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Summary. The global error of numerical approximations for symmetric
positive systems in the sense of Friedrichs is decomposed into a locally
created part and a propagating component. Residual-based two-sided local
a posteriori error bounds are derived for the locally created part of the global
error. These suggest taking theL2-norm as well as weaker, dual norms of
the computable residual as local error indicators. The dual graph norm of
the residualrh is further bounded from above and below in terms of the
L2 norm ofhrh whereh is the local mesh size. The theoretical results are
illustrated by a series of numerical experiments.
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1. Introduction

One of the main challenges in the field of computational fluid dynamics
concerns the accurate and efficient numerical solution of partial differen-
tial equations for complex multi-dimensional problems. Recent intensive
research into this area has focused on the construction of reliable and ro-
bust algorithms which can deliver solutions with guaranteed error control.
While for partial differential equations of solid mechanics several finite el-
ement packages exist which go quite a way towards achieving this goal, for
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fluid flow problems the situation is far less advanced. Indeed, the majority
of adaptive CFD algorithms will simply refine or adjust the computational
mesh according to an ad hoc criterion, such as a large gradient in a physical
quantity. Although this intuitive approach has had some success, it does not
provide guaranteed error control. An alternative to this heuristic method is to
derive reliable and efficient a posteriori error estimates which can success-
fully drive adaptive algorithms; indeed, our aim in this paper is to initiate
the development of a theoretical framework for equations of compressible
transonic gas dynamics. One of the key technical difficulties in accomplish-
ing this task stems from the fact that the partial differential equations which
govern the flow are nonlinear and, typically, of changing type (e.g. elliptic-
hyperbolic); see [6].

The late 1950’s witnessed an upsurge of research into the well-posedness
of linearised transonic flow problems. A particularly useful family of linear
partial differential equations which emerged from this study is that of sym-
metric positive systems in the sense of Friedrichs. This broad class includes,
for example, first-order symmetric elliptic and hyperbolic systems as well as
various equations of mixed type, and, therefore, it provides a natural starting
point in developing a theoretical framework for reliable and robust adaptive
transonic flow algorithms. This paper is concerned with the a posteriori er-
ror analysis of a general class of numerical methods for symmetric positive
systems in the sense of Friedrichs.

We begin, in Sect. 2, by introducing the necessary notation and recall
the basic theory of symmetric positive systems. In order to carry out a rig-
orous a posteriori error analysis we extend the original theory of symmetric
systems developed by Friedrichs [5], Lax and Phillips [15]. In particular we
define the graph space of a Friedrichs operator equipped with the associated
graph norm, we prove trace theorems for this space, as well as associated
integration-by-parts formulae.

The a posteriori error analysis performed in Sect. 3 relies on the stability
of the boundary value problem for a Friedrichs system which we estab-
lish via Gårding’s inequality. Next, we define the general class of numerical
schemes to be considered and, exploiting the theory from Sect. 2, we provide
two-sided residual-based global a posteriori error bounds on the graph-norm
and theL2 norm of the error in terms of theL2 norm and the dual graph-
norm of the residual, respectively. Obtaining local error estimates is one
of the main technical difficulties in the a posteriori error analysis of dis-
cretisation methods for hyperbolic problems. We describe how this can be
achieved by splitting the global error into a locally generated component,
which we call thecell error, and a non-local part, called thetransmitted
error, which represents the accumulation of errors generated outside a cell
and merely advected into it (see also [17,18,20]). Using this decomposition
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and proceeding analogously as in the global analysis we obtain local error
bounds in strong and weak norms. Thus we deduce that specific norms of
the residual provide reliable and efficient bounds on associated norms of the
cell error. These results indicate that the local residual contains information
only about the error that has been created on an individual cell, which, in
turn justifies the use of residual-based error indicators for adaptive local
mesh refinement. The concept of cell error is a generalisation of that of the
local error frequently used in a priori analysis of numerical methods for
ordinary differential equations, see Sect. II.8 in [7]; it seems that it was not
used in connection with a posteriori analysis of approximations to partial
differential equations prior to [18].

Although the dual graph norm is a natural quantity to consider from the
point of view of the error analysis, its definition makes it unsuitable for
practical implementations and is difficult to localise. A key result in Sect. 4
is that the dual graph norm can be replaced by a quantity that is essentially
equivalent to it and is easy to compute; in particular, we show that the dual
graph norm of the residual can be further bounded from above by a constant
multiple ofhκ‖rh‖L2(κ), wherehκ is the diameter ofκ. We shall also show
that a similar lower bound holds, and thereby we deduce the following two-
sided bound on the locally created component of the error in terms of the
local residual:

c2(κ)‖h0Ph0rh‖L2(κ) ≤ ‖ecell
κ ‖L2(κ) ≤ c3(κ)‖hrh‖L2(κ),(1.1)

wherec2 andc3 are positive constants,Ph0 is the orthogonal projector in
L2(κ) onto a finite element subspaceSh0 = Sh0(κ) ⊂ L2(κ) on a micropar-
tition of κ of granularityh0. Thus we arrive at a two-sided a posteriori bound
that is simple to implement into adaptive algorithms.

We note that, for finite element approximations of scalar hyperbolic
equations, non-local a posteriori error bounds on the transmitted error were
derived in [30] (see also Remark 3.6 below) by exploiting the Galerkin or-
thogonality of the finite element method, together with the stability of the
corresponding dual or adjoint problem, cf. [31]. Thus, unlike the a poste-
riori estimates discussed here, those bounds on the transmitted error are
dependent on the particular discretisation employed.

In Sect. 5, we discuss the numerical implementation of these theoretical
results and highlight the potentials of our a posteriori error bounds. The ap-
plication of the theoretical framework developed here to the Euler equations
of compressible gas dynamics is discussed in [24].

Seminal work in the area of residual-based a posteriori error analysis
and adaptivity for Galerkin finite element approximations of linear elliptic
equations has been carried out in [2] and [22], while for hyperbolic and
almost-hyperbolic problems work in this area has been pursued in recent
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years by Johnson and collaborators (see [9–11,13], and references therein).
The theoretical framework of a posteriori error estimation for Galerkin ap-
proximations of hyperbolic problems developed in the latter papers is based
on an elliptic or parabolic regularisation of the hyperbolic partial differential
equation through the addition of a mesh-dependent artificial viscosity term.
The a posteriori error estimates are then derived by exploiting the strong
stability of the adjoint to the regularised problem and the orthogonality of
the residual to the Galerkin test space. This differs from our approach, in that
we make no use of Galerkin orthogonality or artificial viscosity; indeed, our
estimates are applicable to a general class of numerical schemes, including
ones that lie outside the Galerkin framework, and also to methods which do
not introduce artificial viscosity terms in an explicit fashion. Connections
between the theory developed here and that of Johnson are discussed in more
detail in [29] and [31].

This paper is an extended version of our note [18] and the conference
paper [29].

2. Friedrichs systems

Let Ω be a bounded open set inRn with a Lipschitz-continuous boundary;
such a set will be called aLipschitz domain(see Něcas [21]). We use(·, ·) to
denote theL2 inner product onΩ, and‖·‖0 for the correspondingL2 norm
on Ω; analogously, ifΩ′ is a measurable set contained inΩ, we denote by
(·, ·)Ω′ theL2 inner product onΩ′ and by‖·‖0,Ω′ the associatedL2 norm.
Similarly, any other norm will be indexed with a set provided it is taken
over a proper subset ofΩ; otherwise the reference to the domain will be
omitted. The standard hilbertian Sobolev space onΩ of real orders will
be denotedHs(Ω), and the associated Sobolev norm will be labelled‖·‖s
(see Adams [1] for more details). We shall be using vector-valued functions
u,v : Ω → R

m. For such functions, denoting by| · | the Euclidean norm
of R

m, we set

(u,v) :=
m∑

j=1

(uj , vj), and ‖u‖ := ‖|u|‖

for any of the above scalar norms.

2.1. General theory of symmetric positive systems

We review here some basic results from the theory of symmetric systems
in the sense of Friedrichs [5], see also Lax [14]. Suppose that we are given
matrix-valued functionsAi, C : Ω → R

m×m, i = 1, . . . , n, and, fork ∈ N,
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the vectorf ∈ [Hk(Ω)]m. We assume that the components(ai
jk)1≤j,k≤m

of the matricesAi are inC1(Ω) and the components(cjk)1≤j,k≤m of the
matrix C are inC(Ω). We consider the system of first-order linear partial
differential equations

Lu :=
n∑

i=1

Aiuxi + Cu = f onΩ,(2.2)

and denote byL∗ theformal adjointof the operatorL, defined by

L∗u := −
n∑

i=1

∂

∂xi
(A∗

i u) + C∗u.(2.3)

Following Friedrichs [5], the system (2.2) is said to besymmetric positive
if the following conditions hold:

(1) the matricesAi, for i = 1, . . . , n, are symmetric, i.e.Ai = A∗
i ;

(2) there existα ≥ 0 andξ ∈ R
n, with |ξ| = 1, such that the symmetric part

of the matrix

Kξ := C − 1
2

n∑
i=1

∂

∂xi
Ai + α

n∑
i=1

ξiAi

is positive definite, uniformly onΩ, i.e. there exists a positive constant
c0 = c0(Ω) such that

1
2
(
Kξ(x) + K∗

ξ (x)
) ≥ c0I(2.4)

for all x in Ω. For simplicity, we shall often writeK instead ofKξ.

The system (2.2) will be calleddissipativeif (2.4) holds forα = 0. We
note that a sufficient condition for (2.4) to hold is that:

(2’) there existsξ ∈ R
n, with |ξ| = 1, and a positive constantc′

0 = c′
0(Ω),

such that
ξ1A1(x) + . . . + ξnAn(x) ≥ c′

0I,

for all x ∈ Ω.

In this case,ξ is called a time-like direction, and the hyperplane to which
ξ = (ξ1, . . . , ξn) is normal at the pointx is called a space-like hyperplane at
x. An important special case when (2’) (and thereby (2)) is trivially satisfied
is when at least one of theAi is positive definite, uniformly onΩ. Condition
(2’) will not be made use of until Sect. 4; there we shall assume that (2’)
holds, instead of (2).
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On the boundary,∂Ω, the unit outer normal vector field̂ν = (ν̂1, . . . , ν̂n)
is defined almost everywhere with respect to the(n − 1)-dimensional mea-
sure on∂Ω. Consider the matrix

B :=
n∑

i=1

ν̂iAi.(2.5)

For the sake of simplicity we shall assume thatB is non-singular almost
everywhere on∂Ω, that is, the boundary ofΩ is nowhere characteristic.
This can be seen as an assumption either on the system or on the domainΩ.

We denote byB− the negative part of the symmetric matrixB; thus
B− is negative semi-definite andB+ = B − B− is positive semi-definite.
Given thatg belongs to[Hk+1(Ω)]m, k ≥ 0, the traceΓ0,∂Ωg of g in

[Hk+ 1
2 (∂Ω)]m defines an admissible boundary condition via

B−u = B−g on∂Ω.(2.6)

Suppose that we are givenf ∈ [H1(Ω)]m andg ∈ [H1(∂Ω)]m; then
there exists a unique solutionu ∈ [H1(Ω)]m of the boundary value problem
(2.2), (2.6) such that

‖u‖k ≤ c(‖f‖k + ‖g‖k,∂Ω)(2.7)

for k = 0, 1 (see Friedrichs [5], Lax [14], Lax–Phillips [15] and Taylor [32,
Chapter IV].) We remark here that a precise definition ofsolutionwill be
given in Sect. 2.3, following the discussion on the graph space of the operator
L in Sect. 2.2. Note that, by linearity, we may use a standard argument to
ensure thatg ≡ 0, at the expense of modifyingf .

2.2. The graph space

In the following we introduce the basic ingredients for our a posteriori error
analysis of numerical schemes for Friedrichs systems. First, we define the
graph spaceonΩ corresponding to the operatorL:

H(L, Ω) := {u ∈ [L2(Ω)]m | Lu ∈ [L2(Ω)]m}.

Note that[H1(Ω)]m is contained inH(L, Ω). Using α and ξ as in the
definition of the matrixK = Kξ in condition (2), we introduce onH(L, Ω)
theweighted graph norm

|||u||| :=
(
‖e−α(ξ·x)u‖2

0 + ‖e−α(ξ·x)Lu‖2
0

)1/2
.

Next we state and prove a trace theorem for the spaceH(L, Ω) and give an
associated integration-by-parts formula. We shall denote the duality pairing
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between the Sobolev space[H
1
2 (∂Ω)]m and its dual space by〈·, ·〉∂Ω, and

by Γ0,∂Ω : [H1(Ω)]m → [H
1
2 (∂Ω)]m the usual trace operator (see Nečas

[21]). TheL2 inner product on∂Ω will be denoted(·, ·)∂Ω.

Theorem 2.1 (Trace Theorem)Let Ω ⊂ R
n be a Lipschitz domain. There

exists a bounded lineartrace operator

ΓB,∂Ω : H(L, Ω) →
(
[H

1
2 (∂Ω)]m

)′

such that, for anyu in [H1(Ω)]m,

ΓB,∂Ωu = B (Γ0,∂Ωu) .(2.8)

In addition, the following integration-by-parts formula holds for allu in
H(L, Ω) and allw in [H1(Ω)]m:

n∑
i=1

∫
Ω

(Aiuxi) · w dx = −
n∑

i=1

∫
Ω

u · (Aiw)xi
dx

+〈ΓB,∂Ωu, Γ0,∂Ωw〉∂Ω.(2.9)

Proof. Given thatg ∈ [H1/2(∂Ω)]m, consider anyw in [H1(Ω)]m such
thatg = Γ0,∂Ωw. We set, foru in H(L, Ω),

Fu(g) =
n∑

i=1

∫
Ω

[
(Aiuxi) · w + u · (Aiw)xi

]
dx,(2.10)

which defines a linear functional on[H
1
2 (∂Ω)]m. It is easily shown that

the definition ofFu(g) is independent of the choice ofw, with Γ0,∂Ωw =
g. Applying the Cauchy-Schwarz inequality, and denoting byc̃ a suitable
positive constant,

|Fu(g)| ≤ c̃|||u||| · ‖w‖1.(2.11)

According to Něcas [21, Sect. 2.5.7], there exists a continuous linear
extension operatorT : [H

1
2 (∂Ω)]m → [H1(Ω)]m. Therefore, withw =

Tg and a suitable positive constantc1, we have that

|Fu(g)| ≤ c̃|||u||| · ‖w‖1 ≤ c1|||u||| · ‖g‖ 1
2 ,∂Ω;(2.12)

henceFu belongs to
(
[H

1
2 (∂Ω)]m

)′
. We setΓB,∂Ωu := Fu. Due to (2.12)

the linear operator

ΓB,∂Ω : H(L, Ω) →
(
[H

1
2 (∂Ω)]m

)′
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is continuous. Now (2.10) implies (2.9) since

Fu(g) = 〈ΓB,∂Ωu, Γ0,∂Ωw〉∂Ω.

Consideru in [C1(Ω)]m and letw belong to[C1(Ω)]m. Thence, using
(2.10) and Gauss’ theorem, we get

〈ΓB,∂Ωu, g〉∂Ω = Fu(g) =
n∑

i=1

∫
Ω

[Aiu · w]xi
dx =

∫
∂Ω

(Bu) · g dS.

This implies (2.8) for allu in [C1(Ω)]m. Since [C1(Ω)]m is dense in
H(L, Ω) we deduce that

ΓB,∂Ωu = B (Γ0,∂Ωu) . ut
Let us consider the adjoint operatorL∗ given by (2.3), and the associated

graph spaceH(L∗, Ω) equipped with the norm

|||u|||∗ :=
(
‖eα(ξ·x)u‖2

0 + ‖eα(ξ·x)L∗u‖2
0

)1/2
.

Then, in analogy with Theorem 2.1, we have the following result.

Theorem 2.2 (Dual Trace Theorem)Let Ω be Lipschitz domain inRn.
There exists a bounded lineartrace operator

Γ ∗
B,∂Ω : H(L∗, Ω) →

(
[H

1
2 (∂Ω)]m

)′
,

such that, for anyw in [H1(Ω)]m,

Γ ∗
B,∂Ωw = ΓB,∂Ωw = B (Γ0,∂Ωw) .(2.13)

For all w ∈ H(L∗, Ω) and all u ∈ [H1(Ω)]m we have the following
integration-by-parts formula:

n∑
i=1

∫
Ω

u · (Aiw)xi
dx = −

n∑
i=1

∫
Ω

(Aiuxi) · w dx

+〈Γ0,∂Ωu, Γ ∗
B,∂Ωw〉∂Ω.

Proof. The proof is analogous to that of the preceding theorem.ut
The splittingB = B+ + B− induces a natural decomposition of the

trace operatorΓB,∂Ω which leads us to define the partial trace operators

ΓB±,∂Ω : H(L, Ω) →
(
[H

1
2 (∂Ω)]m

)′

with
ΓB,∂Ω = ΓB+,∂Ω + ΓB−,∂Ω.
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By virtue of the formula (2.8), on the dense subset[H1(Ω)]m ofH(L, Ω) this
decomposition can be constructed by splitting the trace ofu ∈ [H1(Ω)]m

and then extending the operators by continuity to all ofH(L, Ω). One can
proceed analogously forH(L∗, Ω).

Now we are ready to precisely define the domains of the operatorsL and
L∗: the domain of definition ofL is

D(L, Ω) = {u ∈ [L2(Ω)]m | Lu ∈ [L2(Ω)]m and ΓB−,∂Ωu = 0}
and that ofL∗ is defined by

D(L∗, Ω) = {u ∈ [L2(Ω)]m | L∗u ∈ [L2(Ω)]m and ΓB+,∂Ωu = 0}.

With the (weighted) graph norms||| · |||, respectively||| · |||∗, defined above,
the domainD(L, Ω), respectivelyD(L∗, Ω), is a subspace of the Hilbert
spaceH(L, Ω), respectivelyH(L∗, Ω).

Lemma 2.3 Letκ be a Lipschitz subdomain ofΩ. Given anyu in D(L, κ)
andw in D(L∗, κ), we have that

(Lu,w)κ = (u, L∗w)κ.(2.14)

Proof. The equality (2.14) obviously holds foru in the dense subsetD(L, κ)
∩ C1(κ) of D(L, κ) and w in the dense subsetD(L∗, κ) ∩ C1(κ) of
D(L∗, κ). The desired result follows by continuity.ut

2.3. Weak and strong solutions

Suppose thatf ∈ [L2(Ω)]m, g ∈ [L2(∂Ω)]m. A function u ∈ [L2(Ω)]m

satisfying
(u, L∗ϕ) + 〈B−g,ϕ〉∂Ω = (f ,ϕ),(2.15)

for all ϕ ∈ D(L∗, Ω) is called aweak solutionof the boundary value
problem (2.2), (2.6).

A weak solutionu that belongs toH(L, Ω) is called astrong solution.
Lax and Phillips [15] proved, under the assumption thatB is non-singular,
that every weak solution is a strong solution, and hence any weak solution
is a solution of the boundary value problem

Lu = f a.e. onΩ, ΓB−,∂Ωu = B−g a.e. on∂Ω.

The fact thatu ∈ H(L, Ω) does not preclude the possibility ofu being
discontinuous. The derivatives appearing inLu in the definition ofH(L, Ω)
are interior derivatives along characteristic hyper-surfaces and thereforeLu
will belong toL2(Ω), even ifu has a discontinuity across a characteristic
hypersurface.
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3. A posteriori error analysis

An important ingredient in the a posteriori error analysis presented here is
a version of G̊arding’s inequality given below. Using this, we derive global
and local bounds on the discretisation error.

For the sake of simplicity, throughout Sects. 3.1 and 3.2, we shall assume
thatα = 0. Note that if the symmetric part ofK is non-positive onΩ for
α = 0 then the system can be transformed into one that is dissipative in the
following way. Suppose that we set, forβ ∈ R,

u(x) = eβ(ξ·x)v(x);

then we obtain, for strong solutions, the equivalent system

Lv + β

n∑
i=1

ξiAiv = e−β(ξ·x)f

with

K =

(
C + β

n∑
i=1

ξiAi

)
− 1

2

n∑
i=1

∂

∂xi
Ai.

Now redefining the matrixC as the expression in the brackets, forβ large
enough, we obtain a new system which satisfies condition (2) above with
α = 0.

3.1. Estimates for the Friedrichs system and its adjoint

With the system (2.2) we associate, foru ∈ H(L, Ω) andv ∈ [L2(Ω)]m,
thebilinear form

b[u,v] := (Lu,v).(3.16)

Suppose thatu ∈ [C1(Ω)]m. Integrating by parts and exploiting the sym-
metry of theAi gives, fori = 1, . . . , n,

(Aiuxi ,u) = −1
2
(
(

∂

∂xi
Ai

)
u,u) +

1
2
(ν̂iAiu,u)∂Ω(3.17)

and

(
∂

∂xi
(Aiu) ,u) =

1
2
(
(

∂

∂xi
Ai

)
u,u) +

1
2
(ν̂iAiu,u)∂Ω.(3.18)

Summing overi yields

b[u, u] = (

[
C − 1

2

(
n∑

i=1

∂

∂xi
Ai

)]
u,u) +

1
2
(Bu,u)∂Ω.
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Using (2.4), (3.17) and (3.18) we deduce that

b[u,u] =
1
2

(
(Lu,u) + (u, Lu)

)
=

1
2

(
(Lu,u) + (L∗u,u)

)
+

1
2
(Bu,u)∂Ω

=
1
2

n∑
i=1

(
(Aiuxi ,u) − (

∂

∂xi
(Aiu) ,u)

)

+
(

1
2

(C + C∗)u,u

)
+

1
2
(Bu,u)∂Ω

=
1
2
((K + K∗)u,u) +

1
2
(Bu,u)∂Ω

≥ c0‖u‖2
0 +

1
2
(Bu,u)∂Ω,(3.19)

and hence theGårding inequality

b[u,u] ≥ c0‖u‖2
0 +

1
2
(B−u,u)∂Ω(3.20)

for all u ∈ [C1(Ω)]m; since[C1(Ω)]m is dense in[H1(Ω)]m, we deduce
that (3.20) holds for allu ∈ [H1(Ω)]m. In particular for allu in [C1(Ω)]m∩
D(L, Ω),

b[u,u] ≥ c0‖u‖2
0.

Since [C1(Ω)]m ∩ D(L, Ω) is dense inD(L, Ω) the coercivity ofb[·, ·]
follows:

b[u,u] ≥ c0‖u‖2
0(3.21)

for all u ∈ D(L, Ω). Exploiting this inequality we prove the following
theorem.

Theorem 3.1 For u ∈ D(L, Ω) we have that

‖u‖0 ≤ 1
c0

‖Lu‖0(3.22)

and, withc1 = (1 + 1/c2
0)

1/2 and α = 0, the following equivalence of
norms:

‖Lu‖0 ≤ |||u||| ≤ c1‖Lu‖0.(3.23)

Proof. Note that (3.21) implies that, foru ∈ D(L, Ω) ⊂ [L2(Ω)]m,

‖Lu‖0 = sup
w∈[L2(Ω)]m

(Lu,w)
‖w‖0

≥ (Lu,u)
‖u‖0

=
b[u,u]
‖u‖0

≥ c0‖u‖0.

This in turn implies that

c1‖Lu‖0 ≥ |||u|||(3.24)

and hence (3.23). ut
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For the purpose of deriving a posteriori error bounds in weaker norms
we introduce the dual spaceD′(L, Ω) (respectivelyD′(L∗, Ω)) to D(L, Ω)
(respectivelyD(L∗, Ω)) with thedual (weighted) graph norm

|||u|||′ := sup
v∈D(L,Ω)

(u,v)
|||v|||

(
respectively|||u|||′∗ := sup

v∈D(L∗,Ω)

(u,v)
|||v|||∗ .

)

Due to the continuous embeddings[H1
0 (Ω)]m ⊂ D(L, Ω) ⊂ [L2(Ω)]m,

we have the dual embeddings[L2(Ω)]m ⊂ D′(L, Ω) ⊂ [H−1(Ω)]m.
We consider, forf ∈ [H1(Ω)]m and g ∈ [H1(∂Ω)]m, the adjoint

boundary value problem




L∗ϕ = −
n∑

i=1

∂

∂xi
(Aiϕ) + C∗ϕ = f on Ω,

B+ϕ = B+g on ∂Ω.

(3.25)

Writing the operatorL∗ as

L∗ϕ =
n∑

i=1

Aiϕxi
+

n∑
i=1

(
∂

∂xi
Ai

)
ϕ + C∗ϕ

one easily sees that this is again a symmetric positive system and all the re-
sults concerningL hold, by analogy, for the adjoint boundary value problem
(3.25). We have the adjoint bilinear form

b∗[u,v] := (u, L∗v)

satisfying

b∗[u,u] ≥ c0‖u‖2
0 − 1

2
(Bu,u)∂Ω,

and the associated Gårding inequality

b∗[u,u] ≥ c0‖u‖2
0 − 1

2
(B+u,u)∂Ω,

for all u ∈ [H1(Ω)]m. In addition, similarly as forL, we have, forα = 0
and anyu ∈ D(L∗, Ω),

‖u‖0 ≤ |||u|||∗ ≤ c1‖L∗u‖0 ≤ c1|||u|||∗.(3.26)
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3.2. Global a posteriori error estimates

Consider the boundary value problem (2.2), (2.6) stated in Sect. 2. We wish
to develop, in an abstract setting, the idea of error localisation and residual-
based local a posteriori error estimation operating within the framework
introduced below. Suppose thatUh ⊂ H(L, Ω) is a finite element trial
space obtained by partitioningΩ by a family consisting ofNh subsets
(κi)i=1,...,Nh

. The setsκi will be calledcells. These could be, for exam-
ple, triangles or quadrilaterals in the casen = 2. For each cell we assume
that it satisfies the same properties as the setΩ itself; thus all the analytical
results proved in the case ofΩ will also hold with Ω replaced by a cell
κi. The mesh parameterh is defined to be the maximum diameter of the
cells. We denote byΠh a projection of[L2(Ω)]m into a finite element test
spaceMh contained in[L2(Ω)]m. Furthermore, toUh there corresponds a
discrete space on the boundary, and we suppose for simplicity that the trace
of g is an element of this space.

We assume that the scheme can be formulated as a discrete boundary
value problem of the following type: finduh ∈ Uh such that

ΠhLuh = Πhf onΩ, B−uh|∂Ω = B−g|∂Ω.(3.27)

We suppose that this discrete problem has a unique solution.
Let u ∈ H(L, Ω) be the exact weak/strong solution of the boundary

value problem (2.2), (2.6). We denote byeh := u − uh theglobal error of
the approximate solution and define theresidual

rh = f − Luh(= Leh) ∈ [L2(Ω)]m.

In particular, we note that the global erroreh is the unique solution of the
boundary value problem

Leh = rh onΩ, B−eh|∂Ω = 0.

Thus we have thateh belongs toD(L, Ω). By takingu = eh in (3.23), we
obtain the following error bounds forα = 0.

Theorem 3.2 Suppose thatuh ∈ Uh ⊂ H(L, Ω); then, we have the strong
global a posteriori error bounds:

‖rh‖0 ≤ |||eh||| ≤ c1‖rh‖0.(3.28)

Next we extend the process of a posteriori estimation to weaker norms.
Noting thateh ∈ D(L, Ω) and using (2.14) and (3.26) we obtain, forα = 0,

|||rh|||′∗ = |||Leh|||′∗ = sup
φ∈D(L∗,Ω)

(Leh,φ)
|||φ|||∗ = sup

φ∈D(L∗,Ω)

(eh, L∗φ)
|||φ|||∗

≤ sup
φ∈D(L∗,Ω)

‖eh‖0‖L∗φ‖0

|||φ|||∗ ≤ ‖eh‖0.

Numerische Mathematik Electronic Edition
page 445 of Numer. Math. (1999) 82: 433–470



446 P. Houston et al.

In the adjoint boundary value problem (3.25) we takef = eh, g = 0,
and consider the corresponding (unique) solutionϕ ∈ D(L∗, Ω). Now for
eh ∈ D(L, Ω) we have, using (2.14) and (3.26), that

|||rh|||′∗ = sup
φ∈D(L∗,Ω)

(Leh,φ)
|||φ|||∗ ≥ (Leh,ϕ)

|||ϕ|||∗ =
( eh, L∗ϕ)

|||ϕ|||∗

=
(L∗ϕ, L∗ϕ)

|||ϕ|||∗ =
‖L∗ϕ‖2

0
|||ϕ|||∗ ≥ 1

c1
‖L∗ϕ‖0.

This proves the following global two-sided a posteriori error bound on the
L2 norm of the global error in terms of the dual (weighted) graph norm of
the residual.

Theorem 3.3 Assuming thatα = 0, we have the weak global a posteriori
error bounds:

|||rh|||′∗ ≤ ||eh||0 ≤ c1|||rh|||′∗.(3.29)

The next section is concerned with the decomposition of the error into
a locally created part, called thecell error, and a propagating component
which will be referred to as thetransmitted error.

3.3. Cell error and transmitted error

Let κ ⊂ Ω be a cell in the partition of the domain. Onκ we consider the
exact solutions̃u, ũh ∈ H(L, Ω) of the local boundary value problems

Lũ = f onκ, B−ũ|∂κ = B−u|∂κ,(3.30)

Lũh = f onκ, B−ũh|∂κ = B−uh|∂κ.(3.31)

Due to the unique solvability of the boundary value problem, we have that
ũ = u|κ.

For ũh we provide the following interpretation. Suppose that we have
determined the numerical solution onΩ. ThenB−uh|∂κ can be thought of
as distorted boundary data due to the numerical error outside of the cellκ.
In the second problem (3.31) above we consider the exact solution subject
to these distorted numerical data. Then the quantity

ecell
κ = (ũh − uh)|κ ∈ D(L, κ)

represents the error produced by the scheme on this cell; we call it thecell
error. The complementary quantity

etrans
κ = (u − ũh)|κ
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reflects the component of the error which is created outside of the cell; we
name this part of the error thetransmitted error. Therefore, on each cell we
have the following decomposition of the global error:

eh|κ = (u − uh)|κ = ecell
κ + etrans

κ .

The relevance of the cell errorecell
κ is that it is the part of the global error

which directly contributes to the cell residual that we shall use as an error
indicator. We deduce that the transmitted error satisfies

Letrans
κ = Lu − Lũh = 0 onκ,

(3.32)

B−etrans
κ |∂κ = B−(u − uh)|∂κ = B−e|∂κ.

On the other hand, the cell error satisfies

rh = Leh = Letrans
κ + Lecell

κ = Lecell
κ onκ

(3.33)

B−ecell
κ |∂κ = 0.

This shows that the cell residualrh|κ is only influenced by the cell error on
the cellκ. Therefore, it is reasonable to attempt to improve the numerical
solution by an adaptive procedure on those cells where the cell residual is
largest. The next subsection focuses on the question of local error control:
we derive local two-sided a posteriori error bounds on the cell errorecell

κ in
terms of the (computable) local residualrh|κ in various norms.

3.4. Local a posteriori error estimates

Suppose thatκ is a Lipschitz subdomain ofΩ with a boundary∂κ that is
almost everywhere non-characteristic for the operatorL. In order to sharpen
the global estimates, we shall assume that condition (2) in the definition of
a symmetric positive system holds on each subdomainκ ⊂ Ω with a local
constantc0 = c0(κ). All of the results derived above onΩ also hold on the
subsetκ. In particular, sinceecell

κ is the unique solution to the initial value
problem

Lecell
κ = rh onκ, B−ecell

κ |∂κ = 0,

we have thatecell
κ belongs toD(L, κ). By takingu = ecell

κ e−α(ξ·x) in (3.23)
and repeating the reasoning presented in the previous section, we obtain the
following error estimate.
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Theorem 3.4 Suppose thatuh ∈ Uh ⊂ H(L, Ω); then, we have the strong
local a posteriori error bounds

min
x∈κ

w(x)‖rh‖0,κ ≤ |||ecell
κ |||κ ≤ c1(κ) max

x∈κ
w(x)‖rh‖0,κ,(3.34)

wherew(x) = e−α(ξ·x) andc1(κ) = (1 + 1/c0(κ)2)1/2.

In contrast with the two-sided bound on the cell-error, we only have an
upper bound on the transmitted erroretrans

κ . This estimate is reminiscent of
stability estimates used in the analysis of error transport in the context of
ordinary differential equations.

Theorem 3.5 Assuming thatetrans
κ ∈ [H1(κ)]m, the following bound holds:

2c0(κ)‖wetrans
κ ‖2

0,κ + (B+wetrans
κ , wetrans

κ )∂κ

≤ (−B−wetrans
κ , wetrans

κ )∂κ,

wherew(x) = e−α(ξ·x).

Proof. By consideringb[etrans
κ , w2etrans

κ ], proceeding analogously as in
(3.19) and exploiting the fact thatLetrans

κ = 0 and henceb[etrans
κ , w2etrans

κ ]
= 0, we obtain the desired inequality.ut

SinceB+ and−B− are assumed to be positive definite, this estimate puts
an upper bound on the transmitted error onκ and the outflow of transmitted
error in terms of the incoming error.

Remark 3.6In the case of a scalar hyperbolic equation, corresponding to
m = 1, the followingnon-localupper bound on the transmitted erroretrans

κ

may be derived:

‖etrans
κ ‖(H1

0 (κ))′ ≤ C‖hrh‖L2(Dh(κ)),

whereC is a computable constant andDh(κ) denotes the union of all el-
ements in the partition which intersect the domain of dependence ofκ, cf.
[30]. The proof of this a posteriori error bound is based on a hyperbolic
duality argument using the general theoretical framework outlined in [31].

Now we consider the derivation of weak a posteriori bounds. For this
purpose we considerecell

κ ∈ D(L, κ) and use the weighted analogues of
(2.14) and (3.26) to obtain

|||rh|||′∗,κ = |||Lecell
κ |||′∗,κ

= sup
φ∈D(L∗,κ)

(Lecell
κ ,φ)κ

|||φ|||∗,κ
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= sup
φ∈D(L∗,κ)

(ecell
κ , L∗φ)κ

|||φ|||∗,κ

≤ sup
φ∈D(L∗,κ)

‖eα(ξ·x)ecell
κ ‖0,κ‖e−α(ξ·x)L∗φ‖0,κ

|||φ|||∗,κ

≤ ‖eα(ξ·x)ecell
κ ‖0,κ

≤ max
x∈κ

ŵ(x)‖ecell
κ ‖0,κ,

whereŵ(x) = eα(ξ·x). For the reverse inequality we consider onΩ = κ
the adjoint boundary value problem (3.25) withf = e−2α(ξ·x)ecell

κ , g = 0,
and consider the corresponding (unique) solutionϕ ∈ D(L∗, κ). Now for
ecell

κ ∈ D(L, κ) we have, using (2.14) and (3.26), that

|||rh|||′∗,κ = sup
φ∈D(L∗,κ)

(Lecell
κ ,φ)κ

|||φ|||∗,κ
≥ (Lecell

κ ,ϕ)κ

|||ϕ|||∗,κ
=

( ecell
κ , L∗ϕ)κ

|||ϕ|||∗,κ

=
(eα(ξ·x)L∗ϕ, eα(ξ·x)L∗ϕ)κ

|||ϕ|||∗,κ
=

‖eα(ξ·x)L∗ϕ‖2
0,κ

|||ϕ|||∗,κ

≥ 1
c1(κ)

‖eα(ξ·x)L∗ϕ‖0,κ =
1

c1(κ)
‖e−α(ξ·x)ecell

κ ‖0.

This proves the following local two-sided a posteriori error bound on the
L2 norm of the cell error in terms of the weighted dual graph norm of the
residual.

Theorem 3.7 We have the following local a posteriori error bounds:

min
x∈κ

w(x) |||rh|||′∗,κ ≤ ||ecell
κ ||0,κ

≤ c1(κ) max
x∈κ

[w(x)]−1|||rh|||′∗,κ.(3.35)

The results of Theorems 3.4 and 3.7 also allow global error estimates to
be derived. For example

|||ecell||| =

{∑
κ

|||ecell
κ |||2κ

} 1
2

≤
{∑

κ

(c1(κ) max
x∈κ

w(x)||rh||0,κ)2
} 1

2

=

{∑
κ

(ε̄1(κ))2
} 1

2

≡ ε̄1.
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Therefore,̄ε1(κ) = c1(κ) maxx∈κ w(x)||rh||0,κ is a local upper estimator
andε̄1 is a global upper estimate for|||ecell|||. We also have

||ecell||0 =

{∑
κ

||ecell
κ ||20,κ

} 1
2

≤
{∑

κ

(c1(κ) max
x∈κ

[w(x)]−1|||rh|||′∗,κ)2
} 1

2

=

{∑
κ

(ε̄2(κ))2
} 1

2

≡ ε̄2.

Therefore,̄ε2(κ) = c1(κ) maxx∈κ[w(x)]−1|||rh|||′∗,κ is a local upper esti-
mator and̄ε2 is a global upper estimate for||ecell||0.

We conclude this section by noting that estimates identical to the ones
derived above hold for Friedrichs systems in conservation form.

4. Further bounds on the dual graph norm

The error estimates (3.34) and (3.35) derived in the previous section put sharp
bounds on the locally created component of the global error in terms of theL2

norm and the dual graph norm of the residualrh, respectively; unfortunately,
the dual graph norm ofrh is difficult to compute (although in [24] it was
approximated by partitioning the cellκ, and was successfully implemented
into an adaptive finite volume algorithm for the numerical solution of the
Euler equations of compressible gas dynamics). In this section we shall prove
that|||rh|||′∗,κ can be further bounded from above by a constant multiple of
‖hrh‖0,κ, a quantity that is simple and cheap to compute; we shall also
prove that there is a similar lower bound. These bounds on the dual graph
norm extend the results of [29] to Friedrichs systems in non-conservative
form.

In the remainder of this section we shall assume that (2’) holds instead
of (2).

Theorem 4.1 The following one-sided a posteriori error bound on the cell
error in terms of the residualrh is valid:

‖ecell
κ ‖0,κ ≤ c3(κ)‖hrh‖0,κ,

where

c3(κ) = c2(κ)(1 + 1/c0(κ)2)1/2exp(α(1 + h)|ξ|),
c2(κ) = (h2 + c′

0(κ)2/4)−1/2exp(α|ξ|),
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c0(κ) andc′
0(κ) are the constants from conditions (2) and (2’), respectively,

applied on the cellκ, andh denotes the diameter ofκ.

Proof. Assume thatζ is in R
n (to be fixed later on) and letκ be any element

in the partition ofΩ. In order to simplify the argument we shall suppose
that the origin of the coordinate system is the centroid of the elementκ; if
this is not the case then the exponential weight-function exp(α(ζ · x)) in
the expressions below should be replaced by exp(α(ζ · (x−xc))) wherexc
is the centroid ofκ, the important property being that the weight function
remains bounded onκ ash = diam(κ) converges to zero. Now for anyφ in
D(L∗, κ) we have the following identity:

−
∫

κ
e2α(ζ·x)

(
n∑

i=1

∂

∂xi
(Aiφ)

)
· φ dx

= −
∫

∂κ
e2α(ζ·x)φ · (Bφ) ds + 2α

n∑
i=1

∫
κ

e2α(ζ·x)φ · (ζiAiφ) dx

−
n∑

i=1

∫
κ

e2α(ζ·x)φ ·
(

∂Ai

∂xi
φ

)
dx

+
n∑

i=1

∫
κ

e2α(ζ·x)φ ·
(

∂

∂xi
(Aiφ)

)
dx.

Transferring the last term on the right-hand side to the left, we obtain

−
∫

κ
e2α(ζ·x)

(
n∑

i=1

∂

∂xi
(Aiφ)

)
· φ dx

= −1
2

∫
∂κ

e2α(ζ·x)φ · (Bφ) ds

+
∫

κ
e2α(ζ·x)φ ·

(
α

n∑
i=1

ζiAi − 1
2

n∑
i=1

∂Ai

∂xi

)
φ dx.

Thus, ∫
κ

e2α(ζ·x)

(
−

n∑
i=1

∂

∂xi
(Aiφ) + C∗φ

)
· φ dx

= −1
2

∫
∂κ

e2α(ζ·x)φ · (Bφ) ds

+
∫

κ
e2α(ζ·x)φ ·

(
C + α

n∑
i=1

ζiAi − 1
2

n∑
i=1

∂Ai

∂xi

)
φ dx.(4.36)
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Noting that∫
κ

e2α(ζ·x)φ · (Cφ) dx =
∫

κ
e2α(ζ·x)(C∗φ) · φ dx

=
∫

κ
e2α(ζ·x)φ · (C∗φ) dx,

and applying this in the second term on the right-hand side of (4.36) gives

∫
κ

e2α(ζ·x)

(
−

n∑
i=1

∂

∂xi
(Aiφ) + C∗φ

)
· φ dx

= −1
2

∫
∂κ

e2α(ζ·x)φ · (Bφ) ds

+
∫

κ
e2α(ζ·x)φ ·

(
C∗ + α

n∑
i=1

ζiAi − 1
2

n∑
i=1

∂Ai

∂xi

)
φ dx.(4.37)

Summing the identities (4.36) and (4.37), and recalling thatB = B+ +B−
with B+φ = 0 on∂Ω and−φ · (B−φ) ≥ 0 on∂Ω, we conclude that∫

κ
e2α(ζ·x)L∗φ · φ dx ≥

∫
κ

e2α(ζ·x)φ · 1
2
(Kζ(x) + K∗

ζ (x))φ dx.

In order to proceed, let us consider

1
2
(Kζ(x) + K∗

ζ (x)) =
1
2
(C + C∗) − 1

2

n∑
i=1

∂Ai

∂xi
+ α

n∑
i=1

ζiAi.

Choosingζi = h−1ξi, i = 1, ..., n, whereh = diam(κ), and recalling (2’)
we have that

1
2
(Kζ(x) + K∗

ζ (x))

= h−1

(
α

n∑
i=1

ξiAi + h

(
1
2
(C + C∗) − 1

2

n∑
i=1

∂Ai

∂xi

))

≥ h−1

(
αc′

0(κ)I + h

(
1
2
(C + C∗) − 1

2

n∑
i=1

∂Ai

∂xi

))
.

Since, by hypothesis, the entries ofC and ∂Ai/∂xi belong toC(Ω), it
follows that, forh sufficiently small and allx ∈ κ,

1
2
(Kζ(x) + K∗

ζ (x)) ≥ αc′
0(κ)
2h

I.
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Thus we arrive at the local G̊arding inequality∫
κ

e2α(ζ·x)L∗φ · φ dx ≥ αc′
0(κ)
2h

∫
κ

e2α(ζ·x)|φ|2 dx.

Applying the Cauchy-Schwarz inequality to the left-hand side, it follows
that (∫

κ
e2α(ζ·x)|φ|2 dx

) 1
2

≤ 2h

αc′
0(κ)

(∫
κ

e2α(ζ·x)|L∗φ|2 dx

) 1
2

.(4.38)

To complete the proof, we shall apply (4.38) to show that the dual graph
norm ofrh is bounded above by a constant multiple of‖hrh‖0; indeed,

|||rh|||′∗,κ,ζ := sup
φ∈D(L∗,κ)

|(rh, φ)κ|
(‖eα(ζ·x)φ‖2

0,κ + ‖eα(ζ·x)L∗φ‖2
0,κ)

1
2

≤ sup
φ∈D(L∗,κ)

‖e−α(ζ·x)rh‖0,κ‖eα(ζ·x)φ‖0,κ

(‖eα(ζ·x)φ‖2
0,κ + ‖eα(ζ·x)L∗φ‖2

0,κ)
1
2

≤ h(h2 + α2c′
0(κ)2/4)−1/2‖e−α(ζ·x)rh‖0,κ.

However,|α(ζ ·x)| = h−1α|ξ ·x| with h(< 1) denoting the diameter ofκ, so
that, recalling that the origin of the coordinate system has been placed at the
centroid ofκ and therefore|x| ≤ h for x in κ, it follows that|α(ζ ·x)| ≤ α|ξ|
for x ∈ κ. Hence,

|||rh|||′∗,κ,ζ ≤ c2(κ)‖hrh‖0,κ,

wherec2(κ) = eα|ξ|(h2 + α2c′
0(κ)2/4)−1/2. Noting that

|||φ|||∗,κ ≡ |||φ|||∗,κ,ξ := (‖eα(ξ·x)φ‖2
0,κ + ‖eα(ξ·x)L∗φ‖2

0,κ)
1
2

and writing

eα(ξ·x) = eα(ζ·x)e−α(ζ−ξ)·x = eα(ζ·x)e−αξ(1−h)·(x/h),

we have that
e−α|ξ||||φ|||∗,κ,ζ ≤ |||φ|||∗,κ,ξ.

Thus,

|||rh|||′∗,κ,ξ = sup
φ∈D(L∗,κ)

|(rh, φ)κ|
|||φ|||∗,κ,ξ

≤ eα|ξ||||rh|||′∗,κ,ζ .
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Now (3.35) states that,

‖ecell
κ ‖0,κ ≤ c1(κ) max

x∈κ
eα(ξ·x)|||rh|||′∗,κ,ξ,

and therefore

‖ecell
κ ‖0,κ ≤ c1(κ)eαh|ξ|eα|ξ||||rh|||′∗,κ,ζ

≤ c1(κ)c2(κ)eα(1+h)|ξ|‖hrh‖0,κ.

Hence, definingc3(κ) = c1(κ)c2(κ)eα(1+h)|ξ|, we obtain the desired bound

‖ecell
κ ‖0,κ ≤ c3(κ)‖hrh‖0,κ. ut

Now we prove an analogous lower bound; to do so, we consider a uni-
formly regular micro-partition of the cellκ, and letSh0 = Sh0(κ) be a finite
element subspace ofD(L∗, κ) on this micro-partition, withh0 = h0(κ) de-
noting the maximum diameter of elements in the micro-partition. We denote
by Ph0 the orthogonal projector in[L2(κ)]m onto the finite element space
Sh0 .

Theorem 4.2 The following a posteriori lower bound on the cell error is
valid:

c4(κ)‖h0Ph0rh‖0,κ ≤ ‖ecell
κ ‖0,κ,

wherec4(κ) is a computable constant.

Proof. SinceSh0 = Sh0(κ) is contained inD(L∗, κ), it follows that

|||rh|||′∗,κ,ξ = sup
φ∈D(L∗,κ)

|(rh, φ)κ|
(‖eα(ξ·x)φ‖2

0,κ + ‖eα(ξ·x)L∗φ‖2
0,κ)

1
2

≥ sup
φh0∈Sh0

|(rh, φh0)κ|
(‖eα(ξ·x)φh0‖2

0,κ + ‖eα(ξ·x)L∗φh0‖2
0,κ)

1
2
.(4.39)

Exploiting a standard inverse inequality inSh0 , we deduce that

(
n∑

i=1

‖eα(ξ·x) ∂φh0

∂xi
‖2
0,κ

) 1
2

≤ c5(κ)
h0

‖eα(ξ·x)φh0‖0,κ, φh0 ∈ Sh0 ,

and therefore, for allφh0 ∈ Sh0 ,

‖eα(ξ·x)L∗φh0‖0,κ

≤
n∑

i=1

‖Ai‖L∞(κ)‖eα(ξ·x) ∂φh0

∂xi
‖0,κ + ‖D‖L∞(κ)‖eα(ξ·x)φh0‖0,κ
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≤
(

n∑
i=1

‖Ai‖2
L∞(κ)

) 1
2
(

n∑
i=1

‖eα(ξ·x) ∂φh0

∂xi
‖2
0,κ

) 1
2

+‖D‖L∞(κ)‖eα(ξ·x)φh0‖0,κ

≤ 1
h0


h0‖D‖L∞(κ) + c5(κ)

(
n∑

i=1

‖Ai‖2
L∞(κ)

) 1
2


 ‖eα(ξ·x)φh0‖0,κ

≡ h−1
0 c6(κ)‖eα(ξ·x)φh0‖0,κ,

whereD = C∗ −∑n
i=1 ∂Ai/∂xi. Substituting this bound into (4.39) gives

|||rh|||′∗,κ,ξ ≥ h0(h2
0 + c6(κ)2)−1/2 sup

φh0∈Sh0

|(rh, φh0)κ|
‖eα(ξ·x)φh0‖0,κ

≥ h0e−αh|ξ|

(h2
0 + c6(κ)2)1/2 sup

φh0∈Sh0

|(Ph0rh, φh0)κ|
‖φh0‖0,κ

= e−αh|ξ|(h2
0 + c6(κ)2)− 1

2 ‖h0Ph0rh‖0,κ.

Combining this inequality with the lower bound on the cell error stated in
Theorem 3.7 we arrive at the desired lower bound on‖ecell

κ ‖0,κ. ut
The bounds in Theorems 4.1 and 4.2 can be summarised as follows:

c4(κ)‖h0Ph0rh‖0,κ ≤ ‖ecell
κ ‖0,κ ≤ c3(κ)‖hrh‖0,κ,(4.40)

wherec3(κ) andc4(κ) are computable constants. We note here that while
the two-sided bound on theL2 norm of the cell error given in Theorem
3.7 is sharp, inequality (4.40) is not, because of the mismatch between the
expressions under the norm signs in the lower and the upper estimate. By
virtue inequality of (4.40), we have the ‘almost sharp’ two-sided global
estimate(∑

κ

c4(κ)2‖h0Ph0rh‖2
0,κ

) 1
2

≤ ‖ecell‖0

≤
(∑

κ

c3(κ)2‖hrh‖2
0,κ

) 1
2

≡
{∑

κ

(ε3(κ))2
} 1

2

≡ ε3

which now provides a global bound on the locally created component of the
error.
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5. Computational implementation and numerical experiments

In this section we assess the computational performance of the local a poste-
riori error bounds derived in this paper. We begin in Sect. 5.1 by discussing a
practical approach to approximating the dual graph norm. Then, in Sect. 5.2
we describe an adaptive algorithm for automatically controlling the cell er-
ror with respect to a user-defined tolerance. Finally, in Sects. 5.3–5.6 we
present a number of numerical experiments: Sects. 5.3–5.5 are devoted to
the performance ofε1 andε2 for the cell vertex scheme on uniform quadri-
lateral meshes. This cell vertex scheme is described in the papers [25–27,3,
19], and can be formulated as a Petrov-Galerkin finite element method based
on continuous piecewise bilinear trial functions and piecewise constant test
functions. It is this latter interpretation that conforms with the framework de-
scribed above. For cell centre finite volume methods, a similar construction
is given in [28]. In Sect. 5.6 we illustrate the performance of the streamline-
diffusion method on both uniform and adaptively refined triangular meshes
using ε3 as a local error indicator. We note that the streamline-diffusion
method is based on a consistent perturbation of the standard Galerkin finite
element method by adding a weighted least squares term to the standard
test functionv: for the Friedrichs system (2.2), this corresponds to a test
function of the formv + δLv, whereδ = Cδh, Cδ is a constant andh is a
mesh function, cf. [12], for example.

In each of the numerical experiments presented, an approximation of
the cell error and the transmitted error is obtained by numerically solving
the local boundary value problems satisfied on each elementκ by these
quantities. The numerical solution to these local problems is computed using
the underlying discretisation method (i.e. the cell vertex method in Examples
1–3 and the streamline-diffusion method in Example 4) on a mesh generated
by four successive subdivisions of the elementκ: for quadrilateral elements,
this corresponds to a17 × 17 subdivision ofκ.

5.1. Estimating the dual graph norm

To evaluate the upper error estimate we need to calculate

|||rh|||′∗,κ = sup
φ∈D(L∗,κ)

(rh, φ)κ

|||φ|||∗,κ
.

In practice, it is impossible to test the residual against every element in
D(L∗, κ). A computable approximation of|||rh|||′∗,κ is obtained by evalu-
ating

max
φ∈Sh0⊂D(L∗,κ)

(rh, φ)κ

|||φ|||∗,κ
,
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whereSh0 is a finite element subspace ofD(L∗, κ) on a micropartition
of κ of granularityh0. In the examples that follow, we use the following
approximation for quadrilateral elements

|||rh|||′∗,κ ≈ max
l,m=1,...,NL

(rh, φlm)κ

|||φlm|||∗,κ
,

where eachφlm ∈ D(L∗, κ) is a bilinear function onκ. For example, if we
are interested in a two-dimensional scalar advection problem with convective
velocity fielda = (a1, a2), ai > 0, i = 1, 2, then on eachκ

φlm(x1, x2) = φ̂l(x̂1)φ̂m(x̂2) ◦ F−1
κ

whereFκ is the mapping from local to global coordinates,

φl(x̂1) = (x̂1 − 1)/((x̂1)l − 1), (x̂1)l =
2(l − 1)

NL
− 1,

l = 1, . . . , NL,

and

φm(x̂2) = (x̂2 − 1)/((x̂2)m − 1), (x̂2)m =
2(m − 1)

NL
− 1,

m = 1, . . . , NL.

Each bilinear function is therefore zero on the outflow boundary ofκ and is
equal to unity at the image of((x̂1)l, (x̂2)m). Numerical experience suggests
thatNL need not be large, and in the experiments belowNL = 3. For further
details concerning the approximate computation of the dual graph norm we
refer to the paper of Sonar [23].

5.2. Adaptive algorithm

For a given tolerance TOL, we consider the problem of constructing a mesh
such that:

‖ecell‖0 ≤ TOL(5.41)

and the number of degrees of freedom is minimal. In order to satisfy the first
condition, we exploit the a posteriori error estimate derived in Theorem 4.1;
i.e. if we impose that

ε3(κ) ≤ TOL√
N

(5.42)

for each elementκ in our meshT , whereN is the number of elements inT ,
then (5.41) will be automatically satisfied. For efficiency we try to ensure
that (5.42) is satisfied with near equality, cf. [31].
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In order to generate a mesh which will satisfy (5.42) for allκ in T ,
subject to the efficiency constraint, we must employ a mesh modification
strategy. In this paper we combine the use of a mesh subdivision algorithm
(h-refinement) with a mesh movement algorithm (r-refinement). The subdi-
vision algorithm is based on the well-known red-green isotropic refinement
strategy, cf. [4]. Here, a red refinement corresponds to dividing a triangle
into four similar triangles by connecting the midpoints of the sides. Green
refinement is only temporary and is used to eliminate any hanging nodes
created by a red refinement. We note that green refinement is only used on
elements with one hanging node; elements with two or more hanging nodes
are red refined.

Ther-refinement algorithm is based on the very simple mesh movement
strategy described in [8]. Here, the nodes are moved to a weighted average of
the positions of the centroids of the neighbouring triangles. The new nodal
position can thus be written as

xnew
n =

∑ln
i=1 wκix

c
κi∑ln

i=1 wκi

;(5.43)

herexc
κi

denotes the centroid of elementκi andwκi the element weight,
wherei runs over the elements adjacent to noden. Here, we define the
element weightwκi to beε3(κi). To prevent mesh tangling, we limit the
distance a node can move by imposing the following restriction

(∆x)max = min
i=1,...,ln

(
meas(κi)

hκi

)
,(5.44)

wherehκi = diam(κi). A second restriction is also imposed to prevent the
elements becoming too distorted.

For the implementation of thishr-refinement algorithm, we first specify
an initial background meshTj , j = 1, upon which we calculate a numerical
approximationuh to u. Based onuh we computeε3 and test to see ifε3 is
less than the prescribed tolerance TOL. If this is the case then the adaptive
algorithm terminates; otherwise we modify the mesh as follows: ifj is
an odd number, then move the nodes of the mesh according to conditions
(5.43) and (5.44). We note that for eachj we loop over all the nodes in the
mesh20 times in order to generate the new meshTj+1. If j is even, then
subdivide the elements which fail to satisfy condition (5.42), and construct
Tj+1; we remark that elements may also be de-refined. Finally, we setj =
j + 1, compute a numerical solution on the new mesh, and test the stopping
criterion again. This process is repeated until the estimated cell error is below
the given tolerance TOL.
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Table 1. ||eh||0 and||etrans||0 for Example 1

Mesh ‖eh‖0 k ‖etrans‖0 k

17 × 17 2.014 × 10−3 - 2.050 × 10−2 -
33 × 33 5.793 × 10−3 1.80 5.945 × 10−3 1.79
65 × 65 1.491 × 10−3 1.96 1.534 × 10−3 1.95
129 × 129 3.750 × 10−4 1.99 3.860 × 10−4 1.99
257 × 257 9.390 × 10−5 2.00 9.662 × 10−5 2.00

Table 2. |||ecell||| andε1 for Example 1

Mesh |||ecell||| k ε1 k θ1

17 × 17 1.611 × 10−1 - 3.188 × 10−1 - 1.98
33 × 33 8.415 × 10−2 0.94 1.650 × 10−1 0.95 1.97
65 × 65 4.258 × 10−2 0.98 8.330 × 10−2 0.99 1.95
129 × 129 2.136 × 10−2 1.00 4.174 × 10−2 1.00 1.95
257 × 257 1.069 × 10−2 1.00 2.089 × 10−2 1.00 1.95

5.3. Example 1

The first example considered is a scalar advection problem of the form

∇.(au) = f, x ∈ (0, 1)2.(5.45)

We takef = 0, a = (cos(π/6), sin(π/6))T and boundary conditions

u(x1, 0) = exp(−50x4
1),

u(0, x2) = 1.

To test the sharpness of the error estimates, calculations were performed
on a sequence of uniform meshes. Table 1 shows||eh||0 and||etrans||0 and
their respective rates of convergencek. Since the exact solution is smooth,
we observe second-order convergence. Figures 1(a) and (b) depict the dis-
tribution of the global and transmitted errors, respectively, on a33 × 33
uniform mesh; the two errors are very similar and grow almost linearly from
the inflow to the outflow boundary. The behaviour of|||ecell||| and its upper
estimateε1 are shown in Table 2. Clearly, both quantities converge asO(h).
The final column of Table 2 shows the effectivity indexθ1 = ε1/|||ecell|||,
which indicates thatε1 slightly overestimates|||ecell|||. Figures 1(c) and (d)
depict the distribution of|||ecell|||κ andε1(κ), respectively, which are in ex-
cellent agreement. The values of||ecell||0 andε2 are shown in Table 3, where
the dual graph norm has been estimated as outlined in Sect. 5.1. We see that
||ecell||0 andε2 both converge asO(h2) and thatε2 slightly underestimates
||ecell||0. Finally, Figs. 1(e) and (f) show that the distribution of||ecell||0 and
ε2(κ), respectively, closely resemble each other. Plots of the distribution
of ε3(κ) show a similar qualitative behaviour. Note that the distribution of
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Fig. 1. Example 1: (a)‖eh‖0,κ; (b) ‖etrans‖0,κ; (c) |||ecell|||κ; (d) ε1(κ); (e) ||ecell||0,κ;
(f) ε2(κ)
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the cell error is quite different in character to the distribution of the global
error. Although the cell error is largest along the line of steepest slope of
the approximate solution, its value is almost constant, whereas the global
error is linearly increasing. This suggests that a constant local error is being
generated along characteristic paths from the inflow-boundary data.

5.4. Example 2

For the second example we consider the same scalar advection equation
as in Example 1, with forcing functionf = 0, advective velocitya =
(cos(π/6), sin(π/6))T and boundary conditions

u(x1, 0) = 0,

u(0, x2) = 1.

For this problem with discontinuous solution, we expect the cell vertex
finite volume approximation to converge to the analytical solution at the
rateO(h1/3), in accordance with the optimal error bounds presented in [3].
Table 4 shows that||eh||0 and ||etrans||0 converge at the same rate which
is close to1/3. The two errors, which are depicted in Figs. 2(a) and (b),
respectively, are largest along the line of discontinuity of the solution and,
as with Example 1, grow linearly from the inflow to the outflow. Table 5
shows|||ecell||| andε1; as the exact solution to this problem is discontinuous,
it is not surprising that the approximate solution does not converge in the
graph norm. However,ε1 faithfully remains an upper estimate and only
slightly overestimates|||ecell|||κ. The distributions of|||ecell|||κ andε1(κ)
are given in Figs. 2(c) and (d), respectively; we observe that the cell error
is quite different in character to the global error. The cell error is largest
at the introduction of the discontinuity into the domain and is then almost
constant in a direction which is not along the line of discontinuity. A Fourier
analysis of the cell vertex method shows that the error is entirely dispersive in
nature and the cell error propagation is determined by the group velocity of
the highest frequency component of the approximate solution [16]. Table 6
shows that||ecell||0 andε2 both converge asO(h1/2), and thatε2(κ) slightly
underestimates the error. Plots of the distribution of||ecell||0,κ andε2(κ) in
Figs. 2(e) and (f), respectively, show that the local error estimate closely
resembles the local cell error. Again,||ecell||0 is largest at the inflow of the
domain and is distributed similarly to|||ecell|||. To control the cell error,
attention should be paid to the introduction of the discontinuity into the
domain before any further calculations are performed.
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Fig. 2. Example 2: (a)‖eh‖0,κ; (b) ‖etrans‖0,κ; (c) |||ecell|||κ; (d) ε1(κ); (e) ||ecell||0,κ;
(f) ε2(κ)

Table 3. ‖ecell‖0 andε2 for Example 1

Mesh ‖ecell‖0 k ε2 k θ2

17 × 17 5.607 × 10−3 - 5.248 × 10−3 - 0.94
33 × 33 1.452 × 10−3 1.95 1.360 × 10−3 1.95 0.94
65 × 65 3.663 × 10−4 1.99 3.430 × 10−4 1.99 0.94
129 × 129 9.179 × 10−5 2.00 8.595 × 10−5 2.00 0.94
257 × 257 2.296 × 10−5 2.00 2.150 × 10−5 2.00 0.94
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Table 4. ||eh||0 and||etrans||0 for Example 2

Mesh ‖eh‖0 k ‖etrans‖0 k

17 × 17 1.333 × 10−1 - 1.333 × 10−1 -
33 × 33 1.105 × 10−1 0.27 1.100 × 10−1 0.27
65 × 65 9.104 × 10−2 0.28 9.035 × 10−2 0.27
129 × 129 7.447 × 10−2 0.29 7.408 × 10−2 0.28
257 × 257 6.055 × 10−2 0.30 6.029 × 10−2 0.29

Table 5. |||ecell||| andε1 for Example 2

Mesh |||ecell||| k ε1 k θ1

17 × 17 2.708 - 3.830 - 1.41
33 × 33 3.834 -0.50 5.422 -0.50 1.41
65 × 65 5.425 -0.50 7.672 -0.50 1.41
129 × 129 7.675 -0.50 10.854 -0.50 1.41
257 × 257 10.855 -0.50 15.351 -0.50 1.41

Table 6. ‖ecell‖0 andε2 for Example 2

Mesh ‖ecell‖0 k ε2 k θ2

17 × 17 4.963 × 10−2 - 4.241 × 10−2 - 0.85
33 × 33 3.514 × 10−2 0.50 3.003 × 10−2 0.50 0.85
65 × 65 2.486 × 10−2 0.50 2.125 × 10−2 0.50 0.85
129 × 129 1.758 × 10−2 0.50 1.503 × 10−2 0.50 0.85
257 × 257 1.243 × 10−2 0.50 1.063 × 10−2 0.50 0.85

5.5. Example 3

Here, we consider the cell vertex method applied to the one-dimensional
wave equation

∂2φ

∂x2
2

= c2 ∂2φ

∂x2
1
,(5.46)

which can be rewritten as the symmetric first-order system[
0 −c

−c 0

] [
u1
u2

]
x1

+
[
1 0
0 1

] [
u1
u2

]
x2

=
[
0
0

]
,(5.47)

where

u1 =
∂φ

∂x2
and u2 = c

∂φ

∂x1
.

It can easily be shown that the wave equation is a Friedrichs system. We
consider the case withc = 2 and boundary conditions

u1 = 0 and u2 = ce−100(x1− 1
2 )2

for x2 = 0, 0 ≤ x1 ≤ 1, and non-reflecting characteristic boundary condi-
tions whenx1 = 0 andx1 = 1. Table 7 shows second-order convergence of
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Table 7. ||eh||0 and||etrans||0 for Example 3

Mesh ‖eh‖0 k ‖etrans‖0 k

17 × 17 3.457 × 10−2 - 3.717 × 10−2 -
33 × 33 1.104 × 10−2 1.65 1.195 × 10−2 1.64
65 × 65 2.884 × 10−3 1.94 3.139 × 10−3 1.93
129 × 129 7.261 × 10−4 1.99 7.917 × 10−4 1.99
257 × 257 1.818 × 10−4 2.00 1.983 × 10−4 2.00

Table 8. |||ecell||| andε1 for Example 3

Mesh |||ecell||| k ε1 k θ1

17 × 17 1.869 × 10−1 - 2.642 × 10−1 - 1.41
33 × 33 1.041 × 10−1 0.84 1.472 × 10−1 0.84 1.41
65 × 65 5.315 × 10−2 0.97 7.516 × 10−2 0.97 1.41
129 × 129 2.667 × 10−2 1.00 3.772 × 10−2 0.99 1.41
257 × 257 1.335 × 10−2 1.00 1.887 × 10−2 1.00 1.41

Table 9. ‖ecell‖0 andε2 for Example 3

Mesh ‖ecell‖0 k ε2 k θ2

17 × 17 3.683 × 10−3 - 3.753 × 10−3 - 1.02
33 × 33 1.026 × 10−3 1.84 1.043 × 10−3 1.85 1.02
65 × 65 2.619 × 10−4 1.97 2.663 × 10−4 1.97 1.02
129 × 129 6.571 × 10−5 1.99 6.680 × 10−5 2.00 1.02
257 × 257 1.644 × 10−5 2.00 1.671 × 10−5 2.00 1.02

||eh||0 and||etrans||0 – the expected rate of convergence for a smooth so-
lution. Plots of||eh||0,κ and||etrans||0,κ in Figs. 3(a) and (b), respectively,
show both errors increasing linearly along characteristic paths from the ini-
tial data. Table 8 shows that|||ecell||| andε1 converge asO(h). As with the
previous examples, the error estimate slightly overestimates the error; the
graph norm of the cell error does not increase from the inflow of the domain
to the outflow and is almost constant along characteristic paths. This sug-
gests that a constant error is being generated in these directions. Finally, the
values of||ecell||0 andε2 in Table 9 are seen to converge asO(h2), and the
error estimate slightly overestimates the error. Figs. 3(e) and (f) show that
the distribution of||ecell||0,κ is very similar toε2(κ). Mesh adaptation based
onε2(κ) or ε3(κ) will direct attention to where the error is being generated,
rather than places to which it has been propagated.

5.6. Example 4

In this final example we turn our attention to the streamline-diffusion method
on triangular meshes in two-dimensions. In this section we consider a scalar
advection problem, based on a combination of Examples 1 and 2. Here, we let
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Fig. 3. Example 3: (a)‖eh‖0,κ; (b) ‖etrans‖0,κ; (c) |||ecell|||κ; (d) ε1(κ); (e) ||ecell||0,κ;
(f) ε2(κ)

the forcing functionf = 0, with advective velocitya = (0.1+sin(πx2), 2)T

and boundary conditions

u(x1, 0) =




e−300(0.4−x1)4 for 0.0 ≤ x1 ≤ 0.4,
1 for 0.4 ≤ x1 ≤ 0.6,
0 for 0.6 < x1 ≤ 1.0,

with a compatible condition alongx1 = 0, 0 ≤ x2 ≤ 1. Throughout this
section we set the streamline-diffusion parameterδ|κ = 0.5hκ/|āκ|, where
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Table 10. ||eh||0 and||etrans||0 for Example 4

Mesh ‖eh‖0 k ‖etrans‖0 k

17 × 17 1.046 × 10−1 - 1.007 × 10−1 -
33 × 33 8.428 × 10−2 0.31 8.252 × 10−2 0.29
65 × 65 5.915 × 10−2 0.51 5.747 × 10−2 0.52
129 × 129 4.827 × 10−2 0.29 4.732 × 10−2 0.28
257 × 257 3.464 × 10−2 0.48 3.398 × 10−2 0.48

Table 11. ‖ecell‖0 andε3 for Example 4

Mesh ‖ecell‖0 k ε3 k θ3

17 × 17 9.490 × 10−3 - 2.419 × 10−1 - 25.5
33 × 33 5.051 × 10−3 0.91 1.262 × 10−1 0.94 25.0
65 × 65 2.802 × 10−3 0.85 6.935 × 10−2 0.86 24.8
129 × 129 1.566 × 10−3 0.84 3.857 × 10−2 0.85 24.6
257 × 257 8.748 × 10−4 0.84 2.150 × 10−2 0.84 24.6

hκ = diam(κ), āκ denotes the average ofa on elementκ and |āκ| the
Euclidean norm of̄aκ.

We first investigate the asymptotic behaviour of the different components
of the error using a sequence of uniform triangular meshes: in each case the
mesh is constructed from a uniformN ×N mesh by connecting the bottom-
left corner of each mesh-square with its top-right corner. In Table 10 we
show||eh||0 and||etrans||0, along with their respective rates of convergence
k. We observe that while the convergence rates for both of these quantities
are very similar, in each casek oscillates betweenk ∼ 0.3 andk ∼ 0.5.
This behaviour is attributed to the fact that for each of the meshes used,
there is not a nodal mesh point where the discontinuity enters the domain.
Indeed, numerical experiments based on successively finer uniform meshes
which have a mesh point atx1 = 0.6, x2 = 0, lead to a uniform convergence
rate ofk ∼ 0.46 for both ‖eh‖0 and‖etrans‖0. Table 11 shows‖ecell‖0,
the a posteriori error indicatorε3 and the associated effectivity indexθ3 =
ε3/‖ecell‖0. In contrast to the convergence rates presented in Table 10, we
see that both‖ecell‖0 andε3 converge at a uniform rate with an effectivity
index θ3 ∼ 25. We note that the same asymptotic behaviour is observed
for a sequence of meshes which contain a nodal mesh point where the
discontinuity enters the domain.

Finally, in Table 12 we present the sequence of meshes generated by
the adaptive algorithm described in Sect. 5.2 for TOL= 0.025; hereT1
is taken to be a17 × 17 uniform triangular mesh constructed as above.
We see that each of the components of the error decrease as the adaptive
algorithm proceeds; although on the second mesh‖ecell‖0 has increased
slightly. Moreover, we observe thatε3 remains an overestimate of the cell
error with a constant effectivity indexθ3 ∼ 20 on these adaptively refined
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Example 4: (a) and (b) Mesh (No.4) and solution, resp., with949 nodes and1794
elements; (c) and (d) Mesh (No.6) and solution, resp., with2285 nodes and4451 elements;
(e) and (f) Mesh (No.8) and solution, resp., with2964 nodes and5804 elements

meshes. In Fig. 4 we show meshes4, 6 and8, along with the corresponding
numerical solutions. Here we see that the mesh is concentrated mostly where
the discontinuity is located, though the adaptive algorithm has clearly refined
the mesh along the top and bottom of the smooth layer also. In particular,
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Table 12. Adaptive algorithm for Example 4 with TOL= 0.025

Mesh Nodes‖eh‖0 ‖etrans‖0 ‖ecell‖0 ε3 θ3

1 289 1.046 × 10−1 1.007 × 10−1 9.490 × 10−3 2.419 × 10−1 25.5
2 289 9.380 × 10−2 8.932 × 10−2 1.030 × 10−2 2.358 × 10−1 22.9
3 949 7.079 × 10−2 6.779 × 10−2 6.100 × 10−3 1.394 × 10−1 22.8
4 949 5.233 × 10−2 4.973 × 10−2 5.181 × 10−3 1.095 × 10−1 21.1
5 2285 4.127 × 10−2 3.945 × 10−2 3.088 × 10−3 6.626 × 10−2 21.5
6 2285 2.838 × 10−2 2.715 × 10−2 2.438 × 10−3 4.877 × 10−2 20.0
7 2964 2.288 × 10−2 2.209 × 10−2 1.554 × 10−3 3.227 × 10−2 20.8
8 2964 1.746 × 10−2 1.683 × 10−2 1.106 × 10−3 2.264 × 10−2 20.5

we note that the adaptive algorithm first concentrates the mesh in the region
of the discontinuity closest to the inflow boundary, before refining near
the outflow boundary. This is clearly what we would expect based on the
surface plots presented in Example 2 for the cell vertex method. This example
highlights the accuracy that may be achieved by employing anhr-refinement
strategy; the numerical solution in Fig. 4(f) shows how well the discontinuity
has been captured, though some numerical diffusion is observable near the
outflow boundary.

6. Conclusions

In this paper we have derived residual-based two-sided a posteriori bounds
for the locally generated error component in a general class of discretisation
methods for Friedrichs systems. To obtain sharp two-sided bounds, we have
made extensive use of the graph norm and its dual. We decomposed the
global error into a locally created part that is directly related to the local
residual on a cell, and a part that is due to transported error from outside
the cell. We also derived further upper and lower bounds on the dual graph
norm in terms of theL2 norm ofhrh. These results provide a mathematical
foundation for the commonly used concept that controlling the local residual
may be considered as a device for reducing the local generation of error in
adaptive algorithms for hyperbolic problems.

The theoretical framework developed here has been used to derive local
error indicators for the Euler equations of compressible gas dynamics in
[24]. Future studies will be directed towards a quantitative assessment of
the a posteriori error estimates for elliptic and mixed-type systems.
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17. Mackenzie, J., Sonar, T., Süli, E. (1994): Adaptive finite volume methods for hyper-
bolic problems. In: Whiteman, J.R. (ed.) The Mathematics of Finite Elements and
Applications. Highlights 1993, pp. 289–298. John Wiley & Sons, Chichester

18. Mackenzie, J., S̈uli, E., Warnecke, G. (1993/94): A posteriori error estimates for the cell-
vertex finite volume method. In: Hackbusch, W., Wittum, G. (eds.) Adaptive Methods:
Algorithms, Theory and Applications, Vol. 44, pp. 221–235. Vieweg, Braunschweig

19. Morton, K.W., S̈uli, E. (1991): Finite volume methods and their analysis. IMA J. Numer.
Anal. 11, 241–260

20. Morton, K.W., S̈uli, E. (1994): A posteriori and a priori error analysis of finite volume
methods. In: Whiteman, J.R. (ed.) The Mathematics of Finite Elements and Applica-
tions. Highlights 1993, pp. 267–288. John Wiley & Sons, Chichester

21. Něcas, J. (1967): Les Ḿethodes Directes en Théorie deśEquations Elliptiques. Masson,
Paris

Numerische Mathematik Electronic Edition
page 469 of Numer. Math. (1999) 82: 433–470



470 P. Houston et al.

22. Rheinhardt, H.J. (1981): A posteriori error estimates for the finite element solution of
singularly perturbed linear ordinary differential equation. SIAM J. Numer. Anal.18,
406–430

23. Sonar, T. (1993): Strong and weak norm error indicators based on the finite element
residual for compressible flow computations. Impact Comp. Sci. Engrg.5, 111–127

24. Sonar, T., S̈uli, E. (1998): A dual graph-norm refinement indicator for finite volume
approximations of the Euler equations. Numerische Mathematik78, 619–658

25. S̈uli, E. (1989): Finite volume methods on distorted meshes: stability, accuracy, adap-
tivity. Technical Report NA89/6, Oxford University Computing Laboratory

26. S̈uli, E. (1992): The accuracy of cell vertex finite volume methods on quadrilateral
meshes. Math. Comp.59, 359–382

27. S̈uli, E. (1991): The accuracy of finite volume methods on distorted partitions. In:
Whiteman, J.R. (ed.) The Mathematics of Finite Elements and Applications VII,
pp. 253–260. Academic Press, London

28. S̈uli, E. (1991): Convergence of finite volume schemes for Poisson’s equation on non-
uniform meshes. SIAM J. Numer. Anal.28, 1419–1430

29. S̈uli, E. (1996): A posteriori error analysis and global error control for adaptive finite
element approximations of hyperbolic problems. In: Griffiths, D.F., Watson, G.A. (eds.)
Numerical Analysis, Pitman Research Notes in Mathematics Series344, pp. 169–190.
Longman Scientific and Technical, Harlow

30. S̈uli, E. (1997): A posteriori error analysis and adaptivity for finite element approxi-
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