1,l ≤ sup

v∈Vh

|Bh(I l
hu− uh, v)|
|v|1,c

≤ C(‖η‖∗,l + ‖µ‖∗,l + ‖ζ‖∗∗,l).

2

Now, we are ready to prove our main result.

Theorem 3. Letu denote the solution of (1) anduh be the solution of FVE
(5). Then we have the following estimate

|u− uh|1,Ω ≤ Ch[‖A‖0,∞,Ω + h(‖b‖0,∞,Ω + ‖c‖0,∞,Ω)]|u|2,Ω.

Proof.We have to estimate the functionals|ηij(u)|, |µij(u)| and|ζi(u)| on
a given faceγij and control volumeVi, respectively. Letγ = γij ∩K,K be
a finite element. Using the affine transformationF : K̂ → K, x = F (x̂) =
BK x̂+ d such thatK = F (K̂) and Bramble-Hilbert lemma argument we
obtain for the contribution inηij(u) from γ:

|ηij(u)|γ | = |ηij(ũ)|γ | =
∣∣∣∣
∫

γ̃
|detBK |

(
ÃB−T

K ∇(I l
hũ− ũ).B−T

K ñ
)
ds̃

∣∣∣∣
≤ ‖A‖0,∞,γ .‖B−1

K ‖2.|detBK |.|γ̃|.‖ũ‖2,K̃

≤ C‖A‖0,∞,Ω‖BK‖2‖B−1
K ‖2.|detBK |1/2.|u|2,K

≤ Chd/2‖A‖0,∞,Ω|u|2,K .
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Similarly, for |µij(u)|γ | we have

|µij(u)|γ | = |µij(ũ)|γ | =
∣∣∣∣
∫

γ̃
|detBK |

(
b̃(I l

hũ− ũ).B−T
K ñ

)
ds̃

∣∣∣∣
≤ ‖B−1

K ‖.|detBK |.‖b‖0,∞,K̃ .|γ̃|.‖ũ‖2,K̃

≤ C‖BK‖2‖B−1
K ‖|detBK |1/2‖b‖0,∞,Ω|u|2,K

≤ Chd/2+1‖b‖0,∞,Ω|u|2,K .

We use the bound for the interpolation error in a uniform norm [5] to estimate
the termζi(u) (see also [11] for another application):

|ζi(u)| = |ζi(ũ)| =
∣∣∣∣
∫

Ṽ ∩K̃
|detBK |c̃(x̃)(I l

hũ− ũ) dx̃
∣∣∣∣

≤ ‖c‖0,∞,K̃ · |detBK | · ‖I l
hũ− ũ)‖0,∞,K̃

≤ ‖c‖0,∞,Ω · hdh2−d/2|u|2,K .

Taking into account thatk2
i,j = O(h2−d) we find that

‖η‖∗,l ≤ C1h
1−d/2hd/2


∑

xi∈ω

∑
j∈Π(i)

‖A‖2
0,∞,Ω|u|22,K




1/2

≤ Ch‖A‖0,∞,Ω|u|2,Ω

‖µ‖∗,l ≤ C1h
2−d/2hd/2


∑

xi∈ω

∑
j∈Π(i)

‖b‖2
0,∞,Ω|u|22,K




1/2

≤ Ch2‖b‖0,∞,Ω|u|2,Ω

‖ζ‖∗∗,l ≤ Ch−d/2h2+d/2

(∑
xi∈ω

‖c‖2
0,∞,Ω|u|22,K

)1/2

≤ Ch2‖c‖0,∞,Ω|u|2,Ω.

Finally the result follows from the triangle inequality and the standard esti-
mate for the linear interpolant. 2

4. Upwind finite volume element method

In this section we modify the definition ofBh(., .) (7c) in order to obtain a
stable approximation for convection dominated problems.
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We define the bilinear formB(1)
h (., .) in an upwind manner:

B(1)
h (u, v) =

∑
xi∈ω

∑
j∈Π(i)

(β+
ijui + β−

ijuj).(16)

Here

β+
ij =

βij + |βij |
2

, β−
ij =

βij − |βij |
2

.

Let βij be an approximation of
∫
γij

(b,n) ds with the properties

(i) βi,j + βj,i = 0.(17a)

(ii) |βi,j | ≤ Cm(γij)‖b‖d/2+α,∞,Ω,(17b)

(iii)

∣∣∣∣∣
∫

γij

(b,n) ds− βi,j

∣∣∣∣∣ ≤ Chd+α|b|1+α,∞,Ω,(17c)

whereC is a positive constant andα > 0.

Lemma 6. Let the bilinear formB(1)
h (., .) be defined by(16) and let the

approximationsβi,j fulfill the conditions(17). Then for everyu, v ∈ Uh the
following estimate holds:

∣∣∣B(1)(u, Ic
hv) − B(1)

h (u, Ic
hv)
∣∣∣ ≤ Chδ‖b‖1+α,∞,Ω|u|1,ω|Ic

hv|1,c,

whereδ = min(α, 1).

Proof.Note that by the definition ofβ±
ij

β+
ijui + β−

ijuj = βijuS ,

whereS ≡ S(i, j) = i if βij > 0 andS(i, j) = j otherwise. We have for
the difference of interest

∣∣∣B(1)(u, Ic
hv) − B(1)

h (u, Ic
hv)
∣∣∣ ≤∑

xi∈ω

∑
j∈Π(i)

∣∣∣∣∣
∫

γij

(b,n)u ds vi − βijuSvi

∣∣∣∣∣ .
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We estimate the term
∣∣∣∫γij

(b,n)u ds vi − βijuSvi

∣∣∣ below.∣∣∣∣∣
∫

γij

(b,n)u ds vi − βijuSvi

∣∣∣∣∣
=

∣∣∣∣∣
∫

γij

(b,n)(u− uS) ds vi +
∫

γij

(b,n) − βijuSvi

∣∣∣∣∣
≤
∣∣∣∣∣
∫

γij

(b,n) ds

∣∣∣∣∣C1h|u|1,K |vi|

+C2h
d+α|b|1+α,∞,Ω|uS(i,j)vi|

≤ C1h
d/2+1|b|1,∞,Ω|u|1,K · |hd/2vi|

+C2h
α|b|1+α,∞,Ω|hd/2uS(i,j)| · |hd/2vi|

2

The existence and uniqueness of the solution of the upwind finite vol-
ume element method follows from Lemmas 2, 4 and 6. It is identical with
Theorem 2 and we skip it.

We redefineµij(u):

µi,j =
∫

γij

(b,n)u ds−
[
β+

i,juh,i + β−uh,j

]
.(18)

Note that in the proof of the a priori estimate (15) we did not use the
particular form ofµij(u). Therefore (15) holds for the upwind finite volume
element method as well. The final step is to find an error bound forµij(u):

|µi,j | ≤ Chd/2 [|b|0,∞,Ω|u|1,eij + h‖b‖d/2+α,∞,Ω‖u‖2,eij

]
(19)

in a similar way as in Theorem 3 and Lemma 6. The final result for the
upwind method is:

Theorem 4. If the solutionu(x) of the problem (1) isH2-regular, then the
upwind finite volume element method has first order of convergence

|u− uh|1,Ω ≤ Ch‖u‖2,Ω.
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