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Summary. Approximation theoretic results are obtained for approximation
using continuous piecewise polynomials of degree meshes of triangular
and quadrilateral elements. Estimates for the rate of convergence in Sobolev
spacedV"1((2), q € [1,o0] are given. The results are applied to estimate
the rate of convergence when th&ersion finite element method is used to
approximate thex-Laplacian.

Itis shown that the rate of convergence of theersion is always at least
that of theh-version (measured in terms of number of degrees of freedom
used). If the solution is very smooth then gheersion attains an exponential
rate of convergence. If the solution has certain types of singularity, the rate
of convergence of thg-version is twice that of thé-version.

The analysis generalises the work of Babuska and others to the ease
2. In addition, the approximation theoretic results find immediate application
for some types of spectral and spectral element methods.
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1. Introduction

Theh-version of the finite element method is the standard version in which
the degree of the elements is fixed and convergence is achieved by refining
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the mesh sizé. Thep-version fixes theneshand achieves convergence by
increasing the polynomial degreeof the elements. The-version retains
the geometric flexibility of the finite element method while seeking the high
rates of convergence of spectral methods.

Traditionally, it was thought that there is little point in using high order
finite elements to approximate the solutions of partial differential equations
since the rate of convergence of theversion is limited by the smoothness
of the solution. The classical error estimates for theersion are of the
form

H€HW1a2(Q) S C(p)hlu ||UHW'm,2(Q)
where
ju= min(m — 1,p)

with p being the polynomial degree of the elements antheasuring the
regularity of the solution of the partial differential equation. The estimate
seems to indicate that there is no point in choogirigrger tharnm — 1.
However, this argument ignores the dependence of the corstanon the
polynomial degree.

The traditional viewpoint was challenged in the work of Babuska and
others. The first analysis of theversion was given by Babuska [4] and
subsequently refined by Babuska and Suri [2]. It was shown that the corre-
sponding estimate for theversion is

lellwrzqa) < CP™ Y [ullymag) -

Consequently, when the true solution is smoothlgrge), the rate of con-
vergence is similar to the rates for spectral methods. Of course, in practical
problems the solution will generally have singularities that limit the regu-
larity. However, the singular terms are known to have a very specific form
and this fact was exploited by Babuska and others [2,4] who showed that
even in the presence of singularities, ff@ersion will converge at twice
the rate of thew-version. The chief purpose of the current work is to show
that such conclusions are also valid more generally in the casg-tfpe
norms withg # 2. Such results find immediate application to certain types
of non-linear elliptic boundary value problems. In addition, the results are
useful for the analysis of some types of spectral element method.

The major part of the analysis is devoted to obtaining approximation re-
sults for piecewise polynomial approximation in Sobolev sp&té&s?(f2)
with ¢ € [1, co]. While the casg = 2 has received a great deal of atten-
tion, little is known for the general case. The reason for the lack of results
in the general case seems to be largely due to the extensive use of orthog-
onal polynomials and their properties in the analysis. Preliminary results
were obtained by Quarteroni [10] for polynomial approximatiod jrtype
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The approximation theory for theversion finite element method 353

spaces on a single element in one dimension. The present work deals with
approximation byontinuous piecewise polynomials in two dimensidhe

extra number of dimensions along with the continuity of the piecewise poly-
nomials across the element boundaries requires special attention and poses
a number of difficulties not present in one dimension or if there is only one
element.

Itis shown that the conclusions for the cgse 2 also hold in the general
case. The results obtained in the present work are immediately applicable to
spectral methods and to spectral element methods. One point of particular
interest arises in our analysis of the approximation of singular functions.
The original analysis in [4] resulted in an estimate of the form

lellwrzqe) < CEP™ ") Jullyman

wheree > 0 is arbitrary. The presence of then the exponent op is of

little concern. However, the analysis suggested that the corstantould

blow up ase — 0. The need for the was removed in the later analysis
in [2] where a rather different method of proof was followed, involving the
use of orthogonal families of polynomials. The current analysis follows the
original method of proof in [4], and is applicable to the more general case
of g # 2.

In conclusion, the analysis shows that the traditional view of avoiding
the use of high order polynomial finite element methods is incorrect. The
rate of convergence of theversion is always at least that of theversion
(measured in terms of number of degrees of freedom used). If the solution is
very smooth then thg-version attains an exponential rate of convergence.
If the solution has certain types of singularity, the rate of convergence of the
p-version is twice that of thé-version.

2. Preliminaries

Let R? be the usual Euclidean space with= (1, z2) € R2. Throughout,

it is assumed thaf? is a bounded, polygonal domain&?. Forq € [1, oc]

the spacd.4({?) is defined to be the usual space of classes of functions for
which the norm

_ { (Jip IF19dz) T, g < 0

is finite. For integer values of, the Sobolev spacé&*:4((2) are equipped
with the norms

1/q
a £1|4
Fleni = 4 e 1D} s a < o0

max\odgs ||DafHLOC(Q) ) q=0o0
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For non-integer values af the Sobolev spacé®*?({2) are defined using
the K-method of interpolation [5]. Thus, writing = m + o wherem is
an integer an@ € (0,1), the spacéV*1({2) is obtained by interpolating
between the spacd&™4(£2) andW™+14((2). This process is indicated
using the notation

W1(2) = [W™1(82), W H9(2)]54.

)

The subspaceld/;*!(£2) are defined in the usual manner [1]. Equally well,
Sobolev spaces may be defined on an intefval (a,b) and on curves.
Let S(p), p > 0 be the square

S(p) = {(w1,22) : |aa] < p, || < p}.
The spachﬁé?(S(p)) C Wk4(S(p)) consists of the periodic functions
with period2p.

A partition P of the domain(? consists of a finite number of open sub-
domains (oelements K € P such that:

— each elemenk is either a triangle or a convex quadrilateral

— 2 =Ukep K .

— for any distinct pair of element&” and./, the intersectiod N J is either
empty, a single common edge or a single common vertex.

Associated with each type of element is a reference domain given in the case
of quadrilateral elements by

SA)={(z,y): -1<z<1; -1<y<1}
or, in the case of triangular elements
T(1) ={(z,y): —1<x<1l; —-1<y<uz}.

Polynomial spaces of degrgec N are defined on the quadrilateral and
triangular reference elements respectively by

~

Qp) = span{a’ y* 0 < j k< p}

and

~

P(p):Span{xjyk:OSj-i-kSp}.

For simplicity, it is assumed that there exists an invertible mappig:
K — K that is affine for triangular elements and bilinear for quadrilateral
elements. A polynomial spacBy is taken to be eithe®(p) or P(p) as
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The approximation theory for theversion finite element method 355

appropriate for each type of element. The spdgés constructed using the
partitionP

X, ={veC(R):v|g =00 Fy' forsomes € Pk forall K € P}

and, with a slight abuse of the nomenclature, will be referred to as being a
space opiecewise polynomials

Suppose that the functianbelongs to the spad& ™ ?((2). One of the
goals will be to obtain estimates for the rate of convergence that may be
obtained using sequencgs, } of approximations:, € X, tow in terms of
the polynomial degreg.

Consider thex-Laplacian

(1) ~V - {|Vu|*?Vu} = fin 2

wherea € (1, 00) andf is smooth given data. Even if the datas smooth
the solutionu may be singular. For example, suppose the donfainas
a single corner at the poim with internal anglev € (0, 2x]. Letting r
andf € (0,w) be polar coordinates with origin &, it has been shown
[7,13] that in the neighbourhood of the corner a positive solutiai the
a-Laplacian has the structure

) u(x) = cr*0(0) + o(r)
wherec € R, @ is a smooth function witl®(0) = O(w) = 0,

s+/s2+1/3, if0<w<n7

A=40s—+/s2+1/8, ifr<w<2rm

(a—1)/a, if w=2r
with
B=(w/m—1)2~-1
and
_(B-1a-25
T 28(a-1)

The lack of smoothness of the true solution may lead to a degradation in the
rate of convergence of bothy andp-version finite element approximations

of problem (1). Indeed, the degradation in the rate of convergence is often
cited as areason for avoiding the use of high order finite elements. One of the
purposes of the current work is to show that such a conclusion is incorrect: a
better rate of convergence is achieved by increasing the polynomial degree
uniformly than is obtained by uniformly refining the partition. Before the
claim can be proved, it will be necessary to study the approximation of
singular functions of the form (2) by piecewise polynomials.
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The Dirichlet boundaryp, is a closed subset of the bound@$2. Fre-
quently, one wishes to impose Dirichlet boundary conditions on the approx-
imation. For instance, the trageof the functionu, might be given on the
Dirichlet boundary. Thus, one requires estimates for the rate of convergence
of a sequence of approximations € X, satisfyingu,, = g, on I where
gp are appropriately chosen continuous piecewise polynomial approxima-
tions tog. To facilitate the construction of suitable approximatigpst will
be assumed that the partitighis constructed so that element vertices are
located at the endpoints of the Dirichlet boundary.

Throughout,C' will be used to denote positive constants that are inde-
pendent of other quantities appearing in the same relation, and whose values
need not be the same in any two places. The notatisrb means that there
exist positive constants;, Cs such thatCia < b < Casa.

3. Piecewise polynomial approximation of smooth functions

This section deals with the approximation of smooth functions using the
spacesX,, of continuous piecewise polynomials on a fixed partitidrof

the domain. Suppose that a functietelongs to the spad®™4((2). The

goal will be to obtain estimates for the rate of convergence that may be
obtained using sequencgs, } of approximations:, € X, to w in terms of

the polynomial degreg.

The derivation consists of two main steps. To begin with, approximation
by sequences of polynomials on a single reference element is considered. Es-
timates are then obtained for approximations from the spaigdsy piecing
together functions from each element (obtained by mapping the approxi-
mations on the reference element) and making appropriate adjustments to
satisfy continuity requirements.

3.1. Polynomial approximation on the reference element

The Appendix consists of results concerning approximation by partial sums
of Fourier series of functiong belonging to the periodic Sobolev spaces
Wéﬁr(S(w)). These results will be used here to deduce approximation prop-
erties for sequencesp,(u)} of algebraic polynomial approximations to a
functionu € W4(S(1)) defined on the squarg(1). However, in general
the approximation obtained by changing the variable in the partial Fourier
series will generally fail to be an algebraic polynomial unless the function
f possesses certain symmetries. It is therefore necessary for the fumction
to undergo some preliminary surgery [4].

Letp > 1 be fixed. According to [12, Theorem 5] there exists an exten-
sionU of the functionu onto the squars(2p) suchthatsup@/) C S(3p/2)
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The approximation theory for theversion finite element method 357

andU € W™1(S(2p)) with
1Ullwm.as@py < C llullym.acsy) -
Let® : S(m/2) — S(2p) be the bijective mapping
(3) T — x=P(x) =2p(sinZy,sin Ta).
Furthermore, define a functighe W™4(S(%)) by
}@) = (U o ®)(@)

and observe that the support pfs contained in the squas{arcsin 3/4).
Hence,f may be extended t8(7) as a smooth function such that it is sym-
metric across the lines; = +75. The estimate (3) shows e Wi (S())
and

4) 1 lwm.asry < Clullwmacsy -
Let s, (f) denote the-th partial sum of the Fourier series expansion for the

function f on S(x). Each partial sums,( f) inherits the symmetries of the
function f. Therefore

() sp(f) = ¢p(u) o @

where¢,(u) is analgebraic polynomial on the squar§(1) of degree at
mostp in each variable.

Lemmal. Letu € Wh4(S(1)) whereq € [1,00]. Then there exists a
sequence of algebraic polynomiatg(u) € @(p), p € N, which are inde-
pendent of;, such that

1. forany0 < k <1

lu — pr(u)Hwk,q(s(l)) = Cp_(l_k)(l + lnp)2|1_2/q| HUHWl,q(s(l))
2.forl > k+1/q

lu = @)y

(l—k— 1+1Inp)®/ab, gell,2
< cp (k=19 Hu\wuq(su)){( ) 1.2

(1+Inp)20-2/9), g € [2,00]

where~ is any edge or either principal diagonal 6f(1)
3.forl > k+2/q

[ = bp () llypra.oo (51

o 1 €[1,2]
(1-k—2/q) ’ ! ’
S Cp q ||UHWL‘1(S(1)) { (1 4 lnp)2(1—2/‘1)7 q [ [2, OO] .
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Proof. Suppose first that € [1, 2].
1. By Lemma 15(1) forany < k <

lu — ¢p(“)Hwk,q(s(1)) <Clf - Sp"Wk’q(S(Tr))
< Cp~ A+ mp)* XV fllyrasay
< Cp~ (1 4+ p) PN sy
< Cp P (1 +Inp)>@/a-b) lullwragsay)

where (4) has been used.
2. Lety = & !(v). By Lemma 15(2) forany < k + 1/q < I

lu — ¢p(u)||wk,q(7) <C|f- SpHWk,q(a)
< CpFVDA 4+ Inp) @V | fllptagsiny
< CpF VD1 + I p)? U | wragsqay)
(6) < CpF YD1+ np)? [|ull sy
3. By Lemma 15(3) fo < k +2/q < I

Ju— éf)p(u)Hwk,oo(S(l)) <Clf- SPHW’“"X’(S(W))
< Cp~ 2D | e gsimy
(7 < CP_(l_k_2/Q) Hu”leq(S(l)) .
The proofs whem € (2, oc] are essentially identical.O

Corresponding results hold for approximation on the triangular reference
element:

Lemma 2. Letu € Wh4(T(1)) whereq € [1,oc]. Then there exists a
sequence of algebraic polynomialg(u) € J3(p), p € N, which are inde-
pendent of;, such that

1.forany0 < k <1

l[u— ¢p(u)||wk,q(:r(1)) < Cp_(l_k)(l + lnp)2|1_2/q| HUHWl,q(T@))
2.forl > k+1/q

lu — Cbp(u)Hwk,q(fy)

(ke 1+np)eY gel1,2
< Cp U=kt ”UHWl,q(T(l)){( ) 1.2

(1+Inp)20-2/9), g € [2,00]

wherey is any edge of (1)
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3.forl > k+2/q

llw = ép(u)ll koo (1)

o 1, q € ]-a2
< Cp~(=H=2/a) ”u]Wz,q(T(l)){ s

(1+Inp)21-2/9, g € [2,00]

Proof. 1. Letu € W%4(T'(1)) be given. By [12, Theorem 5] there exists an
extensionJ of the functionu to the squares(1) satisfying

(8) HUHWZ»Q(S(l)) <cC ||U||leq(T(1)) :
By Lemma 1 there exists a sequeritec @(p) suchthatforang < k <1
© U - Up”wk,q(S(l)) < CP_(l_k)(l + lnP)Q‘l_g/ql HU”Wlﬁq(S(l)) :

Now Q(p) C P(2p) and therefore we may define the sequencedyu) =
Up andogp,11(u) = ¢op(u). Observing

[Ju— ¢2p+1(u)Hwk,q(T(1)) = Jlu-— ¢2p(u>Hwk,Q(T(1))
(10) =[U - UpHWk,q(T(U) <|U- UpHWk,q(s(l)) ’

the result then follows from (9) and (8). The remaining cases are similar.
0

Itis possible to generalize Lemmas 1 and 2 to cases when the norms on each
side are based on different type spaces:

Theorem 3. Letu € W™ (S(1)) wherer € [1,00]. Then there exists a
)y

[
sequence of algebraic polynomiaig(u) € Q(p), p € N such that for
1<g<rand0<i<m+2/r—2/q

flu — d’p(u)le,r(s(U)
(1) < Cp RO (1 )T )y )
Moreover, analogous results hold for approximation on the triangle.
Proof. By Lemma 1(1), fol0 < < m
1w = ép () Iy sy < Cp~ "D+ np)? fullyyma sy
and by Lemma 1(3),fod <1 <m — 2
le = @p (Wl (sqayy < C0 " Nullym sy -
Applying interpolation gives for any € [1,o0] and0 <! <m —2+2/r

llu — ¢p(U)HWl,'r-(s(1)) < Cpi(mfldﬂ/r)(l + lnP)Q/T HUHWWJ(S(l)) :
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Moreover, by Lemma 1(1) if € [1,2] and0 <1 <m

llu— ¢p(u)||wl,r(s(1)) < Cp_(m_l)(l + IDP)Q(Q/T_I) ||U||Wm,r(s(1))

orif r € 2,00l and0 <[ <m

lu = ép(@)ll i sy < C™ D1+ T0p) 2 [l g1y -
Applying interpolation gives (11). O
If 1 <r < ¢thenthe following estimate is trivially obtained from Lemma 1.:

Ju— ¢p(U)HWl,r(s(1))
(12) < Cp*(m*l)(l i lnp)2|171/r71/q| HUHWm,q(su)) )

3.2. Approximation using continuous piecewise polynomials

The previous section dealt with approximation by algebraic polynomials on
the reference element. These results will now be used to obtain approxi-
mation properties for the spacés,. The requirement that functions in the
spaceX, be continuous means that one cannot trivially deduce such results
directly from those on the reference element. The following deals with the
basic process of constructing the continuous approximation when the func-
tion to be approximated belongs to the spHc®-4(f2) withm > 1+ 1/4.

Later, the result will be strengthened to cases when 1.

Theorem 4. Letu € W™4((2), ¢ € [1,00], m > 1+ 1/q. Then there
exists a sequenas, € X, of continuous piecewise polynomials, which are
independent of, such that on any elemetitin the partition?

= wplhray SCo- ™D A+PP2 S e
KeP:KNJ#D

Consequently the following global estimate holds
e = wpllypragy < Cp™ DL+ I p)* U [y -

Proof. To begin with letK be any quadrilateral element in the partitiBn
The elementX is the image of the square reference elentgit) under a
bijective, bilinear mapping'x . Defineuyx = u|k o Fx and letwg , be a
sequence of approximations@g as in Lemma 1. Letvx , = Wi o Fgl.
Transforming the estimates of Lemma 1 to the elentéteads to anal-
ogous estimates for the differeneg , = v — wg, on K. In general, if
elmentsK andJ share a common edgethen the values of the approxima-
tionswg ), andw s, will differ on the interface. Therefore, we shall adjust
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wg p andw 5, SO that continuity is obtained whilst preserving the accuracy
of the approximation. Consider the polynomigl : [—1, 1] — R given by

wi = (452

and note that for any € [1, o]
1. ||¢p||Lq(_171) < Cpil/q

2. Wp’wl,q(_Ll) < Cpl_l/q

3. p(=1) = 15 ¢p(1) = 0.

Letex , = ek o Fi. First, we shall adjust the functiaby , to produce
a new polynomiab , interpolatingu|x at the vertices on the reference

element. The adjustment at the vertéx = (—=1,—1) is given by
a3, (01, 22) = T p(—1, =)y (1) (22).
and satisfies

<C H/e\lﬂp

~1)
HQK’pHWLq(s(l)) ‘LOO(S(I)) Hi/prLq(,Ll) Wp‘wl,q(,l,l)

(13) < Cp'2/ lexpll oo (s1y) -
Similar functions are constructed for the remaining vertices. The polynomial

4

~ ~(5)
VKp = WKp+ § :aK,p
Jj=1

agrees withi at the vertices and satisfies
lu— ﬁK,pHWLq(su)) < |€K,pywl,q(s(1)) +Cp' ||€K,pHLoo(s(1)) :

Definingvg , = Uk p © ]gl and mapping back to the elemdiitgives

(14) flu - ”K,pnwl,q(}() < |€K,p|wl,q(K) + Cp1_2/q ||6K,P||L°°(K) :

This process is repeated on each element.

The differencev ), — vy, is still, in general, non-zero on the edge
but vanishes at the endpoints. Therefore, we use the difference to adjust the
approximation on either one of the elements, 83yas follows. Suppose,
without loss of generality, that = Fx (7) wherey = {(z1,—1) : =1 <
x1 < 1}. Let{ : v — R denote the restriction afx , — v, to the edgey.
ThengA: ¢ o F¢ is a polynomial on the edgevanishing at the endpoints.
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The polynomial3 : S(1) — R given by = E(xl)wp(xg) is an extension
of ¢ that vanishes on the remaining edge$ 6f ). Transforming back to the
elementK defines a functios = 3 o Flgl satisfying

(15)  [Blwrasay <€ {Plfl/q 1€l Lagyy + 279 ‘€’W1,q(7)}
and forj = 0,1

(16) €llwsagny < lexcmllsag + lespllpman -

The process is repeated for every interior edge in the patrtition.

The functionu ,, is defined by subtracting the sum of the edge correc-
tions 3 applied to elemenk from vy ,,. Thanks to the method of construc-
tion, uk , agrees withu s, on the edgey. Consequently, we may define
u, € X, to be the function whose restriction to any elemérg P is u ),
and satisfies

17) flu— uPHWLQ(]) < lu—wvip wia(g) T CZ Hﬁv”wl,qu) -

ol
Hence, using (14), (15), (16), (17) and Lemma 1 completes the proof when
the partition consists of quadrilateral elements.

The treatment of a triangular elemehts similar, except that the cor-

rections at the vertices and edges are slightly different. The funatign
is constructed as in the case of quadrilaterals using instead Lemma 2. The
correction at the vertex; = (—1, —1) is given by

. 1.
ag?p(ﬁlﬁw) = §6K7p(_1, —1)77Z)8(x1)1/)s(x2)(1 — ‘Tl)
wheres = [(p — 1)/2] and the extensiof¥ associated with the edge=
{(z1,-1): =1 <2 < 1}is

~

B(x1,22) = %711(1‘2) {(331 - 902)5(551) +(1— 901)5(901 — T2 — 1)} .

The remaining cases are similar. It is easily verified that the functions have
the required properties. O

The restriction in Theorem 4 on the minimal smoothness of the funation
may be removed using the following standard argument:

Theorem 5. Letu € W™1({2), q € [1,00], m > 1. Then there exists a
sequencey, € X, of continuous piecewise polynomials such that on any
element/

lu — upHWI,q(,]) < Cpi(mil)(l + lnp)z‘kQ/q‘ Z HUHW'"MI(K) :
KeP:KNJ#£D
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Hence, the following global estimates are valid
[ = “PHWLQ(Q) S Cp_(m_l)(l + hlp)?‘l_z/q‘ ||uHWm«,q(_Q) :

Proof. In view of Theorem 4 we need only consider the case (1,1 +
1/q]. From the characterisation

(18) W™a(02) = (WH(82), W>(£2))gq

wheref = m — 1, it follows from [5, Section 3.5] that for any> 0, © may
be decomposed as= v (t)+wvq(t) withvy, € Wh4(£2) andvy € W24($2)
satisfying

(19) ”’Uluwl,q(g) < CtM71 HUHW"MI(Q)
(20) lv2llyye.agoy < CE" 72 ullyma(o

whereC is independent of andt. By Theorem 4 there exists a continuous
piecewise polynomial,, such that

02 = wpllyprage < CP lvllwrai) < CP ™ 2 [ullymage) -
Choosingt = 1/p and applying the Triangle Inequality gives

lu — “p”wl’q((z) < Cpf(mfl) Hunm,q(g)

as required. O

3.3. Non-homogeneous Dirichlet boundary data

As mentioned earlier, it is often necessary to deal with approximations that
must satisfy a supplementary condition on the Dirichlet boundary. In partic-
ular, the tracey of the functionu € W™4({2) to be approximated may be
specified as data on the Dirichlet boundary. Unless the trace itself happens to
be a piecewise polynomial it becomes necessary to approximate the bound-
ary data, thereby creating an additional source of error. The imposition of
Dirichlet conditions consists of firgonstructinga sequence of polynomial
approximationgy, to the given Dirichlet data. The problem is then to esti-
mate the accuracy that may be obtained by approximatirging sequences
of piecewise polynomials,, € X, which, in addition, satisfy;, = g, on
the Dirichlet boundary.

Lemma 1 and Lemma 2 assert #vdastenceof polynomial approxima-
tions ¢, (u) to the functionu that achieve certain rates of convergence. It
appears that one can simply chose (subject to appropriate adjustments to
obtain continuity between elements) the approximate Dirichletgatabe
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the values of the approximatioms,(u) on the element boundaries. How-
ever, while this would ensure that the overall rate of convergence would
not suffer any degradation, it is not a practical proposition since the poly-
nomials¢,(u) are not easily constructed on a machine. A full treatment of
non-homogeneous Dirichlet conditions is a non-trivial matter even in the
caseg = 2, [3] (see also Maday [9]).

The approximate Dirichlet data for an eleméfithaving an edge =
I'h N K on the Dirichlet boundary is constructed as follows. Without loss
of generality, assume that= (—1, 1) and denote the trace of the function
u on~y by g. Thep-th partial sum of the Chebyshev series expansianisf
given by

op(git) = > AgTi(t)
k=0

whereT;, is thek-th degree Chebyshev polynomial and the coefficients are

given by
2 (1 dt
A = — )T (t .

Bounds on the rate of convergence of the partial sums are given in the
following lemma.

Lemma 6. Letg € Wh4(—1,1) whereq € [1, cc]. Then forl > 2/q
l9 = 0p(@l a1z < CO+ D)~ llgllyra 1)

andforl >2—1/q

lg — Up(g)HWl,q(—l,l) <C(1+ lnp)p_(l_QH/q) ||9Hleq(—171) '

Proof. According to [11, (3.29)]

(21) op(g;cos0) = % /07r {glcos(a + 0)] + g[cos(a — 0)]} Dp(a)dex

where
_ sin(p+1/2)a
Dyla) = sin(a/2)
and Lo
(22) 3 | 1De)lda < C14mp)
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1. Using (21) and (22)
lop(Nll pee—1,1) < CA+p) [[f] poo—1,1) -
Let g, be any polynomial of degrgeand note that
lg = 000l 1.0y < 19 = ol oo 1.1y + 1990 = 9o (1 -

Insertingf = g — g, into the above bound leads to

19 = op(@)l 11,1y < CA+Ip) |9 = gpllyriico 1,1y
and then taking the infimum ovey, gives

19 = 05l e (1.1y < O +p)p™™ | flyrmce (1) -
2. Letd = arccoszx, x € [—1,1]. Then

d 1

2P\ 9®) = g agrlgicost).
Now
d
20 {g[cos(a + 0)] + g[cos(a — 0)]}
<|cosasin9{g’cos a+0)]—g ’ _ }’
+|smacos€{g cos 04—1—9)]—1-9 }‘
< 2050 01 /|| 1) + 2 cos(r + 0) — cos(a = O)|[[g" | o1

< 4]sin 6| ”g”WQ»OO(fl,l) .
Using (21) and (22) and arguing as before gives
lg — Jp(g)HWl,oo(_Ll) < Cp_(m_z)(l + Inp) ||9||meoo(_1,1) .
3. Observe that
||Up(9)HL1(_1,1) < ||Dp||L1(_171) ||g||L1(—1,1)

and the result then follows as in the first case.
4. Applying the change of variable = cos 6 gives

T | d
HUP(Q)IHLl(fl,l) :/0 sin ¢ 40 :/0 d@

then using (21) and interchanging the order of integration leads to

T sin(p + 1/2
ng(g)lHLl(—l,l) S/o do |22 F /20

sin(a/2)
(23) /07r dﬁ{‘jgg[cos(a + 9)]’ jg fcos(a — 0)] ‘} .

d
%Up(g; ) op(g; cos 9)‘ do
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The value of the inner integral is bounded by

/07r do { %g d%g[COS(Oé - 9)]'}
< 4/07r do {'599[005(9)]‘} =4 Hg/HLl(fl,l) :

Inserting this into (23) and using (22) gives

[cos(a + 6)]| +

lon (@) | 110y < CA+p) |lg']] 11y s
and arguing as before
op(9) 1211y € CA+p)p™ "D gl yprms oy 1y -
The claimed estimates are obtained by interpolating these resdaits.

The actual approximatiog, =~ g is taken to be

9p(t) = {g(=1) — op(g; —1)}p(t)
+ {9(1) — op(g; 1) }op(—t) + op(g51).
The following result complements Theorem 4:

Theorem 7. Letu € W™4(£2) and assumg € W™+1-2/44([},) where

g € [1,00], m > 1 andg is the trace ofu on I'p. Then there exists a
sequencey, € X, of continuous piecewise polynomials such that= g,
onthe Dirichlet boundary1,. Moreover, the following global estimate holds

Ju— up”whz((z)
< C’p_(m_l)(l + lnp)2‘1_2/q|{||U||Wm,q(9) + ”g”Wm+1*2/M(FD)}'

Proof. Let @, be a sequence of approximationsut@s in Theorem 4. Let

K be any element having an edge on the Dirichlet boundary. It suffices
to consider the case whéii is the reference element with the edge=
{(z1,—1) : =1 < x; < 1} on the boundary (the case for triangles is
similar). Letv,, be the polynomial

vp(21, w2) = Up(@1, T2) + (0p(g; 21) — Up(@1, —1))Pp(22).
Following steps similar to those in the proof of Theorem 4 and using
Lemma 6 leads to the estimate
[|u— UpHWI,q(K)
< Cllu — ﬁpHWLq(K) +C(1+ lnp)]?i(mfl) HQHWmH—Z/q,qm .

The proof is completed by applying exactly the same procedure used in
the proof of Theorem 4 to adjusi, and obtain a continuous piecewise
polynomial. O
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Comparing the estimate with those obtained previously shows that the rates
are optimal. However, the optimal rate is obtained at the expense of assum-
ing slightly more regularity of the boundary dat¢han one would hope for.
Naturally, it is of some theoretical interest to consider the limiting case when
the boundary data is of minimal regularity and ask what rate of convergence
might be expected in such cases. In a practical situation, the boundary data
will generally be quite smooth (even piecewise analytic). Therefore, assum-
ing the data has more than minimal regularity is not a limitation in practice.

4. Piecewise polynomial approximation of singular functions

The analysis has hitherto presumed the functicio be approximated is
smooth. However, as remarked earlier, if the domain has a corner then the so-
lution of the partial differential equation may contain singular components.
The goal of this section is to obtain estimates for the rate of convergence of
sequences of piecewise polynomials approximating functions of the form

(24) u(x) = cx(r) I [Inr|"O(0)

where(r, ) are polar coordinates with origin at the corner, witand ©
smooth (°°) functions. The functior® is assumed to vanish along the
edges corresponding to the boundary of the domain whigea smooth cut-

off function that vanishes whenis large. In this way, the singular function

is localized around the corner with which it is associated. Fortunately, since
the singularities arise at corners, it is reasonable to assume that the partition
P has been constructed so that the corner is located at the vertices (rather
than, for instance, on the edges) of an element.

4.1. An approximation result
Let S(¢), ¢ > 0, denote the square

S(t) = {(z1,22) : 0 < 21 < ;0 < x5 < t}

and letB(t) denote the ball of radiuscentred at the origin. Fot > 1, let
A(k) denote the cone

A(k) = {(3?17352) 0< ke <9 < mcl}
and, finally, forx > 1 andt > 0, let R(x, t) denote the set

R(k,t) = A(k) N S(t).
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The purpose of this section is to obtain results on the attainable rate of
convergence of polynomial approximations of a particular class of singular
functions of the form

u(z) = x(r)r [Inr]Y ©()
where is assumed that:
(Al) x is a smooth function satisfying
x(r)=1, r<p/3andx(r) =0, r=>2p/3

for some fixedp € (0, 1);

(A2) © is a smooth function such that for some fixed- 1, the functionu
is assumed to vanish on the rays= kx andx, = xx; €emanating
from the origin;

(A3) for some fixedso > «, the functionu is supported in the sef (ko).

An immediate consequence of these assumptions is that
supp (u) C R(ko,2/3).
The polynomial
&(x) = (21 — kxo) (K1 — 22)
vanishes on the rays, = ka2 andxy = kx1, and so
uo(a) = —— = x(r) " 7? [In |7 6o (6)

shares properties (Al) and (A3) of the functien

4.1.1. Regularisation Let { € C*°[0, co) satisfy
0,r<1
¢r) = { 1,r>2
and forA € (0,1/2), define
¢A(r) = ((r/A).

Regularised approximations of the singular functiarendug are defined
by

u? = (Pu andu@ = Py
and satisfy

— u® = 0ontherayss; = kxo andzy = k1]
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— u? anduf' are supported oR(ro,2/3) — B(A).

Elements of the family{u~} approach the singular functianin the fol-
lowing sense:

Lemma 8. Letq € (0, 00) and thatu is given by (24), whera > 1 —2/q.
Then

(25) | u — < C|ln AP AN-(1=2/0)

u? HWLq(§(1))

Proof. By direct calculation using the above properties.6f

A
|u— “AH(évl,q(gm) < 0/0 {Jul?(1 + CA™) + |Vu|?} rdr
< CAAqf(qﬁ)‘ In A"

and the result follows. O

4.1.2. Trigonometric polynomial approximatiorrhe algebraic polyno-
mial approximations to the regularised singular functions are constructed
by applying a trigonometric transformation and then developing trigono-
metric polynomial approximations. Therefore, #t S(7/2) — S(1) be

the bijective mapping

(T1,Z2) = (sin® 2y, sin® Tp)
and set
g (@) = up o O().

Lemma9. Let ¢ € [2,00) and denotel’ = R(ko,2/3). Supposer €
Wh4(T) and defing@ = v o ® andT = &~ (7). Then

(26) ||,UHW2/€NZ(T) ~ H@\HW?/q,q(T)
and,
(27) ||UHW1 9(T—B(A)) < CA_i(l 2/9) ||6HW1,q(:f_B(AA))~

whereA = arcsin VA.
Proof. The norm on the spadé&?/%4(T) satisfies ([1, Theorem 7.48])

. o) — o)t "
(28) rv||W2/q,q(T)~{uvniq(w | [ imay

The identity

/|v|qdm:/A|@q|sin2£1sin2§2d%
T T
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immediately shows thatv||;q;) < HﬁHLq(f)
equality, (witht = ¢+ 1 andl/t 4+ 1/t' = 1)

1/t , 1/t
/A o]7d3 < ( / |U|qtdm> ( / | sin 23, sin 25|~ dm) .
T T T

In the neighbourhood of the origiin 277 ~ x}ﬂ and hence (sincé =
1+ 1/q < 2) the second term is bounded. Consequently,

1/t
114 t q
67, < © ([ 1ola2) < ol nniry

and by the Sobolev Embedding Theorem [1, Theorem 7.57(b)]

. Moreover, by Hlder’s In-

||’UHLq<q+1)(T) <cC ”UHW2/q,q(T) :
Hence
180y < C 1ol paternrry < € lollwermary -
Consider the second termin (28). It suffices to show that f@rallz,) € T

1 N sin 271 sin 27 sin 27 sin 27
1z —y|* - ((sin? 21 — sin? )2 + (sin?

To — sin? 72)2)%

which is easily verified using elementary arguments after observing that

sin :/1}\1

(29) ~1

sin 1/1:\2

for all (Z1,72) € T. The first result then follows at once.
Observe that

& (T — B(A)) c T — B(A).

Hence, for anyw € Wh4(T), q € [2, o),

/ lv|?da < /A _ [0]7] sin 27 sin 275 | dx
T—B(A) T—-B(4)

and fori = 1,2

ov

q
ol
T-B(A) |0 T-B(4)

Combining these results with (29) and the fact thate A/2 gives (27).
0

o
0%;

7| sin 271 sin 275| 4

Z;

|sin 27;|¢
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A key result in the development is an estimate for the higher order Sobolev
norms of the regularized singular functions in terms of the regularisation
parameterA.

Lemma 10. Letg € (1,00) and supposé > 2(X + 1/q). Then,u® €
WH4(S(n/2)) and there exists a constaét(k) depending only o such
that,

(30) @ < C(k)|In Ay A= k/2=A=1/0)

2 HWk‘rq(g(ﬂ’/Q))

Proof. Let A = arcsin v/A andp = arcsin /A /x. Then, for any multi-
indexa,

C'|In A|Y min(Zy, Zz) = {e=20,
for min(z1,72) > p
Clln A S25L, S5 Fi—an) 2@2l-az) A—(j+1-N)
J:/l\ I=1%"1 2 9
forz € S(A)

D@4 (@)| <

where(t) = max(0, t). The first of these results is proved in the same way

as Lemma 4.4 in [4] along with the observation that: A. The second
result is obtained following arguments similar to those leading to the first
equation on page 529 of [4].

The support of the functiofi®* satisfiessupp (') C G U Go, where

G = supp (@) N S(A)
and
Gy = supp (@2) N {(51,532)  min(%, T2) > ﬁ} .

Applying the earlier estimates for the derivatives and applying the bound
A < CV/ A gives:
1. Foranyla| < k

HDaaAHqu(Gl) < C|In A7 i i A~ A)Fq(i—ar /2)+q({l—a2/2)+1
j=1 1=1

and hence, since
—GHI=AN+{G—a1/2) + (I —a2/2) > —(k/2 = \),
there follows

182 |y < COR)|In AP A2,

Numerische Mathematik Electronic Edition
page 371 of Numer. Math. (1999) 82: 351-388



372 M. Ainsworth, D. Kay

2. LetGS = Go N {(71,72) : T2 < 71}, then, forz € G,
|DTA(@)] < Cla) | AP 7, 1972,

and so

/6

au o ~—q(Ja|=2A) ;~ 5~
I UAHiq(G;) < C(a) |1HA(”/AA /ﬁ 7, alel=2% 12 dz,
< C(a) |In A|7Y A=allel=20=2/9)

The same estimate is obtained for the norm evaluated over the remaining
part of the setz,. Therefore, summing over multi-indices gives,

H“ C(k)|In Ay A~ (k/2=A=1/q)

~A
HW’“ q(Gz)
and the claimed result follows. O

4.1.3. Algebraic polynomial approximationThe next result is concerned
with approximation by algebraic polynomials and generalises the corre-
sponding result Theorem 5.1 from [2] to the case wiheh2.

Lemma 11. Letq € [2,00) and suppose the functiansatisfies the con-
ditions (A1)-(A3). Then, fop > 1, there exists;, € Q(p) such thatz,
vanishes on the rays, = xx; andx; = kxs. Moreover, for any fixed
e > 0, there exists a constant(e) such that

||u - ZpHWl,q(R(KO72/3))
(31) < O(e)(1 + Inp)2(1=2/)| 1 p|1p—2(A-1+2/a)+<
provided that\ > 1 —2/q.

Proof. The notations described earlier are again adopted. First, extend the
function@s' from S(/2) to the squares(r) as an even periodic function

by reflectlng in the lineg, = 0,+7/2, k = 1,2. Let s,(a5') be partial
sums of the Fourier series expansion?@f. Then, by Lemma 15(1), for any
0<m<k

(32) Ha — sp(ug Hqu (S(r/2))
1-2 ~A
< O(k) (L +np)? =D~ E=m TRy s )
< C(k‘)(l +1np)2(1—2/q)p— (k—m) |IHAWA (k/2—X+2-1/q)

since Lemma 10 applies equally well to the functig.
Thanks to the symmetries of the the extended function, the inverse images
of the partial Fourier sums, given by

A 1
Upp = Sp(uo o~
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are, in fact, algebraic polynomials. We now develop estimates for their rate
of convergence.

1. The estimate (32) in the case= 0 is preserved under the transformation
to the original domain,

Hué_uépHLq(Sv(l))SHuOA_UOA,pHLq(§(1))
SC(k)(l—{—]np)Q(lfyq)p*ﬂ lnA’wAf(k/2f)\+2fl/q).

Moreover, since the polynomidl and its first order derivatives are uni-
formly bounded on the domaif(1), the same estimate holds for both
€ (ug' — UOA,p)HLq(g(U) and||9¢ /01 (ug' UOA,p>HLq(§(1))'

2. Consider now

q

H D usy)

A A
SHfaml(Uo - Uo,p)

La(5(1))

q q

A

La(S()NB( A) La(S(1)-B(A)) ‘

The first term is estimated using the boyagr)| < CA? on B(A) and the
fact thatug' vanishes or3(A), as follows

H B U5 La(B)NB(A) O lhwragrmmiay
Now, sinceuép is an algebraic polynomial, an application of the inequalities
of Markov and Schmidt, along with an interpolation argument leads to

< CW*/A) Y |ug

H“ép”wm@“a)m(m) ’PHW"’/‘Z 4(S()NB(A)) *

and hence, again observing vanishes o3 (A), one arrives at the estimate

0
5 —(ug' — ugy)
H oz | L GanBay)

2/ 2 1-2 A A
< CA (p /A) /4 HUO - uO,pHWQ/q,q(g(l)mB(A)) .

Applying Lemma 9 then yields

g — UOA,pHW2/q,q(§(1)mB(A)) < Clag - sp(ag Mw2raas a(S(r/2)) "

Applying the estimate (32) in the case= 2/q leads to the bound

o)
H ay01 O La(S(1)NB(A))
(k)(1 + Inp)20=29 (p? ) A)1=2/ay=(k=2/a)| 1y A|y A= (K/2=A=1/0)
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The second term is estimated using Lemma 8 as follows:

9 A A
”5(%(“0 — ugp)

)

L(3(1)-B(A)
= HUOA - uOA,pHWLq(S'u)fB(A))

< AT |[ag — 5, @)l yyr.0(30m 2

and then, applying Lemma 10, gives

0 A A
Hfaxl(uo — Uug.p)

La(S(1)-B(4))
< C(k)(1+ 1np)2(1—2/q)A—%(1—2/q)p—(k—1)A—(k/2—/\+2—1/q)| In A[.

Similar estimates hold for the,-derivatives, so that
A A
€ (g — uO,p)HWLq(§(1))
< C(k)(1 4 Inp)20=2/9) | In A|7 x
{p—kA—(k/2—/\+2—1/q) 4 (b=242/0) A= (k/2-X+1-3/)
4p (D) A%k/mw/zfz/q)} '

Now, let \* = A — 1 + 2/¢q, and choosingA = p~* wherep > 0 is
determined below, allows the terms in parentheses to be rewritten as
A {p—k+u(k/2+1+1/q) 4 p =242/ @) p(k/2-1/q)

+p—(k—1)+u(k/2+3/2)} _
The value ofu is chosen so that each of the exponents of the terms inside
the parentheses is non-positive, thus:

ko k—242/q k-1
k+2+2/¢" k—-2/q "k+3

and then, for any given positive k£ may be chosen sufficiently large for the
value ofy to satisfy

M:2min{

w>2—c.

Hence, for any givea > 0,

A_ A
Hf(uo - u07p) HWl’q(:S'\(l))
< C(e)(1 + Inp)21=2/0| 1y Cp|7p= 200142/ D)+e,
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Forp > 1, the polynomiak,, is taken to beguép,z. Obviously,z, vanishes
onthe linescs = kx1 andz; = kxo on whichg vanishes. Moreover, by the
triangle inequality,
A A A
l[u— ZpHWLq(é'@)) < Hu —u le,q(g(l)) + H&(uo - uO,p)le,q(S'(l))

and the result follows from the previous estimates and Lemmaz®.

4.2. Piecewise polynomial approximation of singular functions

Suppose that the domain has a re-entrant corner located at a ¥eofethe
partition, and that, relative to polar coordinates based,ahe solution has
a singularity of the form (24). Le€, denote the domain consisting of the
elements that have a vertex located at the carheFfhe main result of this
section generalises Theorem 5.2 in [2] to the case whgr:

Theorem 12. Letu be the singular function given by (24) with the cut-off
functiony supported on a sufficiently small ball. Then, for any 0, there
exists a sequence of piecewise polynomigls X, that vanish oro(2,
and satisfy

It = 2pllypr.a(a) < C(e)| Inp|7p 2120+
provided thath > 1 — 2/q, whereC'is independent af.

Proof. The proof uses Lemma 11 in exactly the same way as the result was
obtained inthe casg=2in[2]. O

5. Application to finite element approximation
of non-linear elliptic partial differential equations

Consider thex-Laplacian
—V - A{|Vu|*?Vu} = fin 2

wherea € (1, 00) andf is smooth given data. The boundary conditions are
thatu = 0 on the Dirichlet boundaryp and prescribed normal fluxon
the Neumann boundati. The weak form of this problem is to finde V'

such that
/ \Vu]“_2Vu-Vvdzc:/ fvdaH—/ guds
2 2 I'y

forallv € V', whereV is the space

V={veW"*(2):v=00nIp}.
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To approximate the problem using finite elements consists of constructing
a finite dimensional subspacé C V' composed of piecewise polynomials
on a partitionP. The finite element approximatiany € X satisfies:

/]VUXIO‘QVUX-VUde:/ fvxdaz—i-/ guxds
n N I'y

for all vx € X. The accuracy of the approximation is controlled either
by refining the sizeh of the elements in the partition (theversion) or
increasing the polynomial degreeon the elements (thg-version). The
subspace for the-version will be denoted byXj,.

We shall apply the approximation results to compare the rate of conver-
gence of the-version finite element method with the rate of theersion
finite element approximation. The basic tool we shall use to obtain the esti-
mates is found in Chow [6]:

cmfuu—vxu;“v/ia(m, ae(1,2]
HU_UpHWLa(Q)S . 2/

inf C(l[ox[lyraa) [u = vx[Fia gy » @ €(2,00)
(33)

where the infimum is taken over functiong from the finite element sub-
spaceX.

5.1. Rate of convergence for smooth solutions

Suppose that the true solutiarof the model problem belongs to the space
W ((2). The standard approximation results for theersion imply that

i — p
Jnf Jlu=vnllwroe) < OW Jullynao)

where
p=min(m — 1,p)

andp is the (fixed) polynomial degree of the elements used to construct the
h-version subspace. Theorem 5 shows that the corresponding result for the
p-version is

. —(m—1 21-2/«
0w =l < Cpm DA+ gl g
The basic difference between these estimates is that the rate fewthsion
is limited by the polynomial degree of the elements used while fopthe
version the rate is limited only by the regularity of the solution.
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Fig. 1. Rate of convergence for smooth solution

As an example, consider the problem with true solutiog= e(**¥),
a=3/2andf2 = (0,1) x (0,1). The problem is solved numerically using
uniform h-refinement for fixed polynomial degrge= 1 andp = 2; and
using thep-version on a partition consisting of four square elements. To
compare the rate of convergence of the methods we consider the dimension
N of the subspaceX);, and.X,,. The approximation results for tikeversion
suggest that the rate will li@( N —7/2) while for thep-version the rate will be
greater thai® (N ~") for all values ofr. That is, thep-version should exhibit
anexponential rate of convergendéhe results shown in Fig. 1 confirm these
estimates.

5.2. Rate of convergence for singular solutions

Consider thex-Laplacian witha € [2, 00) and true solution of the form
u(@) = ex(r)r* g(| nr]) O(9) + w(z)

wherew is a smooth function angl, © andg as in equation (24). One easily

verifies that the solution belongs to the spacét?/@—=(12), wheres > 0
is arbitrarily small. The approximation results for theersion indicate that
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Fig. 2. Rate of convergence for singular solution

for elements of fixed degreethe rate of convergence will li&( N —#) where
pw=min(A+2/a—1—¢,p)/2.

For thep-version, one could apply Theorem 5 and obtain an estimate for
the rate to beD (N~ +2/2=1)/2) as in theh-version. However, the more
refined estimates obtained in Theorem 12 show that, in fact, the rate should
be O(N~(+2/a=1)+e)) Therefore, in such casethe rate of convergence
of thep-version is twice that of thi-version

As a simple example, consider theaplacian with/2 = (0, 1) x (0, 1),

o = 3 and true solutioru = 3%, The solution belongs to the space
W13/6-23((2). The approximation results for theversion indicate that
for elements of fixed degreg the rate of convergence will b@(N~+)
wherey = min(7/6 — ¢, p) /2. Consequently, in the cage= 1 the rate will
be unaffected by the smoothness of the solution and should{ be'/2).
However, for elements of fixed degrpe= 2 the rate should be degraded
from the full orderO(N~—!) to O(N~7/12). Meanwhile, for thep-version
one should observe a rate@f N ~7/%). The results shown in Fig. 2 confirm
these estimates.
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A. Appendix

The Fourier series expansion of a sufficiently smooth funcfioon the
squareS(w) is denoted by

x1a$2 § : § : A zma:l—l-na:g)

m=—o0 N=—00
whereA,,,, are the Fourier coefficients and the partial sum is denoted by

Y Y At

Im|<N |n|<N

For numbersV € Nandr € Z let
4
Cns= N7 InN+O(N)

and

(34) Dn,(t) = Z % cos (mt - g) .
|m|>N

It will be useful to recall some results from classical Fourier analysis:
—[8, Theorem 4.3.1]: for any € Z+

Z / f(s,t)e im(1=9) g dt

|m|>N
1 s s

(35) = / Dy ,(x1 — s)f(r’o)(s, t)dsdt
and for any fixed

(36) | 1Pwste=9las =cw,

and ifr > 1

(37) 1PNl () < Z % < CN'.

|m|>N

—[8, Theorem 2.2.1, p. 54]

Z/ @20 £(s 1) dt

" nl<N
1 sin(n + 1/2)t
(38) Tr ). f(s,x +t) 2sint/2
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and 1 (n+1/2)
T Isin(n + t
- —_— 7 <
7r/_7T 2sint/2 ’dt—CCN’O
so that
1 " in(xa—t)
° > e f(s,t)dt
In|<N 7T Le2(S(x))
1 (™ |sin(n+1/2)t
< sin{n + 1/2)t
e e T T
(39) < CCNo £l oo sy

The first result deals with the rate of convergence of the partial Fourier sums
in Lo, type norms.

Lemma 13. If f € WL (S(r)) then for0 < k <1
@O f = sn(Hllwroe(sey SCOA+MNPEN"CF | Fllpio smy) -

Proof. Chooses3, 32 € Z* such that3; + 32 < k. Then

D(&ﬁa)(fszv(f))(Z IIRPPILDD Z)

|m|>N |n|>N  |m|>N [n|<N |m|<N|n|>N
X A (im) 21 (in) P2l mertnae2) — 1 L TT 4 71

Now fix n and consider the term

Z A (im) 21 (in) 2 l(mer£122)

|[m|>N
1 s ™ . )
=2 i F(5, ) (i) (i) e i(mstn)gitmar +na2) g gy
7
Im|>N —mYoT

Sincef € W2 (S(w))

1 v v . )
2 g / F(s,#)(im) (i) e Om el (menina) g iy
™
|m|>N T

B S T R
4 —mJ -7

|m|>N
1 T 1 i .
- in(z2—t) dt - (B1,832) ¢ 1m(:v1—s)d )
27T o € Z 27_‘_ o f (S’ )e S

|m|>N
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Using (35) fora; € Z*:
Z A (im) 51 ln)ﬁz i(mx1+nw2)

|m|>N

1 T 1 [7
41) = 2/ eln(@2=t) gy = DN, (21 — s)f(a1+ﬁl’ﬂ2)(s,t)ds
T

—Tr —Tr

Summing (41) oven : |n| > N gives, foray € Z*

Z Z A 1m @1 1n)’82 i(mx1+nas)

|m|>N |n|>N
1 [ 1 /™
= Doy (21 — 8)ds= | Dy g,y —t) flOTP00202) (5 1)qt.

Hence for anyyvi, as € Zt : oy + oo + B1 + Bo =1

|I| < CCN,alcN,ag f(a1+ﬁ17042+ﬁ2)

Lo (S(m))
(42) <CA+I NN Fl sy -
Consider the second terfd. Summing (41) over. : |n| < N gives for

rezt

m=2 Dy, (z ds— > / eln(@2=t) p(r+61.52) (5 1)dt.

™ J_
& |n\<N

Hence using (36)

(43)|[I| < CN,r Z / m(xz —t) f(r-i-ﬂl ,B2) (S t)
s Leo(S(m))
Using (38) and (39), we obtain for+ 3, + (s = I

[II| < CCnoChp || fr P15

Lo (S(m))

(44) SCA+INYPN-EPB) £ o0y

The third term is dealt with similarly. Therefore, combining (42) and (44)
givesfors € Z* : s+ 81 + B2 =1

REESIVEN )] .

SC+INPENEAR fl gy -
Summing ovely, Bo: B1 + G2 < k
1f = sn (P lwres(siry < CA+IMNPZPNTE £l g,
and the result follows. O
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Consider now the rate of convergencdintype norms.
Lemma 14. If f € Wk (S(r)) then
1. for0< k<l
@3)f = sn(H)llwrr(siry < CA+ In N)?N (=R 1 1l sy -
2. for0<k+1<1
46) [If = sn(Dllwrr () < CA+ NNl gy

wherey may be any line segment containedSfir) on whichzs is
constant or on whiclr; = fxs.
3. for0<k+2<l

@) Nf = sn(Dllwreeisey < OV f i seny) -
Proof. 1. Let 3, B, € Z* satisfyB; + 32 < k. Then

DBLB) (f _ ’
(f —sn(f)) LLA(S())

< Z Z A (im)P1 (i) P2e i(me14nes)

[m|>N |n|>N LL1(S(r))
HIIY Y Apn(im)? (in) 2 elmmtne)

[m|>N |n|<N Lb1(S(7))
F1 ST S Apa(im) (i) Peeitmar +naa)

|m|<N |n|>N L1(S(r))
=1+ II+111.

Using (35) gives forvy, as € Z1T a1 +ag + B1 + B2 =1

A

DN (1 — s)ds

= DN o (T2 — t)f(o‘1+51’°‘2+62)(5, t)dt| dxydas
T

—T

and then, sinc®y , and f are both periodic and continuous with period
27, recallinga; + as + (1 + B2 = [ we obtain from(36)

I'< CCNvOélchoQ f(a1+ﬁl’a2+ﬂ2)

LY(S(m))
(48) SO+ NPN P00
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Similarly, using (35) and (38) yields for anyc Z*: 81 + B2 +r =1,

1 s
/ Dy r(x1 — s)ds
s

S=—T

1/7r sin(INV +1/2)t

— | 2sint)2 FUHPLB) (5 o+ t)dt

1I =

L1(S(m))
and then, sincg is a periodic function, from (36) and (39) we have

11 < CCNJ/

t=—m

™

Sin(N + 1/2)t
2sin t/2
f(r—l—ﬂlﬂz)

' dt Hf(ﬁ1+r,[32)

L1(S(m))
< CCn,;Cny ‘

LY(S(m))
< CA+InNPNEP=RFl o)

The third term, 111, is treated similarly. Consequently, o ZT: 31 + (52 +
s=1

[ D@ s —sn())| .

SC+Wm NN o)

and summing ovefy, Go: 81 + B2 < k gives (45).
2. Lety be aline contained if (7) on whichz; is constantand let € Z:
6 < k. Then

| PO —sn(s))

< . B i(mz1+nz2)
iy S Z Z Apn(im)’e

[m|>N |n|>N Li(v)
S 5 e
|m|>N |n|<N Ll(v)
| 5 5 et
|m|<N |n|>N Li(%)
=I+IT+1II.

Using (35) gives forvi, as € ZT: a1 + s + 8 =l andas > 1,

1
I <CCn o, ;DN,ag (wo —-)

H flar+Biaz)
Lo (v) L1(S(m))
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where (36) has been used. Recalling (37) we have fgt allk

I< CCN,alNl_a2 f(a1+ﬂ,012)

L1(S(m)
(49) <CU+m NN f s -

Equally well, (35) and (39) give far € ZT: v =1 — 3

1 ™
- DNZ/ (r1—5) Z / eln@2=t) p0) (s 1) ds dt
s= t=—m

™ ™
< CCN,IJ / / 27
t=—m Js=—7 4T

<CNC, | £09)

Li(v)

ein(m—t)} ‘f(lvo)(s’ t)‘ ds dt

LL(S(m)
<CA+mN)N"Fl s -
(50)

Again, sinceDN(, and f are both2r-periodic, (35) and (38) give for
ccltio=1-

/ / sin(N +1/2)s DNO-(.’EQ—t)f(ﬂ’ o)
—m Jt=—m

11T =
2sins/2

(s 4 z1,t)dsdt

Li(v)

1 T 1 |sin(N+1/2)s
<|-p —. S it S M
< HW N,o ($2 ) P /s—w . 2 sin 8/2 ds

(B,0)
< sy
< 1+B_l (ﬂva)
=CN Cno Hf L1(S(m))
51) =CA+ImN)N D g -

Combining (49), (50) and (51) and summing oyeK k gives the result
for the case when is a line on whiche, is constant. Now let be the line
contained inS(7) given byz; = zo = 7 and let3 € Z*: 3 < k. Then

H (2) ¢ty

Li(vy)

Z Z Apnli(m + n))PelmtmT

|m|>N |n|>N

Li(v)
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N Z Z Apnli(m + n)]Pelmtm7

|m|>N |n|<N L1(%)

" Z Z Apn[i(m + n)]Pel 7

|m|<N |n|>N L1(v)
=1+11+1I1I.
Sincef is a periodic function, using (35), (36), (49) and the binomial ex-

pansion
s [

™
= /
0 |m|>N |n|>N

f(j,,@—j) (S, t)e—i(ms—i-nt)ei(m—l—n)ﬂ-ds dt| dr

(52) <2°CA+ImN)N"CD i simy -
Similarly, using (35), (39) and (50)

(53) 11 <2701+ N)N= Dl g, -

Finally using (35), (37) and (51)

(54) 11 <2°C(1L+ I N)N~ D Fli gy -

Combining (52), (53), (54) and summing ovér< k gives the result
when~ is the linex; = x5. The case whem; = —x5 follows in a similar
fashion.

3. Supposedy, B2 € ZT: 51 + B2 < k. Then for any pointe = (z1,22) €
S(m)

[DE(f = sx(f)) (@)

= Z Z Amn(im)’gl(in)ﬁ2ei(m$1+nmg)

|m|>N |n|>N

+ Z Z Apn (im) ’61 1n)62ei(mw1+"”"2)

|m|>N |n|<N

+ Z Z A (im) 51 m)ﬂz i(mx1+nz2)

|m|<N |n|>N
=I+I1T+1I11.
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Letag, o € ZT: a1 > 1, a9 > 1 anday + as + 31 + B2 = 1. Using (35)
and (37) gives

[ < ONl—1 yl-a2 f(a1+ﬂ1,a2+52)

L1(S(m))
(55) S CN2+51+52—Z |f|Wl,1(S(ﬂ-)) .

Letv € Z*: v+ 81 + B2 = [ and note that > [ — k > 2. Using (35) and
(37)

1 [ 1 i ;
IT = / Dny(x1 — s)ds— Z / e @2=t) p:0) (5 )t
T Js=—m 2 t=—m
[n|<N
< CONNv f(V‘*‘ﬁl,ﬁz)
a L1(S(m))

(56)S CN2+51+ﬂ2*l ’f‘lel(S(w)) .
The third term Il is dealt with similarly. Gathering these estimates gives
(BrB2) (¢ _ —(—2-p1—P2)
HD L (f SN(f))HLOO(S(ﬂ')) < CN e |f|lel(S'(7r))
and taking the maximum oveék, 52: 51 + B2 < k gives the result claimed.
O

Finally, the results for thé, andL., cases are combined to obtain estimates
in the general norni,,,.

Lemma 15. Let f € W)4(S(x)) then
l.for0 <k <l
1f = sn(F)lwkacsy
(57) < CON"ER A+ N PO £l g sy -

2.for0<k+1/g<l

(- SN(f)HWk,q(v)
(1+In ), ge1,2]

—(l=k—=1/q)
(58) < CN ”f”W“‘I(S(?r)) { (14 111]\7)2(1_2/(1)7 q€[2,00]

wherer is any line contained ir$(7) on whichzs is constant or on which
r1 = :EI‘Q.
3.for0<k+2/¢g<li

1f = sn(F)llwrse (s

1 q€1,2]

~(-k-2/q) :
(59) =<CN 1 llwr.a sy { (14 N20-2/0) g ¢ [2.00]
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Proof. 1. First, recall the following result proved in [4]

1f = sn(D)llwrzsy < CN~(=h 1 w2 (s

Combining this with the Lemma 14(1) and Lemma 13 and applying a stan-
dard interpolation argument [5] gives (57) ferc [1,2] andq € [2, ]
respectively.

2. Using [4, equation 3.19] we have for > 1/2

_(m—1
(60) 1 = sn (D)l 2y < CNTT72 | flpmez s -

Sincef is periodic, for any3y, 3, € Z+
(61) DBLB g () = sy (D(Bl,ﬁz)f> .
Using (60) and (61) we have, for > 1/2 andfy, 32 € Z1: 1+ B2 < k

|p (s —sn )] e

(62) < CN~(m=3) [ lyyme1+82.2(5(ry) -

— ||pBB) ¢ _ g pBrB) ‘
20 H f—sn f

Choosingn + 1 + 82 = [ and summing over alb;, 5o 81 + G2 < k

1
(63) 1f = sn(Dllwramy < CNTF 2D g, -
Combining (63) with Lemma 14(2), Lemma 13 and applying an interpolation

argument gives (58) fay € [1, 2] andq € [2, oo] respectively.
3. From [4, equation 3.29] we have for > 1 and(z1, z2) € S()

(64) (f = sn(F) @1, 22)] < CNT D fllypme s
Using (61) and (64) we obtain for amy, 5> € ZT andm > 1

|D(61,B2)(f _ SN(f))(thng” < CN_(m—l) ||f||Wm+B1+,32,2(S(7r)) .
(65)

Choosingm + 1 + B2 = [ and summing over afby, Go: 81 + B2 < k

| DO (f — sy () (w1, m)| < ONTEOBTD Y fll s o050

(66)

Combining (66) with the (47) and (40) and applying an interpolation argu-
ment gives (59) foy € [1,2] andq € [2, co] respectively. O
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