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Summary. In this paper we compai@(p), the Mellin transform (together

with its analytic continuation), an@(p), the related Hadamard finite-part
integral of a functiory(x), which decays exponentially at infinity and has
specified singular behavior at the origin. Except wheis a nonpositive

integer, these coincide. Wheiis a nonpositive intege€ (p) is well defined,

but G(p) has a pole. We show that the terms in the Laurent expansion
about this pole can be simply expressed in terms of the Hadamard finite-
part integral of a related function. This circumstance is exploited to provide

a conceptually uniform proof of the various generalizations of the Euler-

Maclaurin expansion for the quadrature error functional.

Mathematics Subject Classification (199&5D30

1. The one-dimensional Euler-Maclaurin expansion

The prototype problem in numerical quadrature is that of approximating an
integral

1
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by a sum of function values of the form
Qf = wif(z)
=1

and finding expressions for the approximation error (see Davis and Ra-
binowitz (1984)). An early expression of this type is the Euler-Maclaurin
expansion, which appeared firstin the early eighteenth century. Inits modern
form this is an asymptotic expansion of the discretization error associated
with the u-panel offset trapezoidal rule

m=3 5 ()

The standard form of the Euler-Maclaurin asymptotic expansion, valid when
f(x) isregular, is

- (n)
02) Sus0) -1~ L PR -5 Z0dend),
PO .

where((s, 5) denotes the generalized zeta function, defined in (4.4) below.
(Wheng = 1, this reduces to the more familiar Riemann zeta funcfio).
Whens is a positive integer,

(13) C(_‘Sa/@) = _Bl-i-s(ﬂ)/(l + 5)7

whereB,, (z) is the Bernoulli polynomial of degree.)

When f(z) is C®)[0, 1], (1.2) may be expressed as a finite sunpof
terms, and the remainder term, of ordex—?—1!), has a simple integral
representation.

An important extension of this expansion was discovered by Navot
(1961). This applied to a situation in whicf{x) has an integrable alge-
braic singularity at an end of the integration interval. When

(1.4) f(z) = a%g(z),

wherea > —1andg(z) is C?)[0, 1], the expansion (1.2) has to be modified
by replacing the first sum by

(n) n—
9" (0)¢(=n —a, )
;0 n! Mn+a+1 :

Navot's proof is lengthy. During subsequent years, shorter proofs have
appeared from time to time. Straightforward corollaries of Navot's result
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provide asymptotic expansions for integrand functions having algebraic-
logarithmic singularities at one end and for integrand functions having this
sort of singularity at both ends of the integration interval.

A second important extension was discovered by Ninham (1966). Nin-
ham showed that Navot's expansion is valid as written for functions de-
fined by (1.4) whernx takes any value other than a negative integer. For
a < —1, the integrall f must be defined as a Hadamard finite-part integral.
See Lemma 2.3 below. Ninham’s proof is long.

Completing this set of results is the expansion whéa hegative integer
(Lyness 1994). This resembles Navot's expansion in form; however, the
coefficients are different, and an additional ternoig .« has to be included.

The present paper is devoted to a general proof of the one-dimensional
Euler-Maclaurin expansion. This proof, based on the Mellin transform, em-
braces all of the cited variants in a single proof. It is based on a recently dis-
covered approach due to Verlinden (1993). (See also Verlinden and Haege-
mans 1993.) In this paper, that approach is extended to hypersingular inte-
grals.

In Sects. 2 and 3 we collect results about Hadamard finite-part integrals
and Mellin transforms, which we denote by

Glr) =4 gla)ardo andG(p) = [ gla)a

respectively. We treat functiongx) that decay at infinity faster than any

power ofz. Except at the poles of the Mellin transform, bétkp) andG(p)

are analytic and coincide. Sect. 3 includes a treatment ip-{flane of the
singularities of the Mellin transform. We show that the coefficients in the
Laurent expansion af(p) about a pole may be expressed as the Hadamard
finite-part integral of a related function. In Sects. 4 and 5 these results are
applied in a straightforward manner to obtain various versions of the Euler-
Maclaurin asymptotic expansion.

A refreshing feature of this theory is that it treats all cases in a funda-
mentally uniform way. The different expansions arise simply because the
residues at poles in the complgxplane of the Mellin transforn¥'(p) of
f(z) = x*g(x) are of a marginally different form whemis a negative in-
teger than otherwise; and thes 1. term arises for negative integeisince a
pole of F'(p) then coincides with a pole of the zeta function. The differences
between these various expansions arise in this theory simply as a result of a
technical difference in the formula required to calculate a set of residues.

Interesting but unrelated work on the evaluation of Hadamard finite-
part integrals has recently appeared (Elliott and Venturino 1997). See also
Monegato (1994) and Diligenti and Monegato (1994).



276 G. Monegato, J. N. Lyness

2. The Hadamard finite part integral

In this section we recall some of the standard Hadamard theory of the finite-
partintegral for the finite interval (Hadamard 1952) and apply it to semifinite
integrals for a class of rapidly decaying functions.

We shall be interested, almost exclusively, in integrands having moderate
continuity over a semi finite interval, s, o). Atthe lower end, the worst
singularity is algebraic-logarithmic, that is® log” 2, while at the upper
limit, the integration properties are benign. (See Definition 2.4.)

For our purposes, the following definition is adequate.

Definition 2.1 Let f(x) be integrable over(e,b) for any e satisfying

0 < € < b < o0. Suppose there exists a strictly monotonic increasing
sequenceyy < a1 < ag < ...and a nonnegative integdrsuch that the
expansion

b oo J )
/ f(x)dx = Z Z I; ;(b)e“ log’ €
€ i=0 j=0

converges for ale € (0,h) for someh > 0. Then the corresponding
Hadamard finite-part integral may be defined as follows:

%b F(x)dz = I1.0(b) whenay = 0
0

:= 0 whenq; # 0 for all .

Some of the simpler special cases of this definition are listed in Lemmas
2.2, 2.3, and 2.5. For much of the work in this paper, these lemmas together
form an adequate definition.

Lemma 2.2 For b > 0,

7[” oy, —. [logbwhena = —1;
b YT et (a4 1) otherwise.

This may be extended to sufficiently regular functions as follows:

Lemma 2.3 Leta < —1andm > —a —2andg(z) € C"*D[0,b). Then
forb >0

7[b (2)2%dz =: /bma <5‘7)_§: (k)(o)xk/k, de
) g = g kzog !

(2.1) + i g(k) (0) %b .I‘a+kd.7,‘.
0

!
P
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The first integral on the right-hand side is a standard integral. The rest
of this expression involves Lemma 2.2 in order to define the finite-part
integrals. Clearly, except whenis a negative integer, the function defined
in (2.1) is analytic ino.

We shall be interested in a class of functigrig) whose decay rate at
infinity exceeds that of any inverse poweraof

Definition 2.4 An “allowable” functiong(z) of classC(™+1)[0, o) is one
for which

/ g(k) (:r)xp_ldx
0

forall p > 1.

< 00, k=0,1,...,m+1,

Lemma 2.5 Wheng is an allowable function ir©(™+1)[0, co) and f (z) =
z%g(x),

7[000 @) = { f@)de + /boo f@)da.

Notice that this definition is independentiof- 0. Moreover, we have
(2.2) 7[ x%dx =0, Va < —1.
0

Theorem 2.6 follows immediately from Lemmas 2.2 and 2.3.

Theorem 2.6 Whery(z) is an allowable function i@+ [0, c0),m > 0,
the function

(2.3) G(a) = 7{)00 g(x)z* dx

is analytic ina for Rea > —m — 2, except at nonpositive integer values of
('8

In fact, with the important exception of these integer valum,@(a)
is the analytic continuation of

/ g(x)z* Lz, Rea > 0,
0

and coincides with the Mellin transfor(«) defined in (3.1) below.
Our first nontrivial theorem will concern integration by parts. Whéen)
is Cm+1)[0, ] andm > 0, we have

b 1 b
2.4) 9@) oo _90) gl | 7/ g,
e xmtl mbm™  mem  m J. xm
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In the limit ase tends to zero, in general neither integral exists. However,
we can provide an expansion of the type needed in Definition 2.1 if we note
that

- (:71 = % (g(O)em +g'(0) ™ 4
9" (0) , g"(0)
(2.5) +0, o0 )

We apply that definition to the integral obtained from amalgamating the two
integrals in (2.4). Then, in view of the expansion (2.5), we have

b (m
2.6) % g9(@) o _9b) g™ %
o xmtl mbm m. m' m J;m

It is interesting to note that for the marginally more complicated situa-
tion in whichlog® z also occurs in the integrand, no term corresponding to
g™ (0)/m.m! in (2.6) occurs. Thus,

b g(x) logkajd B ( ) logk log z
. prm+l L= m TTL
z)logh~ 1z k> 0;
2.7) - / e e

The cases in which = 0 have been treated above. Wher 0 andm = 0,
we have

b k
g(z)log" x 1 ftl
dr = 1
| e = gl log

1 b
Ck+1

b

€

(2.8) g () log" ! zda k>0,

and, in all cases specified in the two preceding equations, all terms in the
expansion in terms afarising from the lower limit of the final term on the
right containlog e as a factor.

We are interested in the case in whichbecomes infinite. With this in
view, we need a restriction gj{x) so that the various integrals continue to
exist and other terms involvinighave proper limits. A simple consequence
of g(z) being an allowable function of clagg™ 1[0, 00) is thatg'(z) is
one of clasg”("™) [0, 00). In view of this, we may write down our principal
theorem.
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Theorem 2.7 Wheng(z) is an allowable function of clas§ ™10, c0),
we have

00 (m) 0 1 oo
7[ g(?ldng (‘)+7 g(w)d% m>0,
o xm m.m! m Jo xm

(2.9) = —/ g (x)log zdx, m =0,
0

and, whenk > 1,

0 k 00 k—1
7[ g(z)log’z , _ k 7[ g(z)log™ "
0 m

xm—i—l xm—i—l

0
1 )1

- 7[ wd% m>0

m 0

2.10 = z) loght! zda, —0.
(2.10) I<:+1/ g(@)log m=0

The importance of this theorem is twofold. First, it pinpoints an unexpected
termg(™)(0) /m.m!, which occurs in the first relation in this theorem. Sec-

ond, it justifies in many cases a process of integration by parts applied
directly to Hadamard finite-part integrals.

Theorem 2.8 Whery(z) is an allowable function i@ "+1[0, o), m > 0,

> g(z) __1/00 (m+1)
7{) $m+1dx_ ml Jo g (z)log xdx

(2.11) L Hmr D =9 o g

m!
wherey(z) = I''(2)/T'(2).

Proof. This is a simple consequence of Theorem 2.7. Let us apply the first
member of (2.9) iterativelyn times. We find

%Ooog(x)dx_g(m)((]){l_i_ Loy ! +...+1}

i

gm+l m! m m-1 m—2 1
1 1 4(m)
+— 7[ wdq;
m! Jo T

Simplifying this and applying the second member of (2.9) gives (2.11) above
directly. We have used the relation

1YL dm 1) - ()

m)! m)!

=1

This is a standard property ¢f z), the logarithmic derivative of the gamma
function, and is given, for example, in Abramowitz and Stegun(1965) on
page 258. O
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3. The Mellin transform

The conventional definition is as follows.

Definition 3.1 Given a functionf(z), its Mellin transformZ'(p) is defined
as

(3.1) Fp) = [ f@ards
0
for all values ofp for which this integral exists.

It is well known thatF'(p) is an analytic function. Equally well known
is the inversion formula

1 c+ioco
3.2 = F P
(32) (@) =0 [P,
where the contour of integration may be taken to be along the line-Re,
wherec is any value op for which the integral on the right in (3.1) exists.
We now treat

(33) G = [ gz, p>o0,

the Mellin transform of amllowablefunctiong(z). This integral represen-
tationG(p) is valid whenp > 0 where the integral converges. Wher< 0,
this integral diverges and defines nothing. Howeveéfp) is an analytic
function of p and can be continued into Re< 0. To investigate this, we
proceed as follows. Settingto some positive number, we integrate by parts

to obtain
p o0 oo p
o) = 2L 7@ty
p 0 0 b

Sincep > 0 andzPg(x) vanishes abo, the first term on the right disappears.
Iterating this procedure times gives

(34) Glp) =

(—1)n+1 o0 (n+1) xprrn .
p(p+1)(p+2)...(p+n)/0 g ()2

The right-hand side is an analytic functiorydh all Rep > —n—1 exceptat
isolated polep = 0, —1, . . . —n. Since this analytic function coincides with
G(p) when Rep > 0, it represents its continuation into Re= (—n — 1, 0].

It is trivial to note from (3.4) thatZ(p) has a simple pole at = —n, with
residue

— 00 (n)
(35) RegG(p):p=-—n)= 771 /0 ) () = 9 n!(o)'
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Theorem 3.2 Let g(z) be an allowable function i"(>)[0, co) and G (p)
be its Mellin transform. Thei*(p) has an analytic continuation for afi,
except for simple poles at=0,—-1,—-2,.. ..

To obtain the early terms in the Laurent expansion, we seek an expansion
of G(—n + €) in powers ofe. Direct substitution op = —n + € in (3.4)
gives

—I'(1 —¢) o0
3.6 G(— - _ . (n+1) €dr.
(3.6) (-n+e) F(n+1—e)e/o g (@)a‘de
We may use

1 2
(3.7) xezeel‘)gz:l—kelogz—i—(ec;g'x)-i-...

and an expansion of the form
I'l—e)

I'n+1—¢)

to establish formulas for the individual terms of the Laurent expansion in

terms of the coefficient@](-"). Recurrence relations for these coefficients
are given later in (3.21) and (3.22). It is trivial to verify that

(3.8) — oMy Ve +

(3.9) V=1 V=0 j>1,
L _ . (2) 1 ,
and

@11) ¢ = 1 O = L) - ()}, W1

Carrying out this process, we find

(3.12) Gl—n+e) =b" e+ b +Me+ ..,
where

b = g™ (0)/n!

k+1 C(”) . oo '
(3.13) bV =-%" —ktls / g (@) log' & du, k> 0.
i—0 v 0

The theory given above may be used to provide critical information
about the poles and Laurent expansions of the Mellin transfom) of the
function f(z) = x%g(x). Clearly, whenf andg are related in this way, their
Mellin transforms satisfy

F(p—a)=G(p).
In view of this, we find the somewhat trite corollary.
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Corollary 3.3 Let g(z) be an allowable function iC(®)[0, cc). When
f(x) = x%g(z), its Mellin transformF(p) has poles ap = —a — n
(n=0,1,2,...). The Laurent expansiafi(—a —n+¢) coincides precisely
with the right-hand side of (3.12) above.

This result is used in the later sections of this paper and extensively in
forthcoming work on multidimensional quadrature.
Settingk = 0 in (3.13), and recalling (3.11), we find that

w1 n+1)— o)
bé):—a/o gt “)(x)logxdx—i-l/}( n)! i )g( )(0).

This coincides with the Hadamard finite-part integral given in (2.11). We

shall now prove that all coefficienb%”) have equally simple integral repre-
sentations.

Theorem 3.4 Under the hypotheses of Theorem 3.2, the Laurent expansion
coefficientiafg”) of (3.12) are given by

k
m) 1 [>®g(z)log"x

Throughout the proof, which is manipulative, we shall use the abbrevi-
ation

(315) Hjﬂ' =

1 oo g(n=j+1) i
1 7[ g (¢)log'z
i Jo zJ

In view of expression (3.13), in order to establish (3.14), we must show

k+1

(3.16) Hyp1p=— Z CI(gZ-)l—jHOJ‘
=0

As a preliminary, we establish two lemmas.

Lemma 3.5 For all n, k& > 1 we have

Hypaq (i —1)!
(3.17) Hypr g = —Tﬁ +3 ( = ) Hii1 1.
&

Proof. This is based on the two members of (2.10) above. When we apply
each of these relations to the functigfi—™) (z), m being the parameter in
(2.10), we may express the result in the form

1 1

(318) Hm+1,€ = 7-Hm+1,€—1 + *Hm,& mae > O)
m m

(3.19)  Hyp=—Hppya, ?>0.
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Let us multiply each member of (3.18) ly! /n! and sum the resulting
equation over index: € [1,n]. We find immediately

I n ni:l Hyia g zn: Hyi1 k-1
n+1,k =
—nn-1)...(m+1) “=nnh-1)...m
Hip | ¢ Hup, 1
3.20 —= _
(3.20) * n! +mz::2n(n—l)...m

The summation on the left coincides, term by term, with the final summation
on the right. Removing these terms and using (3.19) reduces (3.20) to (3.17),
establishing Lemma 3.5. O

The second lemma we need is a relation between the coeﬁi@éﬁts
defined in (3.8).
Lemma 3.6 The identity

(3.21) S -1l =nel)
=1
holds for alln > 1 and? > 0.
Proof. We first establish a recursion relation (3.22). This may be used to
calculate numerical values 61‘](-”) recursively starting with the values of
C](l) andCé") givenin (3.10) and (3.11). Using the identtym + 1 —¢) =
(m — €)I'(m — €), we find immediately that
mI'(1—¢)  el'(1—e¢) I'(l—e)
I'm+1—¢ I'(m+1—¢ TI'(m—e)
Applying expansion (3.8) to each quotient of gamma functions, we find

m Z Cj(-m)ej =€ Z C;:nzej_l + Z Cj(m_l)ej.
=0 j=1 j=0

Examination of the coefficient @f in this relation gives

(3.22) mC{™ =" "V >

To establish the lemma, we multiply each elementin (3.22)by- 1)! and
sum over indexne|[1, n]. Then

n n n—1
) ( )
S omiet™ = 3 (m - 110 + Y mici™.
m=1 m=1 m=0
The firstn — 1 terms in the first summation coincide with the final- 1
terms in the third summation. Removing the common terms leaves (3.21)
as written. O
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We now proceed to the proof of Theorem 3.4, which is by induction.

Proof of Theorem 3.4The casé: = 0 has been already proved, while the
casen = 0 follows immediately from (3.13) and (3.9).
Whenk,n > 1, we proceed as follows. First we wish to establish that

k+1
(3.23) :—Zcﬁ j+1H0] i=0,1,...,

with k = k. In Theorem 2.8, we established this for a0 with k = 0.
Thus, we may use that as a basis for inductioncpassume that (3.23) is
valid for x € [0,k — 1] and derive the same result fer= k. To this end,
we invoke Lemma 3.5 and substitute ¢ ., using (3.23). We find

Hy 1 "G —1)!
Hyi1,+ 771,“ = Z( )

This final equality results from Lemma 3.6 with= k — ;. SinceC((]") =

1/n!, the second term on the left may be treated agthe 1)th element
of the sum on the right. This establishes (3.16), which is an abbreviated
statement of Theorem 3.40

Remark 3.7There are two significant results in the last two sections. The
first, Theorem 2.7, introduces an anomalous term which has to be included
in some (specified) cases in the standard formula for integration by parts,
when the integrals involved diverge and are replaced by Hadamard finite part
integrals. One of the consequences of this is the second significant result
(Theorem 3.4). This deals with the Laurent expansion coefficients at a pole
of (the analytic continuation of) the Mellin transform. This expansion has
the form

A_
Glp+e) = Tl + Ao+ Are+ Ase® + ...
and, for allp < 0, Ag is the Hadamard finite part integral. That is:

Ay = 7[ g(z)xPldx
0

whether or notA_; = 0 or, whenp is a negative integerl _; # 0. Thus the
Mellin transform, through its analytic continuation, provides an alternative
definition of Hadamard finite part integral, one which unifies the noninteger
and the integer cases.
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4. Quadrature error expansions for the semifinite interval[0, co)

Our ultimate purpose is to obtain expansions such as (1.2) for the discretiza-
tion error of an offset trapezoidal rule over a finite interval [0,1]. The major
part of the derivation appears in this section, where corresponding expan-
sions for the semifinite interval are established. A straightforward subtrac-
tion procedure to obtain expansions for the finite interval is given in the next
section. Following Verlinden (1993), we denote an offset trapezoidal rule
operator for the semifinite interval by

4.1) &JW%=1§3f(

H =0

i),

It follows immediately from the Mellin inversion formula (3.2) that

4.2) f (x:k> - 217”/_+OZO F(p) (x:k>_pdp.

Substituting this into (4.1) and inverting the order of summation and inte-
gration, we find

1 c+ioco B
(43 Suf () = 5= | Fo). A dp
Here we have used a standard definition of the Riemann zeta function,
namely

(4.4) ((p,x) =) (z+k)",  z€(0,1]
k=0

SinceF'(p) is the Mellin transform (3.1) of (x), it follows thatc in (4.2)
may take any value gf for which the integral on the right of (3.1) exists.
We shall be applying this result only in cases whé(e) is an allowable
function, or closely related to one, and no problem in finding a suitable value
of ¢ is encountered.

Formula (4.3) is of wide validity, being meaningful wheneyér) is
such that its Mellin transform (3.1) exists for any valueooiVe now spe-
cialize to functionsf (x) of the form

(4.5) f(x) = z%g(x),

whereg(zx) is an allowable function. Note that we need not at the moment
restricto in any way. Recalling that' (p) = G(a+p), one may readily show
that the expression on the rightin (4.3§¢.°~ 1) asy — oo. Consequently,

we may displace the contour in (4.3) to the left fromRe cto Rep = ¢

so long as we include the sum of residues of the integrand at poles in the



286 G. Monegato, J. N. Lyness

stripRep € [¢], ¢1). This process introduces a finite set of residue terms, but
replacinge by ¢’ in the integral reduces its order frof(¢ 1) to O (u¢' ).
These poles occur at= 1, where the zeta function has a simple pole
andap = —a—nn =0,1,2,...;ateach of these poinfs(p) has a simple
pole. Whena is not a negative integer, all these poles are distinct. When
« is a negative integer, the pole 6f(p) with n = —1 — « coincides with
the pole of the zeta function resulting in a pole of order 2 of the integrand
function at this point.
We deal first with the case in which the poles are distinct. Itis well known
that

(4.6) Reg((p,z) :p=1) =1,
and in view of (3.12) we have
(4.7) ReSF(p):p=—n—a)=g¢™(0)/n.

This gives the following theorem.

Theorem 4.1 Let f(z) = z%g(z); let g(z) be allowable inCN*+1[0, c0),
and leta not be a negative integer. Then,

c+ioco
Suf(8) = 5 | FOX B dp

271 Je—ioo

N M (0) ¢(—n —
(4.8) —r1)+3 4 n‘(O) ¢( /;”fl’ B)
n=0 '

1 c/+ioo

to= [ FG)K A dp,
Tl Jc!—ico

whereN isanonnegative integer,> a—1,¢/ € (—-N—a—2,—N—a—1),

and F'(p) is the (analytic continuation of the) Mellin transform pfx) (in

the p-plane).

Our immediate task is to identify"(1). Whena > —1, the integral
representation in Definition 3.1 exists, giving

FQ1) = /OOO f(z)dz.

Whena < —1, F(1) is the analytic continuation df (p), which exists for
higher values op. Sincex is not a negative integer, we may invoke Theorem
2.6 to give

4.9) F(1) = {O F()da.

There remains the case in whiahis a negative integer. The expansion
(4.8) is based on the assumption that all the poles of the integrand function
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in (4.3) are distinct and simple and their residues given by (4.6) and (4.7).
Whena is a negative integer, the poles for#£ —1 — « are unchanged in
character. However, there is a pole of order 2 at 1. We need to make a
technical adjustment to (4.8) replaci#1) and the term in the sum with

n = —1—a by the residue of (p)¢(p, z)uP~! atp = 1. The calculation of

this residue is straightforward but tedious. Briefly, we require the coefficient
ofe~!inthe expansion aF (1+4¢)((1+¢, z) . Using the result of Corollary

3.3 withn = 1 and settingn = —1 — «, a nonnegative integer, we find

F+e=190), f)oof(:v)dm—l—O(e).

In view of the standard expansions
1
C(1+ea) = - — ) + O(e),

pf = efl%8H =1 4 elog u + O(€?),
we find immediately that the required coefficient is

m) (m)
£ pwyin - )+ D g

Replacing the two terms mentioned above leads to a variant theorem.

Theorem 4.2 Whena is a negative integer, Theorem 4.1 is valid as written
except that, in the expansion (4.8) the term with m = —a— 1 is omitted
from the sum and replaced by

(m)
(B) + gm'(()) log y;

as before F'(1) remains the finite-part integral (4.9).

5. Quadrature error expansions for the finite interval [0, 1]

The results of the preceding section are expansions for the infinite sum

55

where f(z) = z%g(x) andg(x) is an allowable function. In this section
we exploit those expansions to obtain corresponding results pertaining to a
finite interval [0,1] and a quadrature rule

1“Zlf(j+ﬁ>
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This is a discretization of the finite integrﬁj} f(x)dx. We shall treat three
casesj(x) has no singularities, has a singularity at one end of the interval,
and has singularities at both ends.

Definition 5.1 A neutralizerfunctionv(z; k1; k2) With ke > k1 is a func-
tion satisfying

v(z)=1 r < K1,
v(r) =0 T > Ko,
v(z) € C°(—00,00).

Example:

1 1 1
V(x):2{1+tanh</@2t_t/{1)}’ t € (K1, k2).

A familiar result is the following lemma.

Lemma 5.2 Let f(x) € C®)|0,1]. There exists &)[0, c0) continuation
of f(x) that is allowable. This is

flz), 0<z<l,
f(z) = { (Z?:o f(];!(l) (z — 1)3') v(z; k1 Ka2), L <u,

wherev(z) is any neutralizer function with < x; < k2 < 0.

In the sequel, in situations in whigh{z) is defined only in [0,1], we shall
assume a continuation of the above form without any further comment.
To obtain the classical Euler-Maclaurin expansion for [0,1]far) €
CP)[0,1], we define its continuation as just described with> 1. Then

we may set

and clearly

Suf(B) = Suf(B) = Suf(B).
We apply the result of Theorem 4.1 to both terms. Simce 0, we readily
find

Suf(B)=F(1) - F(1)

(5.1) tom [ (FW) ~ F@)C. 0

271 S —ioo
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Here we have denoted the Mellin transformfak:) by F(p). Sincef(z) is
regular and allowable, it follows that

1)~ F) = [T (@) ~ S+ e = [ feyie

and the zeta function in the summation may be re-expressed in terms of
Bernoulli polynomials, using (1.3) above.

An expansion for the error functional when there is an integrand singu-
larity at one end of the interval is obtained by using the same procedure. Let
f(x) = z%g(x), whereg(z) € CP)[0, 1].

Let o # negative integer and > 0. Then, applying Theorem 4.1, we
find

(5.2) Suf(B) = Suf(B) — Suf(B)
.

= F(1) — F(1)
N N
((=n=0a,8) g™ (©) & ¢(=n.p) f7)
+§) MZ+af1 ! n +§) M:H n!
' +ioco _
(53 boms [ EW) — F@). 07

Sincea # negative integer, the first term here is
PU) - F) = 4 f@yda— [ f@)ds
0 1
1

= 7{) f(z)dx.

Whena > —1, this is Navot's result. When < —1 and is not an integer,

this is Ninham’s result. This derivation is the same for these two cases.
Whena is a negative integer, say,m — 1, wherem is a nonnegative

integer, the expansion given above has to be adjusted in accordance with

Theorem 4.2. Doing this leads to the following replacement for (5.2). Here,

f(z) = a%g(z) = g(x)/a™*.

50 = 4 sy Oy 1 70,

3 Sentm L) g<”>.<0> £ 30 4Em) 90)

Mn+1 n!

64 tom [ (B0 - P00 dp

/ —ioco
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We have now treated all values@fWhena is a negative integer, expansion
(5.4) (with thelog i term) is valid. Otherwise, the expansion (5.2) is valid.
The regular expansion (5.1) coincides with (5.2) whes set to zero.

One may obtain variants of these results relating to an integrand function
that has a singularity at both ends of the finite interval. Let

f(z) = z%(1 —2)7g(x),

whereg(z) € C)[0,1]. To handle this, we re-expregéz) as follows:

F@) = F@)lw 5,5) + @)1 - (@ 5,3)

= fo(z) + fi(z) = fo(z) + fo(1 — 2).
Then,

Suf(B) = Sufo(B) + Sufi(B) = Sufo(B) + Sufa(l — B).

Geometrically, we have replaced the origirfék) by two functions whose
support is localized t¢0, x2] and to[x1, 1], respectively(x; = i/3). The

second of these has been reflected ahout % This has left the two
functionsfy(x) andf2(z), both of which have a singularity at= 0 but are

allowable inC[0, o). It remains only to apply Theorem 4.1 fg(x) and

f2(x) separately. Setting

golz) =1 -2)glx), glz)=a1"g(z),
we obtain
Suf(B) = S.fo(B) + Sufa(1 - B)
_FO( )—i—Fg +ZO€ Z—;flaﬁ)gon'( )
((—n—v,1-8) g™ (1)(~1)"
+ Z — n—ij/y—&-l % n!
c +1oo
55) % [ ol + B e,
Here,

Fo +F2 % f dCC

In the case that one or both afor v are negative integers, saymn — 1 or

—m — 1, respectively, there is an adjustment of the same type as was made to
obtain (5.4) from (5.2). In the extreme case that both are negative integers,
the sums oven are adjusted by omitting the terms for whigh= m and

n = m, respectively, and by including two sets of extra terms each set being
of the type specified in Theorem 4.2.
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6. Concluding remarks

In this paper we have presented a unified approach for deriving the one-
dimensional Euler-Maclaurin expansions for quadrature error functionals
defined on a finite interval when the integrand function has an algebraic
singularity, of any order, at one or both endpoints. We have been able to
include, in a general framework, the case of nonintegrable singularities, that
is, integrals defined as Hadamard finite-parts.

Our approach is based on properties of the Mellin transform; in particu-
lar, using integration by parts, we have continued an investigation initiated
by Verlinden into the sequence of poles in the negative real axis. Critical
to our theory is the nature of the Laurent expansion at each pole. We have
shown that each individual term in this expansion has a simple integral rep-
resentation in terms of a Hadamard finite-part integral. This is an extension
of the theory recently developed by Verlinden to higher-order terms and
nonintegrable singularities.

As mentioned inthe introduction, arefreshing feature of this theory is that
it treats all possible cases of singularities in a fundamentally uniform way.
The different expansions arise simply as a result of a technical difference
in the formula required to calculate the residues at the poles of the Mellin
transform.
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