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Summary. This paper deals with the stability analysis of implicit Runge-
Kutta methods for the numerical solutions of the systems of neutral delay
differential equations. We focus on the behavior of such methods with re-
spect to the linear test equations

y′(t) = Ly(t) + My(t − τ) + Ny′(t − τ), t ≥ 0,

y(t) = g(t), −τ ≤ t ≤ 0,

whereτ > 0, L, M andN ared × d complex matrices. We show that an
implicit Runge-Kutta method is NGP-stable if and only if it is A-stable.

Mathematics Subject Classification (1991):65L20

1. Introduction

Consider the stability behavior in the numerical solution of neutral delay-
differential equations (NDDEs)

y′(t) = f(t, y(t), y(t − τ), y′(t − τ)), t ≥ 0,(1.1)

y(t) = g(t), −τ ≤ t ≤ 0,(1.2)

whereτ is a given positive constant,f andg denote given vector-valued
functions, andy(t) is the vector-valued unknown function to be solved for
t ≥ 0.
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We always assume that the unique solutiony(t) of (1.1)-(1.2) exists.
(Compare Kamont and Kwapisz [11] or Jackiewicz [10]). The purpose of
the present paper is to investigate the stability properties of implicit Runge-
Kutta methods for NDDEs (1.1)-(1.2). We shall assess the stability properties
of implicit Runge-Kutta methods ( IRK ) by analyzing the stability behavior
in the numerical solution of the following system of the form

y′(t) = Ly(t) + My(t − τ) + Ny′(t − τ), t ≥ 0,(1.3)

y(t) = g(t), −τ ≤ t ≤ 0,(1.4)

whereτ > 0, L, M andN are constant matrices inCd×d. An application of
numerical method for NDDEs to the test equations (1.3)-(1.4) usually leads
to a difference equation with the matrix coefficients, but arbitrarily high
order, since the order of the difference equation depends on the stepsize and
the delay termτ . The difficulty leads to very few results about the linear
stability of numerical methods for NDDEs (1.3)-(1.4) in the literature.

In 1967, Brayton and Willoughby [3] analyzed the stability properties
of θ-methods for (1.1)-(1.2) in the case of the test equations (1.3)-(1.4) with
symmetric realL, M andN , and positive definiteI ± N and−L ± M . In
1984, Jackiewicz [9] considered the numerical stability of one-step methods
in the case whenL, M andN reduce to scalar complex numbers. In 1988,
Bellen, Jackiewicz and Zennaro [2] investigated the numerical stability of
IRK for (1.3)-(1.4) with respect to scalar complex parametersL, M andN .
But recently, in 1994, Kuang, Xiang and Tian [14] considered the numer-
ical stability ofθ-methods for (1.3)-(1.4). In 1995, Hu and Mitsui [7] also
considered the numerical stability of Runge-Kutta methods for (1.3)-(1.4),
and obtained an absolutely stable area of explicit Runge-Kutta methods.

For N = 0, in 1994, Koto [12] showed that an A-stable Runge-Kutta
method{A, b, c} with Re(λA) ≥ 0 preserves the asymptotic stability prop-
erty of the analytical solutions of the system (1.3) - (1.4). In 1997, in ’t Hout
[5] also investigated the numerical stability of Runge-Kutta methods for the
system (1.3)-(1.4) withN = 0, and obtained a better conclusion that an
A-stable Runge-Kutta method preserves the asymptotic stability property
of the analytical solutions of the system (1.3)-(1.4).

Following Hu [7], we shall show that for a wider class of (1.3)-(1.4),
an A-stable IRK method preserves the asymptotic stability property of the
analytical solutions of the system (1.3)-(1.4).
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2. The stability of the test equations

Define a function of two complex variablesz, ω by

F (z, ω) = det[zId − (L + ω−1(zN + M))].

Then the characteristic equation of (1.3) is written asF (z, exp(τz)) = 0.
From the proof of Theorem 3.1 in [14], we can see that when||N || < 1,
±i∞ are not accumulation points of the roots of the characteristic equation.
Then the system (1.3)-(1.4) with||N || < 1 is asymptotically stable, i. e.,
limt→∞ y(t) = 0 for anyτ > 0, if and only if the following condition (S)
is satisfied

(S) F (z, exp(τz)) 6= 0 for (τ, z) such asRe(z) ≥ 0 andτ > 0.

Lemma 2.1. (see [14]) Let||N || < 1, the condition (S) is equivalent to
the following three conditions

(S1) λ ∈ σ[L] =⇒ Re(λ) < 0,

(S2) ρ[(zI − L)−1(M + zN)] < 1 (wheneverRe(z) = 0, z 6= 0),
(S3) − 1 /∈ σ[L−1M ],

where||N || = sup||z||=1 ||Nz||, ||z||2 = 〈z, z〉, z ∈ C
N , andσ[X] and

ρ[X] denote the spectrum and the spectral radius of the square matrixX,
respectively.

Note that, under the condition(S1), the identity

ωdF (z, ω) = det[(zId − L)] det[ωId − (zId − L)−1(zN + M)]

holds forz such asRe(z) ≥ 0. The condition

(S̃2) F (z, ω) 6= 0 for anyz(6= 0)
andω which satisfyRe(z) ≥ 0 and|ω| ≥ 1

implies(S2) if (S1) is satisfied.

Lemma 2.2. Let ||N || < 1. Then the condition(S) is satisfied if and
only if (S1), (S̃2) and(S3) are satisfied.

The proof is analogous to that of Theorem in [12].
Moreover, we have the following lemma.
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Lemma 2.3.(see [7]) The system (1.3)-(1.4) is asymptotically stable if the
conditions

Re{λi[(I − ξN)−1(L + ξM)]} < 0(2.1)

for all i andξ ∈ C such as|ξ| ≤ 1,

and
ρ(N) < 1(2.2)

hold.
From the following Theorem 2.1, we can see that, (2.1)-(2.2) are much

general conditions onL, M andN such that the system (1.3)-(1.4) with
||N || < 1 is asymptotically stable.

Define
Q(ξ) = (I − ξN)−1(L + ξM).

Theorem 2.1. Let ||N || < 1. Then the system (1.3)-(1.4) is asymptoti-
cally stable if and only if

(S1) λ ∈ σ[L] =⇒ Re(λ) < 0,

(S∗
2) λ ∈ σ[Q(ξ)], λ 6= 0 =⇒ Re(λ) < 0, (whenever|ξ| ≤ 1),

(S3) −1 /∈ σ[L−1M ].

Proof. According to Lemma 2.2, we only need to prove that the condition
(S∗

2) is equivalent to the condition(S̃2). Assume that(S̃2) is satisfied, but
(S∗

2) dose not hold, i.e., there exist a certainξ0 ∈ C with |ξ0| ≤ 1 and
λ0 ∈ σ[Q(ξ0)] with λ0 6= 0 such thatRe(λ0) ≥ 0.

Let
z0 = λ0 andω0 = ξ−1

0 (ξ0 6= 0),(2.3)

then we get|ω0| ≥ 1 and ||ω−1
0 N || < 1, which impliesId − ω−1

0 N is
nonsinglar. Thus

F (z0, ω0) = det[z0Id − (L + ω−1
0 (z0N + M))]

= det[Id − ω−1
0 N ] det[z0Id − (Id − ω−1

0 N)−1(L + ω−1
0 M)]

= 0,

but this contradicts(S̃2), since|ω0| ≥ 1 andRe(z0) ≥ 0, z0 6= 0.
Conversely, assume(S∗

2) holds, but(S̃2) does not hold. Then for some
z∗(6= 0) with Re(z∗) ≥ 0 and someω∗ with |ω∗| ≥ 1,

F (z∗, ω∗) = det[Id − ω∗−1N ] det[z∗Id − (Id − ω∗−1N)−1(L + ω∗−1M)]
= 0.
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This means that there existsz∗ ∈ σ[Q(ξ∗)] with z∗ 6= 0 such thatRe(z∗) ≥
0 (whereξ∗ = ω∗−1), but it is impossible by the assumption(S∗

2) and this
completes the proof of Theorem 2.1.

According to Theorem 2.1, we can see the condition (2.1) is sufficient,
but it is not necessary for the asymptotic stability of the system (1.3)-(1.4)
with ||N || < 1.

3. The NGP-stability of IRK

For the initial-value problem (1.1)-(1.2), consider the following implicit
Runge-Kutta method

Kn,i = f(tn + cih, yn + h

υ∑
j=1

aijKn,j , yn−m+δ(3.1)

+h

υ∑
j=1

aijKn−m+δ,j , Kn−m+δ,i),

(i = 1, 2, . . . , υ),

yn+1 = yn + h
υ∑

i=1

biKn,i, n ≥ 0,(3.2)

where
∑υ

i=1 bi = 1, ci =
∑υ

j=1 aij , 1 ≤ i ≤ υ, yn ≈ y(tn), yn = g(tn)
for −τ ≤ tn ≤ 0, tn = nh, (m − δ)h = τ, δ ∈ [0, 1), h > 0 is a stepsize,
yn−m+δ andKn−m+δ,i (1 ≤ i ≤ υ) are defined by some interpolations.

Definer(h̄) by

r(h̄) = 1 + h̄bT(Iυ − h̄A)−1e,

whereA = (aij)υ×υ, e = (1, 1, . . . , 1)T, b = (b1, b2, . . . , bυ)T . It is well
known thatr(h̄) can be also written

r(h̄) =
det[Iυ − h̄A + h̄ebT]

det[Iυ − h̄A]
.(3.3)

We recall that a Runge-Kutta method is said to be A-stable if

(I − h̄A) is regular and|r(h̄)| < 1 for anyRe(h̄) < 0.(3.4)
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Applying the implicit Runge-Kutta method (3.1)-(3.2) to (1.3)-(1.4), we
have

Kn,i = L(yn + h
υ∑

j=1

aijKn,j) + M(yn−m+δ + h
υ∑

j=1

aijKn−m+δ,j)(3.5)

+NKn−m+δ,i, (i = 1, 2, . . . , υ),

yn+1 = yn + h

υ∑
i=1

biKn,i,(3.6)

for n = 1, 2, . . ., wherey0 = g(0), yn = g(tn) for − τ ≤ tn ≤ 0, tn =
nh, (m − δ)h = τ, δ ∈ [0, 1), yn−m+δ andKn−m+δ,j are defined by the
interpolation which was first introduced by in ’t Hout [4]. That is

yn−m+δ =
s∑

p=−r

Lp(δ)yn−m+p,(3.7)

Kn−m+δ,j =
s∑

p=−r

Lp(δ)Kn−m+p,j , (1 ≤ j ≤ υ),(3.8)

where

Lp(δ) =
s∏

k=−r,k 6=p

[(δ − k)/(p − k)],

m ≥ s + 1.

Define
Kn = (Kn,1, Kn,2, . . . , Kn,υ)T.

Then (3.5) and (3.6) become

Kn = e ⊗ Lyn + hA ⊗ LKn + e ⊗ M(
s∑

p=−r

Lp(δ)yn−m+p)

+hA ⊗ M
s∑

p=−r

Lp(δ)Kn−m+p + Iυ ⊗ N
s∑

p=−r

Lp(δ)Kn−m+p,

yn+1 = yn + hbT ⊗ IdKn,

or (
Iυ×d − h(A ⊗ L) 0

−hbT ⊗ Id Id

) (
Kn

yn+1

)
=

(
0 e ⊗ L
0 Id

) (
Kn−1
yn

)

+
(

hA ⊗ M + Iυ ⊗ N 0
0 0

)
·

( ∑s
p=−r Lp(δ)Kn−m+p∑s

p=−r Lp(δ)yn−m+p+1

)
(3.9)

+
(

0 e ⊗ M
0 0

)
·

(∑s
p=−r Lp(δ)Kn−m+p−1∑s

p=−r Lp(δ)yn−m+p

)
,
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where the symbol⊗ denotes the Kronecker product.
The characteristic equation of the above difference equation turns out to

Pm(z, L,M, N, δ) = det
[
T1(z) T2(z)
T3(z) T4(z)

]
= 0,(3.10)

where

T1(z) = (Iυ×d − A ⊗ L)zm+1 − (A ⊗ M + Iυ ⊗ N)
s∑

p=−r

Lp(δ)zp+1

= zm+1[Iυ ⊗ (Id − N
s∑

p=−r

Lp(δ) · zp−m)

−A ⊗ (L + M

s∑
p=−r

Lp(δ)zp−m)],

T2(z) = −zm[e ⊗ L + e ⊗ M

s∑
p=−r

Lp(δ)zp−m],

T3(z) = −h bT ⊗ Id · zm+1, T4(z) = Idz
m+1 − Idz

m,

L = hL, M = hM.

Definition 3.1. A numerical method for NDDEs is called NP-stable if and
only if for all coefficientsL, M andN satisfying (2.1)-(2.2), the numerical
solutionyn of (1.3)-(1.4) at the mesh pointtn = nh satisfies

lim
n→∞ yn = 0,

for every stepsizeh such thatmh = τ , wherem ≥ 1 is a positive integer.

Definition 3.2. A numerical method for NDDEs is called NGP-stable if
and only if the numerical solutionyn of (1.3)-(1.4) tends to zero asn → ∞
for every stepsizeh > 0.

Now we focus on the following polynomial

γ(z, δ) =
s∑

p=−r

Lp(δ)zp+r.
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Consider the condition

|γ(z, δ)| ≤ 1 whenever|z| = 1, 0 ≤ δ < 1.(3.11)

From Strang [17] and Iserles and Strang [8], it follows that the condition
(3.11) can be characterized in terms of the integerr, s.

Lemma 3.1. The condition (3.11) is equivalent to the conditionr ≤ s ≤
r + 2. Moreover, whenr + s > 0, r ≤ s ≤ r + 2, |z| = 1, 0 ≤ δ < 1, then
|γ(z, δ)| = 1 if and only ifz = 1.

Theorem 3.1. Assume that the interpolation procedure (3.7)-(3.8) satis-
fiesr ≤ s ≤ r + 2. Then the implicit Runge-Kutta method (3.1)-(3.2) for
NDDEs is NGP-stable if and only if it is A-stable for ODEs.
Proof. Assume that an implicit Runge-Kutta method is A-stable. In order
to show (3.1)-(3.2) is NGP-stable, we must show that every rootz of the
characteristic equation (3.10) satisfies|z| < 1 for anyδ ∈ [0, 1).

Let

R(z, δ) =
s∑

p=−r

Lp(δ) · zp−m.

When |z| = 1, we get|R(z, δ)| ≤ 1 for δ ∈ [0, 1) by Lemma 3.1; when
z = ∞, we have|R(∞, δ)| = 0, sincem ≥ s + 1. Thus we employ the
maximum modulus principle for analytic functions to obtain

|R(z, δ)| ≤ 1 for |z| ≥ 1, δ ∈ [0, 1).(3.12)

Noticing the conditions (2.1) and (3.12), we have

Re(λi(Q(z, δ))) < 0 for all i, 0 ≤ δ < 1,(3.13)

whereQ(z, δ) = (Id − NR(z, δ))−1 · (L + MR(z, δ)).
The remaining part of this proof is analogous to that of Theorem in [7]

and we omit it here.
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