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Summary. Block parallel iterative methods for the solution of mildly non-
linear systems of equations of the formAx = Φ(x) are studied. Two-stage
methods, where the solution of each block is approximated by an inner itera-
tion, are treated. Both synchronous and asynchronous versions are analyzed,
and both pointwise and blockwise convergence theorems provided. The case
where there are overlapping blocks is also considered. The analysis of the
asynchronous method when applied to linear systems includes cases not
treated before in the literature.
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1. Introduction

In this paper we consider the solution of the mildly nonlinear system

Ax = Φ(x),(1)
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2 Z.-Z. Bai et al.

whereA ∈ R
n×n is nonsingular andΦ : R

n → R
n is a nonlinear function

with certain local smoothness properties; see Sects. 3 and 4. This equation
arises in many problems of science and engineering, and in particular in
discretizations of certain nonlinear differential equations, e.g., of the form
∆u = σ(u); see e.g., [36].

We are interested in solution methods of (1) in which the matrixA is

partitioned intoL by L blocksAij ∈ R
ni×nj , with

L∑
`=1

n` = n, i.e.,

A ∈ Ln(n1, n2, . . . , nL)
= {A ∈ R

n×n | A = (A`k), A`k ∈ R
n`×nk , 1 ≤ `, k ≤ L},

andA`` are nonsingular for̀ = 1, . . . , L. When the context is clear we
will simply useLn for Ln(n1, n2, . . . , nL). This partition may correspond
to a partition of the underlying grid, or of the domain of the differential
equation being studied, or it may originate from a partitioning algorithm of
the sparse matrixA, as done, e.g., in [6], [35]. In particular, we are interested
in several parallel generalizations of the following block Jacobi algorithm.
Letxi be the vector at theith iteration. Assume that the vectorsxi andΦ(xi)
are partitioned in subvectorsx(`)

i , Φ(xi)(`) ∈ R
n` , ` = 1, . . . , L, in a way

conformally with the partition ofA, i.e.,

xi ∈ Vn(n1, n2, . . . , nL)

= {x ∈ R
n | x = (x(1)T , . . . , x(L)T)T, x(`) ∈ R

n` , 1 ≤ ` ≤ L}.

Algorithm 1 (Block Jacobi). Given an initial vectorx0,

For i = 1, 2, . . . , until convergence.

For ` = 1 to L

Solve A``x
(`)
i = −

L∑
k 6=`, k=1

A`kx
(k)
i−1 + Φ(xi−1)(`).(2)

The block methods considered in this paper include, in particular, those
in which (2) is not solved exactly, but instead approximated using an (inner)
iterative method. These are block two-stage methods, also called inner/outer
iterations, and have been studied extensively for linear and nonlinear sys-
tems; see e.g., [12], [13], [14], [25], [32], and the references given therein.
A point two-stage method for the solution of (1), i.e., whenL = 1, was
recently studied in [1]. Algorithm 1 as well as its two-stage generalizations
are ideal for parallel processing, since up toL different processors can each
solve or approximate one of the problems (2). These algorithms are syn-
chronous in the sense that to begin the calculation of theith iterate, each
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Block and asynchronous two-stage methods for mildly nonlinear systems 3

processor has to wait until all processors have completed their calculation
of the(i − 1)th iterate.

In this paper, we also study asynchronous block methods, i.e., methods
in which each processor begins a new calculation without waiting for the
others to complete their respective tasks. Asynchronous methods have the
potential of converging much faster than synchronous methods, especially
when there is load imbalance, e.g., when one of the systems (2) takes much
longer to solve than all the others; see e.g., [13], [24], [27], [31]. A block
asynchronous method for the solution of (1) was analyzed in [9] using a
different approach, and without considering the two-stage case.

In the following section we present some definitions and preliminary
results used in the paper. In Sect. 3, we present a general framework to
study the block methods and prove their convergence, while in Sect. 4 we
analyze the convergence of the asynchronous methods. Our results apply to
a rather general class of nonsingular matrices, including blockH-matrices;
see e.g., [2], [38], [40]. We introduce a very general computational model
for these asynchronous iterations. Thus, our convergence proofs include a
large class of methods, including those with overlap.

2. Preliminaries

Given a vectorx ∈ R
n, we say that it is nonnegative (positive), denoted

x ≥ 0 (x > 0), if all components ofx are nonnegative (positive). Similarly,
if x, y ∈ R

n, x ≥ y (x > y) means thatx − y ≥ 0 (x − y > 0). For a
vectorx ∈ R

n, |x| denotes the vector whose components are the absolute
values of the corresponding components ofx. These definitions carry over
immediately to matrices.

Let x > 0, we consider the vector norm

‖y‖x = max
1≤j≤n

∣∣∣∣ 1
xj

yj

∣∣∣∣ .(3)

This vector norm is monotonic and for every matrixB ∈ R
n×n it satisfies

‖ |B|x‖x = ‖B‖x, where‖B‖x denotes the matrix norm ofB induced by
the vector norm defined in (3); see e.g., [30]. A nonsingular matrixA is called
M -matrix if it has non-positive off-diagonal entries and it is monotone (i.e.,
A−1 ≥ O); see e.g., [7], [42]. Byρ(A) we denote the spectral radius of the
square matrixA.

We define the following subset ofLn used in the analysis of iterative
methods for blockH-matrices; see, e.g., [3], [4], [17], [40]. Again, we do
not write the parameters(n1, n2, . . . , nL), when they are clear from the
context.

Ln,I(n1, n2, . . . , nL)
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4 Z.-Z. Bai et al.

= {A = (A`k) ∈ Ln | A`` ∈ R
n`×n` nonsingular, ` = 1, . . . , L},

For a matrixA ∈ Ln, letD(A) = Diag(A11, A22, . . . , ALL), i.e., its block-
diagonal part. Thus,A ∈ Ln,I if and only ifA ∈ Ln andD(A) is nonsingular.

For any matrixA = (aij) ∈ R
n×n, we define its comparison matrix

< A > = (αij) byαii = |aii|, αij = −|aij |, i 6= j. Similarly, forA ∈ Ln,I

we define its type-I and type-II comparison matrices〈A〉 = (〈A〉ij) ∈ R
L×L

and〈〈A〉〉 = (〈〈A〉〉ij) ∈ R
L×L as〈A〉ii = ‖A−1

ii ‖−1, 〈A〉ij = −‖Aij‖,

i 6= j, and〈〈A〉〉ii = 1, 〈〈A〉〉ij = −‖A−1
ii Aij‖, i 6= j, i, j = 1, 2, . . . , L,

respectively; see [2], [18], [38]. We also define, forA ∈ Ln, the block
absolute value[A] = (‖Aij‖) ∈ R

L×L. The definition for a vectorv ∈ Vn =
Vn(n1, n2, . . . , nL) is analogous. Here‖ · ‖ is any consistent matrix norm
satisfying‖I‖ = 1. This block absolute value has the following properties.

Lemma 2.1. [2] LetA, B ∈ Ln, x, y ∈ Vn andγ ∈ R. Then,
(a) |[A] − [B]| ≤ [A + B] ≤ [A] + [B], |[x] − [y]| ≤ [x + y] ≤ [x] + [y],
(b) [AB] ≤ [A][B], [Ax] ≤ [A][x], and
(c) [γA] ≤ |γ|[A], [γx] ≤ |γ|[x].

Following [37],A is said to be anH-matrix if < A > is anM -matrix.
We say thatA ∈ Ln,I is a Type-I (Type-II) blockH-matrix if 〈A〉 (〈〈A〉〉)
is anM -matrix. We denote this byA ∈ HI

B (A ∈ HII
B ). It follows that

HI
B ⊂ HII

B with the inclusion being strict.

Lemma 2.2. (a) If A ∈ R
n×n is an H-matrix, then|A−1| ≤ < A >−1

[33], [37].
(b) If A ∈ HI

B ⊂ Ln,I, then[A−1] ≤ 〈A〉−1 [2].
(c) If A ∈ HII

B ⊂ Ln,I, then[A−1] ≤ 〈〈A〉〉−1[D(A)−1] [2].

Definition 2.3. Let A ∈ R
n×n. The representationA = M − N is called a

splitting if M is nonsingular. It is called a convergent splitting ifρ(M−1N)
< 1. A splitting A = M − N is called
(a) regular ifM−1 ≥ O andN ≥ O [42],
(b) weak regular ifM−1 ≥ O andM−1N ≥ O [7], [36],
(c) H-splitting if < M > − |N | is anM -matrix [25],
(d) H-compatible splitting if< A > = < M > − |N | [25],
(e)HI

B-compatible splitting if〈A〉 = 〈M〉 − [N ], and
(f) HII

B -compatible splitting if〈〈A〉〉 = 〈〈M〉〉 − [D(M)−1N ].

Lemma 2.4. LetA = M − N be a splitting.
(a) If the splitting is an H-splitting, thenA and M are H-matrices and
ρ(M−1N) ≤ ρ(< M >−1|N |) < 1.
(b) If the splitting isH-compatible andA is anH-matrix, then it is anH-
splitting and thus convergent.
(c) If the splitting isHI

B-compatible, then bothA andM ∈ HI
B.

(d) If the splitting isHII
B -compatible, then bothA andM ∈ HII

B .
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Proof. Parts (a) and (b) are shown in [25]. Parts (c) and (d) follow from the
definitions and some simple bounds; see [2].2

Lemma 2.5. [41] Let H1, H2, . . . , Hi, . . . be a sequence of nonnegative
matrices inR

n×n. If there exist a real number0 ≤ θ < 1, and a vector
v > 0 in R

n, such that

Hiv ≤ θv, i = 1, 2, . . . ,

thenρ(Kj) ≤ θj < 1, whereKj = Hj · · ·H2 ·H1, and thereforelim
j→∞

Kj =

O.

Definition 2.6. A mappingΦ : R
n → R

n is calledP -bounded (blockP -
bounded) if there exists a nonnegative matrixP ∈ R

n×n (P ∈ R
L×L) such

that

|Φ(x)−Φ(y)| ≤ P |x− y| ([Φ(x)−Φ(y)] ≤ P [x− y]), for all x, y ∈ R
n.

Furthermore, ifρ(P ) < 1, Φ is said to be a (block)P -contracting mapping.

Lemma 2.7. Let A ∈ R
n×n be nonsingular. Then the mildly nonlinear

system (1) has a unique solution provided that anyone of the following
conditions hold.
(a) A is a monotone matrix,Φ is P -bounded, andρ(A−1P ) < 1.
(b) A is anH-matrix,Φ is P -bounded, andρ(< A >−1P ) < 1.
(c) A ∈ HI

B, Φ is blockP -bounded, andρ(〈A〉−1P ) < 1.
(d) A ∈ HII

B , Φ is blockP -bounded, andρ(〈〈A〉〉−1[D(A)−1]P ) < 1.

Proof. Parts (a) and (b) can be found in [1]. Parts (c) and (d) are shown in
a similar way. 2

3. Block methods

We present a general framework which includes, as a particular case, the
block two-stage method described in Sect. 1. To that end, consider the (outer
and inner) splittingsA = B` − C`, B` = M` − N`, ` = 1, . . . , L, and a set
of diagonal nonnegative matricesE`, such that

L∑
`=1

E` = I.(4)

The sequenceq(`, i) indicates, e.g., the number of inner iterations an iterative
method uses to approximate the solution of the`th system (2), at theith
iteration.
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Algorithm 2 (Nonlinear Two-stage Multisplitting). Given an initial
vectorx0, and a sequence of numbers of inner iterationsq(`, i), ` = 1, . . . ,
L, i = 1, 2, . . .

For i = 1, 2, . . . , until convergence.

For ` = 1 to L

y`,0 = xi−1

For j = 1 to q(`, i)
M`y`,j = N`y`,j−1 + C`xi−1 + Φ(xi−1)(5)

xi =
L∑

`=1

E`y`,q(`,i) .(6)

The concept of multisplittings, first introduced in [34], provides a very
general setting to study parallel block methods; see, e.g., [2], [3], [4], [13],
[17], [19], [21], [28], [31], [39]. This general setting encompasses cases,
e.g., where there is overlap, i.e., where more than one processor computes
approximations to the same variable, and theweighting matricesE` have
positive entries smaller than 1, see e.g., [22], [29]. The two-stage generaliza-
tion of Algorithm 1 can be recovered from Algorithm 2 by the appropriate
choice of diagonal matricesE`, and by choosing, e.g.,B` to be block diago-
nalD(A), cf. [13], [24], and the comments after Theorem 3.1. We emphasize
that only the components ofy`,j for which the diagonal matrixE` is nonzero
is used in (6). Thus, (5) needs to be interpreted more as a representation of
the work in thè th processor, usually involving of the order ofn` variables,
than as a global operation involving alln variables.

In order to analyze the convergence properties of Algorithm 2, we can
write theith iteration vector as follows, cf. [13],

xi =
L∑

`=1

E`


(M−1

` N`)q(`,i)xi−1

+
q(`,i)−1∑

j=0

(M−1
` N`)jM−1

` (C`xi−1 + Φ(xi−1))


 ,(7)

or equivalently

xi =
L∑

`=1

E`

(
(M−1

` N`)q(`,i)xi−1

+
(
I − (M−1

` N`)q(`,i)
)

B−1
` (C`xi−1 + Φ(xi−1))

)
.(8)

The next theorem is our first local convergence result: if the splittings
satisfy certain minimum convergence properties, and the initial guess is

Numerische Mathematik Electronic Edition
page 6 of Numer. Math. (1999) 82: 1–20



Block and asynchronous two-stage methods for mildly nonlinear systems 7

close to the solution, we have convergence, provided that as the iterations
continue, the system is better approximated. This result is similar in spirit
to that of [14].

Theorem 3.1. Let A ∈ R
n×n be a nonsingular matrix. LetΦ : R

n → R
n

be continuously differentiable in an open neighborhood of a solutionx? of
the mildly nonlinear system(1). Consider that the splittingsA = B` − C`,
` = 1, . . . , L, satisfy‖B−1

` (C` + Φ′(x?))‖∞ < 1, ` = 1, . . . , L. Assume
further that the splittingsB` = M` − N`, ` = 1, . . . , L, are convergent.
Then, if lim

i→∞
q(`, i) = ∞, ` = 1, . . . , L, there exists aδ > 0 such that

for every initial vectorx0 ∈ Sδ(x?) = {x ∈ R
n | ‖x − x?‖∞ < δ} the

sequence of vectors generated by Algorithm 2 converges tox?.

Proof. Sinceρ(M−1
` N`) < 1 and lim

i→∞
q(`, i) = ∞, ` = 1, . . . , L, given

anyε > 0, there exists an integeri0 such that‖(M−1
` N`)q(`,i)‖∞ ≤ ε, for

all i ≥ i0, ` = 1, . . . , L. Let β be a positive constant satisfying

‖B−1
` (C` + Φ′(x?))‖∞ ≤ β < 1, ` = 1, . . . , L.

Let us considerεi = xi − x? the error vector at theith iteration. Sincex?

is a fixed point of (7), or equivalently (8), we obtain after some algebraic
manipulations that, fori = 1, 2, . . . ,

εi =
L∑

`=1

E`

(
(M−1

` N`)q(`,i)εi−1

+(I − (M−1
` N`)q(`,i))(J`(x?)εi−1 + B−1

` y(x?, xi−1))
)

,

for i = 1, 2, . . . , whereJ`(x?) = B−1
` (C` + Φ′(x?)), ` = 1, . . . , L, and

y(x?, x) = Φ(x) − Φ(x?) − Φ′(x?)(x − x?).

Then,

‖εi‖∞ ≤ max
1≤`≤L

{‖(M−1
` N`)q(`,i)‖∞‖εi−1‖∞

+(1 + ‖(M−1
` N`)q(`,i)‖∞)(‖J`(x?)‖∞‖εi−1‖∞

+‖B−1
` ‖∞‖y(x?, xi−1)‖∞)}, i = 1, 2, . . . .(9)

On the other hand, by the hypotheses we can assume, without loss of gener-
ality, thatΦ is continuously differentiable on the convex setSε(x?) = {x ∈
R

n | ‖x − x?‖∞ < ε}. Hence (see e.g., [36, Exercise 3.2.6]), there exists
α > 0 such that

‖y(x?, x)‖∞ ≤ α‖x − x?‖2
∞ for all x ∈ Sε(x?).(10)
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8 Z.-Z. Bai et al.

From (9), we can consider0 < δ < ε small enough such that, ifx0 ∈ Sδ(x?)
then

‖xi − x?‖∞ < ε for all i < i0.(11)

Furthermore, from (9) again, ifi ≥ i0 we have

‖εi‖∞ ≤ max
1≤`≤L

{(ε + (1 + ε)β)‖εi−1‖∞

+(1 + ε)‖B−1
` ‖∞‖y(x?, xi−1)‖∞}

= %(ε)‖εi−1‖∞ + γ`0(ε)‖y(x?, xi−1)‖∞,(12)

where%(ε) = ε + (1 + ε)β andγ`0(ε) = (1 + ε) max
1≤`≤L

{‖B−1
` ‖∞}. Then,

for i = i0, using (10), (11) and (12) we obtain

‖εi0‖∞ ≤ %(ε)‖εi0−1‖∞ + γ`0(ε)α‖εi0−1‖2
∞

< %(ε)‖εi0−1‖∞ + γ`0(ε)αε‖εi0−1‖∞ = ϕ`0(ε)‖εi0−1‖∞,

whereϕ`0(ε) = %(ε)+γ`0(ε)αε. Without loss of generality we can consider
ε small enough such thatϕ`0(ε) < 1. Then, by induction we easily obtain

‖εi‖∞ < ϕ`0(ε)‖εi−1‖∞ with ϕ`0(ε) < 1, for all i ≥ i0,

and then the proof is complete.2

Several comments on alternative hypotheses for Theorem 3.1 are in or-
der. First, the infinite norm can be replaced by any weighted max-norm
associated with a positive vector; see (3) and Sect. 4. Second, when all
the outer splittings in Algorithm 2 are the same, i.e.,B` = B, C` = C,
` = 1, . . . , L, the assumption‖B−1(C + Φ′(x?))‖∞ < 1 can be replaced
by the more generalρ(B−1(C + Φ′(x?))) < 1. This applies, in particular,
for the two-stage version of Algorithm 1. Third, the fact thatΦ is contin-
uously differentiable in an open neighborhood ofx? can be relaxed to the
following set of assumptions. The mapΦ is Lipschitz continuous,Φ is B-
differentiable (i.e., for everyz ∈ R

n there exists a positively homogeneous
function BΦ(z) : R

n → R
n called theB-derivative ofΦ at z such that

lim
v→0

Φ(z + v) − Φ(z) − BΦ(z)(v)
‖v‖ = 0), and the associated functionBΦ

is Lipschitz continuous atx?; see e.g., [1], [36]. We note thatB-derivatives
are similar to directional derivatives. These hypotheses were used in [1] for
the proof of convergence of the point two-stage method with a fixed number
of inner iterations.

In the next results, we prove the convergence of Algorithm 2 forany
number of inner iterations in a few general cases, namely, when the matrix
A is monotone, or it is anH-matrix or blockH-matrix of different types.
We impose further conditions on the outer and inner splittings.
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Theorem 3.2. Let A ∈ R
n×n be a monotone matrix. Let the splittings

A = B` − C`, ` = 1, . . . , L, be regular and the splittingsB` = M` − N`,
` = 1, . . . , L, be weak regular. Assume further thatΦ : R

n → R
n is a P -

bounded mapping such thatρ(A−1P ) < 1. Then, the nonlinear two-stage
multisplitting Algorithm 2 converges to the unique solution of the mildly
nonlinear system(1), for any initial vectorx0 and any sequence of numbers
of inner iterationsq(`, i) ≥ 1, ` = 1, . . . , L, i = 1, 2, . . . .

Proof. From Lemma 2.7 it follows that there exists a uniquex? ∈ R
n such

thatAx? = Φ(x?). Letεi = xi −x? be the error vector at theith iteration of
Algorithm 2. Sincex? is a fixed point of (7), it follows that fori = 1, 2, . . . ,

εi =
L∑

`=1

E`

(
(M−1

` N`)q(`,i)εi−1(13)

+
q(`,i)−1∑

j=0

(M−1
` N`)jM−1

` (C`εi−1 + Φ(xi−1) − Φ(x?))
)

.

Then, using the inequalitiesM−1
` N` ≥ O, ` = 1, . . . , L, and

M−1
` C` ≥ O, ` = 1, . . . , L,(14)

and the fact thatΦ is P -bounded, we obtain the following bound:

|εi| ≤
L∑

`=1

E`T
(`)
i |εi−1|, i = 1, 2, . . . ,

where

T
(`)
i = (M−1

` N`)q(`,i) +
q(`,i)−1∑

j=0

(M−1
` N`)jM−1

` (C` + P ) ≥ O.(15)

On the other hand, some algebraic manipulations yields the equality

(M−1
` N`)q(`,i) +

q(`,i)−1∑
j=0

(M−1
` N`)jM−1

` C`

= I −
q(`,i)−1∑

j=0

(M−1
` N`)jM−1

` A,

and we rewrite (15) as

T
(`)
i = I −

q(`,i)−1∑
j=0

(M−1
` N`)jM−1

` (A − P ).(16)
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10 Z.-Z. Bai et al.

Moreover, since the matricesA−1 andP are nonnegative, andρ(A−1P ) <
1, the matrixA − P = A(I − A−1P ) is monotone.
Consider any fixed vectore > 0 (e.g.,e = (1, 1, . . . , 1)T) andv = (A −
P )−1e. Since(A − P )−1 ≥ O and no row of(A − P )−1 can have all null
entries, we getv > 0. By the same arguments,M−1

` e > 0, ` = 1, . . . , L.
Then, we have from (16) that

T
(`)
i v = v −

q(`,i)−1∑
j=0

(M−1
` N`)jM−1

` e

= v − M−1
` e −

q(`,i)−1∑
j=1

(M−1
` N`)jM−1

` e.

Becausee > 0 and the matricesM−1
` N` and M−1

` are nonnegative, it

follows that T (`)
i v ≤ v − M−1

` e. Moreover, sinceT (`)
i v ≥ 0 and v −

M−1
` e < v, there exists constants0 ≤ θ` < 1, ` = 1, . . . , L, such that

T
(`)
i v ≤ θ`v, ` = 1, . . . , L, i = 1, 2, . . . . Hence, settingθ = max

1≤`≤L
{θ`},

we get
L∑

`=1

E`T
(`)
i v ≤ θv. By Lemma 2.5, this implies that the sequence of

error vectors tends to zero, and then the proof is complete.2

As it was pointed out in [23], the hypothesis on the outer splittings in
Theorem 3.2 can be relaxed to requireA = B` −C` to also be weak regular
and, in addition,M−1

` C` ≥ O; see (14).

Theorem 3.3. LetA ∈ R
n×n be anH-matrix. Let the splittingsA = B` −

C`, andB` = M` − N`, ` = 1, . . . , L, beH-compatible. Assume further
thatΦ : R

n → R
n is aP -bounded mapping such thatρ(< A >−1P ) < 1.

Then, the nonlinear two-stage multisplitting Algorithm 2 converges to the
unique solution of the mildly nonlinear system(1), for any initial vectorx0
and any sequence of numbers of inner iterationsq(`, i) ≥ 1, ` = 1, . . . , L,
i = 1, 2, . . . .

Proof. By Lemma 2.4, the matricesM`, ` = 1, . . . , L, areH-matrices.
Therefore, using Lemma 2.2, we have the inequalities|M−1

` | ≤ < M` >−1.
Thus, ifεi = xi−x? is the error at theith iteration of Algorithm 2, it follows
from (13) that

|εi| ≤
L∑

`=1

E`

(
|M−1

` N`|q(`,i)|εi−1|

+
q(`,i)−1∑

j=0

|M−1
` N`|j |M−1

` |(|C`||εi−1| + |Φ(xi−1) − Φ(x?)|)
)

Numerische Mathematik Electronic Edition
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Block and asynchronous two-stage methods for mildly nonlinear systems 11

≤
L∑

`=1

E`T̃
(`)
i |εi−1|, i = 1, 2, . . . ,

where

T̃
(`)
i = (< M` >−1|N`|)q(`,i)

+
q(`,i)−1∑

j=0

(< M` >−1|N`|)j< M` >−1(|C`| + P ) .(17)

The matrices
L∑

`=1

E`T̃
(`)
i can be considered as the matrices used in the proof

of Theorem 3.2, to bound the error vectorε̃i (i.e.,|ε̃i| ≤
L∑

`=1

E`T̃
(`)
i |ε̃i−1|) of

an iterative process corresponding to Algorithm 2 to solve the mildly nonlin-
ear system< A >x = Φ(x), with outer splittings< A > = < B` >−|C`|
and inner splittings< B` > = < M` > − |N`|, ` = 1, . . . , L. That system
and these splittings satisfy the hypotheses of Theorem 3.2, and therefore we
can affirm that there exists a positive vectorṽ and a constant0 ≤ θ < 1

such that
L∑

`=1

E`T̃
(`)
i ṽ ≤ θṽ. Hence, by Lemma 2.5 the proof is complete.

2

In the case that all the outer splittings in Algorithm 2 are the same, i.e.,
B` = B, C` = C, ` = 1, . . . , L, e.g., for the two-stage version of Algorithm
1, the assumption in Theorem 3.3 that the outer splittings beH-compatible
can be replaced by the less restrictive hypothesis of being anH-splitting.

The next convergence result corresponds to the Type-I and Type-II block
H-matrices. Its proof is similar to those in Theorems 3.2 and 3.3, but note
that many of the inequalities are inRL and not inR

n.

Theorem 3.4. Let A ∈ HI
B (HII

B ) ⊂ Ln,I(n1, n2, . . . , nL). Let the split-
tings A = B` − C` and B` = M` − N`, ` = 1, 2, . . . , L, be HI

B-
compatible (HII

B -compatible and such thatD(M`) = D(B`) = D(A)),
and the weighting matricesE`, ` = 1, 2, . . . , L, satisfying(4), satisfy in

addition
L∑

`=1

[E`] ≤ I, the L × L identity matrix. Assume further that

Φ : R
n → R

n is a blockP -bounded mapping such thatρ(〈A〉−1P ) < 1
(ρ(〈〈A〉〉−1[D(A)−1]P ) < 1). Then, the nonlinear two-stage multisplitting
Algorithm 2 converges to the unique solution of the mildly nonlinear system

Numerische Mathematik Electronic Edition
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12 Z.-Z. Bai et al.

(1), for any initial vectorx0 and any sequence of numbers of inner iterations
q(`, i) ≥ 1, ` = 1, . . . , L, i = 1, 2, . . . .

Proof. From Lemma 2.7 it follows that (both in the Type-I and Type-II
cases) there exists a unique vectorx? ∈ R

n such thatAx? = Φ(x?). Thus,
if we let εi = xi − x? be the error at theith iteration of Algorithm 2, then
(13) holds.

For the Type-I case, we note that theHI
B-compatibility of the splittings

imply thatM` ∈ HI
B, and thus by Lemma 2.2 (b), we have that[M−1

` ] ≤
〈M`〉−1, ` = 1, 2, . . . , L. Using this last inequality, by taking block absolute
values on both sides of (13), applying Lemma 2.1 and the blockP -bounded
property ofΦ, we obtain the inequality

[εi] ≤
L∑

`=1

[E`] T̃
(`)
i,I [εi−1], i = 1, 2, . . . , where(18)

T̃
(`)
i,I = (〈M`〉−1[N`])q(`,i)

+
q(`,i)−1∑

j=0

(〈M`〉−1[N`])j〈M`〉−1([C`] + P )(19)

is a nonnegative matrix inRL×L. After some manipulations we obtain the
following identity, cf. (16).

T̃
(`)
i,I = I −

q(`,i)−1∑
j=0

(〈M`〉−1[N`])j〈M`〉−1(〈A〉 − P ).

Furthermore, since〈A〉−1 andP are nonnegative matrices and by the hy-
pothesisρ(〈A〉−1P ) < 1, the matrix(〈A〉−P ) is a monotone matrix. Now,
in a way similar to the proof of Theorem 3.2, we can deduce that there exist
a positive vectorv ∈ R

L and a nonnegative constantθ ∈ [0, 1) such that

T̃
(`)
i,I v ≤ θv, ` = 1, 2, . . . , L, i = 1, 2, . . . .

By Lemma 2.5, we immediately get[εi] → 0 wheni → ∞. This implies
thatεi → 0 wheni → ∞, completing the proof of the Type-I case.

For the Type-II case, let us denote bỹP = [D(A)−1]P , and for` =
1, 2, . . . , L, B̃` = D(A)−1B`, C̃` = D(A)−1C`, M̃` = D(A)−1M`, and
Ñ` = D(A)−1N`. With this notation, observe that̃M` ∈ HI

B, and that by

Lemma 2.2 (b), we have[M̃−1
` ] ≤ 〈M̃`〉−1

, ` = 1, 2, . . . , L. Using these
relations, taking block absolute values on both sides of (13) as before, after

Numerische Mathematik Electronic Edition
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insertingD(A)D(A)−1 in the appropriate places, we obtain

[εi] ≤
L∑

`=1

[E`]


(〈M̃`〉−1

[Ñ`])q(`,i)

+
q(`,i)−1∑

j=0

(〈M̃`〉−1
[Ñ`])j〈M̃`〉−1

([C̃`] + P̃ )


 [εi−1].

This expression has the same form as (18), with matrices of the same struc-
ture as (19). To complete the proof, we note that the splittingsD(A)−1A =
B̃` − C̃`, andB̃` = M̃` − Ñ` areHI

B-compatible and correspond to the
solution of the systemD(A)−1Ax = D(A)−1Φ(x), which satisfy the hy-
potheses of the Type-I case.2

We should point out that the hypothesis of Theorem 3.4 can be changed
to apply to the solution of another nonlinear system

Hx = Φ(x),(20)

where the matrixH ∈ Ln,I is equimodular toA, i.e., it belongs to the set
ΩI

B(A) = {H = (Hij) ∈ Ln,I, ‖H−1
ii ‖ = ‖A−1

ii ‖, ‖Hij‖ = ‖Aij‖, i 6=
j, i, j = 1, . . . , L}, in the Type-I case, and to the setΩII

B(A) = {H =
(Hij) ∈ Ln,I, ‖H−1

ii Hij‖ = ‖A−1
ii Aij‖, i, j = 1, . . . , L} in the Type-II

case; see [2]. Furthermore, Theorem 3.4 also applies, essentially with the
same proof, to matricesA (or H) which may not have a nonsingularD(A),
or such that they do not belong toHI

B or HII
B but such that there exists

nonsingular matricesR andS, such thatRAS has those properties; see [2].
These comments apply to Theorem 4.4 in the next section as well.

We conclude this section by remarking that for the inner iterations one
can chose, in addition to the classical splittings corresponding to Jacobi,
Gauss-Seidel, etc., relaxed methods such as JOR, SOR, AOR, etc.. In the
latter cases, the relaxation parameters need to be chosen in such a way that
the splittings satisfy the hypotheses of Theorems 3.2, 3.3 and 3.4. This was
done for the point methods in [1], and the same considerations carry through
to the block methods studied here.

4. Asynchronous iterations

The computational model we consider for the asynchronous iterations is as
follows. Each processor, say the`th processor, starts a cycle of computations
by collecting the most recent vectors computed by the other processors, say
the processorsk, k 6= `. Let us call this cycle theith iteration (which
would be different than theith iteration in the synchronous case). Thus, the

Numerische Mathematik Electronic Edition
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14 Z.-Z. Bai et al.

iteration subscript is increased every time a processor starts a new cycle
of computations. The vectors computed by the other processors will be
from older cycles, some sayi − 1, but many others older than that, and
we call these earlier cyclesr(k, i), i.e., the cycle in which the processor
k computed the vector used at the beginning of theith cycle (from this
definition the condition (21) below follows directly). In other words, in order
to get a new vectorx(`)

i , the`th processor collects the vectorsx
(k)
r(k,i), and

uses the weighting matrices to get the vector
L∑

k=1

Ekx
(k)
r(k,i). This sequence

of weighted vectors can be considered in practice as the sequence of iterate
vectors. Recall that in fact not all the components of the vectorsx

(k)
r(k,i) are

needed in the computations, so that the local storage is of ordern and not
nL. Formally, we define the setsJi ⊆ {1, 2, . . . , L}, i = 1, 2, . . . , as` ∈ Ji

if the `th processor starts its computation of a new iterate at theith step.
As is customary in the description and analysis of asynchronous al-

gorithms, we assume that the subscriptsr(`, i) and the setsJi satisfy the
following conditions. They appear as classical conditions in convergence
results for asynchronous iterations; see e.g., [5], [8], [15], [20].

r(`, i) < i for all ` = 1, 2, . . . L, i = 1, 2, . . . .(21)

lim
i→∞

r(`, i) = ∞ for all ` = 1, 2, . . . , L.(22)

The set{i | ` ∈ Ji} is unbounded for all̀ = 1, 2, . . . , L.(23)

With this notation, the asynchronous counterpart of Algorithm 2 can be
described by the following algorithm.

Algorithm 3 (Nonlinear Asynchronous Two-stage Multisplitting).
Given the initial vectorsx(`)

0 = x0, ` = 1, . . . , L.
For i = 1, 2, . . .

x
(`)
i =




x
(`)
i−1 if ` 6∈ Ji

(M−1
` N`)q(`,i)

L∑
k=1

Ekx
(k)
r(k,i)

+
q(`,i)−1∑

j=0

(M−1
` N`)jM−1

` (C`

L∑
k=1

Ekx
(k)
r(k,i)

+Φ(
L∑

k=1

Ekx
(k)
r(k,i))) if ` ∈ Ji.

(24)

In order to analyze Algorithm 3, we consider the operatorsG(i) =
(G(1)(i), . . . , G(L)(i)), with G(`)(i) : R

nL → R
n defined forŷ ∈ R

nL as

Numerische Mathematik Electronic Edition
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Block and asynchronous two-stage methods for mildly nonlinear systems 15

follows, for ` = 1, . . . , L andi = 1, 2, . . . .

G(`)(i)(ŷ) = (M−1
` N`)q(`,i)Qŷ+

q(`,i)−1∑
j=0

(M−1
` N`)jM−1

` (C`Qŷ+Φ(Qŷ)),

whereQ = [E1, . . . , E`, . . . , EL] ∈ R
n×nL. The asynchronous iteration

(24) can then be rewritten as the following iteration.

x
(`)
i =

{
x

(`)
i−1 if ` 6∈ Ji

G(`)(i)
(
x

(1)
r(1,i), . . . , x

(`)
r(`,i), . . . , x

(L)
r(L,i)

)
if ` ∈ Ji.

(25)

The following lemma, which is a special case of Theorem 3.2 in [26], is
used in our convergence proofs.

Lemma 4.1. LetG(i) be a sequence of operators onR
nL having a common

fixed point̂x?. Let‖ · ‖` be a norm onRn, ` = 1, . . . , L. Leta ∈ R
L, a > 0

and denote‖ · ‖a the weighted max-norm‖x‖a = max
1≤`≤L

{ 1
a`

‖x(`)‖`}. For

all i = 1, 2, . . . , assume that there exists a constant0 ≤ α < 1 such that

‖G(i)x̂ − x̂?‖a ≤ α‖x̂ − x̂?‖a, for all x̂ ∈ R
nL.

Assume further that the sequencer(`, i) and the setsJi, ` = 1, . . . , L, i =
1, 2, . . . , satisfy conditions(21–23). Then the asynchronous iteration(25)
converges tôx? for any initial vectorx̂0.

Theorem 4.2. Let A ∈ R
n×n be a monotone matrix. Let the splittings

A = B` − C`, ` = 1, . . . , L, be regular and the splittingsB` = M` − N`,
` = 1, . . . , L, be weak regular. Suppose thatΦ : R

n → R
n is aP -bounded

mapping such thatρ(A−1P ) < 1. Assume further that the sequencer(`, i)
and the setsJi, ` = 1, . . . , L, i = 1, 2, . . . , satisfy conditions(21–23). Then,
the nonlinear asynchronous two-stage multisplitting Algorithm 3 converges
to (xT

? , . . . , xT
? )T ∈ R

nL, wherex? is the unique solution of the mildly

nonlinear system(1), for any initial vectorsx(`)
0 , ` = 1, . . . , L, and any

sequence of numbers of inner iterationsq(`, i) ≥ 1, ` = 1, . . . , L, i =
1, 2, . . . .

Proof. From the proof of Theorem 3.2 we know that there exists a positive
vectorv and a constant0 ≤ θ < 1 such that

T
(`)
i v ≤ θv, ` = 1, . . . , L, i = 1, 2, . . . ,(26)

where the matricesT (`)
i are defined in (15). Let us definev̂ = (vT, . . . , vT)T

∈ R
nL andx̂? = (xT

? , . . . , xT
? )T ∈ R

nL. As x̂? is a fixed point ofG(i), it is
easy to prove that∣∣∣G(`)(i)x̂ − x?

∣∣∣ ≤ T
(`)
i Q|x̂ − x̂?|, ` = 1, . . . , L, i = 1, 2, . . . ,

Numerische Mathematik Electronic Edition
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16 Z.-Z. Bai et al.

for all x̂ ∈ R
nL. Thus

|G(i)x̂ − x̂?| ≤ H(i)|x̂ − x̂?|, i = 1, 2, . . . ,(27)

where

H(i) =




T
(1)
i Q

...

T
(L)
i Q


 ∈ R

nL×nL.(28)

From (28) and (26), it follows thatH(i)v̂ ≤ θv̂. Hence, using the monotonic
vector norm‖ · ‖v̂ defined in (3),‖H(i)‖v̂ ≤ θ, and then by (27),

‖G(i)x̂ − x̂?‖v̂ ≤ θ‖x̂ − x̂?‖v̂, i = 1, 2, . . . .

Since the norm‖ŷ‖v̂ in R
nL can be expressed in the form‖ŷ‖v̂ =

max
1≤`≤L

‖ŷ(`)‖v, for anyŷ = (ŷ(1)T , . . . , ŷ(L)T)T, using Lemma 4.1, the con-

vergence is shown. 2

Again, as with the hypotheses of Theorem 3.2, in Theorem 4.2 the outer
splittings need not be regular, but just weak regular with the additional
hypothesis (14). We remark that an alternative proof could be obtained using
the theory of paracontracting operators; see [16].

Theorem 4.3. LetA ∈ R
n×n be anH-matrix. Let the splittingsA = B` −

C`, and B` = M` − N`, ` = 1, . . . , L, be H-compatible. Suppose that
Φ : R

n → R
n is a P -bounded mapping such thatρ(< A >−1 P ) < 1.

Assume further that the sequencer(`, i) and the setsJi, ` = 1, . . . , L,
i = 1, 2, . . . , satisfy conditions(21–23). Then, the nonlinear asynchronous
two-stage multisplitting Algorithm 3 converges to(xT

? , . . . , xT
? )T ∈ R

nL,
wherex? is the unique solution of the mildly nonlinear system(1), for any
initial vectorsx

(`)
0 , ` = 1, . . . , L, and any sequence of numbers of inner

iterationsq(`, i) ≥ 1, ` = 1, . . . , L, i = 1, 2, . . . .

Proof. Using similar notation as in Theorem 4.2 we can prove, for allx̂ ∈
R

nL, that∣∣∣G(`)(i)x̂ − x?

∣∣∣ ≤ T̃
(`)
i Q|x̂ − x̂?|, ` = 1, . . . , L, i = 1, 2, . . . ,

where matrices̃T (`)
i are defined in (17). By the proof of Theorem 3.3 we

haveT̃
(`)
i ṽ ≤ θṽ for someṽ ∈ R

n, ṽ > 0 and` = 1, . . . , L, and thus the
theorem follows in the same manner as Theorem 4.2.2

Analogous to Theorem 4.3, as well as Theorem 3.4, we can establish the
following convergence theorem for the systems (1) and (20). Since this new
theorem can be demonstrated in similar ways to the proof of Theorem 3.4
with slight modifications, we omit its proof.

Numerische Mathematik Electronic Edition
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Block and asynchronous two-stage methods for mildly nonlinear systems 17

Theorem 4.4. Let A ∈ HI
B (HII

B ) ⊂ Ln,I(n1, n2, . . . , nL). Let the split-
tings A = B` − C` and B` = M` − N`, ` = 1, 2, . . . , L, be HI

B-
compatible (HII

B -compatible and such thatD(M`) = D(B`) = D(A)),
and the weighting matricesE`, ` = 1, 2, . . . , L, satisfying(4), satisfy in

addition
L∑

`=1

[E`] ≤ I, the L × L identity matrix. Assume further that

Φ : R
n → R

n is a blockP -bounded mapping such thatρ(〈A〉−1P ) < 1
(ρ(〈〈A〉〉−1[D(A)−1]P ) < 1). Then, the nonlinear asynchronous two-stage
multisplitting Algorithm 3 converges to(xT

? , . . . , xT
? )T ∈ R

nL, wherex? is
the unique solution of the mildly nonlinear system(1), for any initial vec-
tors x

(`)
0 , ` = 1, . . . , L, and any sequence of numbers of inner iterations

q(`, i) ≥ 1, ` = 1, . . . , L, i = 1, 2, . . . .

We point out that whenΦ(x) = b ∈ R
n, i.e., when system (1) is linear,

Algorithm 3 reduces to Algorithm 6 in [13], and thus Theorems 4.2, 4.3 and
4.4 apply to that case as well. In fact, the results here are more general, since
we do not assume that the weighting matrices form a partition of the identity,
i.e., when the entries of eachE` are0 or 1. In particular, Theorems 4.2, 4.3
and 4.4 provide general convergence results for two-stage multisplitting
methods with overlap.

We end the paper with a discussion on a different asynchronous compu-
tational model, analogous to the one used in [11] for linear systems. Namely,
for i = 0, 1, 2, . . . ,

xi+ri = (I − Eji)xi+ri−1 + Eji

(
(M−1

` N`)q(`,i)xi

+
q(`,i)−1∑

j=0

(M−1
` N`)jM−1

` (C`xi + Φ(xi))
)

,(29)

where{ji}∞
i=0, 1 ≤ ji ≤ L, is a sequence of integers that indicates the

processor which updates the approximation to the solution at theith iteration
andri−1 is the number of times that processors other than thejith processor
update the approximation of the solution during the time interval in which
thejith processor’s calculations are performed.

The computational model (29) is based on Model B of [10], and condi-
tions (21–23) are replaced by the assumption that the sequence{ji}∞

i=0 is
regulated; see e.g., [13] for differences and analogies between both sets of
conditions. The proof of the convergence of the iteration (29) with the same
hypotheses as in Theorems 3.2, 3.3 and 3.4 follows in a similar way as the
proof of [31, Theorem 3.2] which in turn is based on [10, Theorem 2.2], and
as the proof of [4, Theorem 1].
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18 Z.-Z. Bai et al.

The two asynchronous models (24) and (29) produce the same sequence
of iterate vectors when the weighting matricesE`, ` = 1, . . . , L, form a
partition of the identity, but when there is overlap, the models are different.
In Algorithm 3 the components calculated by the`th processor, say, uses only
information calculated by the other processors (k 6= `). However, in model
(29) thè th processor introduces in its computations some older information
computed in thèth processor in a previous step.
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