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1. Introduction

The purpose of this note is three fold. We would like to extend the results
due to Bank and Rose [4], Hackbusch [9], Cai and McCormick [6,7] and
Jianguo and Shitong [11] to 3-D problems and provide a theory for non-
definite equations. Finally we give a more flexible way to obtain a priori
estimates with the flavor of the first Fix lemmain the finite element theory and
generalize the technique used by Cai [6] to analyze the effects of numerical
integration. We will demonstrate this approach on a simple upwind scheme,
although the technigue can handle more sophisticated upwind strategies (see
[2] for example).

We consider the following boundary value problem:

(1a) V- (—=A(z)Vu+ b(z)u) + c(z)u = f(x) in 2,
(1b) u(X) =0  onas?,
wheref2 is a open subset @, d = 2 or3. We refer for the extensive discus-

sion of solvability of the problem (1) to the monograph by Ladyzhenskaya
and Ural'tseva [12].

* The author was partially supported by funding from DOE grant #DE-FG05-92ER25143
and ARO grant # DAAH04-96-1-0069
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Our approach is based on the generalization of Lax—Milgram lemma
due to N&as [13] and modified by BaBla and Aziz [3]. First we introduce
some notations.

LetZ/ andV be two real Hilbert spaces equipped with the notjig,
and||.||y respectively, and letl : &/ x V — R be a bilinear form. We define
the following variational problem:

Find an element € U such that

(2) A(u,v) = f(v) Vo eV.

Theorem 1 (Babuska and Aziz [3]). Assume that there exist positive con-
stantsC' and « such that the bilinear forrd : ¢4 x V — R satisfies

(3a) |A(u, v)| < Cllullyllvlly Yuel,Vve,

(3b) sup A, v)l >allully YuelU,v#0
vev  lvllv

(3c) sup |A(u,v)| >0 YoeV,v#0,
uel

and thatf(.) : V — R is a continuous linear form. Then the variational
problem(2) has one and only one solution and the following stability esti-
mate holds:

1
[llee < =[£Iy
«

We use the standard notation for Sobolev spaces [1]ilet V =
HE(2),V' = H~1(02), let the bilinear formA4 be defined by

(4a) A(u,v) = AP (u,v) + AD (u, v) + AQ (u, v),
(4b) A (u,v) = / (AVu, Vv) dz,
2

(4c) A(l)(u,v) = —/ (b, Vv)udzx,
(9]

(4d) A(O)(u,v):/ cuv dx,
o)

and let the linear form be given by

Flv) = /Q fuda.

Suppose that the boundary value problem (1) poses a unique solution.
ThenA(.,.) defined by (4) satisfies the conditions (3) (see [3] for a proof).
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Note that the solutiom of (1a) satisfies the “weak” form:

(5) / (—AVu+bu,n)ds+/ cuda::/ fdx,
ov; Vi

Vi
whereV/; is a given control volume. This observation provides the motivation
to reformulate (5) as a Petrov—Galerkin method on given finite dimensional
spaces.

Let V" be a finite dimensional space of piecewise constants defined on
the control volume$/; and denote; = v(z;) for v € V" andz; € w. Let
U" be a piecewise polynomial subspacéiConsider the problem:
Findu;, € U" such that

(6) Blup,v) = f(v)  YoeVh

where
/ fdx v,
€T cw

andB(.,.) is a bilinear form defined it/ x V"

(72) B(up, ): B® (up,v) + BY (up, v) + BO (uy, v),
(7o)  BP(up,v)=-> / (AVuy, n) ds v,
T; Ew
(7c) B(l (up,v Z/ (b, n)uy, ds v;,
A Vi
(7d) BO (uy,, v Z/ cup, dzx vj.
T;Ew

We eventually will replace the bilinear forify(., .) with a certain approxi-
mationBy(., .), i.e., we solve the discrete problem:
Find u;, € U" such that

8) By, (up,v) = f(v) Yo eV

We describe the control volumé$, piecewise polynomial spaceg' and
VR, and the corresponding norrfig|; ; and||.||1. in the next section.

We use Theorem 1 to prove uniqueness and existence of the solution of
(8). The second step is to show that the following a priori estimate holds

( el F[ICex1),

wherel} is a linear interpolant anfi| .., is the error due to the approxi-
mation of the diffusion term (second derivativeg),|..; - convection term
(first derivatives) and (||« - reaction term (zero derivatives). Finally we
estimate these terms and obtain the bound for the error of approximation.
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2. Grids, control volumes and discrete norms

We consider a family of triangulatiotfs, of (2 into finite elementd regular
in sense of Ciarlet [8, p. 132]. We use the standard symbols

Here we describe a general way to construct grids starting from a fi-
nite element triangulation. The vertices of the finite element triangulation
uniquely determine the grid, which we call the primary grid

w = {z; € 2: x;is avertexin afinite elemert } ,
split into the set of interior grid points and the boundary grid pointg
w=wni, ~v=w\w.

We define the secondary grig; in the following way. Choose one inte-
rior point Sk cKin every finite elemeni € F},. Then

wS:{SK:Kth}.

Given a primary grid vertex; we define byl (i) the index set of all
neighbors ofr; in w, i.e.,

II(i) = {j : thereis an edge betweenandz; in F}.

Consider a particular finite eleme#f with verticesz;,, ... ,z;, and
let I be the index sefiy, ... ,i;}. Denote by{Z;;}; jer, the edges and
by {Z;,..j }ii... jicer, the faces of a given finite element (the polygons
with verticesz;,, ... ,x; € K). To describe vertex—centered control vol-
umes we select one interior point on each face of every finite eleiignt
Mj, .., € Zj ..j- The points on the edges are selected in the same man-
ner. Connect a given point from the secondary ¢fid, K; € F, with
M; j», j1,j2 € Ik, and M;, ., i1,...,4 € Ig,. These lines and the
planes that they span form a polygonal (polyhedral) domain around each
vertex of the primary grid and are called vertex—centered control volumes.
There is one—to—one correspondence of nodes in primary grid with vertex—
centered control volumes. if; € w we denote the corresponding vertex—
centered control volume with; and with

vij =VinV;, jell(i)

the face between them.

To specify a particular primary and secondary grid we have to choose
the finite elements, secondary grid points and the pdifits, on the edges,
M;, . ;, on the faces.
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Fig. 1. Vertex—centered control volume

We choose finite elements to be triangles in 2-D and tetrahedra in 3-D.
The secondary mesh consists of the barycenters (centers of mass) of the
finite elements and the poinfd are barycenters of the edges and faces,
correspondingly. A specific 2-D example is shown on Fig. 1, where the
primary node is displayed with a filled circle and the secondary nodes are
shown with empty circles. The control volume corresponding to the primary
node is depicted by a dotted line. Note that in gengyals not a straight
line.

We show how a 3-D finite element (tetrahedron) is split by the control
volumes on Fig. 2.

The theory presented in Sects. 3 and 4 works also for more general
positions of the points of the secondary grid and the pdiftbut in practice
the barycenters are the most frequently used.

We introduce a piecewise linear finite element space for the simplex
triangulation

U" = {v e C°(R) : vk islinear for allK € Fy, vy = 0},

wherev|g is the restriction ofv to K. Functions defined for € w are
called grid functions and the space of such functioris(is). To emphasize

their dependence of the triangulation we use the subseripenote byy;

the characteristic functions that corresponds to the vertex—centered control
volumeV; and withV" the space spanned Hy;}.,c.. Let {¢i}z,c. bE

the basis ot/". We define the linear interpolad}, : G(w) — U" and the
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Fig. 2. Finite elementk’

“box” interpolant (constant interpolant} : G(w) — V" by

@ Thun(@) = D un(w)ei(@), Tun(z) = un(@:)xi(x).
T, EW T, €W
Itis clear how to modify (9) to get the mappings: V" — u", Is - u" —
VhandI} : H°(Q) — Uh, I : H3(2) — V" for s > 3/2. When there is
no danger of ambiguity we will skip the bars and tildes.
We define discrete inner products and norms in the following way:

(unsvn)e = (Tyun, Lon) e, llusllgy = (uns un),s

unlia = unle,  lusliy = lunll§) + usli).

We also use the norms and seminorms associated with the constant inter-
polant;:

lunllfe = D m(Vi)uj, (z2),

TiEW
Junli e = % Y omVi) > <Uh(zl()xv ZL)(%)> ,
zi€w JEI(3) B

whered(z, y) is the Euclidean distance betwee@andy.
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The following result is well known (see for example [14] for the 2-D
case and regular geometry, [4] for the 2—-D case and general geometry, and
[10] for the discussion of the finite difference case).

Lemma 1. Assume the triangulation$;, are regular and the secondary
mesh consists of the barycenters of the finite elements. Then the seminorms
|.l11 |-]1,c and the normg|.||o 1, ||-|lo,c are equivalent orG(w), i.e., there

exist positive constants;, C5, C3 andCy, independent of, such that for

anyu, € G(w)

(10) Cilupliy < luplie < Coluplig,
(11) C3lluplloy < l|un

0,c < Callup|o,-

Remark 1.If the secondary grid is arbitrary the normg|o; and||.||o . are
not equivalent. This is seen by the following simple example. Consider one
control volumeV;, such thatn(V;) — 0, i.e., the secondary points around
x; gotoz;. Pick afunctioru;, = (0,...,1,...,0), where the only nonzero
element is on thé'® position. Then||up o — 0, but ||luy||o, is bounded
from below.

The seminorms.|; . and|.|;; are equivalent without any restriction on
the secondary grid.

3. Diffusion dominated problem

First we elaborate the finite volume element theory for the compact pertur-
bation of a symmetric problem. In this case we defi¢., .) by

We prove (3) via comparing with the bilinear forms for the finite element
method (4b), (4c) and (4d). The first result is due to Jianguo and Shitong
[11].

Lemma 2. For everyu, v € U" the following estimate holds:

1B®) (u, Ifv) — A®) (u,v)| < Ch|All1 so.0lulr,elv] 0
We compareB™) (u, Ifv) and. A (u, v) in the following lemma.
Lemma 3. For everyu, v € U" the following estimate holds:

1B (u, Iio) — AW (u,0)| < Ch[bl1,00,0|ul,elv

1,0-
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Proof. Consider the contribution of one particular elemg&hin the compu-
tation ofoLl)(u, I¢v) corresponding to thé" node

/ (b.n)udsv; = [/ (b.n)uds —/ (b.n)u ds] v;
OViNK (OViNK)UM,; M;

7

:/ div(bu) dXvi—/ (b.n)udsv;

VinK M;

:/ div(bu)vixidx—/ (b.n)uv;x; ds,
K oK

whereM; = 0K N V;. Then, the contribution of the elemektis equal to
BY (u, Ifv) x = / div(bu)Ifv dx — / (b.n)ulfvds
K oK
and

B (u, Iiv) = ) / div(bu)Iv da.
K

KeTy

because the surface integrals vanish. Therefore,

1B (u, Ifv) = AV (u,v)| < )
KeTy,

< bllioee Y lulikllo = Iivllox

KeTy,

< Chlb]|1,00,02]u

/ div(bu)(ljv — v)dz
K

1,olvl0.

O
Finally, the difference betweds©®) (u, Ifv) and.A® (u, v) is estimated
in the lemma below.

Lemma 4. For everyu, v € U" the following estimate holds:

[BO(u, o) — AV (u,v)| < Chlleflo,ellullo,elvh,o-

Proof. The estimate follows from the chain of inequalities:

/chvd:c—Z/Vicudxvi > [/wcu(v—fgv)dx]

T, Ew A

< Chlicllo.ellullo.elv]io-
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The stability of problem (8) is established in the following theorem. We
use that for sufficiently smah the finite element approximation of (1) is
well defined, i.e., Theorem 1 holds for the bilinear fort.,.) (4) and
U =V =U". (See [3] and Schatz [15] for another approach).

Theorem 2. There existhy such that for anyh < hg the bilinear form
B(.,.) satisfieq3) and the problen{6) has one and only one solution and
the following stability estimates holds:

lupl1) < Ol fll -1

Proof. The continuity of the bilinear fornB(.,.) for sufficiently smallh
follows from Lemmas 2, 3, and 4:

(12) |1B(u, I,v) — A(u, v)| < C(a, b, c)hlul,lv]1e,

and the continuity ofA(., .) (3a).
From (12) and the equivalence of the norms (Lemma 1) we get

B(u, I Alu,
13) BluTiv) 5 o, A )y g,
[5vl1e vl
therefore
C
p B B )
wevh  [W[ie IsveVh [ T5v]1e
B(u, I
= sup M > ailuli) Vue u*.

UEMh ‘I;:L’U|17C

We prove the condition (3c) for the bilinear fofi{., .) in the same way
as (3b) using the fact that (3c) is equivalent to:

sup A S Gl e U such thatfully < 1, v # 0.
wetr vllv
(See [3]) O

Letu be the solution of (2) with the bilinear forms defined by (4). Define
the local truncation errap via:
(wa U) = B(ua U) - Bh(Illzu> ’U)
and the components of due to different terms by:
(14a) miw) = [ AV (= fu)n)ds,
Yij

(14b) pisto) = [ bm)(u— fu)ds,
Y

1,

(14c) Gi(u) = / c(u — Ihu) dz.
v
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Note that
By (un,v) = (f,v) and B(u,v) = (f,v),
and therefore
By (up, — Tyu,v) = (¢, 0).
We prove the a priori estimate in the following lemma.
Lemma 5. The following a priori estimate holds:
(15) [The = unliw < C (Inllex + lialleg + [1€]en) -

(The definition of}.||.,; and||.||..,1 will become clear from the proof.)

Proof.
(¥,0) = B(u, v) — Bu(Iu,v)
= Z Z / —AV(Du —u) + b(Ihu — u)).ndsv;

Ti€w jEIT() Yij

+Z/ (D — u) dx v,

T, EW

!Z > milu [Z > wilu ]+ ZQW]
IZEWJGH Ti€w jell 1) T, EW
=g+ 1.+ I,

Denotek2 = d(z;,z;)?/ m(V;). The term due to the diffusion discretiza-
tion I is estlmated as follows:

Iq= Z Z 15 (u)v

Ti€w jeTI(i)
72 Z 771] Uz+77]z Z Z 7713 _Uj)
TiCw jeII(7) :EZEwJGH i)
1/2
<C (Z > kL Inig(u )
TiCw je(7)

2\ /2
x (me > (i) )

ziEw FEI(5)
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Similarly, we prove the estimate
I < Cllpll«wlvlie-

Finally, we estimatd,.:

I”:Z/ c(x)(u— 1) dz - vZ—ZCZ

TiEw Vi TiEW
1 1/2 1/2
) 2 N oy2
q|

In the last inequality we used (11). We can prove the estimate without the
equivalence of zero norms with more elaborate argument.
The a priori estimate (15) follows from

Bu(Ilu — up,v
B|I}ILU_Uh|1,1 < Sup| ( h ) )|
veVh |U1

< Ol + llpaller + 1€Txe1)-

,C

0
Now, we are ready to prove our main result.

Theorem 3. Letu denote the solution of (1) ang, be the solution of FVE
(5). Then we have the following estimate

[u—unli,e < Ch[|Allo,00.2 + A([|bllo,0c.2 + [lcflo.c0.2)]

Proof. We have to estimate the functionadg; (u)|, |pi;(w)| and|¢;(w)| on

a given facey;; and control volumé’;, respectively. Lety = ;; N K, K be

a finite element. Using the affine transformatin K- K,z=F(&)=
By i + d such thatk’ = F(K) and Bramble-Hilbert lemma argument we
obtain for the contribution im;;(«) from:

5 = )| = | [ et Bl (ABLTV (B - 0).55) as
v
< I Allo oI BRI det Bicl- -l ¢
< O Al 2 BRI BF 1 det B uls
< Ch?|| Ao 00,2 ul e
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Similarly, for |p;;(u),| we have

i ()| = 1 (@) | = ‘[|det Bx| (E(I,ga—a).B;(Tﬁ) d3
il

< ||Bi |- det Bi|.[Blg oo 171l 5
< C|| Bk 1?1 B |l det B |2 ||blo 00,02]ul2,1
< Chd/2+l||b

|0,00,02| 1|2, K -

We use the bound for the interpolation error in a uniform norm [5] to estimate
the term¢; (u) (see also [11] for another application):

Gw)] = 1G(@)] = ] [ laet Bileta)(tha - s

< lellg oz - Idet Br| - 11,8 = @)lg o0 &
< lellooo,2 - B2 ul k-
Taking into account that? ; = O(h*~?) we find that
1/2
Inlly < CLh! =22 SN 7 A oo luld
zi€w jEII(i)
< Chl[Allo,00,02|ul2,0
1/2
g < CLEZ2RYZ LN N (111G o 0l ul3
TiCw jell(i)
< Ch?|b][o,00,2|ul2,0
1/2
IC]lasy < CRTU/2R2H4/2 (Z Hcl!%,oo,gluI%,K>
TiEw

< Oh?||elfo,00,0]ul2,0-
Finally the result follows from the triangle inequality and the standard esti-
mate for the linear interpolant. a

4. Upwind finite volume element method

In this section we modify the definition @,(.,.) (7c) in order to obtain a
stable approximation for convection dominated problems.
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We define the bilinear forrﬂ,(ll)(., .) in an upwind manner:

(16) =3 Y (Bhui+ Buy).
iElGOJJEH
Here
+_ Bij + 184l ~_ B — 1By |/81J’
=T T

Let 8;; be an approximation Ofw (b, n) ds with the properties

(17a) (i) Bij+PBi=0
(17b) (@) |Bigl < Cm(ij)|[blla/2+a 00,0

/ (b, n) ds — ﬂ@j
~

ij

(17¢) (i) < Ch™* bl 1y a0,

where(C' is a positive constant and > 0.

Lemma 6. Let the bilinear formB}(ll)(., .) be defined by(16) and let the

approximations3; ; fulfill the conditiong17). Then for every,, v € U" the
following estimate holds:

BD (u, Iv) — B (u, Tv)| < CKO

whered = min(q, 1).

Proof. Note that by the definition of;;

Biui + Bu; = Bijus,

whereS = S(i,j) =4 if §;; > 0andS(i,j) = j otherwise. We have for
the difference of interest

BWY (u, Ifv) — (u, Ifv) ‘ < Z Z
zi€w jell(i

/ (b,n)udsv; — Bijusv;| .
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We estimate the terrfwf%j (b,n)udsv; — Bijusv;| below.

/ (b,n)udsv; — Bijusv;
o

ij
/y

<

(b,n)(u—ug)dsv; + / (b,n) — Bijusv;

Yij

ij

/7 (b,n)ds

ij

Crhluly i |vil

+ Cghd“"\b!1+a,oo,QIUS(z’,j)”i‘
< CLR ] oo clul i - [WY 20
+ O b1 a,00,0 A usg (i gy | - B i)

O
The existence and unigueness of the solution of the upwind finite vol-
ume element method follows from Lemmas 2, 4 and 6. It is identical with
Theorem 2 and we skip it.
We redefingu;; (u):

(18) pig = [ (bomyuds = [ + 57w
Yij
Note that in the proof of the a priori estimate (15) we did not use the
particular form of;;(u). Therefore (15) holds for the upwind finite volume
element method as well. The final step is to find an error boungd;fdt.):

19)  |pigl < ChY2 [|bloss,ltlies; + RlIblla/otacenllul2e;,]

in a similar way as in Theorem 3 and Lemma 6. The final result for the
upwind method is:

Theorem 4. If the solutionu(x) of the problem (1) ig72-regular, then the
upwind finite volume element method has first order of convergence

lu — upl1,0 < Chllul2,0-
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