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Summary. Approximation theoretic results are obtained for approximation
using continuous piecewise polynomials of degreep on meshes of triangular
and quadrilateral elements. Estimates for the rate of convergence in Sobolev
spacesWm,q(Ω), q ∈ [1,∞] are given. The results are applied to estimate
the rate of convergence when thep-version finite element method is used to
approximate theα-Laplacian.

It is shown that the rate of convergence of thep-version is always at least
that of theh-version (measured in terms of number of degrees of freedom
used). If the solution is very smooth then thep-version attains an exponential
rate of convergence. If the solution has certain types of singularity, the rate
of convergence of thep-version is twice that of theh-version.

The analysis generalises the work of Babuska and others to the caseq 6=
2. In addition, the approximation theoretic results find immediate application
for some types of spectral and spectral element methods.
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1. Introduction

Theh-version of the finite element method is the standard version in which
the degree of the elements is fixed and convergence is achieved by refining
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the mesh sizeh. Thep-version fixes themeshand achieves convergence by
increasing the polynomial degreep of the elements. Thep-version retains
the geometric flexibility of the finite element method while seeking the high
rates of convergence of spectral methods.

Traditionally, it was thought that there is little point in using high order
finite elements to approximate the solutions of partial differential equations
since the rate of convergence of theh-version is limited by the smoothness
of the solution. The classical error estimates for theh-version are of the
form

‖e‖W 1,2(Ω) ≤ C(p)hµ ‖u‖W m,2(Ω)

where
µ = min(m− 1, p)

with p being the polynomial degree of the elements andm measuring the
regularity of the solution of the partial differential equation. The estimate
seems to indicate that there is no point in choosingp larger thanm − 1.
However, this argument ignores the dependence of the constantC(p) on the
polynomial degree.

The traditional viewpoint was challenged in the work of Babuska and
others. The first analysis of thep-version was given by Babuska [4] and
subsequently refined by Babuska and Suri [2]. It was shown that the corre-
sponding estimate for thep-version is

‖e‖W 1,2(Ω) ≤ C(h)p−(m−1) ‖u‖W m,2(Ω) .

Consequently, when the true solution is smooth (m large), the rate of con-
vergence is similar to the rates for spectral methods. Of course, in practical
problems the solution will generally have singularities that limit the regu-
larity. However, the singular terms are known to have a very specific form
and this fact was exploited by Babuska and others [2,4] who showed that
even in the presence of singularities, thep-version will converge at twice
the rate of theh-version. The chief purpose of the current work is to show
that such conclusions are also valid more generally in the case ofLq-type
norms withq 6= 2. Such results find immediate application to certain types
of non-linear elliptic boundary value problems. In addition, the results are
useful for the analysis of some types of spectral element method.

The major part of the analysis is devoted to obtaining approximation re-
sults for piecewise polynomial approximation in Sobolev spacesWm,q(Ω)
with q ∈ [1,∞]. While the caseq = 2 has received a great deal of atten-
tion, little is known for the general case. The reason for the lack of results
in the general case seems to be largely due to the extensive use of orthog-
onal polynomials and their properties in the analysis. Preliminary results
were obtained by Quarteroni [10] for polynomial approximation inLq-type
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spaces on a single element in one dimension. The present work deals with
approximation bycontinuous piecewise polynomials in two dimensions. The
extra number of dimensions along with the continuity of the piecewise poly-
nomials across the element boundaries requires special attention and poses
a number of difficulties not present in one dimension or if there is only one
element.

It is shown that the conclusions for the caseq = 2 also hold in the general
case. The results obtained in the present work are immediately applicable to
spectral methods and to spectral element methods. One point of particular
interest arises in our analysis of the approximation of singular functions.
The original analysis in [4] resulted in an estimate of the form

‖e‖W 1,2(Ω) ≤ C(ε)p−(m−1−ε) ‖u‖W m,2(Ω)

whereε > 0 is arbitrary. The presence of theε in the exponent ofp is of
little concern. However, the analysis suggested that the constantC(ε) could
blow up asε → 0. The need for theε was removed in the later analysis
in [2] where a rather different method of proof was followed, involving the
use of orthogonal families of polynomials. The current analysis follows the
original method of proof in [4], and is applicable to the more general case
of q 6= 2.

In conclusion, the analysis shows that the traditional view of avoiding
the use of high order polynomial finite element methods is incorrect. The
rate of convergence of thep-version is always at least that of theh-version
(measured in terms of number of degrees of freedom used). If the solution is
very smooth then thep-version attains an exponential rate of convergence.
If the solution has certain types of singularity, the rate of convergence of the
p-version is twice that of theh-version.

2. Preliminaries

Let R
2 be the usual Euclidean space withx = (x1, x2) ∈ R

2. Throughout,
it is assumed thatΩ is a bounded, polygonal domain inR2. Forq ∈ [1,∞]
the spaceLq(Ω) is defined to be the usual space of classes of functions for
which the norm

‖f‖Lq(Ω) =

{(∫
Ω |f |qdx)1/q

, q < ∞
esssupx∈Ω |f(x)|, q = ∞

is finite. For integer values ofs, the Sobolev spacesW s,q(Ω) are equipped
with the norms

‖f‖W s,q(Ω) =


{∑

|α|≤s ‖Dαf‖q
Lq(Ω)

}1/q
, q < ∞

max|α|≤s ‖Dαf‖L∞(Ω) , q = ∞
.
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For non-integer values ofs, the Sobolev spacesW s,q(Ω) are defined using
theK-method of interpolation [5]. Thus, writings = m + σ wherem is
an integer andσ ∈ (0, 1), the spaceW s,q(Ω) is obtained by interpolating
between the spacesWm,q(Ω) andWm+1,q(Ω). This process is indicated
using the notation

W s,q(Ω) = [Wm,q(Ω),Wm+1,q(Ω)]σ,q.

The subspacesW s,q
0 (Ω) are defined in the usual manner [1]. Equally well,

Sobolev spaces may be defined on an intervalI = (a, b) and on curvesγ.
Let S(ρ), ρ > 0 be the square

S(ρ) = {(x1, x2) : |x1| < ρ, |x2| < ρ}.

The spaceW k,q
per(S(ρ)) ⊂ W k,q(S(ρ)) consists of the periodic functions

with period2ρ.
A partition P of the domainΩ consists of a finite number of open sub-

domains (orelements) K ∈ P such that:

– each elementK is either a triangle or a convex quadrilateral
– Ω =

⋃
K∈P K

– for any distinct pair of elementsK andJ , the intersectionK∩J is either
empty, a single common edge or a single common vertex.

Associated with each type of element is a reference domain given in the case
of quadrilateral elements by

S(1) = {(x, y) : −1 ≤ x ≤ 1; −1 ≤ y ≤ 1}
or, in the case of triangular elements

T (1) = {(x, y) : −1 ≤ x ≤ 1; −1 ≤ y ≤ x}.
Polynomial spaces of degreep ∈ N are defined on the quadrilateral and
triangular reference elements respectively by

Q̂(p) = span
{
xj yk : 0 ≤ j, k ≤ p

}
and

P̂ (p) = span
{
xj yk : 0 ≤ j + k ≤ p

}
.

For simplicity, it is assumed that there exists an invertible mappingFK :
K̂ 7→ K that is affine for triangular elements and bilinear for quadrilateral
elements. A polynomial spacePK is taken to be either̂Q(p) or P̂ (p) as
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appropriate for each type of element. The spaceXp is constructed using the
partitionP
Xp =

{
v ∈ C(Ω) : v|K = v̂ ◦ F−1

K for somev̂ ∈ PK for all K ∈ P}
and, with a slight abuse of the nomenclature, will be referred to as being a
space ofpiecewise polynomials.

Suppose that the functionu belongs to the spaceWm,q(Ω). One of the
goals will be to obtain estimates for the rate of convergence that may be
obtained using sequences{up} of approximationsup ∈ Xp tou in terms of
the polynomial degreep.

Consider theα-Laplacian

−∇ · {|∇u|α−2∇u} = f in Ω(1)

whereα ∈ (1,∞) andf is smooth given data. Even if the dataf is smooth
the solutionu may be singular. For example, suppose the domainΩ has
a single corner at the pointA with internal angleω ∈ (0, 2π]. Letting r
andθ ∈ (0, ω) be polar coordinates with origin atA, it has been shown
[7,13] that in the neighbourhood of the corner a positive solutionu of the
α-Laplacian has the structure

u(x) = crλΘ(θ) + o(rλ)(2)

wherec ∈ R,Θ is a smooth function withΘ(0) = Θ(ω) = 0,

λ =


s+

√
s2 + 1/β, if 0 < ω ≤ π

s−√s2 + 1/β, if π ≤ ω < 2π
(α− 1)/α, if ω = 2π

with
β = (ω/π − 1)2 − 1

and

s =
(β − 1)α− 2β

2β(α− 1)
.

The lack of smoothness of the true solution may lead to a degradation in the
rate of convergence of bothh- andp-version finite element approximations
of problem (1). Indeed, the degradation in the rate of convergence is often
cited as a reason for avoiding the use of high order finite elements. One of the
purposes of the current work is to show that such a conclusion is incorrect: a
better rate of convergence is achieved by increasing the polynomial degree
uniformly than is obtained by uniformly refining the partition. Before the
claim can be proved, it will be necessary to study the approximation of
singular functions of the form (2) by piecewise polynomials.
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The Dirichlet boundaryΓD is a closed subset of the boundary∂Ω. Fre-
quently, one wishes to impose Dirichlet boundary conditions on the approx-
imation. For instance, the traceg of the functionu might be given on the
Dirichlet boundary. Thus, one requires estimates for the rate of convergence
of a sequence of approximationsup ∈ Xp satisfyingup = gp onΓD where
gp are appropriately chosen continuous piecewise polynomial approxima-
tions tog. To facilitate the construction of suitable approximationsgp, it will
be assumed that the partitionP is constructed so that element vertices are
located at the endpoints of the Dirichlet boundary.

Throughout,C will be used to denote positive constants that are inde-
pendent of other quantities appearing in the same relation, and whose values
need not be the same in any two places. The notationa ≈ bmeans that there
exist positive constantsC1, C2 such thatC1a ≤ b ≤ C2a.

3. Piecewise polynomial approximation of smooth functions

This section deals with the approximation of smooth functions using the
spacesXp of continuous piecewise polynomials on a fixed partitionP of
the domain. Suppose that a functionu belongs to the spaceWm,q(Ω). The
goal will be to obtain estimates for the rate of convergence that may be
obtained using sequences{up} of approximationsup ∈ Xp tou in terms of
the polynomial degreep.

The derivation consists of two main steps. To begin with, approximation
by sequences of polynomials on a single reference element is considered. Es-
timates are then obtained for approximations from the spacesXp by piecing
together functions from each element (obtained by mapping the approxi-
mations on the reference element) and making appropriate adjustments to
satisfy continuity requirements.

3.1. Polynomial approximation on the reference element

The Appendix consists of results concerning approximation by partial sums
of Fourier series of functionsf belonging to the periodic Sobolev spaces
W l,q

per(S(π)). These results will be used here to deduce approximation prop-
erties for sequences{φp(u)} of algebraic polynomial approximations to a
functionu ∈ W l,q(S(1)) defined on the squareS(1). However, in general
the approximation obtained by changing the variable in the partial Fourier
series will generally fail to be an algebraic polynomial unless the function
f possesses certain symmetries. It is therefore necessary for the functionu
to undergo some preliminary surgery [4].

Let ρ > 1 be fixed. According to [12, Theorem 5] there exists an exten-
sionU of the functionuonto the squareS(2ρ) such that supp(U) ⊂ S(3ρ/2)
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andU ∈ Wm,q(S(2ρ)) with

‖U‖W m,q(S(2ρ)) ≤ C ‖u‖W m,q(S(1)) .

LetΦ : S(π/2) 7→ S(2ρ) be the bijective mapping

x̂ 7→ x = Φ(x̂) = 2ρ(sin x̂1, sin x̂2).(3)

Furthermore, define a functionf ∈ Wm,q(S(π
2 )) by

f(x̂) = (U ◦ Φ)(x̂)

and observe that the support off is contained in the squareS(arcsin 3/4).
Hence,f may be extended toS(π) as a smooth function such that it is sym-
metric across the lineŝxi = ±π

2 . The estimate (3) showsf ∈ Wm,q
per (S(π))

and
‖f‖W m,q(S(π)) ≤ C ‖u‖W m,q(S(1)) .(4)

Let sp(f) denote thep-th partial sum of the Fourier series expansion for the
functionf onS(π). Each partial sumsp(f) inherits the symmetries of the
functionf . Therefore

sp(f) = φp(u) ◦ Φ(5)

whereφp(u) is analgebraicpolynomial on the squareS(1) of degree at
mostp in each variable.

Lemma 1. Let u ∈ W l,q(S(1)) whereq ∈ [1,∞]. Then there exists a
sequence of algebraic polynomialsφp(u) ∈ Q̂(p), p ∈ N, which are inde-
pendent ofq, such that
1. for any0 ≤ k ≤ l

‖u− φp(u)‖W k,q(S(1)) ≤ Cp−(l−k)(1 + ln p)2|1−2/q| ‖u‖W l,q(S(1))

2. for l > k + 1/q

‖u− φp(u)‖W k,q(γ)

≤ Cp−(l−k−1/q) ‖u‖W l,q(S(1))

{
(1 + ln p)(2/q−1), q ∈ [1, 2]
(1 + ln p)2(1−2/q), q ∈ [2,∞]

whereγ is any edge or either principal diagonal ofS(1)
3. for l > k + 2/q

‖u− φp(u)‖W k,∞(S(1))

≤ Cp−(l−k−2/q) ‖u‖W l,q(S(1))

{
1, q ∈ [1, 2]
(1 + ln p)2(1−2/q), q ∈ [2,∞]

.
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Proof. Suppose first thatq ∈ [1, 2].
1. By Lemma 15(1) for any0 ≤ k ≤ l

‖u− φp(u)‖W k,q(S(1)) ≤ C ‖f − sp‖W k,q(S(π))

≤ Cp−(l−k)(1 + ln p)2(2/q−1) ‖f‖W l,q(S(π))

≤ Cp−(l−k)(1 + ln p)2(2/q−1) ‖U‖W l,q(S(1))

≤ Cp−(l−k)(1 + ln p)2(2/q−1) ‖u‖W l,q(S(1))

where (4) has been used.
2. Let γ̂ = Φ−1(γ). By Lemma 15(2) for any0 ≤ k + 1/q < l

‖u− φp(u)‖W k,q(γ) ≤ C ‖f − sp‖W k,q(γ̂)

≤ Cp−(l−k−1/q)(1 + ln p)(2/q−1) ‖f‖W l,q(S(π))

≤ Cp−(l−k−1/q)(1 + ln p)2 ‖U‖W l,q(S(1))

≤ Cp−(l−k−1/q)(1 + ln p)2 ‖u‖W l,q(S(1)) .(6)

3. By Lemma 15(3) for0 ≤ k + 2/q < l

‖u− φp(u)‖W k,∞(S(1)) ≤ C ‖f − sp‖W k,∞(S(π))

≤ Cp−(l−k−2/q) ‖f‖W l,q(S(π))

≤ Cp−(l−k−2/q) ‖u‖W l,q(S(1)) .(7)

The proofs whenq ∈ (2,∞] are essentially identical.ut
Corresponding results hold for approximation on the triangular reference
element:

Lemma 2. Let u ∈ W l,q(T (1)) whereq ∈ [1,∞]. Then there exists a
sequence of algebraic polynomialsφp(u) ∈ P̂ (p), p ∈ N, which are inde-
pendent ofq, such that
1. for any0 ≤ k ≤ l

‖u− φp(u)‖W k,q(T (1)) ≤ Cp−(l−k)(1 + ln p)2|1−2/q| ‖u‖W l,q(T (1))

2. for l > k + 1/q

‖u− φp(u)‖W k,q(γ)

≤ Cp−(l−k−1/q) ‖u‖W l,q(T (1))

{
(1 + ln p)(2/q−1), q ∈ [1, 2]
(1 + ln p)2(1−2/q), q ∈ [2,∞]

whereγ is any edge ofT (1)
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3. for l > k + 2/q

‖u− φp(u)‖W k,∞(T (1))

≤ Cp−(l−k−2/q) ‖u‖W l,q(T (1))

{
1, q ∈ [1, 2]
(1 + ln p)2(1−2/q), q ∈ [2,∞]

.

Proof. 1. Letu ∈ W l,q(T (1)) be given. By [12, Theorem 5] there exists an
extensionU of the functionu to the squareS(1) satisfying

‖U‖W l,q(S(1)) ≤ C ‖u‖W l,q(T (1)) .(8)

By Lemma 1 there exists a sequenceUp ∈ Q̂(p) such that for any0 ≤ k ≤ l

‖U − Up‖W k,q(S(1)) ≤ Cp−(l−k)(1 + ln p)2|1−2/q| ‖U‖W l,q(S(1)) .(9)

Now Q̂(p) ⊂ P̂ (2p) and therefore we may define the sequence byφ2p(u) =
Up andφ2p+1(u) = φ2p(u). Observing

‖u− φ2p+1(u)‖W k,q(T (1)) = ‖u− φ2p(u)‖W k,q(T (1))

= ‖U − Up‖W k,q(T (1)) ≤ ‖U − Up‖W k,q(S(1)) ,(10)

the result then follows from (9) and (8). The remaining cases are similar.
ut

It is possible to generalize Lemmas 1 and 2 to cases when the norms on each
side are based on differentLq type spaces:

Theorem 3. Let u ∈ Wm,r(S(1)) wherer ∈ [1,∞]. Then there exists a
sequence of algebraic polynomialsφp(u) ∈ Q̂(p), p ∈ N such that for
1 ≤ q ≤ r and0 ≤ l ≤ m+ 2/r − 2/q

‖u− φp(u)‖W l,r(S(1))

≤ Cp−(m−l+2/r−2/q)(1 + ln p)2|1−1/r−1/q| ‖u‖W m,q(S(1)) .(11)

Moreover, analogous results hold for approximation on the triangle.

Proof. By Lemma 1(1), for0 ≤ l ≤ m

‖u− φp(u)‖W l,1(S(1)) ≤ Cp−(m−l)(1 + ln p)2 ‖u‖W m,1(S(1))

and by Lemma 1(3), for0 ≤ l ≤ m− 2

‖u− φp(u)‖W l,∞(S(1)) ≤ Cp−(m−l−2) ‖u‖W m,1(S(1)) .

Applying interpolation gives for anyr ∈ [1,∞] and0 ≤ l ≤ m− 2 + 2/r

‖u− φp(u)‖W l,r(S(1)) ≤ Cp−(m−l−2+2/r)(1 + ln p)2/r ‖u‖W m,1(S(1)) .
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Moreover, by Lemma 1(1) ifr ∈ [1, 2] and0 ≤ l ≤ m

‖u− φp(u)‖W l,r(S(1)) ≤ Cp−(m−l)(1 + ln p)2(2/r−1) ‖u‖W m,r(S(1))

or if r ∈ [2,∞] and0 ≤ l ≤ m

‖u− φp(u)‖W l,r(S(1)) ≤ Cp−(m−l)(1 + ln p)2(1−2/r) ‖u‖W m,r(S(1)) .

Applying interpolation gives (11). ut
If 1 ≤ r ≤ q then the following estimate is trivially obtained from Lemma 1:

‖u− φp(u)‖W l,r(S(1))

≤ Cp−(m−l)(1 + ln p)2|1−1/r−1/q| ‖u‖W m,q(S(1)) .(12)

3.2. Approximation using continuous piecewise polynomials

The previous section dealt with approximation by algebraic polynomials on
the reference element. These results will now be used to obtain approxi-
mation properties for the spacesXp. The requirement that functions in the
spaceXp be continuous means that one cannot trivially deduce such results
directly from those on the reference element. The following deals with the
basic process of constructing the continuous approximation when the func-
tion to be approximated belongs to the spaceWm,q(Ω) with m > 1 + 1/q.
Later, the result will be strengthened to cases whenm > 1.

Theorem 4. Let u ∈ Wm,q(Ω), q ∈ [1,∞], m > 1 + 1/q. Then there
exists a sequenceup ∈ Xp of continuous piecewise polynomials, which are
independent ofq, such that on any elementJ in the partitionP
‖u− up‖W 1,q(J) ≤Cp−(m−1)(1+ln p)2|1−2/q| ∑

K∈P:K∩J 6=∅
‖u‖W m,q(K) .

Consequently the following global estimate holds

‖u− up‖W 1,q(Ω) ≤ Cp−(m−1)(1 + ln p)2|1−2/q| ‖u‖W m,q(Ω) .

Proof. To begin with letK be any quadrilateral element in the partitionP.
The elementK is the image of the square reference elementS(1) under a
bijective, bilinear mappingFK . DefineûK = u|K ◦ FK and letŵK,p be a
sequence of approximations tôuK as in Lemma 1. LetwK,p = ŵK ◦ F−1

K .
Transforming the estimates of Lemma 1 to the elementK leads to anal-

ogous estimates for the differenceeK,p = u − wK,p onK. In general, if
elmentsK andJ share a common edgeγ then the values of the approxima-
tionswK,p andwJ,p will differ on the interface. Therefore, we shall adjust
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wK,p andwJ,p so that continuity is obtained whilst preserving the accuracy
of the approximation. Consider the polynomialψp : [−1, 1] 7→ R given by

ψp(s) =
(

1 − s

2

)p

and note that for anyq ∈ [1,∞]

1. ‖ψp‖Lq(−1,1) ≤ Cp−1/q

2. |ψp|W 1,q(−1,1) ≤ Cp1−1/q

3. ψp(−1) = 1 ; ψp(1) = 0.

Let êK,p = eK,p◦FK . First, we shall adjust the function̂wK,p to produce
a new polynomial̂vK,p interpolatingû|K at the vertices on the reference
element. The adjustment at the vertexÂ1 = (−1,−1) is given by

α̂
(1)
K,p(x1, x2) = êK,p(−1,−1)ψp(x1)ψp(x2).

and satisfies∥∥∥α̂(1)
K,p

∥∥∥
W 1,q(S(1))

≤ C ‖êK,p‖L∞(S(1)) ‖ψp‖Lq(−1,1) |ψp|W 1,q(−1,1)

≤ Cp1−2/q ‖êK,p‖L∞(S(1)) .(13)

Similar functions are constructed for the remaining vertices. The polynomial

v̂K,p = ŵK,p +
4∑

j=1

α̂
(j)
K,p

agrees witĥuK at the vertices and satisfies

‖û− v̂K,p‖W 1,q(S(1)) ≤ |êK,p|W 1,q(S(1)) + Cp1−2/q ‖êK,p‖L∞(S(1)) .

DefiningvK,p = v̂K,p ◦ F−1
K and mapping back to the elementK gives

‖u− vK,p‖W 1,q(K) ≤ |eK,p|W 1,q(K) + Cp1−2/q ‖eK,p‖L∞(K) .(14)

This process is repeated on each element.
The differencevK,p − vJ,p is still, in general, non-zero on the edgeγ

but vanishes at the endpoints. Therefore, we use the difference to adjust the
approximation on either one of the elements, sayK, as follows. Suppose,
without loss of generality, thatγ = FK(γ̂) whereγ̂ = {(x1,−1) : −1 ≤
x1 ≤ 1}. Let ξ : γ 7→ R denote the restriction ofvK,p − vJ,p to the edgeγ.
Thenξ̂ = ξ ◦ FK is a polynomial on the edgêγ vanishing at the endpoints.
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The polynomialβ̂ : S(1) 7→ R given byβ̂ = ξ̂(x1)ψp(x2) is an extension
of ξ̂ that vanishes on the remaining edges ofS(1). Transforming back to the
elementK defines a functionβ = β̂ ◦ F−1

K satisfying

|β|W 1,q(S(1)) ≤ C
{
p1−1/q ‖ξ‖Lq(γ) + p−1/q |ξ|W 1,q(γ)

}
(15)

and forj = 0, 1

‖ξ‖W j,q(γ) ≤ ‖eK,p‖W j,q(γ) + ‖eJ,p‖W j,q(γ) .(16)

The process is repeated for every interior edge in the partition.
The functionuK,p is defined by subtracting the sum of the edge correc-

tionsβ applied to elementK from vK,p. Thanks to the method of construc-
tion, uK,p agrees withuJ,p on the edgeγ. Consequently, we may define
up ∈ Xp to be the function whose restriction to any elementJ ∈ P is uJ,p

and satisfies

‖u− up‖W 1,q(J) ≤ ‖u− vJ,p‖W 1,q(J) + C
∑

γ

‖βγ‖W 1,q(J) .(17)

Hence, using (14), (15), (16), (17) and Lemma 1 completes the proof when
the partition consists of quadrilateral elements.

The treatment of a triangular elementJ is similar, except that the cor-
rections at the vertices and edges are slightly different. The functionwJ,p

is constructed as in the case of quadrilaterals using instead Lemma 2. The
correction at the vertex̂A1 = (−1,−1) is given by

α̂
(1)
K,p(x1, x2) =

1
2
êK,p(−1,−1)ψs(x1)ψs(x2)(1 − x1)

wheres = [(p − 1)/2] and the extension̂β associated with the edgêγ =
{(x1,−1) : −1 ≤ x1 ≤ 1} is

β̂(x1, x2) =
1
2
ψ(x2)

{
(x1 − x2)ξ̂(x1) + (1 − x1)ξ̂(x1 − x2 − 1)

}
.

The remaining cases are similar. It is easily verified that the functions have
the required properties. ut
The restriction in Theorem 4 on the minimal smoothness of the functionu
may be removed using the following standard argument:

Theorem 5. Let u ∈ Wm,q(Ω), q ∈ [1,∞], m > 1. Then there exists a
sequenceup ∈ Xp of continuous piecewise polynomials such that on any
elementJ

‖u− up‖W 1,q(J) ≤ Cp−(m−1)(1 + ln p)2|1−2/q| ∑
K∈P:K∩J 6=∅

‖u‖W m,q(K) .
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Hence, the following global estimates are valid

‖u− up‖W 1,q(Ω) ≤ Cp−(m−1)(1 + ln p)2|1−2/q| ‖u‖W m,q(Ω) .

Proof. In view of Theorem 4 we need only consider the casem ∈ (1, 1 +
1/q]. From the characterisation

Wm,q(Ω) = (W 1,q(Ω),W 2,q(Ω))θ,q(18)

whereθ = m− 1, it follows from [5, Section 3.5] that for anyt > 0, umay
be decomposed asu = v1(t)+v2(t) with v1 ∈ W 1,q(Ω) andv2 ∈ W 2,q(Ω)
satisfying

‖v1‖W 1,q(Ω) ≤ Ctm−1 ‖u‖W m,q(Ω)(19)

‖v2‖W 2,q(Ω) ≤ Ctm−2 ‖u‖W m,q(Ω)(20)

whereC is independent ofu andt. By Theorem 4 there exists a continuous
piecewise polynomialup such that

‖v2 − up‖W 1,q(Ω) ≤ Cp−1 ‖v2‖W 2,q(Ω) ≤ Cp−1tm−2 ‖u‖W m,q(Ω) .

Choosingt = 1/p and applying the Triangle Inequality gives

‖u− up‖W 1,q(Ω) ≤ Cp−(m−1) ‖u‖W m,q(Ω)

as required. ut

3.3. Non-homogeneous Dirichlet boundary data

As mentioned earlier, it is often necessary to deal with approximations that
must satisfy a supplementary condition on the Dirichlet boundary. In partic-
ular, the traceg of the functionu ∈ Wm,q(Ω) to be approximated may be
specified as data on the Dirichlet boundary. Unless the trace itself happens to
be a piecewise polynomial it becomes necessary to approximate the bound-
ary data, thereby creating an additional source of error. The imposition of
Dirichlet conditions consists of firstconstructinga sequence of polynomial
approximationsgp to the given Dirichlet datag. The problem is then to esti-
mate the accuracy that may be obtained by approximatingu using sequences
of piecewise polynomialsup ∈ Xp which, in addition, satisfyup = gp on
the Dirichlet boundary.

Lemma 1 and Lemma 2 assert theexistenceof polynomial approxima-
tionsφp(u) to the functionu that achieve certain rates of convergence. It
appears that one can simply chose (subject to appropriate adjustments to
obtain continuity between elements) the approximate Dirichlet datagp to be
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the values of the approximationsφp(u) on the element boundaries. How-
ever, while this would ensure that the overall rate of convergence would
not suffer any degradation, it is not a practical proposition since the poly-
nomialsφp(u) are not easily constructed on a machine. A full treatment of
non-homogeneous Dirichlet conditions is a non-trivial matter even in the
caseq = 2, [3] (see also Maday [9]).

The approximate Dirichlet data for an elementK having an edgeγ =
ΓD ∩K on the Dirichlet boundary is constructed as follows. Without loss
of generality, assume thatγ = (−1, 1) and denote the trace of the function
u onγ by g. Thep-th partial sum of the Chebyshev series expansion ofg is
given by

σp(g; t) =
p∑

k=0

AkTk(t)

whereTk is thek-th degree Chebyshev polynomial and the coefficients are
given by

Ak =
2
π

∫ 1

−1
g(t)Tk(t)

dt√
1 − t2

.

Bounds on the rate of convergence of the partial sums are given in the
following lemma.

Lemma 6. Letg ∈ W l,q(−1, 1) whereq ∈ [1,∞]. Then forl > 2/q

‖g − σp(g)‖Lq(−1,1) ≤ C(1 + ln p)p−l ‖g‖W l,q(−1,1)

and forl > 2 − 1/q

‖g − σp(g)‖W 1,q(−1,1) ≤ C(1 + ln p)p−(l−2+1/q) ‖g‖W l,q(−1,1) .

Proof. According to [11, (3.29)]

σp(g; cos θ) =
1
2π

∫ π

0
{g[cos(α+ θ)] + g[cos(α− θ)]}Dp(α)dα(21)

where

Dp(α) =
sin(p+ 1/2)α

sin(α/2)

and
1
2π

∫ π

0
|Dp(α)| dα ≤ C(1 + ln p).(22)
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1. Using (21) and (22)

‖σp(f)‖L∞(−1,1) ≤ C(1 + ln p) ‖f‖L∞(−1,1) .

Let gp be any polynomial of degreep and note that

‖g − σp(g)‖L∞(−1,1) ≤ ‖g − gp‖L∞(−1,1) + ‖σp(g − gp)‖L∞(−1,1) .

Insertingf = g − gp into the above bound leads to

‖g − σp(g)‖L∞(−1,1) ≤ C(1 + ln p) ‖g − gp‖W 1,∞(−1,1)

and then taking the infimum overgp gives

‖g − σp(g)‖L∞(−1,1) ≤ C(1 + ln p)p−m ‖f‖W m,∞(−1,1) .

2. Letθ = arccosx, x ∈ [−1, 1]. Then

d

dx
σp(g;x) =

1
sin θ

d

dθ
σp(g; cos θ).

Now∣∣∣∣ ddθ {g[cos(α+ θ)] + g[cos(α− θ)]}
∣∣∣∣

≤ ∣∣cosα sin θ
{
g′[cos(α+ θ)] − g′[cos(α− θ)]

}∣∣
+
∣∣sinα cos θ

{
g′[cos(α+ θ)] + g′[cos(α− θ)]

}∣∣
≤ 2| sin θ|∥∥g′∥∥

L∞(−1,1) + 2| cos(α+ θ) − cos(α− θ)|∥∥g′′∥∥
L∞(−1,1)

≤ 4| sin θ| ‖g‖W 2,∞(−1,1) .

Using (21) and (22) and arguing as before gives

‖g − σp(g)‖W 1,∞(−1,1) ≤ Cp−(m−2)(1 + ln p) ‖g‖W m,∞(−1,1) .

3. Observe that

‖σp(g)‖L1(−1,1) ≤ ‖Dp‖L1(−1,1) ‖g‖L1(−1,1)

and the result then follows as in the first case.
4. Applying the change of variablex = cos θ gives∥∥σp(g)′∥∥

L1(−1,1) =
∫ π

0
sin θ

∣∣∣∣ ddxσp(g;x)
∣∣∣∣ dθ =

∫ π

0

∣∣∣∣ ddθσp(g; cos θ)
∣∣∣∣ dθ

then using (21) and interchanging the order of integration leads to∥∥σp(g)′∥∥
L1(−1,1) ≤

∫ π

0
dα

∣∣∣∣sin(p+ 1/2)α
sin(α/2)

∣∣∣∣∫ π

0
dθ

{∣∣∣∣ ddθg[cos(α+ θ)]
∣∣∣∣+ ∣∣∣∣ ddθg[cos(α− θ)]

∣∣∣∣} .(23)
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The value of the inner integral is bounded by∫ π

0
dθ

{∣∣∣∣ ddθg[cos(α+ θ)]
∣∣∣∣+ ∣∣∣∣ ddθg[cos(α− θ)]

∣∣∣∣}
≤ 4

∫ π

0
dθ

{∣∣∣∣ ddθg[cos(θ)]
∣∣∣∣} = 4

∥∥g′∥∥
L1(−1,1) .

Inserting this into (23) and using (22) gives∥∥σp(g)′∥∥
L1(−1,1) ≤ C(1 + ln p)

∥∥g′∥∥
L1(−1,1)

and arguing as before∥∥σp(g)′∥∥
L1(−1,1) ≤ C(1 + ln p)p−(m−1) ‖g‖W m,1(−1,1) .

The claimed estimates are obtained by interpolating these results.ut
The actual approximationgp ≈ g is taken to be

gp(t) = {g(−1) − σp(g;−1)}ψp(t)
+ {g(1) − σp(g; 1)}ψp(−t) + σp(g; t).

The following result complements Theorem 4:

Theorem 7. Letu ∈ Wm,q(Ω) and assumeg ∈ Wm+1−2/q,q(ΓD) where
q ∈ [1,∞], m > 1 and g is the trace ofu on ΓD. Then there exists a
sequenceup ∈ Xp of continuous piecewise polynomials such thatup = gp

on the Dirichlet boundaryΓD. Moreover, the following global estimate holds

‖u− up‖W 1,q(Ω)

≤ Cp−(m−1)(1 + ln p)2|1−2/q|{‖u‖W m,q(Ω) + ‖g‖W m+1−2/q,q(ΓD)}.
Proof. Let ũp be a sequence of approximations tou as in Theorem 4. Let
K be any element having an edge on the Dirichlet boundary. It suffices
to consider the case whenK is the reference element with the edgeγ =
{(x1,−1) : −1 ≤ x1 ≤ 1} on the boundary (the case for triangles is
similar). Letvp be the polynomial

vp(x1, x2) = ũp(x1, x2) + (σp(g;x1) − ũp(x1,−1))ψp(x2).

Following steps similar to those in the proof of Theorem 4 and using
Lemma 6 leads to the estimate

‖u− vp‖W 1,q(K)

≤ C ‖u− ũp‖W 1,q(K) + C(1 + ln p)p−(m−1) ‖g‖W m+1−2/q,q(γ) .

The proof is completed by applying exactly the same procedure used in
the proof of Theorem 4 to adjustvp and obtain a continuous piecewise
polynomial. ut
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Comparing the estimate with those obtained previously shows that the rates
are optimal. However, the optimal rate is obtained at the expense of assum-
ing slightly more regularity of the boundary datag than one would hope for.
Naturally, it is of some theoretical interest to consider the limiting case when
the boundary data is of minimal regularity and ask what rate of convergence
might be expected in such cases. In a practical situation, the boundary data
will generally be quite smooth (even piecewise analytic). Therefore, assum-
ing the data has more than minimal regularity is not a limitation in practice.

4. Piecewise polynomial approximation of singular functions

The analysis has hitherto presumed the functionu to be approximated is
smooth. However, as remarked earlier, if the domain has a corner then the so-
lution of the partial differential equation may contain singular components.
The goal of this section is to obtain estimates for the rate of convergence of
sequences of piecewise polynomials approximating functions of the form

u(x) = c χ(r) rλ | ln r|γ Θ(θ)(24)

where(r, θ) are polar coordinates with origin at the corner, withχ andΘ
smooth (C∞) functions. The functionΘ is assumed to vanish along the
edges corresponding to the boundary of the domain whileχ is a smooth cut-
off function that vanishes whenr is large. In this way, the singular function
is localized around the corner with which it is associated. Fortunately, since
the singularities arise at corners, it is reasonable to assume that the partition
P has been constructed so that the corner is located at the vertices (rather
than, for instance, on the edges) of an element.

4.1. An approximation result

Let S̃(t), t > 0, denote the square

S̃(t) = {(x1, x2) : 0 < x1 < t; 0 < x2 < t}

and letB(t) denote the ball of radiust centred at the origin. Forκ > 1, let
A(κ) denote the cone

A(κ) =
{
(x1, x2) : 0 < κ−1x1 < x2 < κx1

}
and, finally, forκ > 1 andt > 0, letR(κ, t) denote the set

R(κ, t) = A(κ) ∩ S̃(t).
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The purpose of this section is to obtain results on the attainable rate of
convergence of polynomial approximations of a particular class of singular
functions of the form

u(x) = χ(r) rλ | ln r|γ Θ(θ)

where is assumed that:

(A1) χ is a smooth function satisfying

χ(r) = 1, r ≤ ρ/3 andχ(r) = 0, r ≥ 2ρ/3

for some fixedρ ∈ (0, 1);
(A2) Θ is a smooth function such that for some fixedκ > 1, the functionu

is assumed to vanish on the raysx1 = κx2 andx2 = κx1 emanating
from the origin;

(A3) for some fixedκ0 > κ, the functionu is supported in the setA(κ0).

An immediate consequence of these assumptions is that

supp (u) ⊂ R(κ0, 2/3).

The polynomial

ξ(x) = (x1 − κx2)(κx1 − x2)

vanishes on the raysx1 = κx2 andx2 = κx1, and so

u0(x) =
u(x)
ξ(x)

= χ(r) rλ−2 | ln r|γ Θ0(θ)

shares properties (A1) and (A3) of the functionu.

4.1.1. Regularisation Let ζ ∈ C∞[0,∞) satisfy

ζ(r) =

{
0, r < 1
1, r > 2

and for∆ ∈ (0, 1/2), define

ζ∆(r) = ζ(r/∆).

Regularised approximations of the singular functionsu andu0 are defined
by

u∆ = ζ∆u andu∆
0 = ζ∆u0

and satisfy

– u∆ = 0 on the raysx1 = κx2 andx2 = κx1;

Numerische Mathematik Electronic Edition
page 368 of Numer. Math. (1999) 82: 351–388



The approximation theory for thep-version finite element method 369

– u∆ andu∆
0 are supported onR(κ0, 2/3) −B(∆).

Elements of the family{u∆} approach the singular functionu in the fol-
lowing sense:

Lemma 8. Letq ∈ (0,∞) and thatu is given by (24), whereλ > 1 − 2/q.
Then ∥∥u− u∆

∥∥
W 1,q(S̃(1)) ≤ C| ln∆|γ∆λ−(1−2/q)(25)

Proof. By direct calculation using the above properties ofu∆

∥∥u− u∆
∥∥q

W 1,q(S̃(1)) ≤ C

∫ ∆

0

{|u|q(1 + C∆−q) + |∇u|q} r dr

≤ C∆λq−(q−2)| ln∆|γ

and the result follows. ut

4.1.2. Trigonometric polynomial approximationThe algebraic polyno-
mial approximations to the regularised singular functions are constructed
by applying a trigonometric transformation and then developing trigono-
metric polynomial approximations. Therefore, letΦ : S̃(π/2) 7→ S̃(1) be
the bijective mapping

Φ(x̂1, x̂2) = (sin2 x̂1, sin2 x̂2)

and set

û∆
0 (x̂) = u∆

0 ◦ Φ(x̂).

Lemma 9. Let q ∈ [2,∞) and denoteT = R(κ0, 2/3). Supposev ∈
W 1,q(T ) and definêv = v ◦ Φ andT̂ = Φ−1(T ). Then,

‖v‖W 2/q,q(T ) ≈ ‖v̂‖
W 2/q,q(T̂ )(26)

and,
‖v‖W 1,q(T−B(∆)) ≤ C∆− 1

2 (1−2/q) ‖v̂‖
W 1,q(T̂−B(∆̂)) .(27)

where∆̂ = arcsin
√
∆.

Proof. The norm on the spaceW 2/q,q(T ) satisfies ([1, Theorem 7.48])

‖v‖W 2/q,q(T ) ≈
{

‖v‖q
Lq(T ) +

∫
T

∫
T

|v(x) − v(y)|q
|x − y|4 dxdy

}1/q

.(28)

The identity ∫
T

|v|qdx =
∫

T̂
|v̂|q| sin 2x̂1 sin 2x̂2|dx̂
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immediately shows that‖v‖Lq(T ) ≤ ‖v̂‖
Lq(T̂ ). Moreover, by Ḧolder’s In-

equality, (witht = q + 1 and1/t+ 1/t′ = 1)∫
T̂

|v̂|qdx̂ ≤
(∫

T
|v|qtdx

)1/t(∫
T

| sin 2x̂1 sin 2x̂2|−t′dx

)1/t′

.

In the neighbourhood of the originsin 2x̂1 ≈ x
1/2
1 and hence (sincet′ =

1 + 1/q < 2) the second term is bounded. Consequently,

‖v̂‖q

Lq(T̂ )
≤ C

(∫
T

|v|qtdx

)1/t

≤ C ‖v‖q

Lq(q+1)(T )

and by the Sobolev Embedding Theorem [1, Theorem 7.57(b)]

‖v‖Lq(q+1)(T ) ≤ C ‖v‖W 2/q,q(T ) .

Hence

‖v̂‖
Lq(T̂ ) ≤ C ‖v‖Lq(q+1)(T ) ≤ C ‖v‖W 2/q,q(T ) .

Consider the second term in (28). It suffices to show that for all(x̂1, x̂2) ∈ T̂

1
|x̂ − ŷ|4 ≈ sin 2x̂1 sin 2x̂2 sin 2ŷ1 sin 2ŷ2

((sin2 x̂1 − sin2 ŷ1)2 + (sin2 x̂2 − sin2 ŷ2)2)2
.

which is easily verified using elementary arguments after observing that

sin x̂1

sin x̂2
≈ 1(29)

for all (x̂1, x̂2) ∈ T̂ . The first result then follows at once.
Observe that

Φ−1(T −B(∆)) ⊂ T̂ −B(∆̂).

Hence, for anyv ∈ W 1,q(T ), q ∈ [2,∞),∫
T−B(∆)

|v|qdx ≤
∫

T̂−B(∆̂)
|v̂|q| sin 2x̂1 sin 2x̂2| dx̂

and fori = 1, 2∫
T−B(∆)

∣∣∣∣ ∂v∂xi

∣∣∣∣q dx ≤
∫

T̂−B(∆̂)

∣∣∣∣ ∂v̂∂x̂i

∣∣∣∣q | sin 2x̂1 sin 2x̂2|
|sin 2x̂i|q dx̂.

Combining these results with (29) and the fact that∆̂ ≈ ∆1/2 gives (27).
ut
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A key result in the development is an estimate for the higher order Sobolev
norms of the regularized singular functions in terms of the regularisation
parameter∆.

Lemma 10. Let q ∈ (1,∞) and supposek ≥ 2(λ + 1/q). Then,û∆ ∈
W k,q(S̃(π/2)) and there exists a constantC(k) depending only onk such
that, ∥∥û∆

∥∥
W k,q(S̃(π/2)) ≤ C(k)| ln∆|γ∆−(k/2−λ−1/q).(30)

Proof. Let ∆̂ = arcsin
√
∆ andρ̂ = arcsin

√
∆/κ. Then, for any multi-

indexα,

∣∣Dαû∆(x̂)
∣∣ ≤


C | ln∆|γ min(x̂1, x̂2)−〈|α|−2λ〉,

for min(x̂1, x̂2) ≥ ρ̂

C| ln∆|γ∑α1
j=1
∑α2

l=1 x̂
〈2j−α1〉
1 x̂

〈2l−α2〉
2 ∆−〈j+l−λ〉,

for x̂ ∈ S̃(∆̂)

,

where〈t〉 = max(0, t). The first of these results is proved in the same way
as Lemma 4.4 in [4] along with the observation thatρ̂ ≈ ∆̂. The second
result is obtained following arguments similar to those leading to the first
equation on page 529 of [4].

The support of the function̂u∆ satisfiessupp (û∆) ⊂ G1 ∪G2, where

G1 = supp (û∆) ∩ S̃(∆̂)

and

G2 = supp (û∆) ∩
{

(x̂1, x̂2) : min(x̂1, x̂2) ≥ ∆̂
}
.

Applying the earlier estimates for the derivatives and applying the bound
∆̂ ≤ C

√
∆ gives:

1. For any|α| ≤ k

∥∥Dαû∆
∥∥q

Lq(G1) ≤ C| ln∆|qγ
α1∑
j=1

α2∑
l=1

∆−q〈j+l−λ〉+q〈j−α1/2〉+q〈l−α2/2〉+1

and hence, since

− 〈j + l − λ〉 + 〈j − α1/2〉 + 〈l − α2/2〉 ≥ − 〈k/2 − λ〉 ,
there follows∥∥û∆

∥∥
W k,q(G1) ≤ C(k)| ln∆|γ∆−(k/2−λ−1/q).
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2. LetG+
2 = G2 ∩ {(x̂1, x̂2) : x̂2 < x̂1}, then, forx̂ ∈ G+

2 ,∣∣Dαû∆(x̂)
∣∣ ≤ C(α) | ln∆|γ x̂−〈|α|−2λ〉

2 .

and so∥∥Dαû∆
∥∥q

Lq(G+
2 ) ≤ C(α) | ln∆|qγ

∫ π/6

∆̂

∫ x̂1

ρ̂
x̂

−q〈|α|−2λ〉
2 dx̂1dx̂2

≤ C(α) | ln∆|qγ∆̂−q〈〈|α|−2λ〉−2/q〉.

The same estimate is obtained for the norm evaluated over the remaining
part of the setG2. Therefore, summing over multi-indices gives,∥∥û∆

∥∥
W k,q(G2) ≤ C(k)| ln∆|γ∆−(k/2−λ−1/q)

and the claimed result follows. ut

4.1.3. Algebraic polynomial approximationThe next result is concerned
with approximation by algebraic polynomials and generalises the corre-
sponding result Theorem 5.1 from [2] to the case whenq 6= 2.

Lemma 11. Let q ∈ [2,∞) and suppose the functionu satisfies the con-
ditions (A1)-(A3). Then, forp > 1, there existszp ∈ Q(p) such thatzp
vanishes on the raysx2 = κx1 and x1 = κx2. Moreover, for any fixed
ε > 0, there exists a constantC(ε) such that

‖u− zp‖W 1,q(R(κ0,2/3))

≤ C(ε)(1 + ln p)2(1−2/q)| ln p|γp−2(λ−1+2/q)+ε(31)

provided thatλ > 1 − 2/q.

Proof. The notations described earlier are again adopted. First, extend the
function û∆

0 from S̃(π/2) to the squareS(π) as an even periodic function
by reflecting in the lineŝxk = 0,±π/2, k = 1, 2. Let sp(û∆

0 ) be partial
sums of the Fourier series expansion ofû∆

0 . Then, by Lemma 15(1), for any
0 ≤ m ≤ k∥∥û∆

0 − sp(û∆
0 )
∥∥

W m,q(S̃(π/2))(32)

≤ C(k)(1 + ln p)2(1−2/q)p−(k−m) ∥∥û∆
0
∥∥

W k,q(S̃(π/2))

≤ C(k)(1 + ln p)2(1−2/q)p−(k−m)| ln∆|γ∆−(k/2−λ+2−1/q)

since Lemma 10 applies equally well to the functionû∆
0 .

Thanks to the symmetries of the the extended function, the inverse images
of the partial Fourier sums, given by

u∆
0,p = sp(û∆

0 ) ◦ Φ−1
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are, in fact, algebraic polynomials. We now develop estimates for their rate
of convergence.
1. The estimate (32) in the casem = 0 is preserved under the transformation
to the original domain,∥∥u∆

0 −u∆
0,p

∥∥
Lq(S̃(1)) ≤

∥∥u∆
0 − u∆

0,p

∥∥
Lq(S̃(1))

≤C(k)(1+ln p)2(1−2/q)p−k| ln∆|γ∆−(k/2−λ+2−1/q).

Moreover, since the polynomialξ and its first order derivatives are uni-
formly bounded on the domaiñS(1), the same estimate holds for both∥∥ξ(u∆

0 − u∆
0,p)
∥∥

Lq(S̃(1))
and

∥∥∂ξ/∂x1(u∆
0 − u∆

0,p)
∥∥

Lq(S̃(1))
.

2. Consider now∥∥∥∥ξ ∂

∂x1
(u∆

0 − u∆
0,p)
∥∥∥∥q

Lq(S̃(1))

≤
∥∥∥∥ξ ∂

∂x1
(u∆

0 − u∆
0,p)
∥∥∥∥q

Lq(S̃(1)∩B(∆))
+
∥∥∥∥ξ ∂

∂x1
(u∆

0 −u∆
0,p)
∥∥∥∥q

Lq(S̃(1)−B(∆))
.

The first term is estimated using the bound|ξ(x)| ≤ C∆2 onB(∆) and the
fact thatu∆

0 vanishes onB(∆), as follows∥∥∥∥ξ ∂

∂x1
(u∆

0 − u∆
0,p)
∥∥∥∥

Lq(S̃(1)∩B(∆))
≤ C∆2 ∥∥u∆

0,p

∥∥
W 1,q(S̃(1)∩B(∆)) .

Now, sinceu∆
0,p is an algebraic polynomial, an application of the inequalities

of Markov and Schmidt, along with an interpolation argument leads to∥∥u∆
0,p

∥∥
W 1,q(S̃(1)∩B(∆)) ≤ C(p2/∆)1−2/q

∥∥u∆
0,p

∥∥
W 2/q,q(S̃(1)∩B(∆)) ,

and hence, again observingu∆
0 vanishes onB(∆), one arrives at the estimate∥∥∥∥ξ ∂

∂x1
(u∆

0 − u∆
0,p)
∥∥∥∥

Lq(S̃(1)∩B(∆))

≤ C∆2(p2/∆)1−2/q
∥∥u∆

0 − u∆
0,p

∥∥
W 2/q,q(S̃(1)∩B(∆)) .

Applying Lemma 9 then yields∥∥u∆
0 − u∆

0,p

∥∥
W 2/q,q(S̃(1)∩B(∆)) ≤ C

∥∥û∆
0 − sp(û∆

0 )
∥∥

W 2/q,q(S̃(π/2)) .

Applying the estimate (32) in the casem = 2/q leads to the bound∥∥∥∥ξ ∂

∂x1
(u∆

0 − u∆
0,p)
∥∥∥∥

Lq(S̃(1)∩B(∆))

≤ C(k)(1 + ln p)2(1−2/q)(p2/∆)1−2/qp−(k−2/q)| ln∆|γ∆−(k/2−λ−1/q).
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The second term is estimated using Lemma 8 as follows:∥∥∥∥ξ ∂

∂x1
(u∆

0 − u∆
0,p)
∥∥∥∥

Lq(S̃(1)−B(∆))

≤ ∥∥u∆
0 − u∆

0,p

∥∥
W 1,q(S̃(1)−B(∆))

≤ C∆− 1
2 (1−2/q) ∥∥û∆

0 − sp(û∆
0 )
∥∥

W 1,q(S̃(π/2))

and then, applying Lemma 10, gives∥∥∥∥ξ ∂

∂x1
(u∆

0 − u∆
0,p)
∥∥∥∥

Lq(S̃(1)−B(∆))

≤ C(k)(1 + ln p)2(1−2/q)∆− 1
2 (1−2/q)p−(k−1)∆−(k/2−λ+2−1/q)| ln∆|γ .

Similar estimates hold for thex2-derivatives, so that∥∥ξ(u∆
0 − u∆

0,p)
∥∥

W 1,q(Ŝ(1))

≤ C(k)(1 + ln p)2(1−2/q)| ln∆|γ ×{
p−k∆−(k/2−λ+2−1/q) + p−(k−2+2/q)∆−(k/2−λ+1−3/q)

+p−(k−1)∆−(k/2−λ+5/2−2/q)
}
.

Now, let λ∗ = λ − 1 + 2/q, and choosing∆ = p−µ whereµ > 0 is
determined below, allows the terms in parentheses to be rewritten as

p−µλ∗ {
p−k+µ(k/2+1+1/q) + p−(k−2+2/q)+µ(k/2−1/q)

+p−(k−1)+µ(k/2+3/2)
}
.

The value ofµ is chosen so that each of the exponents of the terms inside
the parentheses is non-positive, thus:

µ = 2 min
{

k

k + 2 + 2/q
,
k − 2 + 2/q
k − 2/q

,
k − 1
k + 3

}
and then, for any given positiveε, k may be chosen sufficiently large for the
value ofµ to satisfy

µ ≥ 2 − ε.

Hence, for any givenε > 0,∥∥ξ(u∆
0 − u∆

0,p)
∥∥

W 1,q(Ŝ(1))

≤ C(ε)(1 + ln p)2(1−2/q)| lnCp|γp−2(λ−1+2/q)+ε.
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Forp > 1, the polynomialzp is taken to beξu∆
0,p−2. Obviously,zp vanishes

on the linesx2 = κx1 andx1 = κx2 on whichξ vanishes. Moreover, by the
triangle inequality,

‖u− zp‖W 1,q(S̃(1)) ≤ ∥∥u− u∆
∥∥

W 1,q(S̃(1)) +
∥∥ξ(u∆

0 − u∆
0,p)
∥∥

W 1,q(S̃(1))

and the result follows from the previous estimates and Lemma 8.ut

4.2. Piecewise polynomial approximation of singular functions

Suppose that the domain has a re-entrant corner located at a vertexA of the
partition, and that, relative to polar coordinates based atA, the solution has
a singularity of the form (24). LetΩ0 denote the domain consisting of the
elements that have a vertex located at the cornerA. The main result of this
section generalises Theorem 5.2 in [2] to the case whenq 6= 2:

Theorem 12. Letu be the singular function given by (24) with the cut-off
functionχ supported on a sufficiently small ball. Then, for anyε > 0, there
exists a sequence of piecewise polynomialszp ∈ Xp that vanish on∂Ω0
and satisfy

‖u− zp‖W 1,q(Ω) ≤ C(ε)| ln p|γp−2(λ−1+2/q)+ε

provided thatλ > 1 − 2/q, whereC is independent ofp.

Proof. The proof uses Lemma 11 in exactly the same way as the result was
obtained in the caseq = 2 in [2]. ut

5. Application to finite element approximation
of non-linear elliptic partial differential equations

Consider theα-Laplacian

−∇ · {|∇u|α−2∇u} = f in Ω

whereα ∈ (1,∞) andf is smooth given data. The boundary conditions are
thatu = 0 on the Dirichlet boundaryΓD and prescribed normal fluxg on
the Neumann boundaryΓN. The weak form of this problem is to findu ∈ V
such that ∫

Ω
|∇u|α−2∇u · ∇vdx =

∫
Ω
fvdx +

∫
ΓN

gvds

for all v ∈ V , whereV is the space

V =
{
v ∈ W 1,α(Ω) : v = 0 onΓD

}
.
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To approximate the problem using finite elements consists of constructing
a finite dimensional subspaceX ⊂ V composed of piecewise polynomials
on a partitionP. The finite element approximationuX ∈ X satisfies:∫

Ω
|∇uX |α−2∇uX · ∇vXdx =

∫
Ω
fvXdx +

∫
ΓN

gvXds

for all vX ∈ X. The accuracy of the approximation is controlled either
by refining the sizeh of the elements in the partition (theh-version) or
increasing the polynomial degreep on the elements (thep-version). The
subspace for theh-version will be denoted byXh.

We shall apply the approximation results to compare the rate of conver-
gence of thep-version finite element method with the rate of theh-version
finite element approximation. The basic tool we shall use to obtain the esti-
mates is found in Chow [6]:

‖u− up‖W 1,α(Ω) ≤
{
C inf ‖u− vX‖α/2

W 1,α(Ω) , α ∈(1, 2]

inf C(‖vX‖W 1,α(Ω)) ‖u− vX‖2/α
W 1,α(Ω) , α ∈(2,∞)

(33)

where the infimum is taken over functionsvX from the finite element sub-
spaceX.

5.1. Rate of convergence for smooth solutions

Suppose that the true solutionu of the model problem belongs to the space
Wm,α(Ω). The standard approximation results for theh-version imply that

inf
v∈Xh

‖u− vh‖W 1,α(Ω) ≤ Chµ ‖u‖W m,α(Ω)

where

µ = min(m− 1, p)

andp is the (fixed) polynomial degree of the elements used to construct the
h-version subspace. Theorem 5 shows that the corresponding result for the
p-version is

inf
v∈Xp

‖u− vp‖W 1,α(Ω) ≤ Cp−(m−1)(1 + ln p)2|1−2/α| ‖u‖W m,α(Ω) .

The basic difference between these estimates is that the rate for theh-version
is limited by the polynomial degree of the elements used while for thep-
version the rate is limited only by the regularity of the solution.
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Fig. 1. Rate of convergence for smooth solution

As an example, consider the problem with true solutionu = e(x+y),
α = 3/2 andΩ = (0, 1) × (0, 1). The problem is solved numerically using
uniform h-refinement for fixed polynomial degreep = 1 andp = 2; and
using thep-version on a partition consisting of four square elements. To
compare the rate of convergence of the methods we consider the dimension
N of the subspacesXh andXp. The approximation results for theh-version
suggest that the rate will beO(N−p/2) while for thep-version the rate will be
greater thanO(N−r) for all values ofr. That is, thep-version should exhibit
anexponential rate of convergence. The results shown in Fig. 1 confirm these
estimates.

5.2. Rate of convergence for singular solutions

Consider theα-Laplacian withα ∈ [2,∞) and true solution of the form

u(x) = c χ(r) rλ g(| ln r|)Θ(θ) + w(x)

wherew is a smooth function andχ,Θ andg as in equation (24). One easily
verifies that the solution belongs to the spaceW λ+2/α−ε,α(Ω), whereε > 0
is arbitrarily small. The approximation results for theh-version indicate that
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Fig. 2. Rate of convergence for singular solution

for elements of fixed degreep, the rate of convergence will beO(N−µ)where
µ = min(λ+ 2/α− 1 − ε, p)/2.

For thep-version, one could apply Theorem 5 and obtain an estimate for
the rate to beO(N−(λ+2/α−1)/2) as in theh-version. However, the more
refined estimates obtained in Theorem 12 show that, in fact, the rate should
beO(N−(λ+2/α−1)+ε)). Therefore, in such cases,the rate of convergence
of thep-version is twice that of theh-version.

As a simple example, consider theα-Laplacian withΩ = (0, 1)×(0, 1),
α = 3 and true solutionu = r3/4. The solution belongs to the space
W 13/6−ε,3(Ω). The approximation results for theh-version indicate that
for elements of fixed degreep, the rate of convergence will beO(N−µ)
whereµ = min(7/6−ε, p)/2. Consequently, in the casep = 1 the rate will
be unaffected by the smoothness of the solution and should beO(N−1/2).
However, for elements of fixed degreep = 2 the rate should be degraded
from the full orderO(N−1) to O(N−7/12). Meanwhile, for thep-version
one should observe a rate ofO(N−7/6). The results shown in Fig. 2 confirm
these estimates.
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A. Appendix

The Fourier series expansion of a sufficiently smooth functionf on the
squareS(π) is denoted by

f(x1, x2) =
∞∑

m=−∞

∞∑
n=−∞

Amnei(mx1+nx2)

whereAmn are the Fourier coefficients and the partial sum is denoted by

sN (f) =
∑

|m|<N

∑
|n|<N

Amnei(mx1+nx2).

For numbersN ∈ N andr ∈ Z
+ let

CN,r =
4
π2N

−r lnN +O(N−r)

and

DN,r(t) =
∑

|m|>N

1
mr

cos
(
mt− πr

2

)
.(34)

It will be useful to recall some results from classical Fourier analysis:
– [8, Theorem 4.3.1]: for anyr ∈ Z

+

∑
|m|>N

1
2π

∫ π

−π

∫ π

−π
f(s, t)eim(x1−s)ds dt

=
1
π

∫ π

−π

∫ π

−π
DN,r(x1 − s)f (r,0)(s, t)ds dt(35)

and for any fixedt ∫ π

−π
|DN,r(t− s)|ds = CN,r(36)

and if r > 1

‖DN,r‖L∞(−π,π) ≤
∑

|m|>N

1
mr

≤ CN1−r.(37)

– [8, Theorem 2.2.1, p. 54]

1
2π

∑
|n|≤N

∫ π

−π
ein(x2−t)f(s, t)dt

=
1
π

∫ π

−π
f(s, x2 + t)

sin(n+ 1/2)t
2 sin t/2

dt(38)
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and
1
π

∫ π

−π

∣∣∣∣sin(n+ 1/2)t
2 sin t/2

∣∣∣∣ dt ≤ CCN,0

so that
– ∥∥∥∥∥∥ 1

2π

∑
|n|≤N

∫ π

−π
ein(x2−t)f(s, t)dt

∥∥∥∥∥∥
L∞(S(π))

≤ 1
π

∫ π

−π

∣∣∣∣sin(n+ 1/2)t
2 sin t/2

∣∣∣∣ dt ‖f‖L∞(S(π))

≤ CCN,0 ‖f‖L∞(S(π))(39)

The first result deals with the rate of convergence of the partial Fourier sums
in L∞ type norms.

Lemma 13. If f ∈ W l,∞
per (S(π)) then for0 ≤ k ≤ l

‖f − sN (f)‖W k,∞(S(π)) ≤C(1 + lnN)2N−(l−k) ‖f‖W l,∞(S(π)) .(40)

Proof. Chooseβ1, β2 ∈ Z
+ such thatβ1 + β2 ≤ k. Then

D(β1,β2)(f − sN (f)) =

 ∑
|m|>N

∑
|n|>N

+
∑

|m|>N

∑
|n|≤N

+
∑

|m|≤N

∑
|n|>N


×Amn(im)β1(in)β2ei(mx1+nx2) = I + II + III.

Now fix n and consider the term∑
|m|>N

Amn(im)β1(in)β2ei(mx1+nx2)

=
∑

|m|>N

1
4π2

∫ π

−π

∫ π

−π
f(s, t)(im)β1(in)β2e−i(ms+nt)ei(mx1+nx2)ds dt.

Sincef ∈ W l,∞
per (S(π))∑

|m|>N

1
4π2

∫ π

−π

∫ π

−π
f(s, t)(im)β1(in)β2e−i(ms+nt)ei(mx1+nx2)ds dt

=
∑

|m|>N

1
4π2

∫ π

−π

∫ π

−π
f (β1,β2)(s, t)e−i(ms+nt)ei(mx1+nx2)ds dt

=
1
2π

∫ π

−π
ein(x2−t)dt

∑
|m|>N

1
2π

∫ π

−π
f (β1,β2)(s, t)eim(x1−s)ds.
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Using (35) forα1 ∈ Z
+:∑

|m|>N

Amn(im)β1(in)β2ei(mx1+nx2)

=
1
2π

∫ π

−π
ein(x2−t)dt

1
π

∫ π

−π
DN,α1(x1 − s)f (α1+β1,β2)(s, t)ds(41)

Summing (41) overn : |n| > N gives, forα2 ∈ Z
+∑

|m|>N

∑
|n|>N

Amn(im)β1(in)β2ei(mx1+nx2)

=
1
π

∫ π

−π
DN,α1(x1 − s)ds

1
π

∫ π

−π
DN,α2(x2 − t)f (α1+β1,α2+β2)(s, t)dt.

Hence for anyα1, α2 ∈ Z
+ : α1 + α2 + β1 + β2 = l

|I| ≤ CCN,α1CN,α2

∥∥∥f (α1+β1,α2+β2)
∥∥∥

L∞(S(π))

≤ C(1 + lnN)2N−(l−β1−β2) |f |W l,∞(S(π)) .(42)

Consider the second termII. Summing (41) overn : |n| ≤ N gives for
r ∈ Z

+

II =
1
π

∫ π

−π
DN,r(x1 − s)ds

1
2π

∑
|n|≤N

∫ π

−π
ein(x2−t)f (r+β1,β2)(s, t)dt.

Hence using (36)

|II| ≤ CN,r

∥∥∥∥∥∥ 1
2π

∑
|n|≤N

∫ 2π

0
ein(x2−t)f (r+β1,β2)(s, t)dt

∥∥∥∥∥∥
L∞(S(π))

.(43)

Using (38) and (39), we obtain forr + β1 + β2 = l

|II| ≤ CCN,0CN,r

∥∥∥f (r+β1,β2)
∥∥∥

L∞(S(π))

≤ C(1 + lnN)2N−(l−β1−β2) |f |W l,∞(S(π)) .(44)

The third term is dealt with similarly. Therefore, combining (42) and (44)
gives fors ∈ Z

+ : s+ β1 + β2 = l∥∥∥D(β1,β2)(f − sN (f))
∥∥∥

L∞(S(π))

≤ C(1 + lnN)2N−(l−β1−β2) |f |W l,∞(S(π)) .

Summing overβ1, β2 : β1 + β2 ≤ k

‖f − sN (f)‖W k,∞(S(π)) ≤ C(1 + lnN)2N−(l−k) ‖f‖W l,∞(S(π))

and the result follows. ut
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Consider now the rate of convergence inL1 type norms.

Lemma 14. If f ∈ W l,1
per(S(π)) then

1. for 0 ≤ k ≤ l

‖f − sN (f)‖W k,1(S(π)) ≤ C(1 + lnN)2N−(l−k) ‖f‖W l,1(S(π)) .(45)

2. for 0 ≤ k + 1 < l

‖f − sN (f)‖W k,1(γ) ≤ C(1 + lnN)N−(l−1−k) ‖f‖W l,1(S(π))(46)

whereγ may be any line segment contained inS(π) on whichx2 is
constant or on whichx1 = ±x2.

3. for 0 ≤ k + 2 < l

‖f − sN (f)‖W k,∞(S(π)) ≤ CN−(l−k−2) ‖f‖W l,1(S(π)) .(47)

Proof. 1. Letβ1, β2 ∈ Z
+ satisfyβ1 + β2 ≤ k. Then∥∥∥D(β1,β2)(f − sN (f))

∥∥∥
Ll,1(S(π))

≤
∥∥∥∥∥∥
∑

|m|>N

∑
|n|>N

Amn(im)β1(in)β2ei(mx1+nx2)

∥∥∥∥∥∥
Ll,1(S(π))

+

∥∥∥∥∥∥
∑

|m|>N

∑
|n|≤N

Amn(im)β1(in)β2ei(mx1+nx2)

∥∥∥∥∥∥
Ll,1(S(π))

+

∥∥∥∥∥∥
∑

|m|≤N

∑
|n|>N

Amn(im)β1(in)β2ei(mx1+nx2)

∥∥∥∥∥∥
Ll,1(S(π))

= I + II + III.

Using (35) gives forα1, α2 ∈ Z
+ : α1 + α2 + β1 + β2 = l

I =
∫ π

−π

∫ π

−π

∣∣∣∣ 1π
∫ π

−π
DN,α1(x1 − s)ds

1
π

∫ π

−π
DN,α2(x2 − t)f (α1+β1,α2+β2)(s, t)dt

∣∣∣∣ dx1dx2

and then, sinceDN,r andf are both periodic and continuous with period
2π, recallingα1 + α2 + β1 + β2 = l we obtain from(36)

I ≤ CCN,α1CN,α2

∥∥∥f (α1+β1,α2+β2)
∥∥∥

L1(S(π))

≤ C(1 + lnN)2N−(l−β1−β2) |f |W l,1(S(π)) .(48)
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Similarly, using (35) and (38) yields for anyr ∈ Z
+: β1 + β2 + r = l,

II =
∥∥∥∥ 1
π

∫ π

s=−π
DN,r(x1 − s)ds

1
π

∫ π

t=−π

sin(N + 1/2)t
2 sin t/2

f (r+β1,β2)(s, x2 + t)dt
∥∥∥∥

L1(S(π))

and then, sincef is a periodic function, from (36) and (39) we have

II ≤ CCN,r

∫ π

t=−π

∣∣∣∣sin(N + 1/2)t
2 sin t/2

∣∣∣∣ dt ∥∥∥f (β1+r,β2)
∥∥∥

L1(S(π))

≤ CCN,rCN,0

∥∥∥f (r+β1,β2)
∥∥∥

L1(S(π))

≤ C(1 + lnN)2N−(l−β1−β2) |f |W l,1(S(π)) .

The third term, III, is treated similarly. Consequently, fors ∈ Z
+: β1 +β2 +

s = l ∥∥∥D(β1,β2)(f − sN (f))
∥∥∥

L1(S(π))

≤ C(1 + lnN)2N−(l−β1−β2) |f |W l,1(S(π))

and summing overβ1, β2: β1 + β2 ≤ k gives (45).
2. Letγ be a line contained inS(π) on whichx2 is constant and letβ ∈ Z

+:
β ≤ k. Then

∥∥∥D(β,0)(f − sN (f))
∥∥∥

L1(γ)
≤
∥∥∥∥∥∥
∑

|m|>N

∑
|n|>N

Amn(im)βei(mx1+nx2)

∥∥∥∥∥∥
L1(γ)

+

∥∥∥∥∥∥
∑

|m|>N

∑
|n|≤N

Amn(im)βei(mx1+nx2)

∥∥∥∥∥∥
L1(γ)

+

∥∥∥∥∥∥
∑

|m|≤N

∑
|n|>N

Amn(im)βei(mx1+nx2)

∥∥∥∥∥∥
L1(γ)

= I + II + III.

Using (35) gives forα1, α2 ∈ Z
+: α1 + α2 + β = l andα2 > 1,

I ≤ CCN,α1

∥∥∥∥ 1
π

DN,α2(x2 − ·)
∥∥∥∥

L∞(γ)

∥∥∥f (α1+β,α2)
∥∥∥

L1(S(π))
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where (36) has been used. Recalling (37) we have for allβ ≤ k

I ≤ CCN,α1N
1−α2

∥∥∥f (α1+β,α2)
∥∥∥

L1(S(π))

≤ C(1 + lnN)N−(l−1−β) |f |W l,1(S(π)) .(49)

Equally well, (35) and (39) give forν ∈ Z
+: ν = l − β

II=

∥∥∥∥∥∥ 1
π

∫ π

s=−π
DN,ν(x1−s)

∑
|n|≤N

1
2π

∫ π

t=−π
ein(x2−t)f (l,0)(s, t)ds dt

∥∥∥∥∥∥
L1(γ)

≤CCN,ν

∫ π

t=−π

∫ π

s=−π

1
2π

∑
|n|≤N

∣∣∣ein(x2−t)
∣∣∣ ∣∣∣f (l,0)(s, t)

∣∣∣ ds dt
≤CNCN,ν

∥∥∥f (l,0)
∥∥∥

L1(S(π))

≤C(1 + lnN)N−(l−1−β) |f |W l,1(S(π)) .

(50)

Again, sinceDN,σ andf are both2π-periodic, (35) and (38) give for
σ ∈ Z

+: σ = l − β

III =
∥∥∥∥ 1
π

∫ π

s=−π

∫ π

t=−π

sin(N + 1/2)s
2 sin s/2

DN,σ(x2 − t)f (β,σ)

(s+ x1, t)ds dt
∥∥∥∥

L1(γ)

≤
∥∥∥∥ 1
π

DN,α2(x2 − ·)
∥∥∥∥

L∞(−π,π)

∫ π

s=−π

1
π

∣∣∣∣sin(N + 1/2)s
2 sin s/2

∣∣∣∣ ds
×
∥∥∥f (β,σ)

∥∥∥
L1(S(π))

≤ CN1+β−lCN,0

∥∥∥f (β,σ)
∥∥∥

L1(S(π))

= C(1 + lnN)N−(l−1−β) |f |W l,1(S(π)) .(51)

Combining (49), (50) and (51) and summing overβ ≤ k gives the result
for the case whenγ is a line on whichx2 is constant. Now letγ be the line
contained inS(π) given byx1 = x2 = τ and letβ ∈ Z

+: β ≤ k. Then∥∥∥∥∥
(
∂

∂τ

)β

(f − sN (f))

∥∥∥∥∥
L1(γ)

≤
∥∥∥∥∥∥
∑

|m|>N

∑
|n|>N

Amn[i(m+ n)]βei(m+n)τ

∥∥∥∥∥∥
L1(γ)
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+

∥∥∥∥∥∥
∑

|m|>N

∑
|n|≤N

Amn[i(m+ n)]βei(m+n)τ

∥∥∥∥∥∥
L1(γ)

+

∥∥∥∥∥∥
∑

|m|≤N

∑
|n|>N

Amn[i(m+ n)]βei(m+n)τ

∥∥∥∥∥∥
L1(γ)

= I + II + III.

Sincef is a periodic function, using (35), (36), (49) and the binomial ex-
pansion

I =
∫ π

τ=−π

∣∣∣∣∣∣ 1
4π2

β∑
j=0

(
β

j

) ∑
|m|>N

∑
|n|>N

∫ π

t=−π

∫ π

s=−π

f (j,β−j)(s, t)e−i(ms+nt)ei(m+n)τds dt

∣∣∣∣∣ dτ
≤ 2βC(1 + lnN)N−(l−1−β) |f |W l,1(S(π)) .(52)

Similarly, using (35), (39) and (50)

II ≤ 2βC(1 + lnN)N−(l−1−β) |f |W l,1(S(π)) .(53)

Finally using (35), (37) and (51)

III ≤ 2βC(1 + lnN)N−(l−1−β) |f |W l,1(S(π)) .(54)

Combining (52), (53), (54) and summing overβ ≤ k gives the result
whenγ is the linex1 = x2. The case whenx1 = −x2 follows in a similar
fashion.
3. Supposeβ1, β2 ∈ Z

+: β1 + β2 ≤ k. Then for any pointx = (x1, x2) ∈
S(π) ∣∣∣D(β1,β2)(f − sN (f))(x1, x2)

∣∣∣
≤
∣∣∣∣∣∣
∑

|m|>N

∑
|n|>N

Amn(im)β1(in)β2ei(mx1+nx2)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

|m|>N

∑
|n|≤N

Amn(im)β1(in)β2ei(mx1+nx2)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

|m|≤N

∑
|n|>N

Amn(im)β1(in)β2ei(mx1+nx2)

∣∣∣∣∣∣
= I + II + III.
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Let α1, α2 ∈ Z
+: α1 > 1, α2 > 1 andα1 + α2 + β1 + β2 = l. Using (35)

and (37) gives

I ≤ CN1−α1N1−α2

∥∥∥f (α1+β1,α2+β2)
∥∥∥

L1(S(π))

≤ CN2+β1+β2−l |f |W l,1(S(π)) .(55)

Let ν ∈ Z
+: ν + β1 + β2 = l and note thatν ≥ l − k > 2. Using (35) and

(37)

II =

∣∣∣∣∣∣ 1π
∫ π

s=−π
DN,ν(x1 − s)ds

1
2π

∑
|n|≤N

∫ π

t=−π
ein(x2−t)f (ν,0)(s, t)dt

∣∣∣∣∣∣
≤ CNN1−ν

∥∥∥f (ν+β1,β2)
∥∥∥

L1(S(π))

≤ CN2+β1+β2−l |f |W l,1(S(π)) .(56)

The third term III is dealt with similarly. Gathering these estimates gives∥∥∥D(β1,β2)(f − sN (f))
∥∥∥

L∞(S(π))
≤ CN−(l−2−β1−β2) |f |W l,1(S(π))

and taking the maximum overβ1, β2: β1 +β2 ≤ k gives the result claimed.
ut
Finally, the results for theL1 andL∞ cases are combined to obtain estimates
in the general normLq.

Lemma 15. Letf ∈ W l,q
per(S(π)) then

1. for 0 ≤ k ≤ l

‖f − sN (f)‖W k,q(S(π))

≤ CN−(l−k)(1 + lnN)|2(1−2/q)| ‖f‖W l,q(S(π)) .(57)

2. for 0 ≤ k + 1/q < l

‖f − sN (f)‖W k,q(γ)

≤ CN−(l−k−1/q) ‖f‖W l,q(S(π))

{
(1 + lnN)(2/q−1), q ∈ [1, 2]
(1 + lnN)2(1−2/q), q ∈ [2,∞]

.(58)

whereγ is any line contained inS(π) on whichx2 is constant or on which
x1 = ±x2.
3. for 0 ≤ k + 2/q < l

‖f − sN (f)‖W k,∞(S(π))

≤ CN−(l−k−2/q) ‖f‖W l,q(S(π))

{
1, q ∈ [1, 2]
(1 + lnN)2(1−2/q), q ∈ [2,∞]

.(59)
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Proof. 1. First, recall the following result proved in [4]

‖f − sN (f)‖W k,2(S(π)) ≤ CN−(l−k) ‖f‖W l,2(S(π))

Combining this with the Lemma 14(1) and Lemma 13 and applying a stan-
dard interpolation argument [5] gives (57) forq ∈ [1, 2] andq ∈ [2,∞]
respectively.
2. Using [4, equation 3.19] we have form > 1/2

‖f − sN (f)‖L2(γ) ≤ CN−(m− 1
2 ) ‖f‖W m,2(S(π)) .(60)

Sincef is periodic, for anyβ1, β2 ∈ Z
+

D(β1,β2)sN (f) = sN

(
D(β1,β2)f

)
.(61)

Using (60) and (61) we have, form > 1/2 andβ1, β2 ∈ Z
+: β1 + β2 ≤ k∥∥∥D(β1,β2)(f − sNf)

∥∥∥
L2(γ)

=
∥∥∥D(β1,β2)f − sND

(β1,β2)f
∥∥∥

L2(γ)

≤ CN−(m− 1
2 ) ‖f‖W m+β1+β2,2(S(π)) .(62)

Choosingm+ β1 + β2 = l and summing over allβ1, β2: β1 + β2 ≤ k

‖f − sN (f)‖W k,2(γ) ≤ CN−(l−k− 1
2 ) ‖f‖W l,2(S(π)) .(63)

Combining (63) with Lemma 14(2), Lemma 13 and applying an interpolation
argument gives (58) forq ∈ [1, 2] andq ∈ [2,∞] respectively.
3. From [4, equation 3.29] we have form > 1 and(x1, x2) ∈ S(π)

|(f − sN (f))(x1, x2)| ≤ CN−(m−1) ‖f‖W m,2(S(π)) .(64)

Using (61) and (64) we obtain for anyβ1, β2 ∈ Z
+ andm > 1

|D(β1,β2)(f − sN (f))(x1, x2)| ≤ CN−(m−1) ‖f‖W m+β1+β2,2(S(π)) .

(65)

Choosingm+ β1 + β2 = l and summing over allβ1, β2: β1 + β2 ≤ k

|D(β1,β2)(f − sN (f))(x1, x2)| ≤ CN−(l−β1−β2−1) ‖f‖W m+β1+β2,2(S(π)) .
(66)
Combining (66) with the (47) and (40) and applying an interpolation argu-
ment gives (59) forq ∈ [1, 2] andq ∈ [2,∞] respectively. ut
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