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Summary. Block parallel iterative methods for the solution of mildly non-
linear systems of equations of the fouin: = & () are studied. Two-stage
methods, where the solution of each block is approximated by an inner itera-
tion, are treated. Both synchronous and asynchronous versions are analyzed,
and both pointwise and blockwise convergence theorems provided. The case
where there are overlapping blocks is also considered. The analysis of the
asynchronous method when applied to linear systems includes cases not
treated before in the literature.
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1. Introduction

In this paper we consider the solution of the mildly nonlinear system

(1) Az = d(z),
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2 Z.-Z.Baietal.

whereA € R™*" is nonsingular an@ : R” — R" is a nonlinear function
with certain local smoothness properties; see Sects. 3 and 4. This equation
arises in many problems of science and engineering, and in particular in
discretizations of certain nonlinear differential equations, e.g., of the form
Au = o(u); see e.g., [36].
We are interested in solution methods of (1) in which the madfriis
L

partitioned intoL by L blocksA4;; € R™*", with Z nge =mn, i.e.,
=1

Ae ]Ln(nl,ng, . ,nL)
= [A€R™™ | A= (Agy), Ag, € R"¥™ 1< ¢k < L},

and Ay, are nonsingular fof = 1,..., L. When the context is clear we
will simply useL,, for L,,(n1, ne,...,nz). This partition may correspond
to a partition of the underlying grid, or of the domain of the differential
equation being studied, or it may originate from a partitioning algorithm of
the sparse matri¥, as done, e.g., in [6], [35]. In particular, we are interested
in several parallel generalizations of the following block Jacobi algorithm.
Letz; be the vector at th&h iteration. Assume that the vectarsand®(z;)

are partitioned in subvectors” | &(x;)© € R™, ¢ = 1,..., L, in away
conformally with the partition of4, i.e.,

T; € Vn(nl,TLQ,-.-,TLL)
={zeR"|z= (a:(l)T, . ,m(L)T)T,x(z) eR™,1<¢<L}.

Algorithm 1 (Block Jacobi). Given an initial vectotr,

Fori =1,2,..., until convergence.
For/{=1toL
L
(2) Solve Aggl‘ge) = — Z Agk$l(lj)l + ¢(l’i—1)(£)-
k#e, k=1

The block methods considered in this paper include, in particular, those
in which (2) is not solved exactly, but instead approximated using an (inner)
iterative method. These are block two-stage methods, also called inner/outer
iterations, and have been studied extensively for linear and nonlinear sys-
tems; see e.qg., [12], [13], [14], [25], [32], and the references given therein.
A point two-stage method for the solution of (1), i.e., when= 1, was
recently studied in [1]. Algorithm 1 as well as its two-stage generalizations
are ideal for parallel processing, since ugidifferent processors can each
solve or approximate one of the problems (2). These algorithms are syn-
chronous in the sense that to begin the calculation ofitné&erate, each
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Block and asynchronous two-stage methods for mildly nonlinear systems 3

processor has to wait until all processors have completed their calculation
of the (i — 1)th iterate.

In this paper, we also study asynchronous block methods, i.e., methods
in which each processor begins a new calculation without waiting for the
others to complete their respective tasks. Asynchronous methods have the
potential of converging much faster than synchronous methods, especially
when there is load imbalance, e.g., when one of the systems (2) takes much
longer to solve than all the others; see e.g., [13], [24], [27], [31]. A block
asynchronous method for the solution of (1) was analyzed in [9] using a
different approach, and without considering the two-stage case.

In the following section we present some definitions and preliminary
results used in the paper. In Sect. 3, we present a general framework to
study the block methods and prove their convergence, while in Sect. 4 we
analyze the convergence of the asynchronous methods. Our results apply to
a rather general class of honsingular matrices, including hitfekatrices;
see e.g., [2], [38], [40]. We introduce a very general computational model
for these asynchronous iterations. Thus, our convergence proofs include a
large class of methods, including those with overlap.

2. Preliminaries

Given a vectorr € R", we say that it is nonnegative (positive), denoted
x > 0 (z > 0), if all components of are nonnegative (positive). Similarly,
if z,y e R", 2z >y (z > y) means that —y > 0 (x —y > 0). For a
vectorz € R", |z| denotes the vector whose components are the absolute
values of the corresponding components:oT hese definitions carry over
immediately to matrices.

Letz > 0, we consider the vector norm

3 —
(3) Y]] Jpax,

Y
T

This vector norm is monotonic and for every matixe R"*" it satisfies
Il |Blx|l. = ||Bll«, where|| B||,, denotes the matrix norm d# induced by
the vector norm defined in (3); see e.g., [30]. Anonsingular matrscalled
M-matrix if it has non-positive off-diagonal entries and it is monotone (i.e.,
A1 > 0); see e.g., [7], [42]. By(A) we denote the spectral radius of the
square matrix4.

We define the following subset @f,, used in the analysis of iterative
methods for blockH-matrices; see, e.g., [3], [4], [17], [40]. Again, we do

not write the parameter@;, ns,...,ny), when they are clear from the
context.
Ly 1(ni,n2,...,nr)
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4 Z.-Z.Baietal.

={A=(Aw) €L, | AyeR"™™nonsingulay ¢ =1,...,L},

ForamatrixA € L,,, let D(A) = Diag(Ai1, Ago, ..., Arr), i.€., its block-
diagonalpart. Thusi € L,, rifandonlyif A € LL,, andD(A) is nonsingular.
For any matrixA = (a;;) € R"*", we define its comparison matrix
<A>= (Oéij) byOéu = \aii\, Qj = —|CL7;]'|, ) 75 7. Slmllal’ly, forA € Ln,l
we define its type-I and type-1l comparison matri¢ds = ((4),;) € R**"
and((4)) = (((4));;) € RF*F as(A),; = A7 (4); = 1144,
respectively; see [2], [18], [38]. We also define, fdr € L, the block
absolute valugA] = (||4;;) € R**. The definition for avectar € V,, =
Vi(ni,n2,...,np) is analogous. Herg - || is any consistent matrix norm
satisfying||I|| = 1. This block absolute value has the following properties.

Lemma2.1. [2] LetA, B € L,, z,y € V,, andy € R. Then,

(@) [[A] - [B]| < [A+ B] < [A] + [B], |[z] = [yl < [z +y] < [z] + [y],
(b) [AB] < [A][B], [Ax] < [A][z], and

(©) vA] < WA, [ya] < [vyl[=].

Following [37], A is said to be ar{-matrix if < A > is an M-matrix.
We say thatd € L,, 1 is a Type-| (Type-Il) blockd -matrix if (A) (((A)))
is an M-matrix. We denote this byl € HY (A € HY). It follows that
H}, C H} with the inclusion being strict.

Lemma2.2. (a) If A € R™" is an H-matrix, then|A™'| < < A >"!
[33], [37].

(b) If A € Hf C Ly, then[A™] < (4)7' [2].

(©)If A e HY C Ly, then[A™] < ((A)) "' [D(A)~"1 [2].

Definition 2.3. Let A € R™*". The representatiod = M — N is called a
splitting if M is nonsingular. It is called a convergent splitting{f\/ —* ')
< 1. Asplitting A = M — N is called

(a) regular ifA/~! > O andN > O [42],

(b) weak regular ifv/~! > O andM !N > O [7], [36],

(c) H-splitting if < M > — |N| is anM-matrix [25],

(d) H-compatible splitting ift< A > =< M > — |N| [25],

(e) H-compatible splitting i A) = (M) — [N], and

() H3-compatible splitting if{(A)) = ((M)) — [D(M)~1N].

Lemma 2.4. Let A = M — N be a splitting.

(a) If the splitting is an H-splitting, themd and M are H-matrices and
p(M~IN) < p(< M >7NJ|) < 1.

(b) If the splitting isH-compatible and4 is an H-matrix, then it is anH -
splitting and thus convergent.

(c) If the splitting isH ;-compatible, then bot and M € HL,.

(d) If the splitting isH 3-compatible, then botd and M € HE.
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Block and asynchronous two-stage methods for mildly nonlinear systems 5

Proof. Parts (a) and (b) are shown in [25]. Parts (c) and (d) follow from the
definitions and some simple bounds; see [2]3

Lemma 2.5. [41] Let Hy, Ho, ..., H;,... be a sequence of nonnegative
matrices inR™*". If there exist a real numbdr < § < 1, and a vector
v > 01in R", such that

Huv<6v,i=1,2,...,

thenp(K;) < 67 < 1,whereK; = H; - - - Ho-Hy, and thereforelim K; =
Jj—o00
0.

Definition 2.6. A mapping® : R" — R" is called P-bounded (blockP-
bounded) if there exists a nonnegative maffix R™"*" (P € R¥*¥) such
that

|P(x) —(y)| < Plz—y| ([@(z) —2(y)] < Plz—y]), forallz,y € R".
Furthermore, ifp(P) < 1, @ is said to be a (block}-contracting mapping.

Lemma2.7. Let A € R™ " be nonsingular. Then the mildly nonlinear
system (1) has a unique solution provided that anyone of the following
conditions hold.

(a) A is a monotone matrixp is P-bounded, ang(A~1P) < 1.

(b) A is an H-matrix, @ is P-bounded, angh(< A >~1P) < 1.

(c) A € HL, & is block P-bounded, angh({4) ' P) < 1.

(d) A € HY, & is block P-bounded, ang(((A)) *[D(4)~]P) < 1.

Proof. Parts (a) and (b) can be found in [1]. Parts (c) and (d) are shown in
a similarway. O

3. Block methods

We present a general framework which includes, as a particular case, the
block two-stage method described in Sect. 1. To that end, consider the (outer
and inner) splittingsA = By — Cy, By = My — Ny, £ =1,..., L, and a set

of diagonal nonnegative matricé%, such that

(4) Y E =1

(=1

The sequencg ¢, i) indicates, e.g., the number of inner iterations an iterative
method uses to approximate the solution of ftte system (2), at théth
iteration.
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6 Z.-Z.Baietal.

Algorithm 2 (Nonlinear Two-stage Multisplitting). Given an initial
vectorzg, and a sequence of numbers of inner iteratigids:), £ = 1, . . .,
Li=1,2,...

Fori =1,2,..., until convergence.
Fore=1toL
Ye,0 = Ti—1
Forj =1toq(¢,1)
(5) Moyej = Neyej—1 + Coxi1 + P(zi-1)
L
(6) T = ZEZyé,q(é,i) :
=1

The concept of multisplittings, first introduced in [34], provides a very
general setting to study parallel block methods; see, e.qg., [2], [3], [4], [13],
[17], [19], [21], [28], [31], [39]. This general setting encompasses cases,
e.g., where there is overlap, i.e., where more than one processor computes
approximations to the same variable, and wWeghting matricess, have
positive entries smaller than 1, see e.g., [22], [29]. The two-stage generaliza-
tion of Algorithm 1 can be recovered from Algorithm 2 by the appropriate
choice of diagonal matrices,, and by choosing, e.gh, to be block diago-
nalD(A), cf.[13], [24], and the comments after Theorem 3.1. We emphasize
that only the components ¢f ; for which the diagonal matrix, is nonzero
is used in (6). Thus, (5) needs to be interpreted more as a representation of
the work in the/th processor, usually involving of the ordergfvariables,
than as a global operation involving allvariables.

In order to analyze the convergence properties of Algorithm 2, we can
write theith iteration vector as follows, cf. [13],

ZEE M, 1Nyt 1)y

7 + (M, "Ny My (Coiy + B(wi-1)) |
or equivalently

ZEe( M, N, WD g,

8) + (I - (M,;IN@)M”) By N (Comir + @(mi_l))> .

The next theorem is our first local convergence result: if the splittings
satisfy certain minimum convergence properties, and the initial guess is
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Block and asynchronous two-stage methods for mildly nonlinear systems 7

close to the solution, we have convergence, provided that as the iterations
continue, the system is better approximated. This result is similar in spirit
to that of [14].

Theorem 3.1. Let A € R™*" be a nonsingular matrix. Lep : R" — R"

be continuously differentiable in an open neighborhood of a solutjoof

the mildly nonlinear systeifl). Consider that the splittingd = B, — Cy,

¢=1,...,L,satisfy|| B, (C¢ + &' (2,)) |0 < 1,£=1,...,L. Assume

further that the splittingsB, = M, — Ny, £ = 1,..., L, are convergent.

Then, if 'lim q,i) = oo, £ = 1,...,L, there exists & > 0 such that
1 oo

for every initial vectorzy € Ss(z,) = {x € R" | ||z — 4[| < 0} the
sequence of vectors generated by Algorithm 2 converges to

Proof. Sincep(M, 'N,) < 1 and lim ¢(¢,i) = 0o, £ = 1,..., L, given
71— 00

anye > 0, there exists an integég such that| (M, ' N,)?“? ||, < ¢, for
alli >i9,£=1,..., L. Let 8 be a positive constant satisfying

1B, Y Co+ & ()l < B <1, £=1,...,L.

Let us considet; = x; — x, the error vector at théh iteration. Sincer,
is a fixed point of (7), or equivalently (8), we obtain after some algebraic
manipulations that, for = 1,2, ...,

L
ei=>» B ((M[INe)W’i)€z’—1
=1

(I — (M, N D) (Jy(ws)gio1 + B[ly(l‘*,xz‘—l)» :
fori =1,2,..., whereJy(z,) = B, (C; + &' (v,)), L= 1,..., L, and

Y, ) = B(a) — Bla,) — ¥ (0.)(x — ).

Then,
; < -1 q(f,’i) .
[€illoo < @%XL{”(MZ Np) T oo ll€i-1]loo
(L + (M N D o0 ) (| Te(@a) oo lli—1 o0
(9) B Yoolly(@es i) loo) ), i =1,2,....

On the other hand, by the hypotheses we can assume, without loss of gener-
ality, that® is continuously differentiable on the convex $etz,) = {z €

R™ | [l — z«||ooc < €}. Hence (see e.g., [36, Exercise 3.2.6]), there exists

a > 0 such that

(10) |y (2o, ) || 00 < aHx—x*Hgo forall z € Se(xy).
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8 Z.-Z.Baietal.

From (9), we can considér< ¢ < e small enough such that,if) € Ss(zy)
then
(11) |zi — xx||oo < € foralli < ig.

Furthermore, from (9) again, if> iy we have
leilloe < max {(e+ (1+ ) lei-1loc

+(1+ )IB; oo lly (s, wi-1)lloo}
(12) = 0(6)llei-1lloo + Voo () [Y(@x, Tim1)ll o0,

wherep(e) = € + (1 + €)3 and~y, (e) = (1 + 6)1I£1ﬂXL{||B[1|’W}' Then,
for i = 49, using (10), (11) and (12) we obtain

€i0lloo < 0(€)l|€io—1lo0 + Voo (€)etll€in—1]1%
< 0(€)lleig—1lloo + Voo (€)ellgin—1lloc = @eo(€)ll€ig—1ll00>

whereyy, (€) = o(e) + 4, (€)ce. Without loss of generality we can consider
e small enough such that,, (¢) < 1. Then, by induction we easily obtain

lleilloo < e (€)]l€i—1]loo With ¢y, () < 1, forall i > ig,

and then the proof is complete.O

Several comments on alternative hypotheses for Theorem 3.1 are in or-
der. First, the infinite norm can be replaced by any weighted max-norm
associated with a positive vector; see (3) and Sect. 4. Second, when all
the outer splittings in Algorithm 2 are the same, iB, = B, C; = C,
¢(=1,...,L,the assumptioiB~1(C + &'(74))||-c < 1 can be replaced
by the more genergl(B=!(C + ¢'(z,))) < 1. This applies, in particular,
for the two-stage version of Algorithm 1. Third, the fact tldats contin-
uously differentiable in an open neighborhoodgfcan be relaxed to the
following set of assumptions. The mdpis Lipschitz continuous is B-
differentiable (i.e., for every € R" there exists a positively homogeneous
function B®(z) : R" — R" called theB-derivative of® at z such that
lim D(z+v) —P(z) — BO(2)(v)
00 o]
is Lipschitz continuous at,; see e.g., [1], [36]. We note that-derivatives
are similar to directional derivatives. These hypotheses were used in [1] for
the proof of convergence of the point two-stage method with a fixed number
of inner iterations.

In the next results, we prove the convergence of Algorithm 2afoy
number of inner iterations in a few general cases, namely, when the matrix
A is monotone, or it is ai/-matrix or block H-matrix of different types.

We impose further conditions on the outer and inner splittings.

= 0), and the associated functids
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Block and asynchronous two-stage methods for mildly nonlinear systems 9

Theorem 3.2. Let A € R™ "™ be a monotone matrix. Let the splittings
A=By—Cp¢=1,...,L,beregular and the splittings, = — Ny,
¢{=1,...,L, be weak regular Assume further that R" — R” |s aP-
bounded mapping such thatA—!P) < 1. Then, the nonlinear two-stage
multisplitting Algorithm 2 converges to the unique solution of the mildly
nonlinear systerfi), for any initial vectorz, and any sequence of numbers
of inner iterationsg(¢,7) > 1,4 =1,...,L,i=1,2,....

Proof. From Lemma 2.7 it follows that there exists a unigyec R™ such
thatAz, = &(x,). Lete; = z; — x, be the error vector at thiéh iteration of
Algorithm 2. Sincer, is a fixed point of (7), it follows that for = 1,2, .. .,

(13) & = ZE£< My N1 e

q(4,1)—1
£OY NN G+ 8(ain) — () ).
=0

Then, using the inequalitie’s/[[lNg >0,¢{=1,...,L,and

(14) M7'c, >0, €=1,...,L,
and the fact tha® is P-bounded, we obtain the following bound:
L
|5i| < ZEKTZ-(Z)|€Z;1|, 1=1,2,...,
=1
where
q(i)—1
(15)Ti(€):(M lNgq(h—l— Z 1Ng]M (Ce—FP)ZO.
7=0

On the other hand, some algebraic manipulations yields the equality

q(4,i)—1
(M, "N+ N (M Ny MG
7=0
q(,1)—1 ‘
=T- > (M;'N)yM;'A,
j=0
and we rewrite (15) as
q(£,5)—1
(16) (M Ny M YA~ P).

Jj=0
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10 Z.-Z.Baietal.

Moreover, since the matrices~! and P are nonnegative, ang A~ P) <
1, the matrixA — P = A(I — A~!P) is monotone.

Consider any fixed vectar > 0 (e.g.,e = (1,1,...,1)T) andv = (A —
P)~le. Since(A — P)~! > O and no row offA — P)~! can have all null

entries, we get > 0. By the same argumentM[le >0,/(=1,...,L.
Then, we have from (16) that
q(4,5)—1
T;(f)v —y— Z (Me_lNe)jM[le
j=0
q(£,i)—1
=v—M;le— > (M;'N) M, "e.
j=1

Becausee > 0 and the matrices/, ' N, and M,”' are nonnegative, it
follows thatTi(e)v < v- M[le. Moreover, sincéfi(e)v > 0andv —

M; e < v, there exists constants< 6, < 1,¢ = 1,..., L, such that
(g) < p— ) p— i pr—
T;7v < 0w, 0 =1,...,L,i=1,2,.... Hence, setting llélgang{(gg},

L
we getz EgTi(g)U < #v. By Lemma 2.5, this implies that the sequence of

=1
error vectors tends to zero, and then the proof is complete.

As it was pointed out in [23], the hypothesis on the outer splittings in
Theorem 3.2 can be relaxed to requite= B, — Cy to also be weak regular
and, in addition), 'C, > O; see (14).

Theorem 3.3. Let A € R™*" be anH-matrix. Let the splittingsl = B, —
Cy,andBy = My — Ny, £ = 1,..., L, be H-compatible. Assume further
that® : R® — R" is a P-bounded mapping such that< A >~!'P) < 1.
Then, the nonlinear two-stage multisplitting Algorithm 2 converges to the
unique solution of the mildly nonlinear systéth), for any initial vectorzq

and any sequence of numbers of inner iteratigftsi) > 1,/ =1,...,L,
1=1,2,....
Proof. By Lemma 2.4, the matriced/,, ¢ = 1,..., L, are H-matrices.

Therefore, using Lemma 2.2, we have the inequaljﬂé;l\ << M, >"L

Thus, ife; = z; — z, isthe error at théth iteration of Algorithm 2, it follows
from (13) that

L
lei| < ZEg(\MZ—lNZ‘q(é,i)
/=1

i1

q(2,i)—1
S MEINGE MY (Collei |+ (i) — @(a)))
=0
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Block and asynchronous two-stage methods for mildly nonlinear systems 11

L
= (¢ .
SZEZT;()|61'71|7 Z:172a"'a

Q(Zﬂ')_l
(17) + (< My > Ngl)Y < My >~ (|Co| + P) .
j=0
L ~
The matricesz EgTZ@ can be considered as the matrices used in the proof
=1

L
of Theorem 3.2, to bound the error vecipfi.e.,|&;| < Z EgTi(g) |€i—1]) of

=1
an iterative process corresponding to Algorithm 2 toesolve the mildly nonlin-
ear systemx A >z = &(x), with outer splittings<c A > = < By > —|CY|
and inner splittings By > = < My > — |Ny|,¢ = 1,..., L. That system
and these splittings satisfy the hypotheses of Theorem 3.2, and therefore we

can affirm that there exists a positive vectoand a constart < 6 < 1
L

such that) _ E/1"% < 65. Hence, by Lemma 2.5 the proof is complete.
=1 -

In the case that all the outer splittings in Algorithm 2 are the same, i.e.,
B,=B,C;,=C,t=1,...,L,e.g.,forthe two-stage version of Algorithm
1, the assumption in Theorem 3.3 that the outer splittingd lmpatible
can be replaced by the less restrictive hypothesis of beirfg-aplitting.

The next convergence result corresponds to the Type-1 and Type-II block
H-matrices. Its proof is similar to those in Theorems 3.2 and 3.3, but note
that many of the inequalities are R and not inR™.

Theorem 3.4.Let A € HS (HY) C L, 1(n1,na,...,nz). Let the split-

tingsA = B, — Cy,and B, = My, — N, ¢ = 1,2,...,L, be H;-

compatible {5-compatible and such thab(M,) = D(B;) = D(A)),

and the weighting matricegy, ¢ = 1,2,..., L, satisfying(4), satisfy in
L

addition Z[Eg] < I, the L x L identity matrix. Assume further that
=1

@ : R" — R" is a block P-bounded mapping such that(4) 'P) < 1

(p({({A)) ' [D(A)~']P) < 1). Then, the nonlinear two-stage multisplitting

Algorithm 2 converges to the unique solution of the mildly nonlinear system
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12 Z.-Z.Baietal.

(2), for any initial vectorzy and any sequence of numbers of inner iterations
qit,iy>1,0=1,...,L,i=1,2,....

Proof. From Lemma 2.7 it follows that (both in the Type-I and Type-II
cases) there exists a unique vectore R” such thatdx, = @(z,). Thus,

if we lete; = z; — x4 be the error at thé&h iteration of Algorithm 2, then
(13) holds.

For the Type-I case, we note that the;-compatibility of the splittings
imply that M, € HL, and thus by Lemma 2.2 (b), we have thaf, '] <
<M@>_1, ¢ =1,2,...,L.Usingthis lastinequality, by taking block absolute
values on both sides of (13), applying Lemma 2.1 and the biddounded
property of®, we obtain the inequality

L
(18) [El] < Z[Ef] T;S? [‘%*1]7 @ = 17 27 cee where
/=1
77 = (M)~ [N
q(2,1)—1 ‘
(19) + (M) [N (Me) ™ ([Ce] + P)
§=0

is a nonnegative matrix iiR“*%. After some manipulations we obtain the
following identity, cf. (16).

q(4,i)—1
T =1- 3 (M) YN (Mp) "L ((4) - P).
7=0

Furthermore, sincéAYl and P are nonnegative matrices and by the hy-
pothesis((A) "' P) < 1, the matrix((A) — P) is a monotone matrix. Now,
in a way similar to the proof of Theorem 3.2, we can deduce that there exist
a positive vector € RY and a nonnegative constaht [0, 1) such that
Ty <6v, 0=1,2,...,L, i=12,....

By Lemma 2.5, we immediately gét;] — 0 wheni — oo. This implies
thate; — 0 wheni — oo, completing the proof of the Type-I case.

For the Type-II case, let us denote By= [D(A)~']P, and for¢ =
1,2,...,L, B = D(A)™'By, Cy = D(A)~'Cy, My = D(A)~* My, and
Ny = D(A)~1N,. With this notation, observe thatl, ¢ Hf, and that by
Lemma 2.2 (b), we havg\l, '] < (NI;) "', ¢ = 1,2,..., L. Using these
relations, taking block absolute values on both sides of (13) as before, after
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insertingD(A)D(A)~! in the appropriate places, we obtain

+ (M) " [Ne)) (Mg) ™~ ([Ce] + P) | [ei-]-

This expression has the same form as (18), with matrices of the same struc-
ture as (19). To complete the proof, we note that the splittingd) ' A =

By — Cy, and B, = M, — N, are H,-compatible and correspond to the
solution of the systen®D(A)~! Az = D(A)~'®(x), which satisfy the hy-
potheses of the Type-I case.O

We should point out that the hypothesis of Theorem 3.4 can be changed
to apply to the solution of another nonlinear system

(20) Hz = &(x),

where the matrix{ € L, 1 is equimodular ta4, i.e., it belongs to the set
Qp(A) = {H = (Hij) € Loy, [1H;' | = [AZ'], 1 Hijll = [|Aijll, i #

4, i, = 1,..., L}, in the Type-I case, and to the sef}(A) = {H =

(HZ]) S LTL,I) ||H7;1H2]H = ||A;1A”H, 1,7 =1,... ,L} in the Type-lII

case; see [2]. Furthermore, Theorem 3.4 also applies, essentially with the
same proof, to matriced (or H) which may not have a nonsingulax(A),

or such that they do not belong #5 or HY but such that there exists
nonsingular matrice® and.S, such thatR AS has those properties; see [2].
These comments apply to Theorem 4.4 in the next section as well.

We conclude this section by remarking that for the inner iterations one
can chose, in addition to the classical splittings corresponding to Jacobi,
Gauss-Seidel, etc., relaxed methods such as JOR, SOR, AOR, etc.. In the
latter cases, the relaxation parameters need to be chosen in such a way that
the splittings satisfy the hypotheses of Theorems 3.2, 3.3 and 3.4. This was
done for the point methods in [1], and the same considerations carry through
to the block methods studied here.

4. Asynchronous iterations

The computational model we consider for the asynchronous iterations is as
follows. Each processor, say tfté processor, starts a cycle of computations

by collecting the most recent vectors computed by the other processors, say
the processorg, k # (. Let us call this cycle théth iteration (which
would be different than th&h iteration in the synchronous case). Thus, the

Numerische Mathematik Electronic Edition
page 13 of Numer. Math. (1999) 82: 1-20



14 Z.-Z.Baietal.

iteration subscript is increased every time a processor starts a new cycle
of computations. The vectors computed by the other processors will be
from older cycles, some say— 1, but many others older than that, and
we call these earlier cyclegk, i), i.e., the cycle in which the processor

k computed the vector used at the beginning of dtmecycle (from this
definition the condition (21) below follows directly). In other words, in order

to get a new vecto:t(e), the (th processor collects the vectazrgz,)C " and

%

(k)

L
uses the weighting matrices to get the vecEwEer(k .

This sequence

k=1
of weighted vectors can be considered in practice as the sequence of iterate
vectors. Recall that in fact not all the components of the veat%si) are

needed in the computations, so that the local storage is of ardad not
nL. Formally, we definethe sefs C {1,2,...,L},i=1,2,...,asl € J;
if the /th processor starts its computation of a new iterate attthstep.

As is customary in the description and analysis of asynchronous al-
gorithms, we assume that the subscrigt§ i) and the setg/; satisfy the
following conditions. They appear as classical conditions in convergence
results for asynchronous iterations; see e.g., [5], [8], [15], [20].

(21) r(¢,i)<i forallé=1,2,...L, i=1,2,....
(22) lim r(¢,i) =00 forall¢=1,2,... L.
1—00
(23) The set{i | ¢ € J;} isunbounded foral =1,2,..., L.

With this notation, the asynchronous counterpart of Algorithm 2 can be
described by the following algorithm.

Algorithm 3 (Nonlinear Asynchronous Two-stage Multisplitting).
Given the initial vectors:g) =x9,f=1,...,L.
Fori=1,2,...

(21", it ¢ J;

L
_ i k
(ME 1]\][)(1(47 ) kz Ekxi(l)c,z)
=1

(£3)—1 L
@4) 29 ={ 1 o .
+ (M£ 1Ng)]M£ I(CgZEkwi(iﬂ)
j= k=1
L
+0(3 Brall) ) if ¢ € J;.
\ k=1

In order to analyze Algorithm 3, we consider the operatG(s) =
(GM(i),...,GE)(G)), with GO (i) : R"F — R™ defined forj € R"* as
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follows, for/ =1,...,Landi =1,2,....
' q(£,5)—1 '
GO (@) = (M "N Qg+ Y (M Ny My M (CQi+2(Q)),
7=0
whereQ = [Ey,...,Ey,...,Er] € R™"L The asynchronous iteration
(24) can then be rewritten as the following iteration.

() i
) if ¢ §Z JZ’
(25) i = { 0 (0 ) @) N
GO (i) (:cr(lyi), Ty ,xT(Lyi)> if £ € J,.
The following lemma, which is a special case of Theorem 3.2 in [26], is
used in our convergence proofs.

Lemma 4.1. LetG(i) be a sequence of operators B’ having a common
fixed pointz,. Let| - ||, be anormoR™, ¢ =1,..., L. Leta € R, a > 0

1<U<L " a
alli =1,2,...,assume that there exists a constant « < 1 such that

. 1
and denoté| - ||, the weighted max-normz|, = max {—||z||,}. For
¢

|G ()2 — &yla < al|Z — 4]|a, forall & e R™E.

Assume further that the sequencé, i) and the setg;, { =1,...,L, i =
1,2,..., satisfy conditiong21-23) Then the asynchronous iterati¢a5)
converges ta:, for any initial vectorz.

Theorem 4.2. Let A € R™*"™ be a monotone matrix. Let the splittings
A=DBy—Cp£=1,...,L, beregular and the splitting®, = M, — Ny,
¢=1,..., L, beweak regular. Suppose that R — R" is a P-bounded
mapping such that(A~!P) < 1. Assume further that the sequencé, i)
andthesetd;,/=1,...,L,i=1,2,...,satisfy condition§21-23) Then,

the nonlinear asynchronous two-stage multisplitting Algorithm 3 converges

to (z1,...,2")T € R"E, wherez, is the unique solution of the mildly
nonlinear systenfl), for any initial vectoer((f), ¢=1,...,L, and any
sequence of numbers of inner iteratiof®,:) > 1, { = 1,...,L, i =
1,2,....

Proof. From the proof of Theorem 3.2 we know that there exists a positive
vectorv and a constartt < § < 1 such that

(26) Ty <6v, =1,...,L, i=1,2,...,
where the matriceEEi“) are definedin (15). Let us define= (v, ..., v™)7T
c R andi, = («1,...,2])T € R". As i, is afixed point ofG (i), itis

easy to prove that

GOz — 2| <TYQlE — 2], €=1,...,L, i=1,2,...,
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for all # € R™". Thus

(27) |G(0)& — &y < H@)|E — ], 1 =1,2,. ..,
where
7VQ
(28) H(i) = ; e RMxnL,
1M Q

From (28) and (26), it follows that ()0 < #v. Hence, using the monotonic
vector norm|| - ||; defined in (3)|H(i)||s < 6, and then by (27),

|G(1)T — 24|, < 0|2 — Zulls, i =1,2,....

Since the norm||g||; in R™ can be expressed in the forify|, =

max 1591, foranyg = (30", ..., 9T, using Lemma 4.1, the con-

vergence is shown. O

Again, as with the hypotheses of Theorem 3.2, in Theorem 4.2 the outer
splittings need not be regular, but just weak regular with the additional
hypothesis (14). We remark that an alternative proof could be obtained using
the theory of paracontracting operators; see [16].

Theorem 4.3. Let A € R™*"™ be anH-matrix. Let the splittingst = B, —
Cp,and By = My — Ny, £ = 1,...,L, be H-compatible. Suppose that
@ : R" — R" is a P-bounded mapping such that< A >~! P) < 1.
Assume further that the sequendg,i) and the sets/;, ¢ = 1,...,L,

i1 =1,2,...,satisfy condition§21-23) Then, the nonlinear asynchronous
two-stage multisplitting Algorithm 3 converges(to],...,z1)T e R"%,
wherez, is the unique solution of the mildly nonlinear systélj) for any
initial vectoer[(f), ¢ =1,...,L, and any sequence of numbers of inner
iterationsq(¢,i) > 1,¢=1,...,L,i=1,2,....

Proof. Using similar notation as in Theorem 4.2 we can prove, fof: al
R"L, that

GOz -z, | <TYQlE — 2], €=1,...,L, i=1,2,...,

where matrice@i(g) are defined in (17). By the proof of Theorem 3.3 we

haveTi(Z)f; < 69 forsomed € R, ¥ > 0and¢ =1,..., L, and thus the
theorem follows in the same manner as Theorem 4.2.

Analogous to Theorem 4.3, as well as Theorem 3.4, we can establish the
following convergence theorem for the systems (1) and (20). Since this new
theorem can be demonstrated in similar ways to the proof of Theorem 3.4
with slight modifications, we omit its proof.
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Theorem 4.4.Let A € HY (HY) C L, 1(n1,na,...,nz). Let the split-

tingsA = B, — Cy,and B, = My, — N, ¢ = 1,2,...,L, be H;-

compatible H-compatible and such thab(M,) = D(B;) = D(A)),

and the weighting matriceg),, ¢ = 1,2, ..., L, satisfying(4), satisfy in
L

addition Z[Eg] < I, the L x L identity matrix. Assume further that
=1

& : R" — R" is a block P-bounded mapping such that(4) 'P) < 1

(p(({A)) ' [D(A)~']P) < 1). Then, the nonlinear asynchronous two-stage

multisplitting Algorithm 3 converges ta:|, ..., z1)T € R"?, wherez, is

the unique solution of the mildly nonlinear systéhy for any initial vec-

tors x((f), ¢ =1,...,L, and any sequence of numbers of inner iterations

qt,i)>1,0=1,...,L,i=1,2,....

We point out that whew(x) = b € R", i.e., when system (1) is linear,
Algorithm 3 reduces to Algorithm 6 in [13], and thus Theorems 4.2, 4.3 and
4.4 apply to that case as well. In fact, the results here are more general, since
we do not assume that the weighting matrices form a partition of the identity,
i.e., when the entries of eadly are0 or 1. In particular, Theorems 4.2, 4.3
and 4.4 provide general convergence results for two-stage multisplitting
methods with overlap.

We end the paper with a discussion on a different asynchronous compu-
tational model, analogous to the one used in [11] for linear systems. Namely,
fori=0,1,2,...,

Lidr; = (I — Eji)xi-i-ri—l + Ej; < (Me_le)qmi)xi

q(£,i)—1
(29) + M Ng ]M (ngz + @(:cl)) ) ,
J

=0

where{j;}°,, 1 < j; < L, is a sequence of integers that indicates the
processor which updates the approximation to the solution éttliteration
andr; — 1 is the number of times that processors other thar;thgrocessor
update the approximation of the solution during the time interval in which
the j;th processor’s calculations are performed.

The computational model (29) is based on Model B of [10], and condi-
tions (21-23) are replaced by the assumption that the seqygnce, is
regulated; see e.g., [13] for differences and analogies between both sets of
conditions. The proof of the convergence of the iteration (29) with the same
hypotheses as in Theorems 3.2, 3.3 and 3.4 follows in a similar way as the
proof of [31, Theorem 3.2] which inturn is based on [10, Theorem 2.2], and
as the proof of [4, Theorem 1].
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The two asynchronous models (24) and (29) produce the same sequence

of iterate vectors when the weighting matriceg ¢ = 1,..., L, form a
partition of the identity, but when there is overlap, the models are different.
In Algorithm 3 the components calculated by ffeprocessor, say, uses only
information calculated by the other processdrs4¢). However, in model
(29) theflth processor introduces in its computations some older information
computed in theéth processor in a previous step.
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